kern_event.c revision 1.138 1 /* $NetBSD: kern_event.c,v 1.138 2021/10/23 18:46:26 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * Copyright (c) 2009 Apple, Inc
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59 */
60
61 #ifdef _KERNEL_OPT
62 #include "opt_ddb.h"
63 #endif /* _KERNEL_OPT */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.138 2021/10/23 18:46:26 thorpej Exp $");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/wait.h>
72 #include <sys/proc.h>
73 #include <sys/file.h>
74 #include <sys/select.h>
75 #include <sys/queue.h>
76 #include <sys/event.h>
77 #include <sys/eventvar.h>
78 #include <sys/poll.h>
79 #include <sys/kmem.h>
80 #include <sys/stat.h>
81 #include <sys/filedesc.h>
82 #include <sys/syscallargs.h>
83 #include <sys/kauth.h>
84 #include <sys/conf.h>
85 #include <sys/atomic.h>
86
87 static int kqueue_scan(file_t *, size_t, struct kevent *,
88 const struct timespec *, register_t *,
89 const struct kevent_ops *, struct kevent *,
90 size_t);
91 static int kqueue_ioctl(file_t *, u_long, void *);
92 static int kqueue_fcntl(file_t *, u_int, void *);
93 static int kqueue_poll(file_t *, int);
94 static int kqueue_kqfilter(file_t *, struct knote *);
95 static int kqueue_stat(file_t *, struct stat *);
96 static int kqueue_close(file_t *);
97 static void kqueue_restart(file_t *);
98 static int kqueue_register(struct kqueue *, struct kevent *);
99 static void kqueue_doclose(struct kqueue *, struct klist *, int);
100
101 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
102 static void knote_enqueue(struct knote *);
103 static void knote_activate(struct knote *);
104 static void knote_activate_locked(struct knote *);
105 static void knote_deactivate_locked(struct knote *);
106
107 static void filt_kqdetach(struct knote *);
108 static int filt_kqueue(struct knote *, long hint);
109 static int filt_procattach(struct knote *);
110 static void filt_procdetach(struct knote *);
111 static int filt_proc(struct knote *, long hint);
112 static int filt_fileattach(struct knote *);
113 static void filt_timerexpire(void *x);
114 static int filt_timerattach(struct knote *);
115 static void filt_timerdetach(struct knote *);
116 static int filt_timer(struct knote *, long hint);
117 static int filt_timertouch(struct knote *, struct kevent *, long type);
118 static int filt_userattach(struct knote *);
119 static void filt_userdetach(struct knote *);
120 static int filt_user(struct knote *, long hint);
121 static int filt_usertouch(struct knote *, struct kevent *, long type);
122
123 static const struct fileops kqueueops = {
124 .fo_name = "kqueue",
125 .fo_read = (void *)enxio,
126 .fo_write = (void *)enxio,
127 .fo_ioctl = kqueue_ioctl,
128 .fo_fcntl = kqueue_fcntl,
129 .fo_poll = kqueue_poll,
130 .fo_stat = kqueue_stat,
131 .fo_close = kqueue_close,
132 .fo_kqfilter = kqueue_kqfilter,
133 .fo_restart = kqueue_restart,
134 };
135
136 static const struct filterops kqread_filtops = {
137 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
138 .f_attach = NULL,
139 .f_detach = filt_kqdetach,
140 .f_event = filt_kqueue,
141 };
142
143 static const struct filterops proc_filtops = {
144 .f_flags = FILTEROP_MPSAFE,
145 .f_attach = filt_procattach,
146 .f_detach = filt_procdetach,
147 .f_event = filt_proc,
148 };
149
150 /*
151 * file_filtops is not marked MPSAFE because it's going to call
152 * fileops::fo_kqfilter(), which might not be. That function,
153 * however, will override the knote's filterops, and thus will
154 * inherit the MPSAFE-ness of the back-end at that time.
155 */
156 static const struct filterops file_filtops = {
157 .f_flags = FILTEROP_ISFD,
158 .f_attach = filt_fileattach,
159 .f_detach = NULL,
160 .f_event = NULL,
161 };
162
163 static const struct filterops timer_filtops = {
164 .f_flags = FILTEROP_MPSAFE,
165 .f_attach = filt_timerattach,
166 .f_detach = filt_timerdetach,
167 .f_event = filt_timer,
168 .f_touch = filt_timertouch,
169 };
170
171 static const struct filterops user_filtops = {
172 .f_flags = FILTEROP_MPSAFE,
173 .f_attach = filt_userattach,
174 .f_detach = filt_userdetach,
175 .f_event = filt_user,
176 .f_touch = filt_usertouch,
177 };
178
179 static u_int kq_ncallouts = 0;
180 static int kq_calloutmax = (4 * 1024);
181
182 #define KN_HASHSIZE 64 /* XXX should be tunable */
183 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
184
185 extern const struct filterops fs_filtops; /* vfs_syscalls.c */
186 extern const struct filterops sig_filtops; /* kern_sig.c */
187
188 /*
189 * Table for for all system-defined filters.
190 * These should be listed in the numeric order of the EVFILT_* defines.
191 * If filtops is NULL, the filter isn't implemented in NetBSD.
192 * End of list is when name is NULL.
193 *
194 * Note that 'refcnt' is meaningless for built-in filters.
195 */
196 struct kfilter {
197 const char *name; /* name of filter */
198 uint32_t filter; /* id of filter */
199 unsigned refcnt; /* reference count */
200 const struct filterops *filtops;/* operations for filter */
201 size_t namelen; /* length of name string */
202 };
203
204 /* System defined filters */
205 static struct kfilter sys_kfilters[] = {
206 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
207 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
208 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
209 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
210 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
211 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
212 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
213 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
214 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
215 { "EVFILT_EMPTY", EVFILT_EMPTY, 0, &file_filtops, 0 },
216 { NULL, 0, 0, NULL, 0 },
217 };
218
219 /* User defined kfilters */
220 static struct kfilter *user_kfilters; /* array */
221 static int user_kfilterc; /* current offset */
222 static int user_kfiltermaxc; /* max size so far */
223 static size_t user_kfiltersz; /* size of allocated memory */
224
225 /*
226 * Global Locks.
227 *
228 * Lock order:
229 *
230 * kqueue_filter_lock
231 * -> kn_kq->kq_fdp->fd_lock
232 * -> object lock (e.g., device driver lock, &c.)
233 * -> kn_kq->kq_lock
234 *
235 * Locking rules:
236 *
237 * f_attach: fdp->fd_lock, KERNEL_LOCK
238 * f_detach: fdp->fd_lock, KERNEL_LOCK
239 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
240 * f_event via knote: whatever caller guarantees
241 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
242 * f_event(!NOTE_SUBMIT) via knote: nothing,
243 * acquires/releases object lock inside.
244 *
245 * Locking rules when detaching knotes:
246 *
247 * There are some situations where knote submission may require dropping
248 * locks (see knote_proc_fork()). In order to support this, it's possible
249 * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to
250 * be detached while it remains in-flux. Because it will not be detached,
251 * locks can be dropped so e.g. memory can be allocated, locks on other
252 * data structures can be acquired, etc. During this time, any attempt to
253 * detach an in-flux knote must wait until the knote is no longer in-flux.
254 * When this happens, the knote is marked for death (KN_WILLDETACH) and the
255 * LWP who gets to finish the detach operation is recorded in the knote's
256 * 'udata' field (which is no longer required for its original purpose once
257 * a knote is so marked). Code paths that lead to knote_detach() must ensure
258 * that their LWP is the one tasked with its final demise after waiting for
259 * the in-flux status of the knote to clear. Note that once a knote is
260 * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
261 *
262 * Once the special circumstances have been handled, the locks are re-
263 * acquired in the proper order (object lock -> kq_lock), the knote taken
264 * out of flux, and any waiters are notified. Because waiters must have
265 * also dropped *their* locks in order to safely block, they must re-
266 * validate all of their assumptions; see knote_detach_quiesce(). See also
267 * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
268 * cases.
269 *
270 * When kqueue_scan() encounters an in-flux knote, the situation is
271 * treated like another LWP's list marker.
272 *
273 * LISTEN WELL: It is important to not hold knotes in flux for an
274 * extended period of time! In-flux knotes effectively block any
275 * progress of the kqueue_scan() operation. Any code paths that place
276 * knotes in-flux should be careful to not block for indefinite periods
277 * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
278 * KM_SLEEP is not).
279 */
280 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
281
282 #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock)
283 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
284
285 static inline bool
286 kn_in_flux(struct knote *kn)
287 {
288 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
289 return kn->kn_influx != 0;
290 }
291
292 static inline bool
293 kn_enter_flux(struct knote *kn)
294 {
295 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
296
297 if (kn->kn_status & KN_WILLDETACH) {
298 return false;
299 }
300
301 KASSERT(kn->kn_influx < UINT_MAX);
302 kn->kn_influx++;
303
304 return true;
305 }
306
307 static inline bool
308 kn_leave_flux(struct knote *kn)
309 {
310 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
311 KASSERT(kn->kn_influx > 0);
312 kn->kn_influx--;
313 return kn->kn_influx == 0;
314 }
315
316 static void
317 kn_wait_flux(struct knote *kn, bool can_loop)
318 {
319 bool loop;
320
321 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
322
323 /*
324 * It may not be safe for us to touch the knote again after
325 * dropping the kq_lock. The caller has let us know in
326 * 'can_loop'.
327 */
328 for (loop = true; loop && kn->kn_influx != 0; loop = can_loop) {
329 KQ_FLUX_WAIT(kn->kn_kq);
330 }
331 }
332
333 #define KNOTE_WILLDETACH(kn) \
334 do { \
335 (kn)->kn_status |= KN_WILLDETACH; \
336 (kn)->kn_kevent.udata = curlwp; \
337 } while (/*CONSTCOND*/0)
338
339 /*
340 * Wait until the specified knote is in a quiescent state and
341 * safe to detach. Returns true if we potentially blocked (and
342 * thus dropped our locks).
343 */
344 static bool
345 knote_detach_quiesce(struct knote *kn)
346 {
347 struct kqueue *kq = kn->kn_kq;
348 filedesc_t *fdp = kq->kq_fdp;
349
350 KASSERT(mutex_owned(&fdp->fd_lock));
351
352 mutex_spin_enter(&kq->kq_lock);
353 /*
354 * There are two cases where we might see KN_WILLDETACH here:
355 *
356 * 1. Someone else has already started detaching the knote but
357 * had to wait for it to settle first.
358 *
359 * 2. We had to wait for it to settle, and had to come back
360 * around after re-acquiring the locks.
361 *
362 * When KN_WILLDETACH is set, we also set the LWP that claimed
363 * the prize of finishing the detach in the 'udata' field of the
364 * knote (which will never be used again for its usual purpose
365 * once the note is in this state). If it doesn't point to us,
366 * we must drop the locks and let them in to finish the job.
367 *
368 * Otherwise, once we have claimed the knote for ourselves, we
369 * can finish waiting for it to settle. The is the only scenario
370 * where touching a detaching knote is safe after dropping the
371 * locks.
372 */
373 if ((kn->kn_status & KN_WILLDETACH) != 0 &&
374 kn->kn_kevent.udata != curlwp) {
375 /*
376 * N.B. it is NOT safe for us to touch the knote again
377 * after dropping the locks here. The caller must go
378 * back around and re-validate everything. However, if
379 * the knote is in-flux, we want to block to minimize
380 * busy-looping.
381 */
382 mutex_exit(&fdp->fd_lock);
383 if (kn_in_flux(kn)) {
384 kn_wait_flux(kn, false);
385 mutex_spin_exit(&kq->kq_lock);
386 return true;
387 }
388 mutex_spin_exit(&kq->kq_lock);
389 preempt_point();
390 return true;
391 }
392 /*
393 * If we get here, we know that we will be claiming the
394 * detach responsibilies, or that we already have and
395 * this is the second attempt after re-validation.
396 */
397 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
398 kn->kn_kevent.udata == curlwp);
399 /*
400 * Similarly, if we get here, either we are just claiming it
401 * and may have to wait for it to settle, or if this is the
402 * second attempt after re-validation that no other code paths
403 * have put it in-flux.
404 */
405 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
406 kn_in_flux(kn) == false);
407 KNOTE_WILLDETACH(kn);
408 if (kn_in_flux(kn)) {
409 mutex_exit(&fdp->fd_lock);
410 kn_wait_flux(kn, true);
411 /*
412 * It is safe for us to touch the knote again after
413 * dropping the locks, but the caller must still
414 * re-validate everything because other aspects of
415 * the environment may have changed while we blocked.
416 */
417 KASSERT(kn_in_flux(kn) == false);
418 mutex_spin_exit(&kq->kq_lock);
419 return true;
420 }
421 mutex_spin_exit(&kq->kq_lock);
422
423 return false;
424 }
425
426 static int
427 filter_attach(struct knote *kn)
428 {
429 int rv;
430
431 KASSERT(kn->kn_fop != NULL);
432 KASSERT(kn->kn_fop->f_attach != NULL);
433
434 /*
435 * N.B. that kn->kn_fop may change as the result of calling
436 * f_attach().
437 */
438 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
439 rv = kn->kn_fop->f_attach(kn);
440 } else {
441 KERNEL_LOCK(1, NULL);
442 rv = kn->kn_fop->f_attach(kn);
443 KERNEL_UNLOCK_ONE(NULL);
444 }
445
446 return rv;
447 }
448
449 static void
450 filter_detach(struct knote *kn)
451 {
452 KASSERT(kn->kn_fop != NULL);
453 KASSERT(kn->kn_fop->f_detach != NULL);
454
455 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
456 kn->kn_fop->f_detach(kn);
457 } else {
458 KERNEL_LOCK(1, NULL);
459 kn->kn_fop->f_detach(kn);
460 KERNEL_UNLOCK_ONE(NULL);
461 }
462 }
463
464 static int
465 filter_event(struct knote *kn, long hint)
466 {
467 int rv;
468
469 KASSERT(kn->kn_fop != NULL);
470 KASSERT(kn->kn_fop->f_event != NULL);
471
472 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
473 rv = kn->kn_fop->f_event(kn, hint);
474 } else {
475 KERNEL_LOCK(1, NULL);
476 rv = kn->kn_fop->f_event(kn, hint);
477 KERNEL_UNLOCK_ONE(NULL);
478 }
479
480 return rv;
481 }
482
483 static int
484 filter_touch(struct knote *kn, struct kevent *kev, long type)
485 {
486 return kn->kn_fop->f_touch(kn, kev, type);
487 }
488
489 static kauth_listener_t kqueue_listener;
490
491 static int
492 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
493 void *arg0, void *arg1, void *arg2, void *arg3)
494 {
495 struct proc *p;
496 int result;
497
498 result = KAUTH_RESULT_DEFER;
499 p = arg0;
500
501 if (action != KAUTH_PROCESS_KEVENT_FILTER)
502 return result;
503
504 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
505 ISSET(p->p_flag, PK_SUGID)))
506 return result;
507
508 result = KAUTH_RESULT_ALLOW;
509
510 return result;
511 }
512
513 /*
514 * Initialize the kqueue subsystem.
515 */
516 void
517 kqueue_init(void)
518 {
519
520 rw_init(&kqueue_filter_lock);
521
522 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
523 kqueue_listener_cb, NULL);
524 }
525
526 /*
527 * Find kfilter entry by name, or NULL if not found.
528 */
529 static struct kfilter *
530 kfilter_byname_sys(const char *name)
531 {
532 int i;
533
534 KASSERT(rw_lock_held(&kqueue_filter_lock));
535
536 for (i = 0; sys_kfilters[i].name != NULL; i++) {
537 if (strcmp(name, sys_kfilters[i].name) == 0)
538 return &sys_kfilters[i];
539 }
540 return NULL;
541 }
542
543 static struct kfilter *
544 kfilter_byname_user(const char *name)
545 {
546 int i;
547
548 KASSERT(rw_lock_held(&kqueue_filter_lock));
549
550 /* user filter slots have a NULL name if previously deregistered */
551 for (i = 0; i < user_kfilterc ; i++) {
552 if (user_kfilters[i].name != NULL &&
553 strcmp(name, user_kfilters[i].name) == 0)
554 return &user_kfilters[i];
555 }
556 return NULL;
557 }
558
559 static struct kfilter *
560 kfilter_byname(const char *name)
561 {
562 struct kfilter *kfilter;
563
564 KASSERT(rw_lock_held(&kqueue_filter_lock));
565
566 if ((kfilter = kfilter_byname_sys(name)) != NULL)
567 return kfilter;
568
569 return kfilter_byname_user(name);
570 }
571
572 /*
573 * Find kfilter entry by filter id, or NULL if not found.
574 * Assumes entries are indexed in filter id order, for speed.
575 */
576 static struct kfilter *
577 kfilter_byfilter(uint32_t filter)
578 {
579 struct kfilter *kfilter;
580
581 KASSERT(rw_lock_held(&kqueue_filter_lock));
582
583 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
584 kfilter = &sys_kfilters[filter];
585 else if (user_kfilters != NULL &&
586 filter < EVFILT_SYSCOUNT + user_kfilterc)
587 /* it's a user filter */
588 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
589 else
590 return (NULL); /* out of range */
591 KASSERT(kfilter->filter == filter); /* sanity check! */
592 return (kfilter);
593 }
594
595 /*
596 * Register a new kfilter. Stores the entry in user_kfilters.
597 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
598 * If retfilter != NULL, the new filterid is returned in it.
599 */
600 int
601 kfilter_register(const char *name, const struct filterops *filtops,
602 int *retfilter)
603 {
604 struct kfilter *kfilter;
605 size_t len;
606 int i;
607
608 if (name == NULL || name[0] == '\0' || filtops == NULL)
609 return (EINVAL); /* invalid args */
610
611 rw_enter(&kqueue_filter_lock, RW_WRITER);
612 if (kfilter_byname(name) != NULL) {
613 rw_exit(&kqueue_filter_lock);
614 return (EEXIST); /* already exists */
615 }
616 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
617 rw_exit(&kqueue_filter_lock);
618 return (EINVAL); /* too many */
619 }
620
621 for (i = 0; i < user_kfilterc; i++) {
622 kfilter = &user_kfilters[i];
623 if (kfilter->name == NULL) {
624 /* Previously deregistered slot. Reuse. */
625 goto reuse;
626 }
627 }
628
629 /* check if need to grow user_kfilters */
630 if (user_kfilterc + 1 > user_kfiltermaxc) {
631 /* Grow in KFILTER_EXTENT chunks. */
632 user_kfiltermaxc += KFILTER_EXTENT;
633 len = user_kfiltermaxc * sizeof(*kfilter);
634 kfilter = kmem_alloc(len, KM_SLEEP);
635 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
636 if (user_kfilters != NULL) {
637 memcpy(kfilter, user_kfilters, user_kfiltersz);
638 kmem_free(user_kfilters, user_kfiltersz);
639 }
640 user_kfiltersz = len;
641 user_kfilters = kfilter;
642 }
643 /* Adding new slot */
644 kfilter = &user_kfilters[user_kfilterc++];
645 reuse:
646 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
647
648 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
649
650 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
651 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
652
653 if (retfilter != NULL)
654 *retfilter = kfilter->filter;
655 rw_exit(&kqueue_filter_lock);
656
657 return (0);
658 }
659
660 /*
661 * Unregister a kfilter previously registered with kfilter_register.
662 * This retains the filter id, but clears the name and frees filtops (filter
663 * operations), so that the number isn't reused during a boot.
664 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
665 */
666 int
667 kfilter_unregister(const char *name)
668 {
669 struct kfilter *kfilter;
670
671 if (name == NULL || name[0] == '\0')
672 return (EINVAL); /* invalid name */
673
674 rw_enter(&kqueue_filter_lock, RW_WRITER);
675 if (kfilter_byname_sys(name) != NULL) {
676 rw_exit(&kqueue_filter_lock);
677 return (EINVAL); /* can't detach system filters */
678 }
679
680 kfilter = kfilter_byname_user(name);
681 if (kfilter == NULL) {
682 rw_exit(&kqueue_filter_lock);
683 return (ENOENT);
684 }
685 if (kfilter->refcnt != 0) {
686 rw_exit(&kqueue_filter_lock);
687 return (EBUSY);
688 }
689
690 /* Cast away const (but we know it's safe. */
691 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
692 kfilter->name = NULL; /* mark as `not implemented' */
693
694 if (kfilter->filtops != NULL) {
695 /* Cast away const (but we know it's safe. */
696 kmem_free(__UNCONST(kfilter->filtops),
697 sizeof(*kfilter->filtops));
698 kfilter->filtops = NULL; /* mark as `not implemented' */
699 }
700 rw_exit(&kqueue_filter_lock);
701
702 return (0);
703 }
704
705
706 /*
707 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
708 * descriptors. Calls fileops kqfilter method for given file descriptor.
709 */
710 static int
711 filt_fileattach(struct knote *kn)
712 {
713 file_t *fp;
714
715 fp = kn->kn_obj;
716
717 return (*fp->f_ops->fo_kqfilter)(fp, kn);
718 }
719
720 /*
721 * Filter detach method for EVFILT_READ on kqueue descriptor.
722 */
723 static void
724 filt_kqdetach(struct knote *kn)
725 {
726 struct kqueue *kq;
727
728 kq = ((file_t *)kn->kn_obj)->f_kqueue;
729
730 mutex_spin_enter(&kq->kq_lock);
731 selremove_knote(&kq->kq_sel, kn);
732 mutex_spin_exit(&kq->kq_lock);
733 }
734
735 /*
736 * Filter event method for EVFILT_READ on kqueue descriptor.
737 */
738 /*ARGSUSED*/
739 static int
740 filt_kqueue(struct knote *kn, long hint)
741 {
742 struct kqueue *kq;
743 int rv;
744
745 kq = ((file_t *)kn->kn_obj)->f_kqueue;
746
747 if (hint != NOTE_SUBMIT)
748 mutex_spin_enter(&kq->kq_lock);
749 kn->kn_data = KQ_COUNT(kq);
750 rv = (kn->kn_data > 0);
751 if (hint != NOTE_SUBMIT)
752 mutex_spin_exit(&kq->kq_lock);
753
754 return rv;
755 }
756
757 /*
758 * Filter attach method for EVFILT_PROC.
759 */
760 static int
761 filt_procattach(struct knote *kn)
762 {
763 struct proc *p;
764
765 mutex_enter(&proc_lock);
766 p = proc_find(kn->kn_id);
767 if (p == NULL) {
768 mutex_exit(&proc_lock);
769 return ESRCH;
770 }
771
772 /*
773 * Fail if it's not owned by you, or the last exec gave us
774 * setuid/setgid privs (unless you're root).
775 */
776 mutex_enter(p->p_lock);
777 mutex_exit(&proc_lock);
778 if (kauth_authorize_process(curlwp->l_cred,
779 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
780 mutex_exit(p->p_lock);
781 return EACCES;
782 }
783
784 kn->kn_obj = p;
785 kn->kn_flags |= EV_CLEAR; /* automatically set */
786
787 /*
788 * NOTE_CHILD is only ever generated internally; don't let it
789 * leak in from user-space. See knote_proc_fork_track().
790 */
791 kn->kn_sfflags &= ~NOTE_CHILD;
792
793 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
794 mutex_exit(p->p_lock);
795
796 return 0;
797 }
798
799 /*
800 * Filter detach method for EVFILT_PROC.
801 *
802 * The knote may be attached to a different process, which may exit,
803 * leaving nothing for the knote to be attached to. So when the process
804 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
805 * it will be deleted when read out. However, as part of the knote deletion,
806 * this routine is called, so a check is needed to avoid actually performing
807 * a detach, because the original process might not exist any more.
808 */
809 static void
810 filt_procdetach(struct knote *kn)
811 {
812 struct kqueue *kq = kn->kn_kq;
813 struct proc *p;
814
815 /*
816 * We have to synchronize with knote_proc_exit(), but we
817 * are forced to acquire the locks in the wrong order here
818 * because we can't be sure kn->kn_obj is valid unless
819 * KN_DETACHED is not set.
820 */
821 again:
822 mutex_spin_enter(&kq->kq_lock);
823 if ((kn->kn_status & KN_DETACHED) == 0) {
824 p = kn->kn_obj;
825 if (!mutex_tryenter(p->p_lock)) {
826 mutex_spin_exit(&kq->kq_lock);
827 preempt_point();
828 goto again;
829 }
830 kn->kn_status |= KN_DETACHED;
831 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
832 mutex_exit(p->p_lock);
833 }
834 mutex_spin_exit(&kq->kq_lock);
835 }
836
837 /*
838 * Filter event method for EVFILT_PROC.
839 *
840 * Due to some of the complexities of process locking, we have special
841 * entry points for delivering knote submissions. filt_proc() is used
842 * only to check for activation from kqueue_register() and kqueue_scan().
843 */
844 static int
845 filt_proc(struct knote *kn, long hint)
846 {
847 struct kqueue *kq = kn->kn_kq;
848 uint32_t fflags;
849
850 /*
851 * Because we share the same klist with signal knotes, just
852 * ensure that we're not being invoked for the proc-related
853 * submissions.
854 */
855 KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
856
857 mutex_spin_enter(&kq->kq_lock);
858 fflags = kn->kn_fflags;
859 mutex_spin_exit(&kq->kq_lock);
860
861 return fflags != 0;
862 }
863
864 void
865 knote_proc_exec(struct proc *p)
866 {
867 struct knote *kn, *tmpkn;
868 struct kqueue *kq;
869 uint32_t fflags;
870
871 mutex_enter(p->p_lock);
872
873 SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
874 /* N.B. EVFILT_SIGNAL knotes are on this same list. */
875 if (kn->kn_fop == &sig_filtops) {
876 continue;
877 }
878 KASSERT(kn->kn_fop == &proc_filtops);
879
880 kq = kn->kn_kq;
881 mutex_spin_enter(&kq->kq_lock);
882 fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
883 if (fflags) {
884 knote_activate_locked(kn);
885 }
886 mutex_spin_exit(&kq->kq_lock);
887 }
888
889 mutex_exit(p->p_lock);
890 }
891
892 static int __noinline
893 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
894 {
895 struct kqueue *kq = okn->kn_kq;
896
897 KASSERT(mutex_owned(&kq->kq_lock));
898 KASSERT(mutex_owned(p1->p_lock));
899
900 /*
901 * We're going to put this knote into flux while we drop
902 * the locks and create and attach a new knote to track the
903 * child. If we are not able to enter flux, then this knote
904 * is about to go away, so skip the notification.
905 */
906 if (!kn_enter_flux(okn)) {
907 return 0;
908 }
909
910 mutex_spin_exit(&kq->kq_lock);
911 mutex_exit(p1->p_lock);
912
913 /*
914 * We actually have to register *two* new knotes:
915 *
916 * ==> One for the NOTE_CHILD notification. This is a forced
917 * ONESHOT note.
918 *
919 * ==> One to actually track the child process as it subsequently
920 * forks, execs, and, ultimately, exits.
921 *
922 * If we only register a single knote, then it's possible for
923 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
924 * notification if the child exits before the tracking process
925 * has received the NOTE_CHILD notification, which applications
926 * aren't expecting (the event's 'data' field would be clobbered,
927 * for exmaple).
928 *
929 * To do this, what we have here is an **extremely** stripped-down
930 * version of kqueue_register() that has the following properties:
931 *
932 * ==> Does not block to allocate memory. If we are unable
933 * to allocate memory, we return ENOMEM.
934 *
935 * ==> Does not search for existing knotes; we know there
936 * are not any because this is a new process that isn't
937 * even visible to other processes yet.
938 *
939 * ==> Assumes that the knhash for our kq's descriptor table
940 * already exists (after all, we're already tracking
941 * processes with knotes if we got here).
942 *
943 * ==> Directly attaches the new tracking knote to the child
944 * process.
945 *
946 * The whole point is to do the minimum amount of work while the
947 * knote is held in-flux, and to avoid doing extra work in general
948 * (we already have the new child process; why bother looking it
949 * up again?).
950 */
951 filedesc_t *fdp = kq->kq_fdp;
952 struct knote *knchild, *kntrack;
953 int error = 0;
954
955 knchild = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
956 kntrack = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
957 if (__predict_false(knchild == NULL || kntrack == NULL)) {
958 error = ENOMEM;
959 goto out;
960 }
961
962 kntrack->kn_obj = p2;
963 kntrack->kn_id = p2->p_pid;
964 kntrack->kn_kq = kq;
965 kntrack->kn_fop = okn->kn_fop;
966 kntrack->kn_kfilter = okn->kn_kfilter;
967 kntrack->kn_sfflags = okn->kn_sfflags;
968 kntrack->kn_sdata = p1->p_pid;
969
970 kntrack->kn_kevent.ident = p2->p_pid;
971 kntrack->kn_kevent.filter = okn->kn_filter;
972 kntrack->kn_kevent.flags =
973 okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
974 kntrack->kn_kevent.fflags = 0;
975 kntrack->kn_kevent.data = 0;
976 kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
977
978 /*
979 * The child note does not need to be attached to the
980 * new proc's klist at all.
981 */
982 *knchild = *kntrack;
983 knchild->kn_status = KN_DETACHED;
984 knchild->kn_sfflags = 0;
985 knchild->kn_kevent.flags |= EV_ONESHOT;
986 knchild->kn_kevent.fflags = NOTE_CHILD;
987 knchild->kn_kevent.data = p1->p_pid; /* parent */
988
989 mutex_enter(&fdp->fd_lock);
990
991 /*
992 * We need to check to see if the kq is closing, and skip
993 * attaching the knote if so. Normally, this isn't necessary
994 * when coming in the front door because the file descriptor
995 * layer will synchronize this.
996 *
997 * It's safe to test KQ_CLOSING without taking the kq_lock
998 * here because that flag is only ever set when the fd_lock
999 * is also held.
1000 */
1001 if (__predict_false(kq->kq_count & KQ_CLOSING)) {
1002 mutex_exit(&fdp->fd_lock);
1003 goto out;
1004 }
1005
1006 /*
1007 * We do the "insert into FD table" and "attach to klist" steps
1008 * in the opposite order of kqueue_register() here to avoid
1009 * having to take p2->p_lock twice. But this is OK because we
1010 * hold fd_lock across the entire operation.
1011 */
1012
1013 mutex_enter(p2->p_lock);
1014 error = kauth_authorize_process(curlwp->l_cred,
1015 KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
1016 if (__predict_false(error != 0)) {
1017 mutex_exit(p2->p_lock);
1018 mutex_exit(&fdp->fd_lock);
1019 error = EACCES;
1020 goto out;
1021 }
1022 SLIST_INSERT_HEAD(&p2->p_klist, kntrack, kn_selnext);
1023 mutex_exit(p2->p_lock);
1024
1025 KASSERT(fdp->fd_knhashmask != 0);
1026 KASSERT(fdp->fd_knhash != NULL);
1027 struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
1028 fdp->fd_knhashmask)];
1029 SLIST_INSERT_HEAD(list, kntrack, kn_link);
1030 SLIST_INSERT_HEAD(list, knchild, kn_link);
1031
1032 /* This adds references for knchild *and* kntrack. */
1033 atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
1034
1035 knote_activate(knchild);
1036
1037 kntrack = NULL;
1038 knchild = NULL;
1039
1040 mutex_exit(&fdp->fd_lock);
1041
1042 out:
1043 if (__predict_false(knchild != NULL)) {
1044 kmem_free(knchild, sizeof(*knchild));
1045 }
1046 if (__predict_false(kntrack != NULL)) {
1047 kmem_free(kntrack, sizeof(*kntrack));
1048 }
1049 mutex_enter(p1->p_lock);
1050 mutex_spin_enter(&kq->kq_lock);
1051
1052 if (kn_leave_flux(okn)) {
1053 KQ_FLUX_WAKEUP(kq);
1054 }
1055
1056 return error;
1057 }
1058
1059 void
1060 knote_proc_fork(struct proc *p1, struct proc *p2)
1061 {
1062 struct knote *kn;
1063 struct kqueue *kq;
1064 uint32_t fflags;
1065
1066 mutex_enter(p1->p_lock);
1067
1068 /*
1069 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
1070 * don't want to pre-fetch the next knote; in the event we
1071 * have to drop p_lock, we will have put the knote in-flux,
1072 * meaning that no one will be able to detach it until we
1073 * have taken the knote out of flux. However, that does
1074 * NOT stop someone else from detaching the next note in the
1075 * list while we have it unlocked. Thus, we want to fetch
1076 * the next note in the list only after we have re-acquired
1077 * the lock, and using SLIST_FOREACH() will satisfy that.
1078 */
1079 SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
1080 /* N.B. EVFILT_SIGNAL knotes are on this same list. */
1081 if (kn->kn_fop == &sig_filtops) {
1082 continue;
1083 }
1084 KASSERT(kn->kn_fop == &proc_filtops);
1085
1086 kq = kn->kn_kq;
1087 mutex_spin_enter(&kq->kq_lock);
1088 kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
1089 if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
1090 /*
1091 * This will drop kq_lock and p_lock and
1092 * re-acquire them before it returns.
1093 */
1094 if (knote_proc_fork_track(p1, p2, kn)) {
1095 kn->kn_fflags |= NOTE_TRACKERR;
1096 }
1097 KASSERT(mutex_owned(p1->p_lock));
1098 KASSERT(mutex_owned(&kq->kq_lock));
1099 }
1100 fflags = kn->kn_fflags;
1101 if (fflags) {
1102 knote_activate_locked(kn);
1103 }
1104 mutex_spin_exit(&kq->kq_lock);
1105 }
1106
1107 mutex_exit(p1->p_lock);
1108 }
1109
1110 void
1111 knote_proc_exit(struct proc *p)
1112 {
1113 struct knote *kn;
1114 struct kqueue *kq;
1115
1116 KASSERT(mutex_owned(p->p_lock));
1117
1118 while (!SLIST_EMPTY(&p->p_klist)) {
1119 kn = SLIST_FIRST(&p->p_klist);
1120 kq = kn->kn_kq;
1121
1122 KASSERT(kn->kn_obj == p);
1123
1124 mutex_spin_enter(&kq->kq_lock);
1125 kn->kn_data = P_WAITSTATUS(p);
1126 /*
1127 * Mark as ONESHOT, so that the knote is g/c'ed
1128 * when read.
1129 */
1130 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1131 kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
1132
1133 /*
1134 * Detach the knote from the process and mark it as such.
1135 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
1136 * time we get here, all open file descriptors for this
1137 * process have been released, meaning that signal knotes
1138 * will have already been detached.
1139 *
1140 * We need to synchronize this with filt_procdetach().
1141 */
1142 KASSERT(kn->kn_fop == &proc_filtops);
1143 if ((kn->kn_status & KN_DETACHED) == 0) {
1144 kn->kn_status |= KN_DETACHED;
1145 SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
1146 }
1147
1148 /*
1149 * Always activate the knote for NOTE_EXIT regardless
1150 * of whether or not the listener cares about it.
1151 * This matches historical behavior.
1152 */
1153 knote_activate_locked(kn);
1154 mutex_spin_exit(&kq->kq_lock);
1155 }
1156 }
1157
1158 #define FILT_TIMER_NOSCHED ((uintptr_t)-1)
1159
1160 static int
1161 filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
1162 {
1163 struct timespec ts;
1164 uintptr_t tticks;
1165
1166 if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
1167 return EINVAL;
1168 }
1169
1170 /*
1171 * Convert the event 'data' to a timespec, then convert the
1172 * timespec to callout ticks.
1173 */
1174 switch (kev->fflags & NOTE_TIMER_UNITMASK) {
1175 case NOTE_SECONDS:
1176 ts.tv_sec = kev->data;
1177 ts.tv_nsec = 0;
1178 break;
1179
1180 case NOTE_MSECONDS: /* == historical value 0 */
1181 ts.tv_sec = kev->data / 1000;
1182 ts.tv_nsec = (kev->data % 1000) * 1000000;
1183 break;
1184
1185 case NOTE_USECONDS:
1186 ts.tv_sec = kev->data / 1000000;
1187 ts.tv_nsec = (kev->data % 1000000) * 1000;
1188 break;
1189
1190 case NOTE_NSECONDS:
1191 ts.tv_sec = kev->data / 1000000000;
1192 ts.tv_nsec = kev->data % 1000000000;
1193 break;
1194
1195 default:
1196 return EINVAL;
1197 }
1198
1199 if (kev->fflags & NOTE_ABSTIME) {
1200 struct timespec deadline = ts;
1201
1202 /*
1203 * Get current time.
1204 *
1205 * XXX This is CLOCK_REALTIME. There is no way to
1206 * XXX specify CLOCK_MONOTONIC.
1207 */
1208 nanotime(&ts);
1209
1210 /* Absolute timers do not repeat. */
1211 kev->data = FILT_TIMER_NOSCHED;
1212
1213 /* If we're past the deadline, then the event will fire. */
1214 if (timespeccmp(&deadline, &ts, <=)) {
1215 tticks = FILT_TIMER_NOSCHED;
1216 goto out;
1217 }
1218
1219 /* Calculate how much time is left. */
1220 timespecsub(&deadline, &ts, &ts);
1221 } else {
1222 /* EV_CLEAR automatically set for relative timers. */
1223 kev->flags |= EV_CLEAR;
1224 }
1225
1226 tticks = tstohz(&ts);
1227
1228 /* if the supplied value is under our resolution, use 1 tick */
1229 if (tticks == 0) {
1230 if (kev->data == 0)
1231 return EINVAL;
1232 tticks = 1;
1233 } else if (tticks > INT_MAX) {
1234 return EINVAL;
1235 }
1236
1237 if ((kev->flags & EV_ONESHOT) != 0) {
1238 /* Timer does not repeat. */
1239 kev->data = FILT_TIMER_NOSCHED;
1240 } else {
1241 KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
1242 kev->data = tticks;
1243 }
1244
1245 out:
1246 *tticksp = tticks;
1247
1248 return 0;
1249 }
1250
1251 static void
1252 filt_timerexpire(void *knx)
1253 {
1254 struct knote *kn = knx;
1255 struct kqueue *kq = kn->kn_kq;
1256
1257 mutex_spin_enter(&kq->kq_lock);
1258 kn->kn_data++;
1259 knote_activate_locked(kn);
1260 if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
1261 KASSERT(kn->kn_sdata > 0 && kn->kn_sdata <= INT_MAX);
1262 callout_schedule((callout_t *)kn->kn_hook,
1263 (int)kn->kn_sdata);
1264 }
1265 mutex_spin_exit(&kq->kq_lock);
1266 }
1267
1268 static inline void
1269 filt_timerstart(struct knote *kn, uintptr_t tticks)
1270 {
1271 callout_t *calloutp = kn->kn_hook;
1272
1273 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1274 KASSERT(!callout_pending(calloutp));
1275
1276 if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
1277 kn->kn_data = 1;
1278 } else {
1279 KASSERT(tticks <= INT_MAX);
1280 callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
1281 }
1282 }
1283
1284 static int
1285 filt_timerattach(struct knote *kn)
1286 {
1287 callout_t *calloutp;
1288 struct kqueue *kq;
1289 uintptr_t tticks;
1290 int error;
1291
1292 struct kevent kev = {
1293 .flags = kn->kn_flags,
1294 .fflags = kn->kn_sfflags,
1295 .data = kn->kn_sdata,
1296 };
1297
1298 error = filt_timercompute(&kev, &tticks);
1299 if (error) {
1300 return error;
1301 }
1302
1303 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
1304 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
1305 atomic_dec_uint(&kq_ncallouts);
1306 return ENOMEM;
1307 }
1308 callout_init(calloutp, CALLOUT_MPSAFE);
1309
1310 kq = kn->kn_kq;
1311 mutex_spin_enter(&kq->kq_lock);
1312
1313 kn->kn_sdata = kev.data;
1314 kn->kn_flags = kev.flags;
1315 KASSERT(kn->kn_sfflags == kev.fflags);
1316 kn->kn_hook = calloutp;
1317
1318 filt_timerstart(kn, tticks);
1319
1320 mutex_spin_exit(&kq->kq_lock);
1321
1322 return (0);
1323 }
1324
1325 static void
1326 filt_timerdetach(struct knote *kn)
1327 {
1328 callout_t *calloutp;
1329 struct kqueue *kq = kn->kn_kq;
1330
1331 /* prevent rescheduling when we expire */
1332 mutex_spin_enter(&kq->kq_lock);
1333 kn->kn_sdata = FILT_TIMER_NOSCHED;
1334 mutex_spin_exit(&kq->kq_lock);
1335
1336 calloutp = (callout_t *)kn->kn_hook;
1337
1338 /*
1339 * Attempt to stop the callout. This will block if it's
1340 * already running.
1341 */
1342 callout_halt(calloutp, NULL);
1343
1344 callout_destroy(calloutp);
1345 kmem_free(calloutp, sizeof(*calloutp));
1346 atomic_dec_uint(&kq_ncallouts);
1347 }
1348
1349 static int
1350 filt_timertouch(struct knote *kn, struct kevent *kev, long type)
1351 {
1352 struct kqueue *kq = kn->kn_kq;
1353 callout_t *calloutp;
1354 uintptr_t tticks;
1355 int error;
1356
1357 KASSERT(mutex_owned(&kq->kq_lock));
1358
1359 switch (type) {
1360 case EVENT_REGISTER:
1361 /* Only relevant for EV_ADD. */
1362 if ((kev->flags & EV_ADD) == 0) {
1363 return 0;
1364 }
1365
1366 /*
1367 * Stop the timer, under the assumption that if
1368 * an application is re-configuring the timer,
1369 * they no longer care about the old one. We
1370 * can safely drop the kq_lock while we wait
1371 * because fdp->fd_lock will be held throughout,
1372 * ensuring that no one can sneak in with an
1373 * EV_DELETE or close the kq.
1374 */
1375 KASSERT(mutex_owned(&kq->kq_fdp->fd_lock));
1376
1377 calloutp = kn->kn_hook;
1378 callout_halt(calloutp, &kq->kq_lock);
1379 KASSERT(mutex_owned(&kq->kq_lock));
1380 knote_deactivate_locked(kn);
1381 kn->kn_data = 0;
1382
1383 error = filt_timercompute(kev, &tticks);
1384 if (error) {
1385 return error;
1386 }
1387 kn->kn_sdata = kev->data;
1388 kn->kn_flags = kev->flags;
1389 kn->kn_sfflags = kev->fflags;
1390 filt_timerstart(kn, tticks);
1391 break;
1392
1393 case EVENT_PROCESS:
1394 *kev = kn->kn_kevent;
1395 break;
1396
1397 default:
1398 panic("%s: invalid type (%ld)", __func__, type);
1399 }
1400
1401 return 0;
1402 }
1403
1404 static int
1405 filt_timer(struct knote *kn, long hint)
1406 {
1407 struct kqueue *kq = kn->kn_kq;
1408 int rv;
1409
1410 mutex_spin_enter(&kq->kq_lock);
1411 rv = (kn->kn_data != 0);
1412 mutex_spin_exit(&kq->kq_lock);
1413
1414 return rv;
1415 }
1416
1417 static int
1418 filt_userattach(struct knote *kn)
1419 {
1420 struct kqueue *kq = kn->kn_kq;
1421
1422 /*
1423 * EVFILT_USER knotes are not attached to anything in the kernel.
1424 */
1425 mutex_spin_enter(&kq->kq_lock);
1426 kn->kn_hook = NULL;
1427 if (kn->kn_fflags & NOTE_TRIGGER)
1428 kn->kn_hookid = 1;
1429 else
1430 kn->kn_hookid = 0;
1431 mutex_spin_exit(&kq->kq_lock);
1432 return (0);
1433 }
1434
1435 static void
1436 filt_userdetach(struct knote *kn)
1437 {
1438
1439 /*
1440 * EVFILT_USER knotes are not attached to anything in the kernel.
1441 */
1442 }
1443
1444 static int
1445 filt_user(struct knote *kn, long hint)
1446 {
1447 struct kqueue *kq = kn->kn_kq;
1448 int hookid;
1449
1450 mutex_spin_enter(&kq->kq_lock);
1451 hookid = kn->kn_hookid;
1452 mutex_spin_exit(&kq->kq_lock);
1453
1454 return hookid;
1455 }
1456
1457 static int
1458 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
1459 {
1460 int ffctrl;
1461
1462 KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1463
1464 switch (type) {
1465 case EVENT_REGISTER:
1466 if (kev->fflags & NOTE_TRIGGER)
1467 kn->kn_hookid = 1;
1468
1469 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1470 kev->fflags &= NOTE_FFLAGSMASK;
1471 switch (ffctrl) {
1472 case NOTE_FFNOP:
1473 break;
1474
1475 case NOTE_FFAND:
1476 kn->kn_sfflags &= kev->fflags;
1477 break;
1478
1479 case NOTE_FFOR:
1480 kn->kn_sfflags |= kev->fflags;
1481 break;
1482
1483 case NOTE_FFCOPY:
1484 kn->kn_sfflags = kev->fflags;
1485 break;
1486
1487 default:
1488 /* XXX Return error? */
1489 break;
1490 }
1491 kn->kn_sdata = kev->data;
1492 if (kev->flags & EV_CLEAR) {
1493 kn->kn_hookid = 0;
1494 kn->kn_data = 0;
1495 kn->kn_fflags = 0;
1496 }
1497 break;
1498
1499 case EVENT_PROCESS:
1500 *kev = kn->kn_kevent;
1501 kev->fflags = kn->kn_sfflags;
1502 kev->data = kn->kn_sdata;
1503 if (kn->kn_flags & EV_CLEAR) {
1504 kn->kn_hookid = 0;
1505 kn->kn_data = 0;
1506 kn->kn_fflags = 0;
1507 }
1508 break;
1509
1510 default:
1511 panic("filt_usertouch() - invalid type (%ld)", type);
1512 break;
1513 }
1514
1515 return 0;
1516 }
1517
1518 /*
1519 * filt_seltrue:
1520 *
1521 * This filter "event" routine simulates seltrue().
1522 */
1523 int
1524 filt_seltrue(struct knote *kn, long hint)
1525 {
1526
1527 /*
1528 * We don't know how much data can be read/written,
1529 * but we know that it *can* be. This is about as
1530 * good as select/poll does as well.
1531 */
1532 kn->kn_data = 0;
1533 return (1);
1534 }
1535
1536 /*
1537 * This provides full kqfilter entry for device switch tables, which
1538 * has same effect as filter using filt_seltrue() as filter method.
1539 */
1540 static void
1541 filt_seltruedetach(struct knote *kn)
1542 {
1543 /* Nothing to do */
1544 }
1545
1546 const struct filterops seltrue_filtops = {
1547 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1548 .f_attach = NULL,
1549 .f_detach = filt_seltruedetach,
1550 .f_event = filt_seltrue,
1551 };
1552
1553 int
1554 seltrue_kqfilter(dev_t dev, struct knote *kn)
1555 {
1556 switch (kn->kn_filter) {
1557 case EVFILT_READ:
1558 case EVFILT_WRITE:
1559 kn->kn_fop = &seltrue_filtops;
1560 break;
1561 default:
1562 return (EINVAL);
1563 }
1564
1565 /* Nothing more to do */
1566 return (0);
1567 }
1568
1569 /*
1570 * kqueue(2) system call.
1571 */
1572 static int
1573 kqueue1(struct lwp *l, int flags, register_t *retval)
1574 {
1575 struct kqueue *kq;
1576 file_t *fp;
1577 int fd, error;
1578
1579 if ((error = fd_allocfile(&fp, &fd)) != 0)
1580 return error;
1581 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
1582 fp->f_type = DTYPE_KQUEUE;
1583 fp->f_ops = &kqueueops;
1584 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
1585 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
1586 cv_init(&kq->kq_cv, "kqueue");
1587 selinit(&kq->kq_sel);
1588 TAILQ_INIT(&kq->kq_head);
1589 fp->f_kqueue = kq;
1590 *retval = fd;
1591 kq->kq_fdp = curlwp->l_fd;
1592 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1593 fd_affix(curproc, fp, fd);
1594 return error;
1595 }
1596
1597 /*
1598 * kqueue(2) system call.
1599 */
1600 int
1601 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1602 {
1603 return kqueue1(l, 0, retval);
1604 }
1605
1606 int
1607 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1608 register_t *retval)
1609 {
1610 /* {
1611 syscallarg(int) flags;
1612 } */
1613 return kqueue1(l, SCARG(uap, flags), retval);
1614 }
1615
1616 /*
1617 * kevent(2) system call.
1618 */
1619 int
1620 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1621 struct kevent *changes, size_t index, int n)
1622 {
1623
1624 return copyin(changelist + index, changes, n * sizeof(*changes));
1625 }
1626
1627 int
1628 kevent_put_events(void *ctx, struct kevent *events,
1629 struct kevent *eventlist, size_t index, int n)
1630 {
1631
1632 return copyout(events, eventlist + index, n * sizeof(*events));
1633 }
1634
1635 static const struct kevent_ops kevent_native_ops = {
1636 .keo_private = NULL,
1637 .keo_fetch_timeout = copyin,
1638 .keo_fetch_changes = kevent_fetch_changes,
1639 .keo_put_events = kevent_put_events,
1640 };
1641
1642 int
1643 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1644 register_t *retval)
1645 {
1646 /* {
1647 syscallarg(int) fd;
1648 syscallarg(const struct kevent *) changelist;
1649 syscallarg(size_t) nchanges;
1650 syscallarg(struct kevent *) eventlist;
1651 syscallarg(size_t) nevents;
1652 syscallarg(const struct timespec *) timeout;
1653 } */
1654
1655 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1656 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1657 SCARG(uap, timeout), &kevent_native_ops);
1658 }
1659
1660 int
1661 kevent1(register_t *retval, int fd,
1662 const struct kevent *changelist, size_t nchanges,
1663 struct kevent *eventlist, size_t nevents,
1664 const struct timespec *timeout,
1665 const struct kevent_ops *keops)
1666 {
1667 struct kevent *kevp;
1668 struct kqueue *kq;
1669 struct timespec ts;
1670 size_t i, n, ichange;
1671 int nerrors, error;
1672 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
1673 file_t *fp;
1674
1675 /* check that we're dealing with a kq */
1676 fp = fd_getfile(fd);
1677 if (fp == NULL)
1678 return (EBADF);
1679
1680 if (fp->f_type != DTYPE_KQUEUE) {
1681 fd_putfile(fd);
1682 return (EBADF);
1683 }
1684
1685 if (timeout != NULL) {
1686 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1687 if (error)
1688 goto done;
1689 timeout = &ts;
1690 }
1691
1692 kq = fp->f_kqueue;
1693 nerrors = 0;
1694 ichange = 0;
1695
1696 /* traverse list of events to register */
1697 while (nchanges > 0) {
1698 n = MIN(nchanges, __arraycount(kevbuf));
1699 error = (*keops->keo_fetch_changes)(keops->keo_private,
1700 changelist, kevbuf, ichange, n);
1701 if (error)
1702 goto done;
1703 for (i = 0; i < n; i++) {
1704 kevp = &kevbuf[i];
1705 kevp->flags &= ~EV_SYSFLAGS;
1706 /* register each knote */
1707 error = kqueue_register(kq, kevp);
1708 if (!error && !(kevp->flags & EV_RECEIPT))
1709 continue;
1710 if (nevents == 0)
1711 goto done;
1712 kevp->flags = EV_ERROR;
1713 kevp->data = error;
1714 error = (*keops->keo_put_events)
1715 (keops->keo_private, kevp,
1716 eventlist, nerrors, 1);
1717 if (error)
1718 goto done;
1719 nevents--;
1720 nerrors++;
1721 }
1722 nchanges -= n; /* update the results */
1723 ichange += n;
1724 }
1725 if (nerrors) {
1726 *retval = nerrors;
1727 error = 0;
1728 goto done;
1729 }
1730
1731 /* actually scan through the events */
1732 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1733 kevbuf, __arraycount(kevbuf));
1734 done:
1735 fd_putfile(fd);
1736 return (error);
1737 }
1738
1739 /*
1740 * Register a given kevent kev onto the kqueue
1741 */
1742 static int
1743 kqueue_register(struct kqueue *kq, struct kevent *kev)
1744 {
1745 struct kfilter *kfilter;
1746 filedesc_t *fdp;
1747 file_t *fp;
1748 fdfile_t *ff;
1749 struct knote *kn, *newkn;
1750 struct klist *list;
1751 int error, fd, rv;
1752
1753 fdp = kq->kq_fdp;
1754 fp = NULL;
1755 kn = NULL;
1756 error = 0;
1757 fd = 0;
1758
1759 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1760
1761 rw_enter(&kqueue_filter_lock, RW_READER);
1762 kfilter = kfilter_byfilter(kev->filter);
1763 if (kfilter == NULL || kfilter->filtops == NULL) {
1764 /* filter not found nor implemented */
1765 rw_exit(&kqueue_filter_lock);
1766 kmem_free(newkn, sizeof(*newkn));
1767 return (EINVAL);
1768 }
1769
1770 /* search if knote already exists */
1771 if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1772 /* monitoring a file descriptor */
1773 /* validate descriptor */
1774 if (kev->ident > INT_MAX
1775 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1776 rw_exit(&kqueue_filter_lock);
1777 kmem_free(newkn, sizeof(*newkn));
1778 return EBADF;
1779 }
1780 mutex_enter(&fdp->fd_lock);
1781 ff = fdp->fd_dt->dt_ff[fd];
1782 if (ff->ff_refcnt & FR_CLOSING) {
1783 error = EBADF;
1784 goto doneunlock;
1785 }
1786 if (fd <= fdp->fd_lastkqfile) {
1787 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1788 if (kq == kn->kn_kq &&
1789 kev->filter == kn->kn_filter)
1790 break;
1791 }
1792 }
1793 } else {
1794 /*
1795 * not monitoring a file descriptor, so
1796 * lookup knotes in internal hash table
1797 */
1798 mutex_enter(&fdp->fd_lock);
1799 if (fdp->fd_knhashmask != 0) {
1800 list = &fdp->fd_knhash[
1801 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1802 SLIST_FOREACH(kn, list, kn_link) {
1803 if (kev->ident == kn->kn_id &&
1804 kq == kn->kn_kq &&
1805 kev->filter == kn->kn_filter)
1806 break;
1807 }
1808 }
1809 }
1810
1811 /* It's safe to test KQ_CLOSING while holding only the fd_lock. */
1812 KASSERT(mutex_owned(&fdp->fd_lock));
1813 KASSERT((kq->kq_count & KQ_CLOSING) == 0);
1814
1815 /*
1816 * kn now contains the matching knote, or NULL if no match
1817 */
1818 if (kn == NULL) {
1819 if (kev->flags & EV_ADD) {
1820 /* create new knote */
1821 kn = newkn;
1822 newkn = NULL;
1823 kn->kn_obj = fp;
1824 kn->kn_id = kev->ident;
1825 kn->kn_kq = kq;
1826 kn->kn_fop = kfilter->filtops;
1827 kn->kn_kfilter = kfilter;
1828 kn->kn_sfflags = kev->fflags;
1829 kn->kn_sdata = kev->data;
1830 kev->fflags = 0;
1831 kev->data = 0;
1832 kn->kn_kevent = *kev;
1833
1834 KASSERT(kn->kn_fop != NULL);
1835 /*
1836 * apply reference count to knote structure, and
1837 * do not release it at the end of this routine.
1838 */
1839 fp = NULL;
1840
1841 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1842 /*
1843 * If knote is not on an fd, store on
1844 * internal hash table.
1845 */
1846 if (fdp->fd_knhashmask == 0) {
1847 /* XXXAD can block with fd_lock held */
1848 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1849 HASH_LIST, true,
1850 &fdp->fd_knhashmask);
1851 }
1852 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1853 fdp->fd_knhashmask)];
1854 } else {
1855 /* Otherwise, knote is on an fd. */
1856 list = (struct klist *)
1857 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1858 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1859 fdp->fd_lastkqfile = kn->kn_id;
1860 }
1861 SLIST_INSERT_HEAD(list, kn, kn_link);
1862
1863 /*
1864 * N.B. kn->kn_fop may change as the result
1865 * of filter_attach()!
1866 */
1867 error = filter_attach(kn);
1868 if (error != 0) {
1869 #ifdef DEBUG
1870 struct proc *p = curlwp->l_proc;
1871 const file_t *ft = kn->kn_obj;
1872 printf("%s: %s[%d]: event type %d not "
1873 "supported for file type %d/%s "
1874 "(error %d)\n", __func__,
1875 p->p_comm, p->p_pid,
1876 kn->kn_filter, ft ? ft->f_type : -1,
1877 ft ? ft->f_ops->fo_name : "?", error);
1878 #endif
1879
1880 /*
1881 * N.B. no need to check for this note to
1882 * be in-flux, since it was never visible
1883 * to the monitored object.
1884 *
1885 * knote_detach() drops fdp->fd_lock
1886 */
1887 mutex_enter(&kq->kq_lock);
1888 KNOTE_WILLDETACH(kn);
1889 KASSERT(kn_in_flux(kn) == false);
1890 mutex_exit(&kq->kq_lock);
1891 knote_detach(kn, fdp, false);
1892 goto done;
1893 }
1894 atomic_inc_uint(&kfilter->refcnt);
1895 goto done_ev_add;
1896 } else {
1897 /* No matching knote and the EV_ADD flag is not set. */
1898 error = ENOENT;
1899 goto doneunlock;
1900 }
1901 }
1902
1903 if (kev->flags & EV_DELETE) {
1904 /*
1905 * Let the world know that this knote is about to go
1906 * away, and wait for it to settle if it's currently
1907 * in-flux.
1908 */
1909 mutex_spin_enter(&kq->kq_lock);
1910 if (kn->kn_status & KN_WILLDETACH) {
1911 /*
1912 * This knote is already on its way out,
1913 * so just be done.
1914 */
1915 mutex_spin_exit(&kq->kq_lock);
1916 goto doneunlock;
1917 }
1918 KNOTE_WILLDETACH(kn);
1919 if (kn_in_flux(kn)) {
1920 mutex_exit(&fdp->fd_lock);
1921 /*
1922 * It's safe for us to conclusively wait for
1923 * this knote to settle because we know we'll
1924 * be completing the detach.
1925 */
1926 kn_wait_flux(kn, true);
1927 KASSERT(kn_in_flux(kn) == false);
1928 mutex_spin_exit(&kq->kq_lock);
1929 mutex_enter(&fdp->fd_lock);
1930 } else {
1931 mutex_spin_exit(&kq->kq_lock);
1932 }
1933
1934 /* knote_detach() drops fdp->fd_lock */
1935 knote_detach(kn, fdp, true);
1936 goto done;
1937 }
1938
1939 /*
1940 * The user may change some filter values after the
1941 * initial EV_ADD, but doing so will not reset any
1942 * filter which have already been triggered.
1943 */
1944 kn->kn_kevent.udata = kev->udata;
1945 KASSERT(kn->kn_fop != NULL);
1946 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1947 kn->kn_fop->f_touch != NULL) {
1948 mutex_spin_enter(&kq->kq_lock);
1949 error = filter_touch(kn, kev, EVENT_REGISTER);
1950 mutex_spin_exit(&kq->kq_lock);
1951 if (__predict_false(error != 0)) {
1952 /* Never a new knote (which would consume newkn). */
1953 KASSERT(newkn != NULL);
1954 goto doneunlock;
1955 }
1956 } else {
1957 kn->kn_sfflags = kev->fflags;
1958 kn->kn_sdata = kev->data;
1959 }
1960
1961 /*
1962 * We can get here if we are trying to attach
1963 * an event to a file descriptor that does not
1964 * support events, and the attach routine is
1965 * broken and does not return an error.
1966 */
1967 done_ev_add:
1968 rv = filter_event(kn, 0);
1969 if (rv)
1970 knote_activate(kn);
1971
1972 /* disable knote */
1973 if ((kev->flags & EV_DISABLE)) {
1974 mutex_spin_enter(&kq->kq_lock);
1975 if ((kn->kn_status & KN_DISABLED) == 0)
1976 kn->kn_status |= KN_DISABLED;
1977 mutex_spin_exit(&kq->kq_lock);
1978 }
1979
1980 /* enable knote */
1981 if ((kev->flags & EV_ENABLE)) {
1982 knote_enqueue(kn);
1983 }
1984 doneunlock:
1985 mutex_exit(&fdp->fd_lock);
1986 done:
1987 rw_exit(&kqueue_filter_lock);
1988 if (newkn != NULL)
1989 kmem_free(newkn, sizeof(*newkn));
1990 if (fp != NULL)
1991 fd_putfile(fd);
1992 return (error);
1993 }
1994
1995 #define KN_FMT(buf, kn) \
1996 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1997
1998 #if defined(DDB)
1999 void
2000 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
2001 {
2002 const struct knote *kn;
2003 u_int count;
2004 int nmarker;
2005 char buf[128];
2006
2007 count = 0;
2008 nmarker = 0;
2009
2010 (*pr)("kqueue %p (restart=%d count=%u):\n", kq,
2011 !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
2012 (*pr)(" Queued knotes:\n");
2013 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
2014 if (kn->kn_status & KN_MARKER) {
2015 nmarker++;
2016 } else {
2017 count++;
2018 }
2019 (*pr)(" knote %p: kq=%p status=%s\n",
2020 kn, kn->kn_kq, KN_FMT(buf, kn));
2021 (*pr)(" id=0x%lx (%lu) filter=%d\n",
2022 (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
2023 if (kn->kn_kq != kq) {
2024 (*pr)(" !!! kn->kn_kq != kq\n");
2025 }
2026 }
2027 if (count != KQ_COUNT(kq)) {
2028 (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n",
2029 count, KQ_COUNT(kq));
2030 }
2031 }
2032 #endif /* DDB */
2033
2034 #if defined(DEBUG)
2035 static void
2036 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
2037 {
2038 const struct knote *kn;
2039 u_int count;
2040 int nmarker;
2041 char buf[128];
2042
2043 KASSERT(mutex_owned(&kq->kq_lock));
2044
2045 count = 0;
2046 nmarker = 0;
2047 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
2048 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
2049 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
2050 func, line, kq, kn, KN_FMT(buf, kn));
2051 }
2052 if ((kn->kn_status & KN_MARKER) == 0) {
2053 if (kn->kn_kq != kq) {
2054 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
2055 func, line, kq, kn, kn->kn_kq,
2056 KN_FMT(buf, kn));
2057 }
2058 if ((kn->kn_status & KN_ACTIVE) == 0) {
2059 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
2060 func, line, kq, kn, KN_FMT(buf, kn));
2061 }
2062 count++;
2063 if (count > KQ_COUNT(kq)) {
2064 panic("%s,%zu: kq=%p kq->kq_count(%u) != "
2065 "count(%d), nmarker=%d",
2066 func, line, kq, KQ_COUNT(kq), count,
2067 nmarker);
2068 }
2069 } else {
2070 nmarker++;
2071 }
2072 }
2073 }
2074 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
2075 #else /* defined(DEBUG) */
2076 #define kq_check(a) /* nothing */
2077 #endif /* defined(DEBUG) */
2078
2079 static void
2080 kqueue_restart(file_t *fp)
2081 {
2082 struct kqueue *kq = fp->f_kqueue;
2083 KASSERT(kq != NULL);
2084
2085 mutex_spin_enter(&kq->kq_lock);
2086 kq->kq_count |= KQ_RESTART;
2087 cv_broadcast(&kq->kq_cv);
2088 mutex_spin_exit(&kq->kq_lock);
2089 }
2090
2091 /*
2092 * Scan through the list of events on fp (for a maximum of maxevents),
2093 * returning the results in to ulistp. Timeout is determined by tsp; if
2094 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
2095 * as appropriate.
2096 */
2097 static int
2098 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
2099 const struct timespec *tsp, register_t *retval,
2100 const struct kevent_ops *keops, struct kevent *kevbuf,
2101 size_t kevcnt)
2102 {
2103 struct kqueue *kq;
2104 struct kevent *kevp;
2105 struct timespec ats, sleepts;
2106 struct knote *kn, *marker, morker;
2107 size_t count, nkev, nevents;
2108 int timeout, error, touch, rv, influx;
2109 filedesc_t *fdp;
2110
2111 fdp = curlwp->l_fd;
2112 kq = fp->f_kqueue;
2113 count = maxevents;
2114 nkev = nevents = error = 0;
2115 if (count == 0) {
2116 *retval = 0;
2117 return 0;
2118 }
2119
2120 if (tsp) { /* timeout supplied */
2121 ats = *tsp;
2122 if (inittimeleft(&ats, &sleepts) == -1) {
2123 *retval = maxevents;
2124 return EINVAL;
2125 }
2126 timeout = tstohz(&ats);
2127 if (timeout <= 0)
2128 timeout = -1; /* do poll */
2129 } else {
2130 /* no timeout, wait forever */
2131 timeout = 0;
2132 }
2133
2134 memset(&morker, 0, sizeof(morker));
2135 marker = &morker;
2136 marker->kn_kq = kq;
2137 marker->kn_status = KN_MARKER;
2138 mutex_spin_enter(&kq->kq_lock);
2139 retry:
2140 kevp = kevbuf;
2141 if (KQ_COUNT(kq) == 0) {
2142 if (timeout >= 0) {
2143 error = cv_timedwait_sig(&kq->kq_cv,
2144 &kq->kq_lock, timeout);
2145 if (error == 0) {
2146 if (KQ_COUNT(kq) == 0 &&
2147 (kq->kq_count & KQ_RESTART)) {
2148 /* return to clear file reference */
2149 error = ERESTART;
2150 } else if (tsp == NULL || (timeout =
2151 gettimeleft(&ats, &sleepts)) > 0) {
2152 goto retry;
2153 }
2154 } else {
2155 /* don't restart after signals... */
2156 if (error == ERESTART)
2157 error = EINTR;
2158 if (error == EWOULDBLOCK)
2159 error = 0;
2160 }
2161 }
2162 mutex_spin_exit(&kq->kq_lock);
2163 goto done;
2164 }
2165
2166 /* mark end of knote list */
2167 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
2168 influx = 0;
2169
2170 /*
2171 * Acquire the fdp->fd_lock interlock to avoid races with
2172 * file creation/destruction from other threads.
2173 */
2174 mutex_spin_exit(&kq->kq_lock);
2175 relock:
2176 mutex_enter(&fdp->fd_lock);
2177 mutex_spin_enter(&kq->kq_lock);
2178
2179 while (count != 0) {
2180 /*
2181 * Get next knote. We are guaranteed this will never
2182 * be NULL because of the marker we inserted above.
2183 */
2184 kn = TAILQ_FIRST(&kq->kq_head);
2185
2186 bool kn_is_other_marker =
2187 (kn->kn_status & KN_MARKER) != 0 && kn != marker;
2188 bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
2189 bool kn_is_in_flux = kn_in_flux(kn);
2190
2191 /*
2192 * If we found a marker that's not ours, or this knote
2193 * is in a state of flux, then wait for everything to
2194 * settle down and go around again.
2195 */
2196 if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
2197 if (influx) {
2198 influx = 0;
2199 KQ_FLUX_WAKEUP(kq);
2200 }
2201 mutex_exit(&fdp->fd_lock);
2202 if (kn_is_other_marker || kn_is_in_flux) {
2203 KQ_FLUX_WAIT(kq);
2204 mutex_spin_exit(&kq->kq_lock);
2205 } else {
2206 /*
2207 * Detaching but not in-flux? Someone is
2208 * actively trying to finish the job; just
2209 * go around and try again.
2210 */
2211 KASSERT(kn_is_detaching);
2212 mutex_spin_exit(&kq->kq_lock);
2213 preempt_point();
2214 }
2215 goto relock;
2216 }
2217
2218 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2219 if (kn == marker) {
2220 /* it's our marker, stop */
2221 KQ_FLUX_WAKEUP(kq);
2222 if (count == maxevents) {
2223 mutex_exit(&fdp->fd_lock);
2224 goto retry;
2225 }
2226 break;
2227 }
2228 KASSERT((kn->kn_status & KN_BUSY) == 0);
2229
2230 kq_check(kq);
2231 kn->kn_status &= ~KN_QUEUED;
2232 kn->kn_status |= KN_BUSY;
2233 kq_check(kq);
2234 if (kn->kn_status & KN_DISABLED) {
2235 kn->kn_status &= ~KN_BUSY;
2236 kq->kq_count--;
2237 /* don't want disabled events */
2238 continue;
2239 }
2240 if ((kn->kn_flags & EV_ONESHOT) == 0) {
2241 mutex_spin_exit(&kq->kq_lock);
2242 KASSERT(mutex_owned(&fdp->fd_lock));
2243 rv = filter_event(kn, 0);
2244 mutex_spin_enter(&kq->kq_lock);
2245 /* Re-poll if note was re-enqueued. */
2246 if ((kn->kn_status & KN_QUEUED) != 0) {
2247 kn->kn_status &= ~KN_BUSY;
2248 /* Re-enqueue raised kq_count, lower it again */
2249 kq->kq_count--;
2250 influx = 1;
2251 continue;
2252 }
2253 if (rv == 0) {
2254 /*
2255 * non-ONESHOT event that hasn't triggered
2256 * again, so it will remain de-queued.
2257 */
2258 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2259 kq->kq_count--;
2260 influx = 1;
2261 continue;
2262 }
2263 } else {
2264 /*
2265 * Must NOT drop kq_lock until we can do
2266 * the KNOTE_WILLDETACH() below.
2267 */
2268 }
2269 KASSERT(kn->kn_fop != NULL);
2270 touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
2271 kn->kn_fop->f_touch != NULL);
2272 /* XXXAD should be got from f_event if !oneshot. */
2273 KASSERT((kn->kn_status & KN_WILLDETACH) == 0);
2274 if (touch) {
2275 (void)filter_touch(kn, kevp, EVENT_PROCESS);
2276 } else {
2277 *kevp = kn->kn_kevent;
2278 }
2279 kevp++;
2280 nkev++;
2281 influx = 1;
2282 if (kn->kn_flags & EV_ONESHOT) {
2283 /* delete ONESHOT events after retrieval */
2284 KNOTE_WILLDETACH(kn);
2285 kn->kn_status &= ~KN_BUSY;
2286 kq->kq_count--;
2287 KASSERT(kn_in_flux(kn) == false);
2288 KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
2289 kn->kn_kevent.udata == curlwp);
2290 mutex_spin_exit(&kq->kq_lock);
2291 knote_detach(kn, fdp, true);
2292 mutex_enter(&fdp->fd_lock);
2293 mutex_spin_enter(&kq->kq_lock);
2294 } else if (kn->kn_flags & EV_CLEAR) {
2295 /* clear state after retrieval */
2296 kn->kn_data = 0;
2297 kn->kn_fflags = 0;
2298 /*
2299 * Manually clear knotes who weren't
2300 * 'touch'ed.
2301 */
2302 if (touch == 0) {
2303 kn->kn_data = 0;
2304 kn->kn_fflags = 0;
2305 }
2306 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2307 kq->kq_count--;
2308 } else if (kn->kn_flags & EV_DISPATCH) {
2309 kn->kn_status |= KN_DISABLED;
2310 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2311 kq->kq_count--;
2312 } else {
2313 /* add event back on list */
2314 kq_check(kq);
2315 kn->kn_status |= KN_QUEUED;
2316 kn->kn_status &= ~KN_BUSY;
2317 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2318 kq_check(kq);
2319 }
2320
2321 if (nkev == kevcnt) {
2322 /* do copyouts in kevcnt chunks */
2323 influx = 0;
2324 KQ_FLUX_WAKEUP(kq);
2325 mutex_spin_exit(&kq->kq_lock);
2326 mutex_exit(&fdp->fd_lock);
2327 error = (*keops->keo_put_events)
2328 (keops->keo_private,
2329 kevbuf, ulistp, nevents, nkev);
2330 mutex_enter(&fdp->fd_lock);
2331 mutex_spin_enter(&kq->kq_lock);
2332 nevents += nkev;
2333 nkev = 0;
2334 kevp = kevbuf;
2335 }
2336 count--;
2337 if (error != 0 || count == 0) {
2338 /* remove marker */
2339 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2340 break;
2341 }
2342 }
2343 KQ_FLUX_WAKEUP(kq);
2344 mutex_spin_exit(&kq->kq_lock);
2345 mutex_exit(&fdp->fd_lock);
2346
2347 done:
2348 if (nkev != 0) {
2349 /* copyout remaining events */
2350 error = (*keops->keo_put_events)(keops->keo_private,
2351 kevbuf, ulistp, nevents, nkev);
2352 }
2353 *retval = maxevents - count;
2354
2355 return error;
2356 }
2357
2358 /*
2359 * fileops ioctl method for a kqueue descriptor.
2360 *
2361 * Two ioctls are currently supported. They both use struct kfilter_mapping:
2362 * KFILTER_BYNAME find name for filter, and return result in
2363 * name, which is of size len.
2364 * KFILTER_BYFILTER find filter for name. len is ignored.
2365 */
2366 /*ARGSUSED*/
2367 static int
2368 kqueue_ioctl(file_t *fp, u_long com, void *data)
2369 {
2370 struct kfilter_mapping *km;
2371 const struct kfilter *kfilter;
2372 char *name;
2373 int error;
2374
2375 km = data;
2376 error = 0;
2377 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
2378
2379 switch (com) {
2380 case KFILTER_BYFILTER: /* convert filter -> name */
2381 rw_enter(&kqueue_filter_lock, RW_READER);
2382 kfilter = kfilter_byfilter(km->filter);
2383 if (kfilter != NULL) {
2384 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
2385 rw_exit(&kqueue_filter_lock);
2386 error = copyoutstr(name, km->name, km->len, NULL);
2387 } else {
2388 rw_exit(&kqueue_filter_lock);
2389 error = ENOENT;
2390 }
2391 break;
2392
2393 case KFILTER_BYNAME: /* convert name -> filter */
2394 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
2395 if (error) {
2396 break;
2397 }
2398 rw_enter(&kqueue_filter_lock, RW_READER);
2399 kfilter = kfilter_byname(name);
2400 if (kfilter != NULL)
2401 km->filter = kfilter->filter;
2402 else
2403 error = ENOENT;
2404 rw_exit(&kqueue_filter_lock);
2405 break;
2406
2407 default:
2408 error = ENOTTY;
2409 break;
2410
2411 }
2412 kmem_free(name, KFILTER_MAXNAME);
2413 return (error);
2414 }
2415
2416 /*
2417 * fileops fcntl method for a kqueue descriptor.
2418 */
2419 static int
2420 kqueue_fcntl(file_t *fp, u_int com, void *data)
2421 {
2422
2423 return (ENOTTY);
2424 }
2425
2426 /*
2427 * fileops poll method for a kqueue descriptor.
2428 * Determine if kqueue has events pending.
2429 */
2430 static int
2431 kqueue_poll(file_t *fp, int events)
2432 {
2433 struct kqueue *kq;
2434 int revents;
2435
2436 kq = fp->f_kqueue;
2437
2438 revents = 0;
2439 if (events & (POLLIN | POLLRDNORM)) {
2440 mutex_spin_enter(&kq->kq_lock);
2441 if (KQ_COUNT(kq) != 0) {
2442 revents |= events & (POLLIN | POLLRDNORM);
2443 } else {
2444 selrecord(curlwp, &kq->kq_sel);
2445 }
2446 kq_check(kq);
2447 mutex_spin_exit(&kq->kq_lock);
2448 }
2449
2450 return revents;
2451 }
2452
2453 /*
2454 * fileops stat method for a kqueue descriptor.
2455 * Returns dummy info, with st_size being number of events pending.
2456 */
2457 static int
2458 kqueue_stat(file_t *fp, struct stat *st)
2459 {
2460 struct kqueue *kq;
2461
2462 kq = fp->f_kqueue;
2463
2464 memset(st, 0, sizeof(*st));
2465 st->st_size = KQ_COUNT(kq);
2466 st->st_blksize = sizeof(struct kevent);
2467 st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
2468 st->st_blocks = 1;
2469 st->st_uid = kauth_cred_geteuid(fp->f_cred);
2470 st->st_gid = kauth_cred_getegid(fp->f_cred);
2471
2472 return 0;
2473 }
2474
2475 static void
2476 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
2477 {
2478 struct knote *kn;
2479 filedesc_t *fdp;
2480
2481 fdp = kq->kq_fdp;
2482
2483 KASSERT(mutex_owned(&fdp->fd_lock));
2484
2485 again:
2486 for (kn = SLIST_FIRST(list); kn != NULL;) {
2487 if (kq != kn->kn_kq) {
2488 kn = SLIST_NEXT(kn, kn_link);
2489 continue;
2490 }
2491 if (knote_detach_quiesce(kn)) {
2492 mutex_enter(&fdp->fd_lock);
2493 goto again;
2494 }
2495 knote_detach(kn, fdp, true);
2496 mutex_enter(&fdp->fd_lock);
2497 kn = SLIST_FIRST(list);
2498 }
2499 }
2500
2501 /*
2502 * fileops close method for a kqueue descriptor.
2503 */
2504 static int
2505 kqueue_close(file_t *fp)
2506 {
2507 struct kqueue *kq;
2508 filedesc_t *fdp;
2509 fdfile_t *ff;
2510 int i;
2511
2512 kq = fp->f_kqueue;
2513 fp->f_kqueue = NULL;
2514 fp->f_type = 0;
2515 fdp = curlwp->l_fd;
2516
2517 KASSERT(kq->kq_fdp == fdp);
2518
2519 mutex_enter(&fdp->fd_lock);
2520
2521 /*
2522 * We're doing to drop the fd_lock multiple times while
2523 * we detach knotes. During this time, attempts to register
2524 * knotes via the back door (e.g. knote_proc_fork_track())
2525 * need to fail, lest they sneak in to attach a knote after
2526 * we've already drained the list it's destined for.
2527 *
2528 * We must aquire kq_lock here to set KQ_CLOSING (to serialize
2529 * with other code paths that modify kq_count without holding
2530 * the fd_lock), but once this bit is set, it's only safe to
2531 * test it while holding the fd_lock, and holding kq_lock while
2532 * doing so is not necessary.
2533 */
2534 mutex_enter(&kq->kq_lock);
2535 kq->kq_count |= KQ_CLOSING;
2536 mutex_exit(&kq->kq_lock);
2537
2538 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
2539 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
2540 continue;
2541 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
2542 }
2543 if (fdp->fd_knhashmask != 0) {
2544 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
2545 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
2546 }
2547 }
2548
2549 mutex_exit(&fdp->fd_lock);
2550
2551 #if defined(DEBUG)
2552 mutex_enter(&kq->kq_lock);
2553 kq_check(kq);
2554 mutex_exit(&kq->kq_lock);
2555 #endif /* DEBUG */
2556 KASSERT(TAILQ_EMPTY(&kq->kq_head));
2557 KASSERT(KQ_COUNT(kq) == 0);
2558 mutex_destroy(&kq->kq_lock);
2559 cv_destroy(&kq->kq_cv);
2560 seldestroy(&kq->kq_sel);
2561 kmem_free(kq, sizeof(*kq));
2562
2563 return (0);
2564 }
2565
2566 /*
2567 * struct fileops kqfilter method for a kqueue descriptor.
2568 * Event triggered when monitored kqueue changes.
2569 */
2570 static int
2571 kqueue_kqfilter(file_t *fp, struct knote *kn)
2572 {
2573 struct kqueue *kq;
2574
2575 kq = ((file_t *)kn->kn_obj)->f_kqueue;
2576
2577 KASSERT(fp == kn->kn_obj);
2578
2579 if (kn->kn_filter != EVFILT_READ)
2580 return EINVAL;
2581
2582 kn->kn_fop = &kqread_filtops;
2583 mutex_enter(&kq->kq_lock);
2584 selrecord_knote(&kq->kq_sel, kn);
2585 mutex_exit(&kq->kq_lock);
2586
2587 return 0;
2588 }
2589
2590
2591 /*
2592 * Walk down a list of knotes, activating them if their event has
2593 * triggered. The caller's object lock (e.g. device driver lock)
2594 * must be held.
2595 */
2596 void
2597 knote(struct klist *list, long hint)
2598 {
2599 struct knote *kn, *tmpkn;
2600
2601 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
2602 if (filter_event(kn, hint)) {
2603 knote_activate(kn);
2604 }
2605 }
2606 }
2607
2608 /*
2609 * Remove all knotes referencing a specified fd
2610 */
2611 void
2612 knote_fdclose(int fd)
2613 {
2614 struct klist *list;
2615 struct knote *kn;
2616 filedesc_t *fdp;
2617
2618 again:
2619 fdp = curlwp->l_fd;
2620 mutex_enter(&fdp->fd_lock);
2621 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
2622 while ((kn = SLIST_FIRST(list)) != NULL) {
2623 if (knote_detach_quiesce(kn)) {
2624 goto again;
2625 }
2626 knote_detach(kn, fdp, true);
2627 mutex_enter(&fdp->fd_lock);
2628 }
2629 mutex_exit(&fdp->fd_lock);
2630 }
2631
2632 /*
2633 * Drop knote. Called with fdp->fd_lock held, and will drop before
2634 * returning.
2635 */
2636 static void
2637 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
2638 {
2639 struct klist *list;
2640 struct kqueue *kq;
2641
2642 kq = kn->kn_kq;
2643
2644 KASSERT((kn->kn_status & KN_MARKER) == 0);
2645 KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
2646 KASSERT(kn->kn_fop != NULL);
2647 KASSERT(mutex_owned(&fdp->fd_lock));
2648
2649 /* Remove from monitored object. */
2650 if (dofop) {
2651 filter_detach(kn);
2652 }
2653
2654 /* Remove from descriptor table. */
2655 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2656 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
2657 else
2658 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2659
2660 SLIST_REMOVE(list, kn, knote, kn_link);
2661
2662 /* Remove from kqueue. */
2663 again:
2664 mutex_spin_enter(&kq->kq_lock);
2665 KASSERT(kn_in_flux(kn) == false);
2666 if ((kn->kn_status & KN_QUEUED) != 0) {
2667 kq_check(kq);
2668 KASSERT(KQ_COUNT(kq) != 0);
2669 kq->kq_count--;
2670 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2671 kn->kn_status &= ~KN_QUEUED;
2672 kq_check(kq);
2673 } else if (kn->kn_status & KN_BUSY) {
2674 mutex_spin_exit(&kq->kq_lock);
2675 goto again;
2676 }
2677 mutex_spin_exit(&kq->kq_lock);
2678
2679 mutex_exit(&fdp->fd_lock);
2680 if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2681 fd_putfile(kn->kn_id);
2682 atomic_dec_uint(&kn->kn_kfilter->refcnt);
2683 kmem_free(kn, sizeof(*kn));
2684 }
2685
2686 /*
2687 * Queue new event for knote.
2688 */
2689 static void
2690 knote_enqueue(struct knote *kn)
2691 {
2692 struct kqueue *kq;
2693
2694 KASSERT((kn->kn_status & KN_MARKER) == 0);
2695
2696 kq = kn->kn_kq;
2697
2698 mutex_spin_enter(&kq->kq_lock);
2699 if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2700 /* Don't bother enqueueing a dying knote. */
2701 goto out;
2702 }
2703 if ((kn->kn_status & KN_DISABLED) != 0) {
2704 kn->kn_status &= ~KN_DISABLED;
2705 }
2706 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
2707 kq_check(kq);
2708 kn->kn_status |= KN_QUEUED;
2709 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2710 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2711 kq->kq_count++;
2712 kq_check(kq);
2713 cv_broadcast(&kq->kq_cv);
2714 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2715 }
2716 out:
2717 mutex_spin_exit(&kq->kq_lock);
2718 }
2719 /*
2720 * Queue new event for knote.
2721 */
2722 static void
2723 knote_activate_locked(struct knote *kn)
2724 {
2725 struct kqueue *kq;
2726
2727 KASSERT((kn->kn_status & KN_MARKER) == 0);
2728
2729 kq = kn->kn_kq;
2730
2731 if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2732 /* Don't bother enqueueing a dying knote. */
2733 return;
2734 }
2735 kn->kn_status |= KN_ACTIVE;
2736 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
2737 kq_check(kq);
2738 kn->kn_status |= KN_QUEUED;
2739 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2740 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2741 kq->kq_count++;
2742 kq_check(kq);
2743 cv_broadcast(&kq->kq_cv);
2744 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2745 }
2746 }
2747
2748 static void
2749 knote_activate(struct knote *kn)
2750 {
2751 struct kqueue *kq = kn->kn_kq;
2752
2753 mutex_spin_enter(&kq->kq_lock);
2754 knote_activate_locked(kn);
2755 mutex_spin_exit(&kq->kq_lock);
2756 }
2757
2758 static void
2759 knote_deactivate_locked(struct knote *kn)
2760 {
2761 struct kqueue *kq = kn->kn_kq;
2762
2763 if (kn->kn_status & KN_QUEUED) {
2764 kq_check(kq);
2765 kn->kn_status &= ~KN_QUEUED;
2766 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2767 KASSERT(KQ_COUNT(kq) > 0);
2768 kq->kq_count--;
2769 kq_check(kq);
2770 }
2771 kn->kn_status &= ~KN_ACTIVE;
2772 }
2773
2774 /*
2775 * Set EV_EOF on the specified knote. Also allows additional
2776 * EV_* flags to be set (e.g. EV_ONESHOT).
2777 */
2778 void
2779 knote_set_eof(struct knote *kn, uint32_t flags)
2780 {
2781 struct kqueue *kq = kn->kn_kq;
2782
2783 mutex_spin_enter(&kq->kq_lock);
2784 kn->kn_flags |= EV_EOF | flags;
2785 mutex_spin_exit(&kq->kq_lock);
2786 }
2787
2788 /*
2789 * Clear EV_EOF on the specified knote.
2790 */
2791 void
2792 knote_clear_eof(struct knote *kn)
2793 {
2794 struct kqueue *kq = kn->kn_kq;
2795
2796 mutex_spin_enter(&kq->kq_lock);
2797 kn->kn_flags &= ~EV_EOF;
2798 mutex_spin_exit(&kq->kq_lock);
2799 }
2800