Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.145
      1 /*	$NetBSD: kern_event.c,v 1.145 2022/07/19 01:03:05 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     34  * Copyright (c) 2009 Apple, Inc
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  *
     46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     56  * SUCH DAMAGE.
     57  *
     58  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     59  */
     60 
     61 #ifdef _KERNEL_OPT
     62 #include "opt_ddb.h"
     63 #endif /* _KERNEL_OPT */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.145 2022/07/19 01:03:05 thorpej Exp $");
     67 
     68 #include <sys/param.h>
     69 #include <sys/systm.h>
     70 #include <sys/kernel.h>
     71 #include <sys/wait.h>
     72 #include <sys/proc.h>
     73 #include <sys/file.h>
     74 #include <sys/select.h>
     75 #include <sys/queue.h>
     76 #include <sys/event.h>
     77 #include <sys/eventvar.h>
     78 #include <sys/poll.h>
     79 #include <sys/kmem.h>
     80 #include <sys/stat.h>
     81 #include <sys/filedesc.h>
     82 #include <sys/syscallargs.h>
     83 #include <sys/kauth.h>
     84 #include <sys/conf.h>
     85 #include <sys/atomic.h>
     86 
     87 static int	kqueue_scan(file_t *, size_t, struct kevent *,
     88 			    const struct timespec *, register_t *,
     89 			    const struct kevent_ops *, struct kevent *,
     90 			    size_t);
     91 static int	kqueue_ioctl(file_t *, u_long, void *);
     92 static int	kqueue_fcntl(file_t *, u_int, void *);
     93 static int	kqueue_poll(file_t *, int);
     94 static int	kqueue_kqfilter(file_t *, struct knote *);
     95 static int	kqueue_stat(file_t *, struct stat *);
     96 static int	kqueue_close(file_t *);
     97 static void	kqueue_restart(file_t *);
     98 static int	kqueue_register(struct kqueue *, struct kevent *);
     99 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
    100 
    101 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
    102 static void	knote_enqueue(struct knote *);
    103 static void	knote_activate(struct knote *);
    104 static void	knote_activate_locked(struct knote *);
    105 static void	knote_deactivate_locked(struct knote *);
    106 
    107 static void	filt_kqdetach(struct knote *);
    108 static int	filt_kqueue(struct knote *, long hint);
    109 static int	filt_procattach(struct knote *);
    110 static void	filt_procdetach(struct knote *);
    111 static int	filt_proc(struct knote *, long hint);
    112 static int	filt_fileattach(struct knote *);
    113 static void	filt_timerexpire(void *x);
    114 static int	filt_timerattach(struct knote *);
    115 static void	filt_timerdetach(struct knote *);
    116 static int	filt_timer(struct knote *, long hint);
    117 static int	filt_timertouch(struct knote *, struct kevent *, long type);
    118 static int	filt_userattach(struct knote *);
    119 static void	filt_userdetach(struct knote *);
    120 static int	filt_user(struct knote *, long hint);
    121 static int	filt_usertouch(struct knote *, struct kevent *, long type);
    122 
    123 /*
    124  * Private knote state that should never be exposed outside
    125  * of kern_event.c
    126  *
    127  * Field locking:
    128  *
    129  * q	kn_kq->kq_lock
    130  */
    131 struct knote_impl {
    132 	struct knote	ki_knote;
    133 	unsigned int	ki_influx;	/* q: in-flux counter */
    134 	kmutex_t	ki_foplock;	/* for kn_filterops */
    135 };
    136 
    137 #define	KIMPL_TO_KNOTE(kip)	(&(kip)->ki_knote)
    138 #define	KNOTE_TO_KIMPL(knp)	container_of((knp), struct knote_impl, ki_knote)
    139 
    140 static inline struct knote *
    141 knote_alloc(bool sleepok)
    142 {
    143 	struct knote_impl *ki;
    144 
    145 	ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP);
    146 	mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE);
    147 
    148 	return KIMPL_TO_KNOTE(ki);
    149 }
    150 
    151 static inline void
    152 knote_free(struct knote *kn)
    153 {
    154 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    155 
    156 	mutex_destroy(&ki->ki_foplock);
    157 	kmem_free(ki, sizeof(*ki));
    158 }
    159 
    160 static inline void
    161 knote_foplock_enter(struct knote *kn)
    162 {
    163 	mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock);
    164 }
    165 
    166 static inline void
    167 knote_foplock_exit(struct knote *kn)
    168 {
    169 	mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock);
    170 }
    171 
    172 static inline bool
    173 knote_foplock_owned(struct knote *kn)
    174 {
    175 	return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock);
    176 }
    177 
    178 static const struct fileops kqueueops = {
    179 	.fo_name = "kqueue",
    180 	.fo_read = (void *)enxio,
    181 	.fo_write = (void *)enxio,
    182 	.fo_ioctl = kqueue_ioctl,
    183 	.fo_fcntl = kqueue_fcntl,
    184 	.fo_poll = kqueue_poll,
    185 	.fo_stat = kqueue_stat,
    186 	.fo_close = kqueue_close,
    187 	.fo_kqfilter = kqueue_kqfilter,
    188 	.fo_restart = kqueue_restart,
    189 };
    190 
    191 static void
    192 filt_nopdetach(struct knote *kn __unused)
    193 {
    194 }
    195 
    196 static int
    197 filt_nopevent(struct knote *kn __unused, long hint __unused)
    198 {
    199 	return 0;
    200 }
    201 
    202 static const struct filterops nop_fd_filtops = {
    203 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    204 	.f_attach = NULL,
    205 	.f_detach = filt_nopdetach,
    206 	.f_event = filt_nopevent,
    207 };
    208 
    209 static const struct filterops nop_filtops = {
    210 	.f_flags = FILTEROP_MPSAFE,
    211 	.f_attach = NULL,
    212 	.f_detach = filt_nopdetach,
    213 	.f_event = filt_nopevent,
    214 };
    215 
    216 static const struct filterops kqread_filtops = {
    217 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
    218 	.f_attach = NULL,
    219 	.f_detach = filt_kqdetach,
    220 	.f_event = filt_kqueue,
    221 };
    222 
    223 static const struct filterops proc_filtops = {
    224 	.f_flags = FILTEROP_MPSAFE,
    225 	.f_attach = filt_procattach,
    226 	.f_detach = filt_procdetach,
    227 	.f_event = filt_proc,
    228 };
    229 
    230 /*
    231  * file_filtops is not marked MPSAFE because it's going to call
    232  * fileops::fo_kqfilter(), which might not be.  That function,
    233  * however, will override the knote's filterops, and thus will
    234  * inherit the MPSAFE-ness of the back-end at that time.
    235  */
    236 static const struct filterops file_filtops = {
    237 	.f_flags = FILTEROP_ISFD,
    238 	.f_attach = filt_fileattach,
    239 	.f_detach = NULL,
    240 	.f_event = NULL,
    241 };
    242 
    243 static const struct filterops timer_filtops = {
    244 	.f_flags = FILTEROP_MPSAFE,
    245 	.f_attach = filt_timerattach,
    246 	.f_detach = filt_timerdetach,
    247 	.f_event = filt_timer,
    248 	.f_touch = filt_timertouch,
    249 };
    250 
    251 static const struct filterops user_filtops = {
    252 	.f_flags = FILTEROP_MPSAFE,
    253 	.f_attach = filt_userattach,
    254 	.f_detach = filt_userdetach,
    255 	.f_event = filt_user,
    256 	.f_touch = filt_usertouch,
    257 };
    258 
    259 static u_int	kq_ncallouts = 0;
    260 static int	kq_calloutmax = (4 * 1024);
    261 
    262 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    263 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    264 
    265 extern const struct filterops fs_filtops;	/* vfs_syscalls.c */
    266 extern const struct filterops sig_filtops;	/* kern_sig.c */
    267 
    268 /*
    269  * Table for for all system-defined filters.
    270  * These should be listed in the numeric order of the EVFILT_* defines.
    271  * If filtops is NULL, the filter isn't implemented in NetBSD.
    272  * End of list is when name is NULL.
    273  *
    274  * Note that 'refcnt' is meaningless for built-in filters.
    275  */
    276 struct kfilter {
    277 	const char	*name;		/* name of filter */
    278 	uint32_t	filter;		/* id of filter */
    279 	unsigned	refcnt;		/* reference count */
    280 	const struct filterops *filtops;/* operations for filter */
    281 	size_t		namelen;	/* length of name string */
    282 };
    283 
    284 /* System defined filters */
    285 static struct kfilter sys_kfilters[] = {
    286 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    287 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    288 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    289 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    290 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    291 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    292 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    293 	{ "EVFILT_FS",		EVFILT_FS,	0, &fs_filtops, 0 },
    294 	{ "EVFILT_USER",	EVFILT_USER,	0, &user_filtops, 0 },
    295 	{ "EVFILT_EMPTY",	EVFILT_EMPTY,	0, &file_filtops, 0 },
    296 	{ NULL,			0,		0, NULL, 0 },
    297 };
    298 
    299 /* User defined kfilters */
    300 static struct kfilter	*user_kfilters;		/* array */
    301 static int		user_kfilterc;		/* current offset */
    302 static int		user_kfiltermaxc;	/* max size so far */
    303 static size_t		user_kfiltersz;		/* size of allocated memory */
    304 
    305 /*
    306  * Global Locks.
    307  *
    308  * Lock order:
    309  *
    310  *	kqueue_filter_lock
    311  *	-> kn_kq->kq_fdp->fd_lock
    312  *	-> knote foplock (if taken)
    313  *	-> object lock (e.g., device driver lock, &c.)
    314  *	-> kn_kq->kq_lock
    315  *
    316  * Locking rules.  ==> indicates the lock is acquired by the backing
    317  * object, locks prior are acquired before calling filter ops:
    318  *
    319  *	f_attach: fdp->fd_lock -> knote foplock ->
    320  *	  (maybe) KERNEL_LOCK ==> backing object lock
    321  *
    322  *	f_detach: fdp->fd_lock -> knote foplock ->
    323  *	   (maybe) KERNEL_LOCK ==> backing object lock
    324  *
    325  *	f_event via kevent: fdp->fd_lock -> knote foplock ->
    326  *	   (maybe) KERNEL_LOCK ==> backing object lock
    327  *	   N.B. NOTE_SUBMIT will never be set in the "hint" argument
    328  *	   in this case.
    329  *
    330  *	f_event via knote (via backing object: Whatever caller guarantees.
    331  *	Typically:
    332  *		f_event(NOTE_SUBMIT): caller has already acquired backing
    333  *		    object lock.
    334  *		f_event(!NOTE_SUBMIT): caller has not acquired backing object,
    335  *		    lock or has possibly acquired KERNEL_LOCK.  Backing object
    336  *		    lock may or may not be acquired as-needed.
    337  *	N.B. the knote foplock will **not** be acquired in this case.  The
    338  *	caller guarantees that klist_fini() will not be called concurrently
    339  *	with knote().
    340  *
    341  *	f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock)
    342  *	    N.B. knote foplock is **not** acquired in this case and
    343  *	    the caller must guarantee that klist_fini() will never
    344  *	    be called.  kevent_register() restricts filters that
    345  *	    provide f_touch to known-safe cases.
    346  *
    347  *	klist_fini(): Caller must guarantee that no more knotes can
    348  *	    be attached to the klist, and must **not** hold the backing
    349  *	    object's lock; klist_fini() itself will acquire the foplock
    350  *	    of each knote on the klist.
    351  *
    352  * Locking rules when detaching knotes:
    353  *
    354  * There are some situations where knote submission may require dropping
    355  * locks (see knote_proc_fork()).  In order to support this, it's possible
    356  * to mark a knote as being 'in-flux'.  Such a knote is guaranteed not to
    357  * be detached while it remains in-flux.  Because it will not be detached,
    358  * locks can be dropped so e.g. memory can be allocated, locks on other
    359  * data structures can be acquired, etc.  During this time, any attempt to
    360  * detach an in-flux knote must wait until the knote is no longer in-flux.
    361  * When this happens, the knote is marked for death (KN_WILLDETACH) and the
    362  * LWP who gets to finish the detach operation is recorded in the knote's
    363  * 'udata' field (which is no longer required for its original purpose once
    364  * a knote is so marked).  Code paths that lead to knote_detach() must ensure
    365  * that their LWP is the one tasked with its final demise after waiting for
    366  * the in-flux status of the knote to clear.  Note that once a knote is
    367  * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
    368  *
    369  * Once the special circumstances have been handled, the locks are re-
    370  * acquired in the proper order (object lock -> kq_lock), the knote taken
    371  * out of flux, and any waiters are notified.  Because waiters must have
    372  * also dropped *their* locks in order to safely block, they must re-
    373  * validate all of their assumptions; see knote_detach_quiesce().  See also
    374  * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
    375  * cases.
    376  *
    377  * When kqueue_scan() encounters an in-flux knote, the situation is
    378  * treated like another LWP's list marker.
    379  *
    380  * LISTEN WELL: It is important to not hold knotes in flux for an
    381  * extended period of time! In-flux knotes effectively block any
    382  * progress of the kqueue_scan() operation.  Any code paths that place
    383  * knotes in-flux should be careful to not block for indefinite periods
    384  * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
    385  * KM_SLEEP is not).
    386  */
    387 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    388 
    389 #define	KQ_FLUX_WAIT(kq)	(void)cv_wait(&kq->kq_cv, &kq->kq_lock)
    390 #define	KQ_FLUX_WAKEUP(kq)	cv_broadcast(&kq->kq_cv)
    391 
    392 static inline bool
    393 kn_in_flux(struct knote *kn)
    394 {
    395 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    396 	return KNOTE_TO_KIMPL(kn)->ki_influx != 0;
    397 }
    398 
    399 static inline bool
    400 kn_enter_flux(struct knote *kn)
    401 {
    402 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    403 
    404 	if (kn->kn_status & KN_WILLDETACH) {
    405 		return false;
    406 	}
    407 
    408 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    409 	KASSERT(ki->ki_influx < UINT_MAX);
    410 	ki->ki_influx++;
    411 
    412 	return true;
    413 }
    414 
    415 static inline bool
    416 kn_leave_flux(struct knote *kn)
    417 {
    418 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    419 
    420 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    421 	KASSERT(ki->ki_influx > 0);
    422 	ki->ki_influx--;
    423 	return ki->ki_influx == 0;
    424 }
    425 
    426 static void
    427 kn_wait_flux(struct knote *kn, bool can_loop)
    428 {
    429 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
    430 	bool loop;
    431 
    432 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
    433 
    434 	/*
    435 	 * It may not be safe for us to touch the knote again after
    436 	 * dropping the kq_lock.  The caller has let us know in
    437 	 * 'can_loop'.
    438 	 */
    439 	for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) {
    440 		KQ_FLUX_WAIT(kn->kn_kq);
    441 	}
    442 }
    443 
    444 #define	KNOTE_WILLDETACH(kn)						\
    445 do {									\
    446 	(kn)->kn_status |= KN_WILLDETACH;				\
    447 	(kn)->kn_kevent.udata = curlwp;					\
    448 } while (/*CONSTCOND*/0)
    449 
    450 /*
    451  * Wait until the specified knote is in a quiescent state and
    452  * safe to detach.  Returns true if we potentially blocked (and
    453  * thus dropped our locks).
    454  */
    455 static bool
    456 knote_detach_quiesce(struct knote *kn)
    457 {
    458 	struct kqueue *kq = kn->kn_kq;
    459 	filedesc_t *fdp = kq->kq_fdp;
    460 
    461 	KASSERT(mutex_owned(&fdp->fd_lock));
    462 
    463 	mutex_spin_enter(&kq->kq_lock);
    464 	/*
    465 	 * There are two cases where we might see KN_WILLDETACH here:
    466 	 *
    467 	 * 1. Someone else has already started detaching the knote but
    468 	 *    had to wait for it to settle first.
    469 	 *
    470 	 * 2. We had to wait for it to settle, and had to come back
    471 	 *    around after re-acquiring the locks.
    472 	 *
    473 	 * When KN_WILLDETACH is set, we also set the LWP that claimed
    474 	 * the prize of finishing the detach in the 'udata' field of the
    475 	 * knote (which will never be used again for its usual purpose
    476 	 * once the note is in this state).  If it doesn't point to us,
    477 	 * we must drop the locks and let them in to finish the job.
    478 	 *
    479 	 * Otherwise, once we have claimed the knote for ourselves, we
    480 	 * can finish waiting for it to settle.  The is the only scenario
    481 	 * where touching a detaching knote is safe after dropping the
    482 	 * locks.
    483 	 */
    484 	if ((kn->kn_status & KN_WILLDETACH) != 0 &&
    485 	    kn->kn_kevent.udata != curlwp) {
    486 		/*
    487 		 * N.B. it is NOT safe for us to touch the knote again
    488 		 * after dropping the locks here.  The caller must go
    489 		 * back around and re-validate everything.  However, if
    490 		 * the knote is in-flux, we want to block to minimize
    491 		 * busy-looping.
    492 		 */
    493 		mutex_exit(&fdp->fd_lock);
    494 		if (kn_in_flux(kn)) {
    495 			kn_wait_flux(kn, false);
    496 			mutex_spin_exit(&kq->kq_lock);
    497 			return true;
    498 		}
    499 		mutex_spin_exit(&kq->kq_lock);
    500 		preempt_point();
    501 		return true;
    502 	}
    503 	/*
    504 	 * If we get here, we know that we will be claiming the
    505 	 * detach responsibilies, or that we already have and
    506 	 * this is the second attempt after re-validation.
    507 	 */
    508 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
    509 		kn->kn_kevent.udata == curlwp);
    510 	/*
    511 	 * Similarly, if we get here, either we are just claiming it
    512 	 * and may have to wait for it to settle, or if this is the
    513 	 * second attempt after re-validation that no other code paths
    514 	 * have put it in-flux.
    515 	 */
    516 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
    517 		kn_in_flux(kn) == false);
    518 	KNOTE_WILLDETACH(kn);
    519 	if (kn_in_flux(kn)) {
    520 		mutex_exit(&fdp->fd_lock);
    521 		kn_wait_flux(kn, true);
    522 		/*
    523 		 * It is safe for us to touch the knote again after
    524 		 * dropping the locks, but the caller must still
    525 		 * re-validate everything because other aspects of
    526 		 * the environment may have changed while we blocked.
    527 		 */
    528 		KASSERT(kn_in_flux(kn) == false);
    529 		mutex_spin_exit(&kq->kq_lock);
    530 		return true;
    531 	}
    532 	mutex_spin_exit(&kq->kq_lock);
    533 
    534 	return false;
    535 }
    536 
    537 /*
    538  * Calls into the filterops need to be resilient against things which
    539  * destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid
    540  * chasing garbage pointers (to data, or even potentially code in a
    541  * module about to be unloaded).  To that end, we acquire the
    542  * knote foplock before calling into the filter ops.  When a driver
    543  * (or anything else) is tearing down its klist, klist_fini() enumerates
    544  * each knote, acquires its foplock, and replaces the filterops with a
    545  * nop stub, allowing knote detach (when descriptors are closed) to safely
    546  * proceed.
    547  */
    548 
    549 static int
    550 filter_attach(struct knote *kn)
    551 {
    552 	int rv;
    553 
    554 	KASSERT(knote_foplock_owned(kn));
    555 	KASSERT(kn->kn_fop != NULL);
    556 	KASSERT(kn->kn_fop->f_attach != NULL);
    557 
    558 	/*
    559 	 * N.B. that kn->kn_fop may change as the result of calling
    560 	 * f_attach().  After f_attach() returns, kn->kn_fop may not
    561 	 * be modified by code outside of klist_fini().
    562 	 */
    563 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    564 		rv = kn->kn_fop->f_attach(kn);
    565 	} else {
    566 		KERNEL_LOCK(1, NULL);
    567 		rv = kn->kn_fop->f_attach(kn);
    568 		KERNEL_UNLOCK_ONE(NULL);
    569 	}
    570 
    571 	return rv;
    572 }
    573 
    574 static void
    575 filter_detach(struct knote *kn)
    576 {
    577 
    578 	KASSERT(knote_foplock_owned(kn));
    579 	KASSERT(kn->kn_fop != NULL);
    580 	KASSERT(kn->kn_fop->f_detach != NULL);
    581 
    582 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    583 		kn->kn_fop->f_detach(kn);
    584 	} else {
    585 		KERNEL_LOCK(1, NULL);
    586 		kn->kn_fop->f_detach(kn);
    587 		KERNEL_UNLOCK_ONE(NULL);
    588 	}
    589 }
    590 
    591 static int
    592 filter_event(struct knote *kn, long hint, bool submitting)
    593 {
    594 	int rv;
    595 
    596 	/* See knote(). */
    597 	KASSERT(submitting || knote_foplock_owned(kn));
    598 	KASSERT(kn->kn_fop != NULL);
    599 	KASSERT(kn->kn_fop->f_event != NULL);
    600 
    601 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
    602 		rv = kn->kn_fop->f_event(kn, hint);
    603 	} else {
    604 		KERNEL_LOCK(1, NULL);
    605 		rv = kn->kn_fop->f_event(kn, hint);
    606 		KERNEL_UNLOCK_ONE(NULL);
    607 	}
    608 
    609 	return rv;
    610 }
    611 
    612 static int
    613 filter_touch(struct knote *kn, struct kevent *kev, long type)
    614 {
    615 
    616 	/*
    617 	 * XXX We cannot assert that the knote foplock is held here
    618 	 * XXX beause we cannot safely acquire it in all cases
    619 	 * XXX where "touch" will be used in kqueue_scan().  We just
    620 	 * XXX have to assume that f_touch will always be safe to call,
    621 	 * XXX and kqueue_register() allows only the two known-safe
    622 	 * XXX users of that op.
    623 	 */
    624 
    625 	KASSERT(kn->kn_fop != NULL);
    626 	KASSERT(kn->kn_fop->f_touch != NULL);
    627 
    628 	return kn->kn_fop->f_touch(kn, kev, type);
    629 }
    630 
    631 static kauth_listener_t	kqueue_listener;
    632 
    633 static int
    634 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    635     void *arg0, void *arg1, void *arg2, void *arg3)
    636 {
    637 	struct proc *p;
    638 	int result;
    639 
    640 	result = KAUTH_RESULT_DEFER;
    641 	p = arg0;
    642 
    643 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
    644 		return result;
    645 
    646 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
    647 	    ISSET(p->p_flag, PK_SUGID)))
    648 		return result;
    649 
    650 	result = KAUTH_RESULT_ALLOW;
    651 
    652 	return result;
    653 }
    654 
    655 /*
    656  * Initialize the kqueue subsystem.
    657  */
    658 void
    659 kqueue_init(void)
    660 {
    661 
    662 	rw_init(&kqueue_filter_lock);
    663 
    664 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    665 	    kqueue_listener_cb, NULL);
    666 }
    667 
    668 /*
    669  * Find kfilter entry by name, or NULL if not found.
    670  */
    671 static struct kfilter *
    672 kfilter_byname_sys(const char *name)
    673 {
    674 	int i;
    675 
    676 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    677 
    678 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    679 		if (strcmp(name, sys_kfilters[i].name) == 0)
    680 			return &sys_kfilters[i];
    681 	}
    682 	return NULL;
    683 }
    684 
    685 static struct kfilter *
    686 kfilter_byname_user(const char *name)
    687 {
    688 	int i;
    689 
    690 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    691 
    692 	/* user filter slots have a NULL name if previously deregistered */
    693 	for (i = 0; i < user_kfilterc ; i++) {
    694 		if (user_kfilters[i].name != NULL &&
    695 		    strcmp(name, user_kfilters[i].name) == 0)
    696 			return &user_kfilters[i];
    697 	}
    698 	return NULL;
    699 }
    700 
    701 static struct kfilter *
    702 kfilter_byname(const char *name)
    703 {
    704 	struct kfilter *kfilter;
    705 
    706 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    707 
    708 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    709 		return kfilter;
    710 
    711 	return kfilter_byname_user(name);
    712 }
    713 
    714 /*
    715  * Find kfilter entry by filter id, or NULL if not found.
    716  * Assumes entries are indexed in filter id order, for speed.
    717  */
    718 static struct kfilter *
    719 kfilter_byfilter(uint32_t filter)
    720 {
    721 	struct kfilter *kfilter;
    722 
    723 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    724 
    725 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    726 		kfilter = &sys_kfilters[filter];
    727 	else if (user_kfilters != NULL &&
    728 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    729 					/* it's a user filter */
    730 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    731 	else
    732 		return (NULL);		/* out of range */
    733 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    734 	return (kfilter);
    735 }
    736 
    737 /*
    738  * Register a new kfilter. Stores the entry in user_kfilters.
    739  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    740  * If retfilter != NULL, the new filterid is returned in it.
    741  */
    742 int
    743 kfilter_register(const char *name, const struct filterops *filtops,
    744 		 int *retfilter)
    745 {
    746 	struct kfilter *kfilter;
    747 	size_t len;
    748 	int i;
    749 
    750 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    751 		return (EINVAL);	/* invalid args */
    752 
    753 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    754 	if (kfilter_byname(name) != NULL) {
    755 		rw_exit(&kqueue_filter_lock);
    756 		return (EEXIST);	/* already exists */
    757 	}
    758 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    759 		rw_exit(&kqueue_filter_lock);
    760 		return (EINVAL);	/* too many */
    761 	}
    762 
    763 	for (i = 0; i < user_kfilterc; i++) {
    764 		kfilter = &user_kfilters[i];
    765 		if (kfilter->name == NULL) {
    766 			/* Previously deregistered slot.  Reuse. */
    767 			goto reuse;
    768 		}
    769 	}
    770 
    771 	/* check if need to grow user_kfilters */
    772 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    773 		/* Grow in KFILTER_EXTENT chunks. */
    774 		user_kfiltermaxc += KFILTER_EXTENT;
    775 		len = user_kfiltermaxc * sizeof(*kfilter);
    776 		kfilter = kmem_alloc(len, KM_SLEEP);
    777 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    778 		if (user_kfilters != NULL) {
    779 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    780 			kmem_free(user_kfilters, user_kfiltersz);
    781 		}
    782 		user_kfiltersz = len;
    783 		user_kfilters = kfilter;
    784 	}
    785 	/* Adding new slot */
    786 	kfilter = &user_kfilters[user_kfilterc++];
    787 reuse:
    788 	kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
    789 
    790 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    791 
    792 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    793 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    794 
    795 	if (retfilter != NULL)
    796 		*retfilter = kfilter->filter;
    797 	rw_exit(&kqueue_filter_lock);
    798 
    799 	return (0);
    800 }
    801 
    802 /*
    803  * Unregister a kfilter previously registered with kfilter_register.
    804  * This retains the filter id, but clears the name and frees filtops (filter
    805  * operations), so that the number isn't reused during a boot.
    806  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    807  */
    808 int
    809 kfilter_unregister(const char *name)
    810 {
    811 	struct kfilter *kfilter;
    812 
    813 	if (name == NULL || name[0] == '\0')
    814 		return (EINVAL);	/* invalid name */
    815 
    816 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    817 	if (kfilter_byname_sys(name) != NULL) {
    818 		rw_exit(&kqueue_filter_lock);
    819 		return (EINVAL);	/* can't detach system filters */
    820 	}
    821 
    822 	kfilter = kfilter_byname_user(name);
    823 	if (kfilter == NULL) {
    824 		rw_exit(&kqueue_filter_lock);
    825 		return (ENOENT);
    826 	}
    827 	if (kfilter->refcnt != 0) {
    828 		rw_exit(&kqueue_filter_lock);
    829 		return (EBUSY);
    830 	}
    831 
    832 	/* Cast away const (but we know it's safe. */
    833 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    834 	kfilter->name = NULL;	/* mark as `not implemented' */
    835 
    836 	if (kfilter->filtops != NULL) {
    837 		/* Cast away const (but we know it's safe. */
    838 		kmem_free(__UNCONST(kfilter->filtops),
    839 		    sizeof(*kfilter->filtops));
    840 		kfilter->filtops = NULL; /* mark as `not implemented' */
    841 	}
    842 	rw_exit(&kqueue_filter_lock);
    843 
    844 	return (0);
    845 }
    846 
    847 
    848 /*
    849  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    850  * descriptors. Calls fileops kqfilter method for given file descriptor.
    851  */
    852 static int
    853 filt_fileattach(struct knote *kn)
    854 {
    855 	file_t *fp;
    856 
    857 	fp = kn->kn_obj;
    858 
    859 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    860 }
    861 
    862 /*
    863  * Filter detach method for EVFILT_READ on kqueue descriptor.
    864  */
    865 static void
    866 filt_kqdetach(struct knote *kn)
    867 {
    868 	struct kqueue *kq;
    869 
    870 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    871 
    872 	mutex_spin_enter(&kq->kq_lock);
    873 	selremove_knote(&kq->kq_sel, kn);
    874 	mutex_spin_exit(&kq->kq_lock);
    875 }
    876 
    877 /*
    878  * Filter event method for EVFILT_READ on kqueue descriptor.
    879  */
    880 /*ARGSUSED*/
    881 static int
    882 filt_kqueue(struct knote *kn, long hint)
    883 {
    884 	struct kqueue *kq;
    885 	int rv;
    886 
    887 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    888 
    889 	if (hint != NOTE_SUBMIT)
    890 		mutex_spin_enter(&kq->kq_lock);
    891 	kn->kn_data = KQ_COUNT(kq);
    892 	rv = (kn->kn_data > 0);
    893 	if (hint != NOTE_SUBMIT)
    894 		mutex_spin_exit(&kq->kq_lock);
    895 
    896 	return rv;
    897 }
    898 
    899 /*
    900  * Filter attach method for EVFILT_PROC.
    901  */
    902 static int
    903 filt_procattach(struct knote *kn)
    904 {
    905 	struct proc *p;
    906 
    907 	mutex_enter(&proc_lock);
    908 	p = proc_find(kn->kn_id);
    909 	if (p == NULL) {
    910 		mutex_exit(&proc_lock);
    911 		return ESRCH;
    912 	}
    913 
    914 	/*
    915 	 * Fail if it's not owned by you, or the last exec gave us
    916 	 * setuid/setgid privs (unless you're root).
    917 	 */
    918 	mutex_enter(p->p_lock);
    919 	mutex_exit(&proc_lock);
    920 	if (kauth_authorize_process(curlwp->l_cred,
    921 	    KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
    922 	    	mutex_exit(p->p_lock);
    923 		return EACCES;
    924 	}
    925 
    926 	kn->kn_obj = p;
    927 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    928 
    929 	/*
    930 	 * NOTE_CHILD is only ever generated internally; don't let it
    931 	 * leak in from user-space.  See knote_proc_fork_track().
    932 	 */
    933 	kn->kn_sfflags &= ~NOTE_CHILD;
    934 
    935 	klist_insert(&p->p_klist, kn);
    936     	mutex_exit(p->p_lock);
    937 
    938 	return 0;
    939 }
    940 
    941 /*
    942  * Filter detach method for EVFILT_PROC.
    943  *
    944  * The knote may be attached to a different process, which may exit,
    945  * leaving nothing for the knote to be attached to.  So when the process
    946  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    947  * it will be deleted when read out.  However, as part of the knote deletion,
    948  * this routine is called, so a check is needed to avoid actually performing
    949  * a detach, because the original process might not exist any more.
    950  */
    951 static void
    952 filt_procdetach(struct knote *kn)
    953 {
    954 	struct kqueue *kq = kn->kn_kq;
    955 	struct proc *p;
    956 
    957 	/*
    958 	 * We have to synchronize with knote_proc_exit(), but we
    959 	 * are forced to acquire the locks in the wrong order here
    960 	 * because we can't be sure kn->kn_obj is valid unless
    961 	 * KN_DETACHED is not set.
    962 	 */
    963  again:
    964 	mutex_spin_enter(&kq->kq_lock);
    965 	if ((kn->kn_status & KN_DETACHED) == 0) {
    966 		p = kn->kn_obj;
    967 		if (!mutex_tryenter(p->p_lock)) {
    968 			mutex_spin_exit(&kq->kq_lock);
    969 			preempt_point();
    970 			goto again;
    971 		}
    972 		kn->kn_status |= KN_DETACHED;
    973 		klist_remove(&p->p_klist, kn);
    974 		mutex_exit(p->p_lock);
    975 	}
    976 	mutex_spin_exit(&kq->kq_lock);
    977 }
    978 
    979 /*
    980  * Filter event method for EVFILT_PROC.
    981  *
    982  * Due to some of the complexities of process locking, we have special
    983  * entry points for delivering knote submissions.  filt_proc() is used
    984  * only to check for activation from kqueue_register() and kqueue_scan().
    985  */
    986 static int
    987 filt_proc(struct knote *kn, long hint)
    988 {
    989 	struct kqueue *kq = kn->kn_kq;
    990 	uint32_t fflags;
    991 
    992 	/*
    993 	 * Because we share the same klist with signal knotes, just
    994 	 * ensure that we're not being invoked for the proc-related
    995 	 * submissions.
    996 	 */
    997 	KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
    998 
    999 	mutex_spin_enter(&kq->kq_lock);
   1000 	fflags = kn->kn_fflags;
   1001 	mutex_spin_exit(&kq->kq_lock);
   1002 
   1003 	return fflags != 0;
   1004 }
   1005 
   1006 void
   1007 knote_proc_exec(struct proc *p)
   1008 {
   1009 	struct knote *kn, *tmpkn;
   1010 	struct kqueue *kq;
   1011 	uint32_t fflags;
   1012 
   1013 	mutex_enter(p->p_lock);
   1014 
   1015 	SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
   1016 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
   1017 		if (kn->kn_fop == &sig_filtops) {
   1018 			continue;
   1019 		}
   1020 		KASSERT(kn->kn_fop == &proc_filtops);
   1021 
   1022 		kq = kn->kn_kq;
   1023 		mutex_spin_enter(&kq->kq_lock);
   1024 		fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
   1025 		if (fflags) {
   1026 			knote_activate_locked(kn);
   1027 		}
   1028 		mutex_spin_exit(&kq->kq_lock);
   1029 	}
   1030 
   1031 	mutex_exit(p->p_lock);
   1032 }
   1033 
   1034 static int __noinline
   1035 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
   1036 {
   1037 	struct kqueue *kq = okn->kn_kq;
   1038 
   1039 	KASSERT(mutex_owned(&kq->kq_lock));
   1040 	KASSERT(mutex_owned(p1->p_lock));
   1041 
   1042 	/*
   1043 	 * We're going to put this knote into flux while we drop
   1044 	 * the locks and create and attach a new knote to track the
   1045 	 * child.  If we are not able to enter flux, then this knote
   1046 	 * is about to go away, so skip the notification.
   1047 	 */
   1048 	if (!kn_enter_flux(okn)) {
   1049 		return 0;
   1050 	}
   1051 
   1052 	mutex_spin_exit(&kq->kq_lock);
   1053 	mutex_exit(p1->p_lock);
   1054 
   1055 	/*
   1056 	 * We actually have to register *two* new knotes:
   1057 	 *
   1058 	 * ==> One for the NOTE_CHILD notification.  This is a forced
   1059 	 *     ONESHOT note.
   1060 	 *
   1061 	 * ==> One to actually track the child process as it subsequently
   1062 	 *     forks, execs, and, ultimately, exits.
   1063 	 *
   1064 	 * If we only register a single knote, then it's possible for
   1065 	 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
   1066 	 * notification if the child exits before the tracking process
   1067 	 * has received the NOTE_CHILD notification, which applications
   1068 	 * aren't expecting (the event's 'data' field would be clobbered,
   1069 	 * for example).
   1070 	 *
   1071 	 * To do this, what we have here is an **extremely** stripped-down
   1072 	 * version of kqueue_register() that has the following properties:
   1073 	 *
   1074 	 * ==> Does not block to allocate memory.  If we are unable
   1075 	 *     to allocate memory, we return ENOMEM.
   1076 	 *
   1077 	 * ==> Does not search for existing knotes; we know there
   1078 	 *     are not any because this is a new process that isn't
   1079 	 *     even visible to other processes yet.
   1080 	 *
   1081 	 * ==> Assumes that the knhash for our kq's descriptor table
   1082 	 *     already exists (after all, we're already tracking
   1083 	 *     processes with knotes if we got here).
   1084 	 *
   1085 	 * ==> Directly attaches the new tracking knote to the child
   1086 	 *     process.
   1087 	 *
   1088 	 * The whole point is to do the minimum amount of work while the
   1089 	 * knote is held in-flux, and to avoid doing extra work in general
   1090 	 * (we already have the new child process; why bother looking it
   1091 	 * up again?).
   1092 	 */
   1093 	filedesc_t *fdp = kq->kq_fdp;
   1094 	struct knote *knchild, *kntrack;
   1095 	int error = 0;
   1096 
   1097 	knchild = knote_alloc(false);
   1098 	kntrack = knote_alloc(false);
   1099 	if (__predict_false(knchild == NULL || kntrack == NULL)) {
   1100 		error = ENOMEM;
   1101 		goto out;
   1102 	}
   1103 
   1104 	kntrack->kn_obj = p2;
   1105 	kntrack->kn_id = p2->p_pid;
   1106 	kntrack->kn_kq = kq;
   1107 	kntrack->kn_fop = okn->kn_fop;
   1108 	kntrack->kn_kfilter = okn->kn_kfilter;
   1109 	kntrack->kn_sfflags = okn->kn_sfflags;
   1110 	kntrack->kn_sdata = p1->p_pid;
   1111 
   1112 	kntrack->kn_kevent.ident = p2->p_pid;
   1113 	kntrack->kn_kevent.filter = okn->kn_filter;
   1114 	kntrack->kn_kevent.flags =
   1115 	    okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
   1116 	kntrack->kn_kevent.fflags = 0;
   1117 	kntrack->kn_kevent.data = 0;
   1118 	kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
   1119 
   1120 	/*
   1121 	 * The child note does not need to be attached to the
   1122 	 * new proc's klist at all.
   1123 	 */
   1124 	*knchild = *kntrack;
   1125 	knchild->kn_status = KN_DETACHED;
   1126 	knchild->kn_sfflags = 0;
   1127 	knchild->kn_kevent.flags |= EV_ONESHOT;
   1128 	knchild->kn_kevent.fflags = NOTE_CHILD;
   1129 	knchild->kn_kevent.data = p1->p_pid;		 /* parent */
   1130 
   1131 	mutex_enter(&fdp->fd_lock);
   1132 
   1133 	/*
   1134 	 * We need to check to see if the kq is closing, and skip
   1135 	 * attaching the knote if so.  Normally, this isn't necessary
   1136 	 * when coming in the front door because the file descriptor
   1137 	 * layer will synchronize this.
   1138 	 *
   1139 	 * It's safe to test KQ_CLOSING without taking the kq_lock
   1140 	 * here because that flag is only ever set when the fd_lock
   1141 	 * is also held.
   1142 	 */
   1143 	if (__predict_false(kq->kq_count & KQ_CLOSING)) {
   1144 		mutex_exit(&fdp->fd_lock);
   1145 		goto out;
   1146 	}
   1147 
   1148 	/*
   1149 	 * We do the "insert into FD table" and "attach to klist" steps
   1150 	 * in the opposite order of kqueue_register() here to avoid
   1151 	 * having to take p2->p_lock twice.  But this is OK because we
   1152 	 * hold fd_lock across the entire operation.
   1153 	 */
   1154 
   1155 	mutex_enter(p2->p_lock);
   1156 	error = kauth_authorize_process(curlwp->l_cred,
   1157 	    KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
   1158 	if (__predict_false(error != 0)) {
   1159 		mutex_exit(p2->p_lock);
   1160 		mutex_exit(&fdp->fd_lock);
   1161 		error = EACCES;
   1162 		goto out;
   1163 	}
   1164 	klist_insert(&p2->p_klist, kntrack);
   1165 	mutex_exit(p2->p_lock);
   1166 
   1167 	KASSERT(fdp->fd_knhashmask != 0);
   1168 	KASSERT(fdp->fd_knhash != NULL);
   1169 	struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
   1170 	    fdp->fd_knhashmask)];
   1171 	SLIST_INSERT_HEAD(list, kntrack, kn_link);
   1172 	SLIST_INSERT_HEAD(list, knchild, kn_link);
   1173 
   1174 	/* This adds references for knchild *and* kntrack. */
   1175 	atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
   1176 
   1177 	knote_activate(knchild);
   1178 
   1179 	kntrack = NULL;
   1180 	knchild = NULL;
   1181 
   1182 	mutex_exit(&fdp->fd_lock);
   1183 
   1184  out:
   1185 	if (__predict_false(knchild != NULL)) {
   1186 		knote_free(knchild);
   1187 	}
   1188 	if (__predict_false(kntrack != NULL)) {
   1189 		knote_free(kntrack);
   1190 	}
   1191 	mutex_enter(p1->p_lock);
   1192 	mutex_spin_enter(&kq->kq_lock);
   1193 
   1194 	if (kn_leave_flux(okn)) {
   1195 		KQ_FLUX_WAKEUP(kq);
   1196 	}
   1197 
   1198 	return error;
   1199 }
   1200 
   1201 void
   1202 knote_proc_fork(struct proc *p1, struct proc *p2)
   1203 {
   1204 	struct knote *kn;
   1205 	struct kqueue *kq;
   1206 	uint32_t fflags;
   1207 
   1208 	mutex_enter(p1->p_lock);
   1209 
   1210 	/*
   1211 	 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
   1212 	 * don't want to pre-fetch the next knote; in the event we
   1213 	 * have to drop p_lock, we will have put the knote in-flux,
   1214 	 * meaning that no one will be able to detach it until we
   1215 	 * have taken the knote out of flux.  However, that does
   1216 	 * NOT stop someone else from detaching the next note in the
   1217 	 * list while we have it unlocked.  Thus, we want to fetch
   1218 	 * the next note in the list only after we have re-acquired
   1219 	 * the lock, and using SLIST_FOREACH() will satisfy that.
   1220 	 */
   1221 	SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
   1222 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
   1223 		if (kn->kn_fop == &sig_filtops) {
   1224 			continue;
   1225 		}
   1226 		KASSERT(kn->kn_fop == &proc_filtops);
   1227 
   1228 		kq = kn->kn_kq;
   1229 		mutex_spin_enter(&kq->kq_lock);
   1230 		kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
   1231 		if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
   1232 			/*
   1233 			 * This will drop kq_lock and p_lock and
   1234 			 * re-acquire them before it returns.
   1235 			 */
   1236 			if (knote_proc_fork_track(p1, p2, kn)) {
   1237 				kn->kn_fflags |= NOTE_TRACKERR;
   1238 			}
   1239 			KASSERT(mutex_owned(p1->p_lock));
   1240 			KASSERT(mutex_owned(&kq->kq_lock));
   1241 		}
   1242 		fflags = kn->kn_fflags;
   1243 		if (fflags) {
   1244 			knote_activate_locked(kn);
   1245 		}
   1246 		mutex_spin_exit(&kq->kq_lock);
   1247 	}
   1248 
   1249 	mutex_exit(p1->p_lock);
   1250 }
   1251 
   1252 void
   1253 knote_proc_exit(struct proc *p)
   1254 {
   1255 	struct knote *kn;
   1256 	struct kqueue *kq;
   1257 
   1258 	KASSERT(mutex_owned(p->p_lock));
   1259 
   1260 	while (!SLIST_EMPTY(&p->p_klist)) {
   1261 		kn = SLIST_FIRST(&p->p_klist);
   1262 		kq = kn->kn_kq;
   1263 
   1264 		KASSERT(kn->kn_obj == p);
   1265 
   1266 		mutex_spin_enter(&kq->kq_lock);
   1267 		kn->kn_data = P_WAITSTATUS(p);
   1268 		/*
   1269 		 * Mark as ONESHOT, so that the knote is g/c'ed
   1270 		 * when read.
   1271 		 */
   1272 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   1273 		kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
   1274 
   1275 		/*
   1276 		 * Detach the knote from the process and mark it as such.
   1277 		 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
   1278 		 * time we get here, all open file descriptors for this
   1279 		 * process have been released, meaning that signal knotes
   1280 		 * will have already been detached.
   1281 		 *
   1282 		 * We need to synchronize this with filt_procdetach().
   1283 		 */
   1284 		KASSERT(kn->kn_fop == &proc_filtops);
   1285 		if ((kn->kn_status & KN_DETACHED) == 0) {
   1286 			kn->kn_status |= KN_DETACHED;
   1287 			SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
   1288 		}
   1289 
   1290 		/*
   1291 		 * Always activate the knote for NOTE_EXIT regardless
   1292 		 * of whether or not the listener cares about it.
   1293 		 * This matches historical behavior.
   1294 		 */
   1295 		knote_activate_locked(kn);
   1296 		mutex_spin_exit(&kq->kq_lock);
   1297 	}
   1298 }
   1299 
   1300 #define	FILT_TIMER_NOSCHED	((uintptr_t)-1)
   1301 
   1302 static int
   1303 filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
   1304 {
   1305 	struct timespec ts;
   1306 	uintptr_t tticks;
   1307 
   1308 	if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
   1309 		return EINVAL;
   1310 	}
   1311 
   1312 	/*
   1313 	 * Convert the event 'data' to a timespec, then convert the
   1314 	 * timespec to callout ticks.
   1315 	 */
   1316 	switch (kev->fflags & NOTE_TIMER_UNITMASK) {
   1317 	case NOTE_SECONDS:
   1318 		ts.tv_sec = kev->data;
   1319 		ts.tv_nsec = 0;
   1320 		break;
   1321 
   1322 	case NOTE_MSECONDS:		/* == historical value 0 */
   1323 		ts.tv_sec = kev->data / 1000;
   1324 		ts.tv_nsec = (kev->data % 1000) * 1000000;
   1325 		break;
   1326 
   1327 	case NOTE_USECONDS:
   1328 		ts.tv_sec = kev->data / 1000000;
   1329 		ts.tv_nsec = (kev->data % 1000000) * 1000;
   1330 		break;
   1331 
   1332 	case NOTE_NSECONDS:
   1333 		ts.tv_sec = kev->data / 1000000000;
   1334 		ts.tv_nsec = kev->data % 1000000000;
   1335 		break;
   1336 
   1337 	default:
   1338 		return EINVAL;
   1339 	}
   1340 
   1341 	if (kev->fflags & NOTE_ABSTIME) {
   1342 		struct timespec deadline = ts;
   1343 
   1344 		/*
   1345 		 * Get current time.
   1346 		 *
   1347 		 * XXX This is CLOCK_REALTIME.  There is no way to
   1348 		 * XXX specify CLOCK_MONOTONIC.
   1349 		 */
   1350 		nanotime(&ts);
   1351 
   1352 		/* Absolute timers do not repeat. */
   1353 		kev->data = FILT_TIMER_NOSCHED;
   1354 
   1355 		/* If we're past the deadline, then the event will fire. */
   1356 		if (timespeccmp(&deadline, &ts, <=)) {
   1357 			tticks = FILT_TIMER_NOSCHED;
   1358 			goto out;
   1359 		}
   1360 
   1361 		/* Calculate how much time is left. */
   1362 		timespecsub(&deadline, &ts, &ts);
   1363 	} else {
   1364 		/* EV_CLEAR automatically set for relative timers. */
   1365 		kev->flags |= EV_CLEAR;
   1366 	}
   1367 
   1368 	tticks = tstohz(&ts);
   1369 
   1370 	/* if the supplied value is under our resolution, use 1 tick */
   1371 	if (tticks == 0) {
   1372 		if (kev->data == 0)
   1373 			return EINVAL;
   1374 		tticks = 1;
   1375 	} else if (tticks > INT_MAX) {
   1376 		return EINVAL;
   1377 	}
   1378 
   1379 	if ((kev->flags & EV_ONESHOT) != 0) {
   1380 		/* Timer does not repeat. */
   1381 		kev->data = FILT_TIMER_NOSCHED;
   1382 	} else {
   1383 		KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
   1384 		kev->data = tticks;
   1385 	}
   1386 
   1387  out:
   1388 	*tticksp = tticks;
   1389 
   1390 	return 0;
   1391 }
   1392 
   1393 static void
   1394 filt_timerexpire(void *knx)
   1395 {
   1396 	struct knote *kn = knx;
   1397 	struct kqueue *kq = kn->kn_kq;
   1398 
   1399 	mutex_spin_enter(&kq->kq_lock);
   1400 	kn->kn_data++;
   1401 	knote_activate_locked(kn);
   1402 	if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
   1403 		KASSERT(kn->kn_sdata > 0 && kn->kn_sdata <= INT_MAX);
   1404 		callout_schedule((callout_t *)kn->kn_hook,
   1405 		    (int)kn->kn_sdata);
   1406 	}
   1407 	mutex_spin_exit(&kq->kq_lock);
   1408 }
   1409 
   1410 static inline void
   1411 filt_timerstart(struct knote *kn, uintptr_t tticks)
   1412 {
   1413 	callout_t *calloutp = kn->kn_hook;
   1414 
   1415 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
   1416 	KASSERT(!callout_pending(calloutp));
   1417 
   1418 	if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
   1419 		kn->kn_data = 1;
   1420 	} else {
   1421 		KASSERT(tticks <= INT_MAX);
   1422 		callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
   1423 	}
   1424 }
   1425 
   1426 static int
   1427 filt_timerattach(struct knote *kn)
   1428 {
   1429 	callout_t *calloutp;
   1430 	struct kqueue *kq;
   1431 	uintptr_t tticks;
   1432 	int error;
   1433 
   1434 	struct kevent kev = {
   1435 		.flags = kn->kn_flags,
   1436 		.fflags = kn->kn_sfflags,
   1437 		.data = kn->kn_sdata,
   1438 	};
   1439 
   1440 	error = filt_timercompute(&kev, &tticks);
   1441 	if (error) {
   1442 		return error;
   1443 	}
   1444 
   1445 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
   1446 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
   1447 		atomic_dec_uint(&kq_ncallouts);
   1448 		return ENOMEM;
   1449 	}
   1450 	callout_init(calloutp, CALLOUT_MPSAFE);
   1451 
   1452 	kq = kn->kn_kq;
   1453 	mutex_spin_enter(&kq->kq_lock);
   1454 
   1455 	kn->kn_sdata = kev.data;
   1456 	kn->kn_flags = kev.flags;
   1457 	KASSERT(kn->kn_sfflags == kev.fflags);
   1458 	kn->kn_hook = calloutp;
   1459 
   1460 	filt_timerstart(kn, tticks);
   1461 
   1462 	mutex_spin_exit(&kq->kq_lock);
   1463 
   1464 	return (0);
   1465 }
   1466 
   1467 static void
   1468 filt_timerdetach(struct knote *kn)
   1469 {
   1470 	callout_t *calloutp;
   1471 	struct kqueue *kq = kn->kn_kq;
   1472 
   1473 	/* prevent rescheduling when we expire */
   1474 	mutex_spin_enter(&kq->kq_lock);
   1475 	kn->kn_sdata = FILT_TIMER_NOSCHED;
   1476 	mutex_spin_exit(&kq->kq_lock);
   1477 
   1478 	calloutp = (callout_t *)kn->kn_hook;
   1479 
   1480 	/*
   1481 	 * Attempt to stop the callout.  This will block if it's
   1482 	 * already running.
   1483 	 */
   1484 	callout_halt(calloutp, NULL);
   1485 
   1486 	callout_destroy(calloutp);
   1487 	kmem_free(calloutp, sizeof(*calloutp));
   1488 	atomic_dec_uint(&kq_ncallouts);
   1489 }
   1490 
   1491 static int
   1492 filt_timertouch(struct knote *kn, struct kevent *kev, long type)
   1493 {
   1494 	struct kqueue *kq = kn->kn_kq;
   1495 	callout_t *calloutp;
   1496 	uintptr_t tticks;
   1497 	int error;
   1498 
   1499 	KASSERT(mutex_owned(&kq->kq_lock));
   1500 
   1501 	switch (type) {
   1502 	case EVENT_REGISTER:
   1503 		/* Only relevant for EV_ADD. */
   1504 		if ((kev->flags & EV_ADD) == 0) {
   1505 			return 0;
   1506 		}
   1507 
   1508 		/*
   1509 		 * Stop the timer, under the assumption that if
   1510 		 * an application is re-configuring the timer,
   1511 		 * they no longer care about the old one.  We
   1512 		 * can safely drop the kq_lock while we wait
   1513 		 * because fdp->fd_lock will be held throughout,
   1514 		 * ensuring that no one can sneak in with an
   1515 		 * EV_DELETE or close the kq.
   1516 		 */
   1517 		KASSERT(mutex_owned(&kq->kq_fdp->fd_lock));
   1518 
   1519 		calloutp = kn->kn_hook;
   1520 		callout_halt(calloutp, &kq->kq_lock);
   1521 		KASSERT(mutex_owned(&kq->kq_lock));
   1522 		knote_deactivate_locked(kn);
   1523 		kn->kn_data = 0;
   1524 
   1525 		error = filt_timercompute(kev, &tticks);
   1526 		if (error) {
   1527 			return error;
   1528 		}
   1529 		kn->kn_sdata = kev->data;
   1530 		kn->kn_flags = kev->flags;
   1531 		kn->kn_sfflags = kev->fflags;
   1532 		filt_timerstart(kn, tticks);
   1533 		break;
   1534 
   1535 	case EVENT_PROCESS:
   1536 		*kev = kn->kn_kevent;
   1537 		break;
   1538 
   1539 	default:
   1540 		panic("%s: invalid type (%ld)", __func__, type);
   1541 	}
   1542 
   1543 	return 0;
   1544 }
   1545 
   1546 static int
   1547 filt_timer(struct knote *kn, long hint)
   1548 {
   1549 	struct kqueue *kq = kn->kn_kq;
   1550 	int rv;
   1551 
   1552 	mutex_spin_enter(&kq->kq_lock);
   1553 	rv = (kn->kn_data != 0);
   1554 	mutex_spin_exit(&kq->kq_lock);
   1555 
   1556 	return rv;
   1557 }
   1558 
   1559 static int
   1560 filt_userattach(struct knote *kn)
   1561 {
   1562 	struct kqueue *kq = kn->kn_kq;
   1563 
   1564 	/*
   1565 	 * EVFILT_USER knotes are not attached to anything in the kernel.
   1566 	 */
   1567 	mutex_spin_enter(&kq->kq_lock);
   1568 	kn->kn_hook = NULL;
   1569 	if (kn->kn_fflags & NOTE_TRIGGER)
   1570 		kn->kn_hookid = 1;
   1571 	else
   1572 		kn->kn_hookid = 0;
   1573 	mutex_spin_exit(&kq->kq_lock);
   1574 	return (0);
   1575 }
   1576 
   1577 static void
   1578 filt_userdetach(struct knote *kn)
   1579 {
   1580 
   1581 	/*
   1582 	 * EVFILT_USER knotes are not attached to anything in the kernel.
   1583 	 */
   1584 }
   1585 
   1586 static int
   1587 filt_user(struct knote *kn, long hint)
   1588 {
   1589 	struct kqueue *kq = kn->kn_kq;
   1590 	int hookid;
   1591 
   1592 	mutex_spin_enter(&kq->kq_lock);
   1593 	hookid = kn->kn_hookid;
   1594 	mutex_spin_exit(&kq->kq_lock);
   1595 
   1596 	return hookid;
   1597 }
   1598 
   1599 static int
   1600 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
   1601 {
   1602 	int ffctrl;
   1603 
   1604 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
   1605 
   1606 	switch (type) {
   1607 	case EVENT_REGISTER:
   1608 		if (kev->fflags & NOTE_TRIGGER)
   1609 			kn->kn_hookid = 1;
   1610 
   1611 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
   1612 		kev->fflags &= NOTE_FFLAGSMASK;
   1613 		switch (ffctrl) {
   1614 		case NOTE_FFNOP:
   1615 			break;
   1616 
   1617 		case NOTE_FFAND:
   1618 			kn->kn_sfflags &= kev->fflags;
   1619 			break;
   1620 
   1621 		case NOTE_FFOR:
   1622 			kn->kn_sfflags |= kev->fflags;
   1623 			break;
   1624 
   1625 		case NOTE_FFCOPY:
   1626 			kn->kn_sfflags = kev->fflags;
   1627 			break;
   1628 
   1629 		default:
   1630 			/* XXX Return error? */
   1631 			break;
   1632 		}
   1633 		kn->kn_sdata = kev->data;
   1634 		if (kev->flags & EV_CLEAR) {
   1635 			kn->kn_hookid = 0;
   1636 			kn->kn_data = 0;
   1637 			kn->kn_fflags = 0;
   1638 		}
   1639 		break;
   1640 
   1641 	case EVENT_PROCESS:
   1642 		*kev = kn->kn_kevent;
   1643 		kev->fflags = kn->kn_sfflags;
   1644 		kev->data = kn->kn_sdata;
   1645 		if (kn->kn_flags & EV_CLEAR) {
   1646 			kn->kn_hookid = 0;
   1647 			kn->kn_data = 0;
   1648 			kn->kn_fflags = 0;
   1649 		}
   1650 		break;
   1651 
   1652 	default:
   1653 		panic("filt_usertouch() - invalid type (%ld)", type);
   1654 		break;
   1655 	}
   1656 
   1657 	return 0;
   1658 }
   1659 
   1660 /*
   1661  * filt_seltrue:
   1662  *
   1663  *	This filter "event" routine simulates seltrue().
   1664  */
   1665 int
   1666 filt_seltrue(struct knote *kn, long hint)
   1667 {
   1668 
   1669 	/*
   1670 	 * We don't know how much data can be read/written,
   1671 	 * but we know that it *can* be.  This is about as
   1672 	 * good as select/poll does as well.
   1673 	 */
   1674 	kn->kn_data = 0;
   1675 	return (1);
   1676 }
   1677 
   1678 /*
   1679  * This provides full kqfilter entry for device switch tables, which
   1680  * has same effect as filter using filt_seltrue() as filter method.
   1681  */
   1682 static void
   1683 filt_seltruedetach(struct knote *kn)
   1684 {
   1685 	/* Nothing to do */
   1686 }
   1687 
   1688 const struct filterops seltrue_filtops = {
   1689 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
   1690 	.f_attach = NULL,
   1691 	.f_detach = filt_seltruedetach,
   1692 	.f_event = filt_seltrue,
   1693 };
   1694 
   1695 int
   1696 seltrue_kqfilter(dev_t dev, struct knote *kn)
   1697 {
   1698 	switch (kn->kn_filter) {
   1699 	case EVFILT_READ:
   1700 	case EVFILT_WRITE:
   1701 		kn->kn_fop = &seltrue_filtops;
   1702 		break;
   1703 	default:
   1704 		return (EINVAL);
   1705 	}
   1706 
   1707 	/* Nothing more to do */
   1708 	return (0);
   1709 }
   1710 
   1711 /*
   1712  * kqueue(2) system call.
   1713  */
   1714 static int
   1715 kqueue1(struct lwp *l, int flags, register_t *retval)
   1716 {
   1717 	struct kqueue *kq;
   1718 	file_t *fp;
   1719 	int fd, error;
   1720 
   1721 	if ((error = fd_allocfile(&fp, &fd)) != 0)
   1722 		return error;
   1723 	fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
   1724 	fp->f_type = DTYPE_KQUEUE;
   1725 	fp->f_ops = &kqueueops;
   1726 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
   1727 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
   1728 	cv_init(&kq->kq_cv, "kqueue");
   1729 	selinit(&kq->kq_sel);
   1730 	TAILQ_INIT(&kq->kq_head);
   1731 	fp->f_kqueue = kq;
   1732 	*retval = fd;
   1733 	kq->kq_fdp = curlwp->l_fd;
   1734 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
   1735 	fd_affix(curproc, fp, fd);
   1736 	return error;
   1737 }
   1738 
   1739 /*
   1740  * kqueue(2) system call.
   1741  */
   1742 int
   1743 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
   1744 {
   1745 	return kqueue1(l, 0, retval);
   1746 }
   1747 
   1748 int
   1749 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
   1750     register_t *retval)
   1751 {
   1752 	/* {
   1753 		syscallarg(int) flags;
   1754 	} */
   1755 	return kqueue1(l, SCARG(uap, flags), retval);
   1756 }
   1757 
   1758 /*
   1759  * kevent(2) system call.
   1760  */
   1761 int
   1762 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
   1763     struct kevent *changes, size_t index, int n)
   1764 {
   1765 
   1766 	return copyin(changelist + index, changes, n * sizeof(*changes));
   1767 }
   1768 
   1769 int
   1770 kevent_put_events(void *ctx, struct kevent *events,
   1771     struct kevent *eventlist, size_t index, int n)
   1772 {
   1773 
   1774 	return copyout(events, eventlist + index, n * sizeof(*events));
   1775 }
   1776 
   1777 static const struct kevent_ops kevent_native_ops = {
   1778 	.keo_private = NULL,
   1779 	.keo_fetch_timeout = copyin,
   1780 	.keo_fetch_changes = kevent_fetch_changes,
   1781 	.keo_put_events = kevent_put_events,
   1782 };
   1783 
   1784 int
   1785 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
   1786     register_t *retval)
   1787 {
   1788 	/* {
   1789 		syscallarg(int) fd;
   1790 		syscallarg(const struct kevent *) changelist;
   1791 		syscallarg(size_t) nchanges;
   1792 		syscallarg(struct kevent *) eventlist;
   1793 		syscallarg(size_t) nevents;
   1794 		syscallarg(const struct timespec *) timeout;
   1795 	} */
   1796 
   1797 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
   1798 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
   1799 	    SCARG(uap, timeout), &kevent_native_ops);
   1800 }
   1801 
   1802 int
   1803 kevent1(register_t *retval, int fd,
   1804 	const struct kevent *changelist, size_t nchanges,
   1805 	struct kevent *eventlist, size_t nevents,
   1806 	const struct timespec *timeout,
   1807 	const struct kevent_ops *keops)
   1808 {
   1809 	struct kevent *kevp;
   1810 	struct kqueue *kq;
   1811 	struct timespec	ts;
   1812 	size_t i, n, ichange;
   1813 	int nerrors, error;
   1814 	struct kevent kevbuf[KQ_NEVENTS];	/* approx 300 bytes on 64-bit */
   1815 	file_t *fp;
   1816 
   1817 	/* check that we're dealing with a kq */
   1818 	fp = fd_getfile(fd);
   1819 	if (fp == NULL)
   1820 		return (EBADF);
   1821 
   1822 	if (fp->f_type != DTYPE_KQUEUE) {
   1823 		fd_putfile(fd);
   1824 		return (EBADF);
   1825 	}
   1826 
   1827 	if (timeout != NULL) {
   1828 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
   1829 		if (error)
   1830 			goto done;
   1831 		timeout = &ts;
   1832 	}
   1833 
   1834 	kq = fp->f_kqueue;
   1835 	nerrors = 0;
   1836 	ichange = 0;
   1837 
   1838 	/* traverse list of events to register */
   1839 	while (nchanges > 0) {
   1840 		n = MIN(nchanges, __arraycount(kevbuf));
   1841 		error = (*keops->keo_fetch_changes)(keops->keo_private,
   1842 		    changelist, kevbuf, ichange, n);
   1843 		if (error)
   1844 			goto done;
   1845 		for (i = 0; i < n; i++) {
   1846 			kevp = &kevbuf[i];
   1847 			kevp->flags &= ~EV_SYSFLAGS;
   1848 			/* register each knote */
   1849 			error = kqueue_register(kq, kevp);
   1850 			if (!error && !(kevp->flags & EV_RECEIPT))
   1851 				continue;
   1852 			if (nevents == 0)
   1853 				goto done;
   1854 			kevp->flags = EV_ERROR;
   1855 			kevp->data = error;
   1856 			error = (*keops->keo_put_events)
   1857 				(keops->keo_private, kevp,
   1858 				 eventlist, nerrors, 1);
   1859 			if (error)
   1860 				goto done;
   1861 			nevents--;
   1862 			nerrors++;
   1863 		}
   1864 		nchanges -= n;	/* update the results */
   1865 		ichange += n;
   1866 	}
   1867 	if (nerrors) {
   1868 		*retval = nerrors;
   1869 		error = 0;
   1870 		goto done;
   1871 	}
   1872 
   1873 	/* actually scan through the events */
   1874 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
   1875 	    kevbuf, __arraycount(kevbuf));
   1876  done:
   1877 	fd_putfile(fd);
   1878 	return (error);
   1879 }
   1880 
   1881 /*
   1882  * Register a given kevent kev onto the kqueue
   1883  */
   1884 static int
   1885 kqueue_register(struct kqueue *kq, struct kevent *kev)
   1886 {
   1887 	struct kfilter *kfilter;
   1888 	filedesc_t *fdp;
   1889 	file_t *fp;
   1890 	fdfile_t *ff;
   1891 	struct knote *kn, *newkn;
   1892 	struct klist *list;
   1893 	int error, fd, rv;
   1894 
   1895 	fdp = kq->kq_fdp;
   1896 	fp = NULL;
   1897 	kn = NULL;
   1898 	error = 0;
   1899 	fd = 0;
   1900 
   1901 	newkn = knote_alloc(true);
   1902 
   1903 	rw_enter(&kqueue_filter_lock, RW_READER);
   1904 	kfilter = kfilter_byfilter(kev->filter);
   1905 	if (kfilter == NULL || kfilter->filtops == NULL) {
   1906 		/* filter not found nor implemented */
   1907 		rw_exit(&kqueue_filter_lock);
   1908 		knote_free(newkn);
   1909 		return (EINVAL);
   1910 	}
   1911 
   1912 	/* search if knote already exists */
   1913 	if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
   1914 		/* monitoring a file descriptor */
   1915 		/* validate descriptor */
   1916 		if (kev->ident > INT_MAX
   1917 		    || (fp = fd_getfile(fd = kev->ident)) == NULL) {
   1918 			rw_exit(&kqueue_filter_lock);
   1919 			knote_free(newkn);
   1920 			return EBADF;
   1921 		}
   1922 		mutex_enter(&fdp->fd_lock);
   1923 		ff = fdp->fd_dt->dt_ff[fd];
   1924 		if (ff->ff_refcnt & FR_CLOSING) {
   1925 			error = EBADF;
   1926 			goto doneunlock;
   1927 		}
   1928 		if (fd <= fdp->fd_lastkqfile) {
   1929 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
   1930 				if (kq == kn->kn_kq &&
   1931 				    kev->filter == kn->kn_filter)
   1932 					break;
   1933 			}
   1934 		}
   1935 	} else {
   1936 		/*
   1937 		 * not monitoring a file descriptor, so
   1938 		 * lookup knotes in internal hash table
   1939 		 */
   1940 		mutex_enter(&fdp->fd_lock);
   1941 		if (fdp->fd_knhashmask != 0) {
   1942 			list = &fdp->fd_knhash[
   1943 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
   1944 			SLIST_FOREACH(kn, list, kn_link) {
   1945 				if (kev->ident == kn->kn_id &&
   1946 				    kq == kn->kn_kq &&
   1947 				    kev->filter == kn->kn_filter)
   1948 					break;
   1949 			}
   1950 		}
   1951 	}
   1952 
   1953 	/* It's safe to test KQ_CLOSING while holding only the fd_lock. */
   1954 	KASSERT(mutex_owned(&fdp->fd_lock));
   1955 	KASSERT((kq->kq_count & KQ_CLOSING) == 0);
   1956 
   1957 	/*
   1958 	 * kn now contains the matching knote, or NULL if no match
   1959 	 */
   1960 	if (kn == NULL) {
   1961 		if (kev->flags & EV_ADD) {
   1962 			/* create new knote */
   1963 			kn = newkn;
   1964 			newkn = NULL;
   1965 			kn->kn_obj = fp;
   1966 			kn->kn_id = kev->ident;
   1967 			kn->kn_kq = kq;
   1968 			kn->kn_fop = kfilter->filtops;
   1969 			kn->kn_kfilter = kfilter;
   1970 			kn->kn_sfflags = kev->fflags;
   1971 			kn->kn_sdata = kev->data;
   1972 			kev->fflags = 0;
   1973 			kev->data = 0;
   1974 			kn->kn_kevent = *kev;
   1975 
   1976 			KASSERT(kn->kn_fop != NULL);
   1977 			/*
   1978 			 * XXX Allow only known-safe users of f_touch.
   1979 			 * XXX See filter_touch() for details.
   1980 			 */
   1981 			if (kn->kn_fop->f_touch != NULL &&
   1982 			    kn->kn_fop != &timer_filtops &&
   1983 			    kn->kn_fop != &user_filtops) {
   1984 				error = ENOTSUP;
   1985 				goto fail_ev_add;
   1986 			}
   1987 
   1988 			/*
   1989 			 * apply reference count to knote structure, and
   1990 			 * do not release it at the end of this routine.
   1991 			 */
   1992 			fp = NULL;
   1993 
   1994 			if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
   1995 				/*
   1996 				 * If knote is not on an fd, store on
   1997 				 * internal hash table.
   1998 				 */
   1999 				if (fdp->fd_knhashmask == 0) {
   2000 					/* XXXAD can block with fd_lock held */
   2001 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
   2002 					    HASH_LIST, true,
   2003 					    &fdp->fd_knhashmask);
   2004 				}
   2005 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
   2006 				    fdp->fd_knhashmask)];
   2007 			} else {
   2008 				/* Otherwise, knote is on an fd. */
   2009 				list = (struct klist *)
   2010 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   2011 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
   2012 					fdp->fd_lastkqfile = kn->kn_id;
   2013 			}
   2014 			SLIST_INSERT_HEAD(list, kn, kn_link);
   2015 
   2016 			/*
   2017 			 * N.B. kn->kn_fop may change as the result
   2018 			 * of filter_attach()!
   2019 			 */
   2020 			knote_foplock_enter(kn);
   2021 			error = filter_attach(kn);
   2022 			if (error != 0) {
   2023 #ifdef DEBUG
   2024 				struct proc *p = curlwp->l_proc;
   2025 				const file_t *ft = kn->kn_obj;
   2026 				printf("%s: %s[%d]: event type %d not "
   2027 				    "supported for file type %d/%s "
   2028 				    "(error %d)\n", __func__,
   2029 				    p->p_comm, p->p_pid,
   2030 				    kn->kn_filter, ft ? ft->f_type : -1,
   2031 				    ft ? ft->f_ops->fo_name : "?", error);
   2032 #endif
   2033 
   2034  fail_ev_add:
   2035 				/*
   2036 				 * N.B. no need to check for this note to
   2037 				 * be in-flux, since it was never visible
   2038 				 * to the monitored object.
   2039 				 *
   2040 				 * knote_detach() drops fdp->fd_lock
   2041 				 */
   2042 				knote_foplock_exit(kn);
   2043 				mutex_enter(&kq->kq_lock);
   2044 				KNOTE_WILLDETACH(kn);
   2045 				KASSERT(kn_in_flux(kn) == false);
   2046 				mutex_exit(&kq->kq_lock);
   2047 				knote_detach(kn, fdp, false);
   2048 				goto done;
   2049 			}
   2050 			atomic_inc_uint(&kfilter->refcnt);
   2051 			goto done_ev_add;
   2052 		} else {
   2053 			/* No matching knote and the EV_ADD flag is not set. */
   2054 			error = ENOENT;
   2055 			goto doneunlock;
   2056 		}
   2057 	}
   2058 
   2059 	if (kev->flags & EV_DELETE) {
   2060 		/*
   2061 		 * Let the world know that this knote is about to go
   2062 		 * away, and wait for it to settle if it's currently
   2063 		 * in-flux.
   2064 		 */
   2065 		mutex_spin_enter(&kq->kq_lock);
   2066 		if (kn->kn_status & KN_WILLDETACH) {
   2067 			/*
   2068 			 * This knote is already on its way out,
   2069 			 * so just be done.
   2070 			 */
   2071 			mutex_spin_exit(&kq->kq_lock);
   2072 			goto doneunlock;
   2073 		}
   2074 		KNOTE_WILLDETACH(kn);
   2075 		if (kn_in_flux(kn)) {
   2076 			mutex_exit(&fdp->fd_lock);
   2077 			/*
   2078 			 * It's safe for us to conclusively wait for
   2079 			 * this knote to settle because we know we'll
   2080 			 * be completing the detach.
   2081 			 */
   2082 			kn_wait_flux(kn, true);
   2083 			KASSERT(kn_in_flux(kn) == false);
   2084 			mutex_spin_exit(&kq->kq_lock);
   2085 			mutex_enter(&fdp->fd_lock);
   2086 		} else {
   2087 			mutex_spin_exit(&kq->kq_lock);
   2088 		}
   2089 
   2090 		/* knote_detach() drops fdp->fd_lock */
   2091 		knote_detach(kn, fdp, true);
   2092 		goto done;
   2093 	}
   2094 
   2095 	/*
   2096 	 * The user may change some filter values after the
   2097 	 * initial EV_ADD, but doing so will not reset any
   2098 	 * filter which have already been triggered.
   2099 	 */
   2100 	knote_foplock_enter(kn);
   2101 	kn->kn_kevent.udata = kev->udata;
   2102 	KASSERT(kn->kn_fop != NULL);
   2103 	if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
   2104 	    kn->kn_fop->f_touch != NULL) {
   2105 		mutex_spin_enter(&kq->kq_lock);
   2106 		error = filter_touch(kn, kev, EVENT_REGISTER);
   2107 		mutex_spin_exit(&kq->kq_lock);
   2108 		if (__predict_false(error != 0)) {
   2109 			/* Never a new knote (which would consume newkn). */
   2110 			KASSERT(newkn != NULL);
   2111 			knote_foplock_exit(kn);
   2112 			goto doneunlock;
   2113 		}
   2114 	} else {
   2115 		kn->kn_sfflags = kev->fflags;
   2116 		kn->kn_sdata = kev->data;
   2117 	}
   2118 
   2119 	/*
   2120 	 * We can get here if we are trying to attach
   2121 	 * an event to a file descriptor that does not
   2122 	 * support events, and the attach routine is
   2123 	 * broken and does not return an error.
   2124 	 */
   2125  done_ev_add:
   2126 	rv = filter_event(kn, 0, false);
   2127 	if (rv)
   2128 		knote_activate(kn);
   2129 
   2130 	knote_foplock_exit(kn);
   2131 
   2132 	/* disable knote */
   2133 	if ((kev->flags & EV_DISABLE)) {
   2134 		mutex_spin_enter(&kq->kq_lock);
   2135 		if ((kn->kn_status & KN_DISABLED) == 0)
   2136 			kn->kn_status |= KN_DISABLED;
   2137 		mutex_spin_exit(&kq->kq_lock);
   2138 	}
   2139 
   2140 	/* enable knote */
   2141 	if ((kev->flags & EV_ENABLE)) {
   2142 		knote_enqueue(kn);
   2143 	}
   2144  doneunlock:
   2145 	mutex_exit(&fdp->fd_lock);
   2146  done:
   2147 	rw_exit(&kqueue_filter_lock);
   2148 	if (newkn != NULL)
   2149 		knote_free(newkn);
   2150 	if (fp != NULL)
   2151 		fd_putfile(fd);
   2152 	return (error);
   2153 }
   2154 
   2155 #define KN_FMT(buf, kn) \
   2156     (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
   2157 
   2158 #if defined(DDB)
   2159 void
   2160 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
   2161 {
   2162 	const struct knote *kn;
   2163 	u_int count;
   2164 	int nmarker;
   2165 	char buf[128];
   2166 
   2167 	count = 0;
   2168 	nmarker = 0;
   2169 
   2170 	(*pr)("kqueue %p (restart=%d count=%u):\n", kq,
   2171 	    !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
   2172 	(*pr)("  Queued knotes:\n");
   2173 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   2174 		if (kn->kn_status & KN_MARKER) {
   2175 			nmarker++;
   2176 		} else {
   2177 			count++;
   2178 		}
   2179 		(*pr)("    knote %p: kq=%p status=%s\n",
   2180 		    kn, kn->kn_kq, KN_FMT(buf, kn));
   2181 		(*pr)("      id=0x%lx (%lu) filter=%d\n",
   2182 		    (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
   2183 		if (kn->kn_kq != kq) {
   2184 			(*pr)("      !!! kn->kn_kq != kq\n");
   2185 		}
   2186 	}
   2187 	if (count != KQ_COUNT(kq)) {
   2188 		(*pr)("  !!! count(%u) != KQ_COUNT(%u)\n",
   2189 		    count, KQ_COUNT(kq));
   2190 	}
   2191 }
   2192 #endif /* DDB */
   2193 
   2194 #if defined(DEBUG)
   2195 static void
   2196 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
   2197 {
   2198 	const struct knote *kn;
   2199 	u_int count;
   2200 	int nmarker;
   2201 	char buf[128];
   2202 
   2203 	KASSERT(mutex_owned(&kq->kq_lock));
   2204 
   2205 	count = 0;
   2206 	nmarker = 0;
   2207 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   2208 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   2209 			panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
   2210 			    func, line, kq, kn, KN_FMT(buf, kn));
   2211 		}
   2212 		if ((kn->kn_status & KN_MARKER) == 0) {
   2213 			if (kn->kn_kq != kq) {
   2214 				panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
   2215 				    func, line, kq, kn, kn->kn_kq,
   2216 				    KN_FMT(buf, kn));
   2217 			}
   2218 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   2219 				panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
   2220 				    func, line, kq, kn, KN_FMT(buf, kn));
   2221 			}
   2222 			count++;
   2223 			if (count > KQ_COUNT(kq)) {
   2224 				panic("%s,%zu: kq=%p kq->kq_count(%u) != "
   2225 				    "count(%d), nmarker=%d",
   2226 		    		    func, line, kq, KQ_COUNT(kq), count,
   2227 				    nmarker);
   2228 			}
   2229 		} else {
   2230 			nmarker++;
   2231 		}
   2232 	}
   2233 }
   2234 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
   2235 #else /* defined(DEBUG) */
   2236 #define	kq_check(a)	/* nothing */
   2237 #endif /* defined(DEBUG) */
   2238 
   2239 static void
   2240 kqueue_restart(file_t *fp)
   2241 {
   2242 	struct kqueue *kq = fp->f_kqueue;
   2243 	KASSERT(kq != NULL);
   2244 
   2245 	mutex_spin_enter(&kq->kq_lock);
   2246 	kq->kq_count |= KQ_RESTART;
   2247 	cv_broadcast(&kq->kq_cv);
   2248 	mutex_spin_exit(&kq->kq_lock);
   2249 }
   2250 
   2251 /*
   2252  * Scan through the list of events on fp (for a maximum of maxevents),
   2253  * returning the results in to ulistp. Timeout is determined by tsp; if
   2254  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   2255  * as appropriate.
   2256  */
   2257 static int
   2258 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   2259 	    const struct timespec *tsp, register_t *retval,
   2260 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   2261 	    size_t kevcnt)
   2262 {
   2263 	struct kqueue	*kq;
   2264 	struct kevent	*kevp;
   2265 	struct timespec	ats, sleepts;
   2266 	struct knote	*kn, *marker;
   2267 	struct knote_impl morker;
   2268 	size_t		count, nkev, nevents;
   2269 	int		timeout, error, touch, rv, influx;
   2270 	filedesc_t	*fdp;
   2271 
   2272 	fdp = curlwp->l_fd;
   2273 	kq = fp->f_kqueue;
   2274 	count = maxevents;
   2275 	nkev = nevents = error = 0;
   2276 	if (count == 0) {
   2277 		*retval = 0;
   2278 		return 0;
   2279 	}
   2280 
   2281 	if (tsp) {				/* timeout supplied */
   2282 		ats = *tsp;
   2283 		if (inittimeleft(&ats, &sleepts) == -1) {
   2284 			*retval = maxevents;
   2285 			return EINVAL;
   2286 		}
   2287 		timeout = tstohz(&ats);
   2288 		if (timeout <= 0)
   2289 			timeout = -1;           /* do poll */
   2290 	} else {
   2291 		/* no timeout, wait forever */
   2292 		timeout = 0;
   2293 	}
   2294 
   2295 	memset(&morker, 0, sizeof(morker));
   2296 	marker = &morker.ki_knote;
   2297 	marker->kn_kq = kq;
   2298 	marker->kn_status = KN_MARKER;
   2299 	mutex_spin_enter(&kq->kq_lock);
   2300  retry:
   2301 	kevp = kevbuf;
   2302 	if (KQ_COUNT(kq) == 0) {
   2303 		if (timeout >= 0) {
   2304 			error = cv_timedwait_sig(&kq->kq_cv,
   2305 			    &kq->kq_lock, timeout);
   2306 			if (error == 0) {
   2307 				if (KQ_COUNT(kq) == 0 &&
   2308 				    (kq->kq_count & KQ_RESTART)) {
   2309 					/* return to clear file reference */
   2310 					error = ERESTART;
   2311 				} else if (tsp == NULL || (timeout =
   2312 				    gettimeleft(&ats, &sleepts)) > 0) {
   2313 					goto retry;
   2314 				}
   2315 			} else {
   2316 				/* don't restart after signals... */
   2317 				if (error == ERESTART)
   2318 					error = EINTR;
   2319 				if (error == EWOULDBLOCK)
   2320 					error = 0;
   2321 			}
   2322 		}
   2323 		mutex_spin_exit(&kq->kq_lock);
   2324 		goto done;
   2325 	}
   2326 
   2327 	/* mark end of knote list */
   2328 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   2329 	influx = 0;
   2330 
   2331 	/*
   2332 	 * Acquire the fdp->fd_lock interlock to avoid races with
   2333 	 * file creation/destruction from other threads.
   2334 	 */
   2335 	mutex_spin_exit(&kq->kq_lock);
   2336 relock:
   2337 	mutex_enter(&fdp->fd_lock);
   2338 	mutex_spin_enter(&kq->kq_lock);
   2339 
   2340 	while (count != 0) {
   2341 		/*
   2342 		 * Get next knote.  We are guaranteed this will never
   2343 		 * be NULL because of the marker we inserted above.
   2344 		 */
   2345 		kn = TAILQ_FIRST(&kq->kq_head);
   2346 
   2347 		bool kn_is_other_marker =
   2348 		    (kn->kn_status & KN_MARKER) != 0 && kn != marker;
   2349 		bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
   2350 		bool kn_is_in_flux = kn_in_flux(kn);
   2351 
   2352 		/*
   2353 		 * If we found a marker that's not ours, or this knote
   2354 		 * is in a state of flux, then wait for everything to
   2355 		 * settle down and go around again.
   2356 		 */
   2357 		if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
   2358 			if (influx) {
   2359 				influx = 0;
   2360 				KQ_FLUX_WAKEUP(kq);
   2361 			}
   2362 			mutex_exit(&fdp->fd_lock);
   2363 			if (kn_is_other_marker || kn_is_in_flux) {
   2364 				KQ_FLUX_WAIT(kq);
   2365 				mutex_spin_exit(&kq->kq_lock);
   2366 			} else {
   2367 				/*
   2368 				 * Detaching but not in-flux?  Someone is
   2369 				 * actively trying to finish the job; just
   2370 				 * go around and try again.
   2371 				 */
   2372 				KASSERT(kn_is_detaching);
   2373 				mutex_spin_exit(&kq->kq_lock);
   2374 				preempt_point();
   2375 			}
   2376 			goto relock;
   2377 		}
   2378 
   2379 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2380 		if (kn == marker) {
   2381 			/* it's our marker, stop */
   2382 			KQ_FLUX_WAKEUP(kq);
   2383 			if (count == maxevents) {
   2384 				mutex_exit(&fdp->fd_lock);
   2385 				goto retry;
   2386 			}
   2387 			break;
   2388 		}
   2389 		KASSERT((kn->kn_status & KN_BUSY) == 0);
   2390 
   2391 		kq_check(kq);
   2392 		kn->kn_status &= ~KN_QUEUED;
   2393 		kn->kn_status |= KN_BUSY;
   2394 		kq_check(kq);
   2395 		if (kn->kn_status & KN_DISABLED) {
   2396 			kn->kn_status &= ~KN_BUSY;
   2397 			kq->kq_count--;
   2398 			/* don't want disabled events */
   2399 			continue;
   2400 		}
   2401 		if ((kn->kn_flags & EV_ONESHOT) == 0) {
   2402 			mutex_spin_exit(&kq->kq_lock);
   2403 			KASSERT(mutex_owned(&fdp->fd_lock));
   2404 			knote_foplock_enter(kn);
   2405 			rv = filter_event(kn, 0, false);
   2406 			knote_foplock_exit(kn);
   2407 			mutex_spin_enter(&kq->kq_lock);
   2408 			/* Re-poll if note was re-enqueued. */
   2409 			if ((kn->kn_status & KN_QUEUED) != 0) {
   2410 				kn->kn_status &= ~KN_BUSY;
   2411 				/* Re-enqueue raised kq_count, lower it again */
   2412 				kq->kq_count--;
   2413 				influx = 1;
   2414 				continue;
   2415 			}
   2416 			if (rv == 0) {
   2417 				/*
   2418 				 * non-ONESHOT event that hasn't triggered
   2419 				 * again, so it will remain de-queued.
   2420 				 */
   2421 				kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2422 				kq->kq_count--;
   2423 				influx = 1;
   2424 				continue;
   2425 			}
   2426 		} else {
   2427 			/*
   2428 			 * Must NOT drop kq_lock until we can do
   2429 			 * the KNOTE_WILLDETACH() below.
   2430 			 */
   2431 		}
   2432 		KASSERT(kn->kn_fop != NULL);
   2433 		touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
   2434 				kn->kn_fop->f_touch != NULL);
   2435 		/* XXXAD should be got from f_event if !oneshot. */
   2436 		KASSERT((kn->kn_status & KN_WILLDETACH) == 0);
   2437 		if (touch) {
   2438 			(void)filter_touch(kn, kevp, EVENT_PROCESS);
   2439 		} else {
   2440 			*kevp = kn->kn_kevent;
   2441 		}
   2442 		kevp++;
   2443 		nkev++;
   2444 		influx = 1;
   2445 		if (kn->kn_flags & EV_ONESHOT) {
   2446 			/* delete ONESHOT events after retrieval */
   2447 			KNOTE_WILLDETACH(kn);
   2448 			kn->kn_status &= ~KN_BUSY;
   2449 			kq->kq_count--;
   2450 			KASSERT(kn_in_flux(kn) == false);
   2451 			KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
   2452 				kn->kn_kevent.udata == curlwp);
   2453 			mutex_spin_exit(&kq->kq_lock);
   2454 			knote_detach(kn, fdp, true);
   2455 			mutex_enter(&fdp->fd_lock);
   2456 			mutex_spin_enter(&kq->kq_lock);
   2457 		} else if (kn->kn_flags & EV_CLEAR) {
   2458 			/* clear state after retrieval */
   2459 			kn->kn_data = 0;
   2460 			kn->kn_fflags = 0;
   2461 			/*
   2462 			 * Manually clear knotes who weren't
   2463 			 * 'touch'ed.
   2464 			 */
   2465 			if (touch == 0) {
   2466 				kn->kn_data = 0;
   2467 				kn->kn_fflags = 0;
   2468 			}
   2469 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2470 			kq->kq_count--;
   2471 		} else if (kn->kn_flags & EV_DISPATCH) {
   2472 			kn->kn_status |= KN_DISABLED;
   2473 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   2474 			kq->kq_count--;
   2475 		} else {
   2476 			/* add event back on list */
   2477 			kq_check(kq);
   2478 			kn->kn_status |= KN_QUEUED;
   2479 			kn->kn_status &= ~KN_BUSY;
   2480 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2481 			kq_check(kq);
   2482 		}
   2483 
   2484 		if (nkev == kevcnt) {
   2485 			/* do copyouts in kevcnt chunks */
   2486 			influx = 0;
   2487 			KQ_FLUX_WAKEUP(kq);
   2488 			mutex_spin_exit(&kq->kq_lock);
   2489 			mutex_exit(&fdp->fd_lock);
   2490 			error = (*keops->keo_put_events)
   2491 			    (keops->keo_private,
   2492 			    kevbuf, ulistp, nevents, nkev);
   2493 			mutex_enter(&fdp->fd_lock);
   2494 			mutex_spin_enter(&kq->kq_lock);
   2495 			nevents += nkev;
   2496 			nkev = 0;
   2497 			kevp = kevbuf;
   2498 		}
   2499 		count--;
   2500 		if (error != 0 || count == 0) {
   2501 			/* remove marker */
   2502 			TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   2503 			break;
   2504 		}
   2505 	}
   2506 	KQ_FLUX_WAKEUP(kq);
   2507 	mutex_spin_exit(&kq->kq_lock);
   2508 	mutex_exit(&fdp->fd_lock);
   2509 
   2510 done:
   2511 	if (nkev != 0) {
   2512 		/* copyout remaining events */
   2513 		error = (*keops->keo_put_events)(keops->keo_private,
   2514 		    kevbuf, ulistp, nevents, nkev);
   2515 	}
   2516 	*retval = maxevents - count;
   2517 
   2518 	return error;
   2519 }
   2520 
   2521 /*
   2522  * fileops ioctl method for a kqueue descriptor.
   2523  *
   2524  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   2525  *	KFILTER_BYNAME		find name for filter, and return result in
   2526  *				name, which is of size len.
   2527  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   2528  */
   2529 /*ARGSUSED*/
   2530 static int
   2531 kqueue_ioctl(file_t *fp, u_long com, void *data)
   2532 {
   2533 	struct kfilter_mapping	*km;
   2534 	const struct kfilter	*kfilter;
   2535 	char			*name;
   2536 	int			error;
   2537 
   2538 	km = data;
   2539 	error = 0;
   2540 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   2541 
   2542 	switch (com) {
   2543 	case KFILTER_BYFILTER:	/* convert filter -> name */
   2544 		rw_enter(&kqueue_filter_lock, RW_READER);
   2545 		kfilter = kfilter_byfilter(km->filter);
   2546 		if (kfilter != NULL) {
   2547 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   2548 			rw_exit(&kqueue_filter_lock);
   2549 			error = copyoutstr(name, km->name, km->len, NULL);
   2550 		} else {
   2551 			rw_exit(&kqueue_filter_lock);
   2552 			error = ENOENT;
   2553 		}
   2554 		break;
   2555 
   2556 	case KFILTER_BYNAME:	/* convert name -> filter */
   2557 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   2558 		if (error) {
   2559 			break;
   2560 		}
   2561 		rw_enter(&kqueue_filter_lock, RW_READER);
   2562 		kfilter = kfilter_byname(name);
   2563 		if (kfilter != NULL)
   2564 			km->filter = kfilter->filter;
   2565 		else
   2566 			error = ENOENT;
   2567 		rw_exit(&kqueue_filter_lock);
   2568 		break;
   2569 
   2570 	default:
   2571 		error = ENOTTY;
   2572 		break;
   2573 
   2574 	}
   2575 	kmem_free(name, KFILTER_MAXNAME);
   2576 	return (error);
   2577 }
   2578 
   2579 /*
   2580  * fileops fcntl method for a kqueue descriptor.
   2581  */
   2582 static int
   2583 kqueue_fcntl(file_t *fp, u_int com, void *data)
   2584 {
   2585 
   2586 	return (ENOTTY);
   2587 }
   2588 
   2589 /*
   2590  * fileops poll method for a kqueue descriptor.
   2591  * Determine if kqueue has events pending.
   2592  */
   2593 static int
   2594 kqueue_poll(file_t *fp, int events)
   2595 {
   2596 	struct kqueue	*kq;
   2597 	int		revents;
   2598 
   2599 	kq = fp->f_kqueue;
   2600 
   2601 	revents = 0;
   2602 	if (events & (POLLIN | POLLRDNORM)) {
   2603 		mutex_spin_enter(&kq->kq_lock);
   2604 		if (KQ_COUNT(kq) != 0) {
   2605 			revents |= events & (POLLIN | POLLRDNORM);
   2606 		} else {
   2607 			selrecord(curlwp, &kq->kq_sel);
   2608 		}
   2609 		kq_check(kq);
   2610 		mutex_spin_exit(&kq->kq_lock);
   2611 	}
   2612 
   2613 	return revents;
   2614 }
   2615 
   2616 /*
   2617  * fileops stat method for a kqueue descriptor.
   2618  * Returns dummy info, with st_size being number of events pending.
   2619  */
   2620 static int
   2621 kqueue_stat(file_t *fp, struct stat *st)
   2622 {
   2623 	struct kqueue *kq;
   2624 
   2625 	kq = fp->f_kqueue;
   2626 
   2627 	memset(st, 0, sizeof(*st));
   2628 	st->st_size = KQ_COUNT(kq);
   2629 	st->st_blksize = sizeof(struct kevent);
   2630 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
   2631 	st->st_blocks = 1;
   2632 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   2633 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   2634 
   2635 	return 0;
   2636 }
   2637 
   2638 static void
   2639 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   2640 {
   2641 	struct knote *kn;
   2642 	filedesc_t *fdp;
   2643 
   2644 	fdp = kq->kq_fdp;
   2645 
   2646 	KASSERT(mutex_owned(&fdp->fd_lock));
   2647 
   2648  again:
   2649 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   2650 		if (kq != kn->kn_kq) {
   2651 			kn = SLIST_NEXT(kn, kn_link);
   2652 			continue;
   2653 		}
   2654 		if (knote_detach_quiesce(kn)) {
   2655 			mutex_enter(&fdp->fd_lock);
   2656 			goto again;
   2657 		}
   2658 		knote_detach(kn, fdp, true);
   2659 		mutex_enter(&fdp->fd_lock);
   2660 		kn = SLIST_FIRST(list);
   2661 	}
   2662 }
   2663 
   2664 /*
   2665  * fileops close method for a kqueue descriptor.
   2666  */
   2667 static int
   2668 kqueue_close(file_t *fp)
   2669 {
   2670 	struct kqueue *kq;
   2671 	filedesc_t *fdp;
   2672 	fdfile_t *ff;
   2673 	int i;
   2674 
   2675 	kq = fp->f_kqueue;
   2676 	fp->f_kqueue = NULL;
   2677 	fp->f_type = 0;
   2678 	fdp = curlwp->l_fd;
   2679 
   2680 	KASSERT(kq->kq_fdp == fdp);
   2681 
   2682 	mutex_enter(&fdp->fd_lock);
   2683 
   2684 	/*
   2685 	 * We're doing to drop the fd_lock multiple times while
   2686 	 * we detach knotes.  During this time, attempts to register
   2687 	 * knotes via the back door (e.g. knote_proc_fork_track())
   2688 	 * need to fail, lest they sneak in to attach a knote after
   2689 	 * we've already drained the list it's destined for.
   2690 	 *
   2691 	 * We must acquire kq_lock here to set KQ_CLOSING (to serialize
   2692 	 * with other code paths that modify kq_count without holding
   2693 	 * the fd_lock), but once this bit is set, it's only safe to
   2694 	 * test it while holding the fd_lock, and holding kq_lock while
   2695 	 * doing so is not necessary.
   2696 	 */
   2697 	mutex_enter(&kq->kq_lock);
   2698 	kq->kq_count |= KQ_CLOSING;
   2699 	mutex_exit(&kq->kq_lock);
   2700 
   2701 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   2702 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
   2703 			continue;
   2704 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   2705 	}
   2706 	if (fdp->fd_knhashmask != 0) {
   2707 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   2708 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   2709 		}
   2710 	}
   2711 
   2712 	mutex_exit(&fdp->fd_lock);
   2713 
   2714 #if defined(DEBUG)
   2715 	mutex_enter(&kq->kq_lock);
   2716 	kq_check(kq);
   2717 	mutex_exit(&kq->kq_lock);
   2718 #endif /* DEBUG */
   2719 	KASSERT(TAILQ_EMPTY(&kq->kq_head));
   2720 	KASSERT(KQ_COUNT(kq) == 0);
   2721 	mutex_destroy(&kq->kq_lock);
   2722 	cv_destroy(&kq->kq_cv);
   2723 	seldestroy(&kq->kq_sel);
   2724 	kmem_free(kq, sizeof(*kq));
   2725 
   2726 	return (0);
   2727 }
   2728 
   2729 /*
   2730  * struct fileops kqfilter method for a kqueue descriptor.
   2731  * Event triggered when monitored kqueue changes.
   2732  */
   2733 static int
   2734 kqueue_kqfilter(file_t *fp, struct knote *kn)
   2735 {
   2736 	struct kqueue *kq;
   2737 
   2738 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
   2739 
   2740 	KASSERT(fp == kn->kn_obj);
   2741 
   2742 	if (kn->kn_filter != EVFILT_READ)
   2743 		return EINVAL;
   2744 
   2745 	kn->kn_fop = &kqread_filtops;
   2746 	mutex_enter(&kq->kq_lock);
   2747 	selrecord_knote(&kq->kq_sel, kn);
   2748 	mutex_exit(&kq->kq_lock);
   2749 
   2750 	return 0;
   2751 }
   2752 
   2753 
   2754 /*
   2755  * Walk down a list of knotes, activating them if their event has
   2756  * triggered.  The caller's object lock (e.g. device driver lock)
   2757  * must be held.
   2758  */
   2759 void
   2760 knote(struct klist *list, long hint)
   2761 {
   2762 	struct knote *kn, *tmpkn;
   2763 
   2764 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
   2765 		/*
   2766 		 * We assume here that the backing object's lock is
   2767 		 * already held if we're traversing the klist, and
   2768 		 * so acquiring the knote foplock would create a
   2769 		 * deadlock scenario.  But we also know that the klist
   2770 		 * won't disappear on us while we're here, so not
   2771 		 * acquiring it is safe.
   2772 		 */
   2773 		if (filter_event(kn, hint, true)) {
   2774 			knote_activate(kn);
   2775 		}
   2776 	}
   2777 }
   2778 
   2779 /*
   2780  * Remove all knotes referencing a specified fd
   2781  */
   2782 void
   2783 knote_fdclose(int fd)
   2784 {
   2785 	struct klist *list;
   2786 	struct knote *kn;
   2787 	filedesc_t *fdp;
   2788 
   2789  again:
   2790 	fdp = curlwp->l_fd;
   2791 	mutex_enter(&fdp->fd_lock);
   2792 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
   2793 	while ((kn = SLIST_FIRST(list)) != NULL) {
   2794 		if (knote_detach_quiesce(kn)) {
   2795 			goto again;
   2796 		}
   2797 		knote_detach(kn, fdp, true);
   2798 		mutex_enter(&fdp->fd_lock);
   2799 	}
   2800 	mutex_exit(&fdp->fd_lock);
   2801 }
   2802 
   2803 /*
   2804  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   2805  * returning.
   2806  */
   2807 static void
   2808 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   2809 {
   2810 	struct klist *list;
   2811 	struct kqueue *kq;
   2812 
   2813 	kq = kn->kn_kq;
   2814 
   2815 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2816 	KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
   2817 	KASSERT(kn->kn_fop != NULL);
   2818 	KASSERT(mutex_owned(&fdp->fd_lock));
   2819 
   2820 	/* Remove from monitored object. */
   2821 	if (dofop) {
   2822 		knote_foplock_enter(kn);
   2823 		filter_detach(kn);
   2824 		knote_foplock_exit(kn);
   2825 	}
   2826 
   2827 	/* Remove from descriptor table. */
   2828 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
   2829 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   2830 	else
   2831 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   2832 
   2833 	SLIST_REMOVE(list, kn, knote, kn_link);
   2834 
   2835 	/* Remove from kqueue. */
   2836 again:
   2837 	mutex_spin_enter(&kq->kq_lock);
   2838 	KASSERT(kn_in_flux(kn) == false);
   2839 	if ((kn->kn_status & KN_QUEUED) != 0) {
   2840 		kq_check(kq);
   2841 		KASSERT(KQ_COUNT(kq) != 0);
   2842 		kq->kq_count--;
   2843 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2844 		kn->kn_status &= ~KN_QUEUED;
   2845 		kq_check(kq);
   2846 	} else if (kn->kn_status & KN_BUSY) {
   2847 		mutex_spin_exit(&kq->kq_lock);
   2848 		goto again;
   2849 	}
   2850 	mutex_spin_exit(&kq->kq_lock);
   2851 
   2852 	mutex_exit(&fdp->fd_lock);
   2853 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
   2854 		fd_putfile(kn->kn_id);
   2855 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   2856 	knote_free(kn);
   2857 }
   2858 
   2859 /*
   2860  * Queue new event for knote.
   2861  */
   2862 static void
   2863 knote_enqueue(struct knote *kn)
   2864 {
   2865 	struct kqueue *kq;
   2866 
   2867 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2868 
   2869 	kq = kn->kn_kq;
   2870 
   2871 	mutex_spin_enter(&kq->kq_lock);
   2872 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
   2873 		/* Don't bother enqueueing a dying knote. */
   2874 		goto out;
   2875 	}
   2876 	if ((kn->kn_status & KN_DISABLED) != 0) {
   2877 		kn->kn_status &= ~KN_DISABLED;
   2878 	}
   2879 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   2880 		kq_check(kq);
   2881 		kn->kn_status |= KN_QUEUED;
   2882 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2883 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
   2884 		kq->kq_count++;
   2885 		kq_check(kq);
   2886 		cv_broadcast(&kq->kq_cv);
   2887 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   2888 	}
   2889  out:
   2890 	mutex_spin_exit(&kq->kq_lock);
   2891 }
   2892 /*
   2893  * Queue new event for knote.
   2894  */
   2895 static void
   2896 knote_activate_locked(struct knote *kn)
   2897 {
   2898 	struct kqueue *kq;
   2899 
   2900 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   2901 
   2902 	kq = kn->kn_kq;
   2903 
   2904 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
   2905 		/* Don't bother enqueueing a dying knote. */
   2906 		return;
   2907 	}
   2908 	kn->kn_status |= KN_ACTIVE;
   2909 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   2910 		kq_check(kq);
   2911 		kn->kn_status |= KN_QUEUED;
   2912 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   2913 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
   2914 		kq->kq_count++;
   2915 		kq_check(kq);
   2916 		cv_broadcast(&kq->kq_cv);
   2917 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   2918 	}
   2919 }
   2920 
   2921 static void
   2922 knote_activate(struct knote *kn)
   2923 {
   2924 	struct kqueue *kq = kn->kn_kq;
   2925 
   2926 	mutex_spin_enter(&kq->kq_lock);
   2927 	knote_activate_locked(kn);
   2928 	mutex_spin_exit(&kq->kq_lock);
   2929 }
   2930 
   2931 static void
   2932 knote_deactivate_locked(struct knote *kn)
   2933 {
   2934 	struct kqueue *kq = kn->kn_kq;
   2935 
   2936 	if (kn->kn_status & KN_QUEUED) {
   2937 		kq_check(kq);
   2938 		kn->kn_status &= ~KN_QUEUED;
   2939 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   2940 		KASSERT(KQ_COUNT(kq) > 0);
   2941 		kq->kq_count--;
   2942 		kq_check(kq);
   2943 	}
   2944 	kn->kn_status &= ~KN_ACTIVE;
   2945 }
   2946 
   2947 /*
   2948  * Set EV_EOF on the specified knote.  Also allows additional
   2949  * EV_* flags to be set (e.g. EV_ONESHOT).
   2950  */
   2951 void
   2952 knote_set_eof(struct knote *kn, uint32_t flags)
   2953 {
   2954 	struct kqueue *kq = kn->kn_kq;
   2955 
   2956 	mutex_spin_enter(&kq->kq_lock);
   2957 	kn->kn_flags |= EV_EOF | flags;
   2958 	mutex_spin_exit(&kq->kq_lock);
   2959 }
   2960 
   2961 /*
   2962  * Clear EV_EOF on the specified knote.
   2963  */
   2964 void
   2965 knote_clear_eof(struct knote *kn)
   2966 {
   2967 	struct kqueue *kq = kn->kn_kq;
   2968 
   2969 	mutex_spin_enter(&kq->kq_lock);
   2970 	kn->kn_flags &= ~EV_EOF;
   2971 	mutex_spin_exit(&kq->kq_lock);
   2972 }
   2973 
   2974 /*
   2975  * Initialize a klist.
   2976  */
   2977 void
   2978 klist_init(struct klist *list)
   2979 {
   2980 	SLIST_INIT(list);
   2981 }
   2982 
   2983 /*
   2984  * Finalize a klist.
   2985  */
   2986 void
   2987 klist_fini(struct klist *list)
   2988 {
   2989 	struct knote *kn;
   2990 
   2991 	/*
   2992 	 * Neuter all existing knotes on the klist because the list is
   2993 	 * being destroyed.  The caller has guaranteed that no additional
   2994 	 * knotes will be added to the list, that the backing object's
   2995 	 * locks are not held (otherwise there is a locking order issue
   2996 	 * with acquiring the knote foplock ), and that we can traverse
   2997 	 * the list safely in this state.
   2998 	 */
   2999 	SLIST_FOREACH(kn, list, kn_selnext) {
   3000 		knote_foplock_enter(kn);
   3001 		KASSERT(kn->kn_fop != NULL);
   3002 		if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
   3003 			kn->kn_fop = &nop_fd_filtops;
   3004 		} else {
   3005 			kn->kn_fop = &nop_filtops;
   3006 		}
   3007 		knote_foplock_exit(kn);
   3008 	}
   3009 }
   3010 
   3011 /*
   3012  * Insert a knote into a klist.
   3013  */
   3014 void
   3015 klist_insert(struct klist *list, struct knote *kn)
   3016 {
   3017 	SLIST_INSERT_HEAD(list, kn, kn_selnext);
   3018 }
   3019 
   3020 /*
   3021  * Remove a knote from a klist.  Returns true if the last
   3022  * knote was removed and the list is now empty.
   3023  */
   3024 bool
   3025 klist_remove(struct klist *list, struct knote *kn)
   3026 {
   3027 	SLIST_REMOVE(list, kn, knote, kn_selnext);
   3028 	return SLIST_EMPTY(list);
   3029 }
   3030