kern_event.c revision 1.15 1 /* $NetBSD: kern_event.c,v 1.15 2003/06/28 14:21:53 darrenr Exp $ */
2 /*-
3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.15 2003/06/28 14:21:53 darrenr Exp $");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/proc.h>
37 #include <sys/malloc.h>
38 #include <sys/unistd.h>
39 #include <sys/file.h>
40 #include <sys/fcntl.h>
41 #include <sys/select.h>
42 #include <sys/queue.h>
43 #include <sys/event.h>
44 #include <sys/eventvar.h>
45 #include <sys/poll.h>
46 #include <sys/pool.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/stat.h>
51 #include <sys/uio.h>
52 #include <sys/mount.h>
53 #include <sys/filedesc.h>
54 #include <sys/sa.h>
55 #include <sys/syscallargs.h>
56
57 static int kqueue_scan(struct file *fp, size_t maxevents,
58 struct kevent *ulistp, const struct timespec *timeout,
59 struct lwp *l, register_t *retval);
60 static void kqueue_wakeup(struct kqueue *kq);
61
62 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
63 struct ucred *cred, int flags);
64 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
65 struct ucred *cred, int flags);
66 static int kqueue_ioctl(struct file *fp, u_long com, void *data,
67 struct lwp *l);
68 static int kqueue_fcntl(struct file *fp, u_int com, void *data,
69 struct lwp *l);
70 static int kqueue_poll(struct file *fp, int events, struct lwp *l);
71 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
72 static int kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l);
73 static int kqueue_close(struct file *fp, struct lwp *l);
74
75 static struct fileops kqueueops = {
76 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
77 kqueue_stat, kqueue_close, kqueue_kqfilter
78 };
79
80 static void knote_attach(struct knote *kn, struct filedesc *fdp);
81 static void knote_drop(struct knote *kn, struct lwp *l,
82 struct filedesc *fdp);
83 static void knote_enqueue(struct knote *kn);
84 static void knote_dequeue(struct knote *kn);
85
86 static void filt_kqdetach(struct knote *kn);
87 static int filt_kqueue(struct knote *kn, long hint);
88 static int filt_procattach(struct knote *kn);
89 static void filt_procdetach(struct knote *kn);
90 static int filt_proc(struct knote *kn, long hint);
91 static int filt_fileattach(struct knote *kn);
92 static void filt_timerexpire(void *knx);
93 static int filt_timerattach(struct knote *kn);
94 static void filt_timerdetach(struct knote *kn);
95 static int filt_timer(struct knote *kn, long hint);
96
97 static const struct filterops kqread_filtops =
98 { 1, NULL, filt_kqdetach, filt_kqueue };
99 static const struct filterops proc_filtops =
100 { 0, filt_procattach, filt_procdetach, filt_proc };
101 static const struct filterops file_filtops =
102 { 1, filt_fileattach, NULL, NULL };
103 static struct filterops timer_filtops =
104 { 0, filt_timerattach, filt_timerdetach, filt_timer };
105
106 struct pool kqueue_pool;
107 struct pool knote_pool;
108 static int kq_ncallouts = 0;
109 static int kq_calloutmax = (4 * 1024);
110
111 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
112
113 #define KNOTE_ACTIVATE(kn) \
114 do { \
115 kn->kn_status |= KN_ACTIVE; \
116 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
117 knote_enqueue(kn); \
118 } while(0)
119
120 #define KN_HASHSIZE 64 /* XXX should be tunable */
121 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
122
123 extern const struct filterops sig_filtops;
124
125 /*
126 * Table for for all system-defined filters.
127 * These should be listed in the numeric order of the EVFILT_* defines.
128 * If filtops is NULL, the filter isn't implemented in NetBSD.
129 * End of list is when name is NULL.
130 */
131 struct kfilter {
132 const char *name; /* name of filter */
133 uint32_t filter; /* id of filter */
134 const struct filterops *filtops;/* operations for filter */
135 };
136
137 /* System defined filters */
138 static const struct kfilter sys_kfilters[] = {
139 { "EVFILT_READ", EVFILT_READ, &file_filtops },
140 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
141 { "EVFILT_AIO", EVFILT_AIO, NULL },
142 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
143 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
144 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
145 { "EVFILT_TIMER", EVFILT_TIMER, &timer_filtops },
146 { NULL, 0, NULL }, /* end of list */
147 };
148
149 /* User defined kfilters */
150 static struct kfilter *user_kfilters; /* array */
151 static int user_kfilterc; /* current offset */
152 static int user_kfiltermaxc; /* max size so far */
153
154 /*
155 * kqueue_init:
156 *
157 * Initialize the kqueue/knote facility.
158 */
159 void
160 kqueue_init(void)
161 {
162
163 pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
164 NULL);
165 pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
166 NULL);
167 }
168
169 /*
170 * Find kfilter entry by name, or NULL if not found.
171 */
172 static const struct kfilter *
173 kfilter_byname_sys(const char *name)
174 {
175 int i;
176
177 for (i = 0; sys_kfilters[i].name != NULL; i++) {
178 if (strcmp(name, sys_kfilters[i].name) == 0)
179 return (&sys_kfilters[i]);
180 }
181 return (NULL);
182 }
183
184 static struct kfilter *
185 kfilter_byname_user(const char *name)
186 {
187 int i;
188
189 /* user_kfilters[] could be NULL if no filters were registered */
190 if (!user_kfilters)
191 return (NULL);
192
193 for (i = 0; user_kfilters[i].name != NULL; i++) {
194 if (user_kfilters[i].name != '\0' &&
195 strcmp(name, user_kfilters[i].name) == 0)
196 return (&user_kfilters[i]);
197 }
198 return (NULL);
199 }
200
201 static const struct kfilter *
202 kfilter_byname(const char *name)
203 {
204 const struct kfilter *kfilter;
205
206 if ((kfilter = kfilter_byname_sys(name)) != NULL)
207 return (kfilter);
208
209 return (kfilter_byname_user(name));
210 }
211
212 /*
213 * Find kfilter entry by filter id, or NULL if not found.
214 * Assumes entries are indexed in filter id order, for speed.
215 */
216 static const struct kfilter *
217 kfilter_byfilter(uint32_t filter)
218 {
219 const struct kfilter *kfilter;
220
221 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
222 kfilter = &sys_kfilters[filter];
223 else if (user_kfilters != NULL &&
224 filter < EVFILT_SYSCOUNT + user_kfilterc)
225 /* it's a user filter */
226 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
227 else
228 return (NULL); /* out of range */
229 KASSERT(kfilter->filter == filter); /* sanity check! */
230 return (kfilter);
231 }
232
233 /*
234 * Register a new kfilter. Stores the entry in user_kfilters.
235 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
236 * If retfilter != NULL, the new filterid is returned in it.
237 */
238 int
239 kfilter_register(const char *name, const struct filterops *filtops,
240 int *retfilter)
241 {
242 struct kfilter *kfilter;
243 void *space;
244 int len;
245
246 if (name == NULL || name[0] == '\0' || filtops == NULL)
247 return (EINVAL); /* invalid args */
248 if (kfilter_byname(name) != NULL)
249 return (EEXIST); /* already exists */
250 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
251 return (EINVAL); /* too many */
252
253 /* check if need to grow user_kfilters */
254 if (user_kfilterc + 1 > user_kfiltermaxc) {
255 /*
256 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
257 * want to traverse user_kfilters as an array.
258 */
259 user_kfiltermaxc += KFILTER_EXTENT;
260 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
261 M_KEVENT, M_WAITOK);
262
263 /* copy existing user_kfilters */
264 if (user_kfilters != NULL)
265 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
266 user_kfilterc * sizeof(struct kfilter *));
267 /* zero new sections */
268 memset((caddr_t)kfilter +
269 user_kfilterc * sizeof(struct kfilter *), 0,
270 (user_kfiltermaxc - user_kfilterc) *
271 sizeof(struct kfilter *));
272 /* switch to new kfilter */
273 if (user_kfilters != NULL)
274 free(user_kfilters, M_KEVENT);
275 user_kfilters = kfilter;
276 }
277 len = strlen(name) + 1; /* copy name */
278 space = malloc(len, M_KEVENT, M_WAITOK);
279 memcpy(space, name, len);
280 user_kfilters[user_kfilterc].name = space;
281
282 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
283
284 len = sizeof(struct filterops); /* copy filtops */
285 space = malloc(len, M_KEVENT, M_WAITOK);
286 memcpy(space, filtops, len);
287 user_kfilters[user_kfilterc].filtops = space;
288
289 if (retfilter != NULL)
290 *retfilter = user_kfilters[user_kfilterc].filter;
291 user_kfilterc++; /* finally, increment count */
292 return (0);
293 }
294
295 /*
296 * Unregister a kfilter previously registered with kfilter_register.
297 * This retains the filter id, but clears the name and frees filtops (filter
298 * operations), so that the number isn't reused during a boot.
299 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
300 */
301 int
302 kfilter_unregister(const char *name)
303 {
304 struct kfilter *kfilter;
305
306 if (name == NULL || name[0] == '\0')
307 return (EINVAL); /* invalid name */
308
309 if (kfilter_byname_sys(name) != NULL)
310 return (EINVAL); /* can't detach system filters */
311
312 kfilter = kfilter_byname_user(name);
313 if (kfilter == NULL) /* not found */
314 return (ENOENT);
315
316 if (kfilter->name[0] != '\0') {
317 /* XXX Cast away const (but we know it's safe. */
318 free((void *) kfilter->name, M_KEVENT);
319 kfilter->name = ""; /* mark as `not implemented' */
320 }
321 if (kfilter->filtops != NULL) {
322 /* XXX Cast away const (but we know it's safe. */
323 free((void *) kfilter->filtops, M_KEVENT);
324 kfilter->filtops = NULL; /* mark as `not implemented' */
325 }
326 return (0);
327 }
328
329
330 /*
331 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
332 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
333 */
334 static int
335 filt_fileattach(struct knote *kn)
336 {
337 struct file *fp;
338
339 fp = kn->kn_fp;
340 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
341 }
342
343 /*
344 * Filter detach method for EVFILT_READ on kqueue descriptor.
345 */
346 static void
347 filt_kqdetach(struct knote *kn)
348 {
349 struct kqueue *kq;
350
351 kq = (struct kqueue *)kn->kn_fp->f_data;
352 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
353 }
354
355 /*
356 * Filter event method for EVFILT_READ on kqueue descriptor.
357 */
358 /*ARGSUSED*/
359 static int
360 filt_kqueue(struct knote *kn, long hint)
361 {
362 struct kqueue *kq;
363
364 kq = (struct kqueue *)kn->kn_fp->f_data;
365 kn->kn_data = kq->kq_count;
366 return (kn->kn_data > 0);
367 }
368
369 /*
370 * Filter attach method for EVFILT_PROC.
371 */
372 static int
373 filt_procattach(struct knote *kn)
374 {
375 struct proc *p;
376
377 p = pfind(kn->kn_id);
378 if (p == NULL)
379 return (ESRCH);
380
381 /*
382 * Fail if it's not owned by you, or the last exec gave us
383 * setuid/setgid privs (unless you're root).
384 */
385 if ((p->p_cred->p_ruid != curproc->p_cred->p_ruid ||
386 (p->p_flag & P_SUGID))
387 && suser(curproc->p_ucred, &curproc->p_acflag) != 0)
388 return (EACCES);
389
390 kn->kn_ptr.p_proc = p;
391 kn->kn_flags |= EV_CLEAR; /* automatically set */
392
393 /*
394 * internal flag indicating registration done by kernel
395 */
396 if (kn->kn_flags & EV_FLAG1) {
397 kn->kn_data = kn->kn_sdata; /* ppid */
398 kn->kn_fflags = NOTE_CHILD;
399 kn->kn_flags &= ~EV_FLAG1;
400 }
401
402 /* XXXSMP lock the process? */
403 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
404
405 return (0);
406 }
407
408 /*
409 * Filter detach method for EVFILT_PROC.
410 *
411 * The knote may be attached to a different process, which may exit,
412 * leaving nothing for the knote to be attached to. So when the process
413 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
414 * it will be deleted when read out. However, as part of the knote deletion,
415 * this routine is called, so a check is needed to avoid actually performing
416 * a detach, because the original process might not exist any more.
417 */
418 static void
419 filt_procdetach(struct knote *kn)
420 {
421 struct proc *p;
422
423 if (kn->kn_status & KN_DETACHED)
424 return;
425
426 p = kn->kn_ptr.p_proc;
427 KASSERT(p->p_stat == SDEAD || pfind(kn->kn_id) == p);
428
429 /* XXXSMP lock the process? */
430 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
431 }
432
433 /*
434 * Filter event method for EVFILT_PROC.
435 */
436 static int
437 filt_proc(struct knote *kn, long hint)
438 {
439 u_int event;
440
441 /*
442 * mask off extra data
443 */
444 event = (u_int)hint & NOTE_PCTRLMASK;
445
446 /*
447 * if the user is interested in this event, record it.
448 */
449 if (kn->kn_sfflags & event)
450 kn->kn_fflags |= event;
451
452 /*
453 * process is gone, so flag the event as finished.
454 */
455 if (event == NOTE_EXIT) {
456 /*
457 * Detach the knote from watched process and mark
458 * it as such. We can't leave this to kqueue_scan(),
459 * since the process might not exist by then. And we
460 * have to do this now, since psignal KNOTE() is called
461 * also for zombies and we might end up reading freed
462 * memory if the kevent would already be picked up
463 * and knote g/c'ed.
464 */
465 kn->kn_fop->f_detach(kn);
466 kn->kn_status |= KN_DETACHED;
467
468 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
469 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
470 return (1);
471 }
472
473 /*
474 * process forked, and user wants to track the new process,
475 * so attach a new knote to it, and immediately report an
476 * event with the parent's pid.
477 */
478 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
479 struct kevent kev;
480 int error;
481
482 /*
483 * register knote with new process.
484 */
485 kev.ident = hint & NOTE_PDATAMASK; /* pid */
486 kev.filter = kn->kn_filter;
487 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
488 kev.fflags = kn->kn_sfflags;
489 kev.data = kn->kn_id; /* parent */
490 kev.udata = kn->kn_kevent.udata; /* preserve udata */
491 error = kqueue_register(kn->kn_kq, &kev, NULL);
492 if (error)
493 kn->kn_fflags |= NOTE_TRACKERR;
494 }
495
496 return (kn->kn_fflags != 0);
497 }
498
499 static void
500 filt_timerexpire(void *knx)
501 {
502 struct knote *kn = knx;
503 int tticks;
504
505 kn->kn_data++;
506 KNOTE_ACTIVATE(kn);
507
508 if ((kn->kn_flags & EV_ONESHOT) == 0) {
509 tticks = mstohz(kn->kn_sdata);
510 callout_schedule((struct callout *)kn->kn_hook, tticks);
511 }
512 }
513
514 /*
515 * data contains amount of time to sleep, in milliseconds
516 */
517 static int
518 filt_timerattach(struct knote *kn)
519 {
520 struct callout *calloutp;
521 int tticks;
522
523 if (kq_ncallouts >= kq_calloutmax)
524 return (ENOMEM);
525 kq_ncallouts++;
526
527 tticks = mstohz(kn->kn_sdata);
528
529 /* if the supplied value is under our resolution, use 1 tick */
530 if (tticks == 0) {
531 if (kn->kn_sdata == 0)
532 return (EINVAL);
533 tticks = 1;
534 }
535
536 kn->kn_flags |= EV_CLEAR; /* automatically set */
537 MALLOC(calloutp, struct callout *, sizeof(*calloutp),
538 M_KEVENT, 0);
539 callout_init(calloutp);
540 callout_reset(calloutp, tticks, filt_timerexpire, kn);
541 kn->kn_hook = calloutp;
542
543 return (0);
544 }
545
546 static void
547 filt_timerdetach(struct knote *kn)
548 {
549 struct callout *calloutp;
550
551 calloutp = (struct callout *)kn->kn_hook;
552 callout_stop(calloutp);
553 FREE(calloutp, M_KEVENT);
554 kq_ncallouts--;
555 }
556
557 static int
558 filt_timer(struct knote *kn, long hint)
559 {
560 return (kn->kn_data != 0);
561 }
562
563 /*
564 * filt_seltrue:
565 *
566 * This filter "event" routine simulates seltrue().
567 */
568 int
569 filt_seltrue(struct knote *kn, long hint)
570 {
571
572 /*
573 * We don't know how much data can be read/written,
574 * but we know that it *can* be. This is about as
575 * good as select/poll does as well.
576 */
577 kn->kn_data = 0;
578 return (1);
579 }
580
581 /*
582 * This provides full kqfilter entry for device switch tables, which
583 * has same effect as filter using filt_seltrue() as filter method.
584 */
585 static void
586 filt_seltruedetach(struct knote *kn)
587 {
588 /* Nothing to do */
589 }
590
591 static const struct filterops seltrue_filtops =
592 { 1, NULL, filt_seltruedetach, filt_seltrue };
593
594 int
595 seltrue_kqfilter(dev_t dev, struct knote *kn)
596 {
597 switch (kn->kn_filter) {
598 case EVFILT_READ:
599 case EVFILT_WRITE:
600 kn->kn_fop = &seltrue_filtops;
601 break;
602 default:
603 return (1);
604 }
605
606 /* Nothing more to do */
607 return (0);
608 }
609
610 /*
611 * kqueue(2) system call.
612 */
613 int
614 sys_kqueue(struct lwp *l, void *v, register_t *retval)
615 {
616 struct filedesc *fdp;
617 struct kqueue *kq;
618 struct file *fp;
619 struct proc *p;
620 int fd, error;
621
622 p = l->l_proc;
623 fdp = p->p_fd;
624 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
625 if (error)
626 return (error);
627 fp->f_flag = FREAD | FWRITE;
628 fp->f_type = DTYPE_KQUEUE;
629 fp->f_ops = &kqueueops;
630 kq = pool_get(&kqueue_pool, PR_WAITOK);
631 memset((char *)kq, 0, sizeof(struct kqueue));
632 simple_lock_init(&kq->kq_lock);
633 TAILQ_INIT(&kq->kq_head);
634 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
635 *retval = fd;
636 if (fdp->fd_knlistsize < 0)
637 fdp->fd_knlistsize = 0; /* this process has a kq */
638 kq->kq_fdp = fdp;
639 FILE_SET_MATURE(fp);
640 FILE_UNUSE(fp, l); /* falloc() does FILE_USE() */
641 return (error);
642 }
643
644 /*
645 * kevent(2) system call.
646 */
647 int
648 sys_kevent(struct lwp *l, void *v, register_t *retval)
649 {
650 struct sys_kevent_args /* {
651 syscallarg(int) fd;
652 syscallarg(const struct kevent *) changelist;
653 syscallarg(size_t) nchanges;
654 syscallarg(struct kevent *) eventlist;
655 syscallarg(size_t) nevents;
656 syscallarg(const struct timespec *) timeout;
657 } */ *uap = v;
658 struct kevent *kevp;
659 struct kqueue *kq;
660 struct file *fp;
661 struct timespec ts;
662 struct proc *p;
663 size_t i, n;
664 int nerrors, error;
665
666 p = l->l_proc;
667 /* check that we're dealing with a kq */
668 fp = fd_getfile(p->p_fd, SCARG(uap, fd));
669 if (fp == NULL)
670 return (EBADF);
671
672 if (fp->f_type != DTYPE_KQUEUE) {
673 simple_unlock(&fp->f_slock);
674 return (EBADF);
675 }
676
677 FILE_USE(fp);
678
679 if (SCARG(uap, timeout) != NULL) {
680 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
681 if (error)
682 goto done;
683 SCARG(uap, timeout) = &ts;
684 }
685
686 kq = (struct kqueue *)fp->f_data;
687 nerrors = 0;
688
689 /* traverse list of events to register */
690 while (SCARG(uap, nchanges) > 0) {
691 /* copyin a maximum of KQ_EVENTS at each pass */
692 n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
693 error = copyin(SCARG(uap, changelist), kq->kq_kev,
694 n * sizeof(struct kevent));
695 if (error)
696 goto done;
697 for (i = 0; i < n; i++) {
698 kevp = &kq->kq_kev[i];
699 kevp->flags &= ~EV_SYSFLAGS;
700 /* register each knote */
701 error = kqueue_register(kq, kevp, l);
702 if (error) {
703 if (SCARG(uap, nevents) != 0) {
704 kevp->flags = EV_ERROR;
705 kevp->data = error;
706 error = copyout((caddr_t)kevp,
707 (caddr_t)SCARG(uap, eventlist),
708 sizeof(*kevp));
709 if (error)
710 goto done;
711 SCARG(uap, eventlist)++;
712 SCARG(uap, nevents)--;
713 nerrors++;
714 } else {
715 goto done;
716 }
717 }
718 }
719 SCARG(uap, nchanges) -= n; /* update the results */
720 SCARG(uap, changelist) += n;
721 }
722 if (nerrors) {
723 *retval = nerrors;
724 error = 0;
725 goto done;
726 }
727
728 /* actually scan through the events */
729 error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
730 SCARG(uap, timeout), l, retval);
731 done:
732 FILE_UNUSE(fp, l);
733 return (error);
734 }
735
736 /*
737 * Register a given kevent kev onto the kqueue
738 */
739 int
740 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l)
741 {
742 const struct kfilter *kfilter;
743 struct filedesc *fdp;
744 struct knote *kn;
745 struct file *fp;
746 int s, error;
747
748 fdp = kq->kq_fdp;
749 fp = NULL;
750 kn = NULL;
751 error = 0;
752 kfilter = kfilter_byfilter(kev->filter);
753 if (kfilter == NULL || kfilter->filtops == NULL) {
754 /* filter not found nor implemented */
755 return (EINVAL);
756 }
757
758 /* search if knote already exists */
759 if (kfilter->filtops->f_isfd) {
760 /* monitoring a file descriptor */
761 if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
762 return (EBADF); /* validate descriptor */
763 FILE_USE(fp);
764
765 if (kev->ident < fdp->fd_knlistsize) {
766 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
767 if (kq == kn->kn_kq &&
768 kev->filter == kn->kn_filter)
769 break;
770 }
771 } else {
772 /*
773 * not monitoring a file descriptor, so
774 * lookup knotes in internal hash table
775 */
776 if (fdp->fd_knhashmask != 0) {
777 struct klist *list;
778
779 list = &fdp->fd_knhash[
780 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
781 SLIST_FOREACH(kn, list, kn_link)
782 if (kev->ident == kn->kn_id &&
783 kq == kn->kn_kq &&
784 kev->filter == kn->kn_filter)
785 break;
786 }
787 }
788
789 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
790 error = ENOENT; /* filter not found */
791 goto done;
792 }
793
794 /*
795 * kn now contains the matching knote, or NULL if no match
796 */
797 if (kev->flags & EV_ADD) {
798 /* add knote */
799
800 if (kn == NULL) {
801 /* create new knote */
802 kn = pool_get(&knote_pool, PR_WAITOK);
803 if (kn == NULL) {
804 error = ENOMEM;
805 goto done;
806 }
807 kn->kn_fp = fp;
808 kn->kn_kq = kq;
809 kn->kn_fop = kfilter->filtops;
810
811 /*
812 * apply reference count to knote structure, and
813 * do not release it at the end of this routine.
814 */
815 fp = NULL;
816
817 kn->kn_sfflags = kev->fflags;
818 kn->kn_sdata = kev->data;
819 kev->fflags = 0;
820 kev->data = 0;
821 kn->kn_kevent = *kev;
822
823 knote_attach(kn, fdp);
824 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
825 knote_drop(kn, l, fdp);
826 goto done;
827 }
828 } else {
829 /* modify existing knote */
830
831 /*
832 * The user may change some filter values after the
833 * initial EV_ADD, but doing so will not reset any
834 * filter which have already been triggered.
835 */
836 kn->kn_sfflags = kev->fflags;
837 kn->kn_sdata = kev->data;
838 kn->kn_kevent.udata = kev->udata;
839 }
840
841 s = splsched();
842 if (kn->kn_fop->f_event(kn, 0))
843 KNOTE_ACTIVATE(kn);
844 splx(s);
845
846 } else if (kev->flags & EV_DELETE) { /* delete knote */
847 kn->kn_fop->f_detach(kn);
848 knote_drop(kn, l, fdp);
849 goto done;
850 }
851
852 /* disable knote */
853 if ((kev->flags & EV_DISABLE) &&
854 ((kn->kn_status & KN_DISABLED) == 0)) {
855 s = splsched();
856 kn->kn_status |= KN_DISABLED;
857 splx(s);
858 }
859
860 /* enable knote */
861 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
862 s = splsched();
863 kn->kn_status &= ~KN_DISABLED;
864 if ((kn->kn_status & KN_ACTIVE) &&
865 ((kn->kn_status & KN_QUEUED) == 0))
866 knote_enqueue(kn);
867 splx(s);
868 }
869
870 done:
871 if (fp != NULL)
872 FILE_UNUSE(fp, l);
873 return (error);
874 }
875
876 /*
877 * Scan through the list of events on fp (for a maximum of maxevents),
878 * returning the results in to ulistp. Timeout is determined by tsp; if
879 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
880 * as appropriate.
881 */
882 static int
883 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
884 const struct timespec *tsp, struct lwp *l, register_t *retval)
885 {
886 struct proc *p = l->l_proc;
887 struct kqueue *kq;
888 struct kevent *kevp;
889 struct timeval atv;
890 struct knote *kn, marker;
891 size_t count, nkev;
892 int s, timeout, error;
893
894 kq = (struct kqueue *)fp->f_data;
895 count = maxevents;
896 nkev = error = 0;
897 if (count == 0)
898 goto done;
899
900 if (tsp) { /* timeout supplied */
901 TIMESPEC_TO_TIMEVAL(&atv, tsp);
902 if (itimerfix(&atv)) {
903 error = EINVAL;
904 goto done;
905 }
906 s = splclock();
907 timeradd(&atv, &time, &atv); /* calc. time to wait until */
908 splx(s);
909 timeout = hzto(&atv);
910 if (timeout <= 0)
911 timeout = -1; /* do poll */
912 } else {
913 /* no timeout, wait forever */
914 timeout = 0;
915 }
916 goto start;
917
918 retry:
919 if (tsp) {
920 /*
921 * We have to recalculate the timeout on every retry.
922 */
923 timeout = hzto(&atv);
924 if (timeout <= 0)
925 goto done;
926 }
927
928 start:
929 kevp = kq->kq_kev;
930 s = splsched();
931 simple_lock(&kq->kq_lock);
932 if (kq->kq_count == 0) {
933 if (timeout < 0) {
934 error = EWOULDBLOCK;
935 } else {
936 kq->kq_state |= KQ_SLEEP;
937 error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
938 "kqread", timeout, &kq->kq_lock);
939 }
940 splx(s);
941 if (error == 0)
942 goto retry;
943 /* don't restart after signals... */
944 if (error == ERESTART)
945 error = EINTR;
946 else if (error == EWOULDBLOCK)
947 error = 0;
948 goto done;
949 }
950
951 /* mark end of knote list */
952 TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
953 simple_unlock(&kq->kq_lock);
954
955 while (count) { /* while user wants data ... */
956 simple_lock(&kq->kq_lock);
957 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
958 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
959 if (kn == &marker) { /* if it's our marker, stop */
960 /* What if it's some else's marker? */
961 simple_unlock(&kq->kq_lock);
962 splx(s);
963 if (count == maxevents)
964 goto retry;
965 goto done;
966 }
967 kq->kq_count--;
968 simple_unlock(&kq->kq_lock);
969
970 if (kn->kn_status & KN_DISABLED) {
971 /* don't want disabled events */
972 kn->kn_status &= ~KN_QUEUED;
973 continue;
974 }
975 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
976 kn->kn_fop->f_event(kn, 0) == 0) {
977 /*
978 * non-ONESHOT event that hasn't
979 * triggered again, so de-queue.
980 */
981 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
982 continue;
983 }
984 *kevp = kn->kn_kevent;
985 kevp++;
986 nkev++;
987 if (kn->kn_flags & EV_ONESHOT) {
988 /* delete ONESHOT events after retrieval */
989 kn->kn_status &= ~KN_QUEUED;
990 splx(s);
991 kn->kn_fop->f_detach(kn);
992 knote_drop(kn, l, p->p_fd);
993 s = splsched();
994 } else if (kn->kn_flags & EV_CLEAR) {
995 /* clear state after retrieval */
996 kn->kn_data = 0;
997 kn->kn_fflags = 0;
998 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
999 } else {
1000 /* add event back on list */
1001 simple_lock(&kq->kq_lock);
1002 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1003 kq->kq_count++;
1004 simple_unlock(&kq->kq_lock);
1005 }
1006 count--;
1007 if (nkev == KQ_NEVENTS) {
1008 /* do copyouts in KQ_NEVENTS chunks */
1009 splx(s);
1010 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
1011 sizeof(struct kevent) * nkev);
1012 ulistp += nkev;
1013 nkev = 0;
1014 kevp = kq->kq_kev;
1015 s = splsched();
1016 if (error)
1017 break;
1018 }
1019 }
1020
1021 /* remove marker */
1022 simple_lock(&kq->kq_lock);
1023 TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
1024 simple_unlock(&kq->kq_lock);
1025 splx(s);
1026 done:
1027 if (nkev != 0) {
1028 /* copyout remaining events */
1029 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
1030 sizeof(struct kevent) * nkev);
1031 }
1032 *retval = maxevents - count;
1033
1034 return (error);
1035 }
1036
1037 /*
1038 * struct fileops read method for a kqueue descriptor.
1039 * Not implemented.
1040 * XXX: This could be expanded to call kqueue_scan, if desired.
1041 */
1042 /*ARGSUSED*/
1043 static int
1044 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
1045 struct ucred *cred, int flags)
1046 {
1047
1048 return (ENXIO);
1049 }
1050
1051 /*
1052 * struct fileops write method for a kqueue descriptor.
1053 * Not implemented.
1054 */
1055 /*ARGSUSED*/
1056 static int
1057 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
1058 struct ucred *cred, int flags)
1059 {
1060
1061 return (ENXIO);
1062 }
1063
1064 /*
1065 * struct fileops ioctl method for a kqueue descriptor.
1066 *
1067 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1068 * KFILTER_BYNAME find name for filter, and return result in
1069 * name, which is of size len.
1070 * KFILTER_BYFILTER find filter for name. len is ignored.
1071 */
1072 /*ARGSUSED*/
1073 static int
1074 kqueue_ioctl(struct file *fp, u_long com, void *data, struct lwp *l)
1075 {
1076 struct kfilter_mapping *km;
1077 const struct kfilter *kfilter;
1078 char *name;
1079 int error;
1080
1081 km = (struct kfilter_mapping *)data;
1082 error = 0;
1083
1084 switch (com) {
1085 case KFILTER_BYFILTER: /* convert filter -> name */
1086 kfilter = kfilter_byfilter(km->filter);
1087 if (kfilter != NULL)
1088 error = copyoutstr(kfilter->name, km->name, km->len,
1089 NULL);
1090 else
1091 error = ENOENT;
1092 break;
1093
1094 case KFILTER_BYNAME: /* convert name -> filter */
1095 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
1096 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1097 if (error) {
1098 FREE(name, M_KEVENT);
1099 break;
1100 }
1101 kfilter = kfilter_byname(name);
1102 if (kfilter != NULL)
1103 km->filter = kfilter->filter;
1104 else
1105 error = ENOENT;
1106 FREE(name, M_KEVENT);
1107 break;
1108
1109 default:
1110 error = ENOTTY;
1111
1112 }
1113 return (error);
1114 }
1115
1116 /*
1117 * struct fileops fcntl method for a kqueue descriptor.
1118 * Not implemented.
1119 */
1120 /*ARGSUSED*/
1121 static int
1122 kqueue_fcntl(struct file *fp, u_int com, void *data, struct lwp *l)
1123 {
1124
1125 return (ENOTTY);
1126 }
1127
1128 /*
1129 * struct fileops poll method for a kqueue descriptor.
1130 * Determine if kqueue has events pending.
1131 */
1132 static int
1133 kqueue_poll(struct file *fp, int events, struct lwp *l)
1134 {
1135 struct kqueue *kq;
1136 int revents;
1137
1138 kq = (struct kqueue *)fp->f_data;
1139 revents = 0;
1140 if (events & (POLLIN | POLLRDNORM)) {
1141 if (kq->kq_count) {
1142 revents |= events & (POLLIN | POLLRDNORM);
1143 } else {
1144 selrecord(l, &kq->kq_sel);
1145 }
1146 }
1147 return (revents);
1148 }
1149
1150 /*
1151 * struct fileops stat method for a kqueue descriptor.
1152 * Returns dummy info, with st_size being number of events pending.
1153 */
1154 static int
1155 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l)
1156 {
1157 struct kqueue *kq;
1158
1159 kq = (struct kqueue *)fp->f_data;
1160 memset((void *)st, 0, sizeof(*st));
1161 st->st_size = kq->kq_count;
1162 st->st_blksize = sizeof(struct kevent);
1163 st->st_mode = S_IFIFO;
1164 return (0);
1165 }
1166
1167 /*
1168 * struct fileops close method for a kqueue descriptor.
1169 * Cleans up kqueue.
1170 */
1171 static int
1172 kqueue_close(struct file *fp, struct lwp *l)
1173 {
1174 struct proc *p = l->l_proc;
1175 struct kqueue *kq;
1176 struct knote **knp, *kn, *kn0;
1177 struct filedesc *fdp;
1178 int i;
1179
1180 kq = (struct kqueue *)fp->f_data;
1181 fdp = p->p_fd;
1182 for (i = 0; i < fdp->fd_knlistsize; i++) {
1183 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1184 kn = *knp;
1185 while (kn != NULL) {
1186 kn0 = SLIST_NEXT(kn, kn_link);
1187 if (kq == kn->kn_kq) {
1188 kn->kn_fop->f_detach(kn);
1189 FILE_UNUSE(kn->kn_fp, l);
1190 pool_put(&knote_pool, kn);
1191 *knp = kn0;
1192 } else {
1193 knp = &SLIST_NEXT(kn, kn_link);
1194 }
1195 kn = kn0;
1196 }
1197 }
1198 if (fdp->fd_knhashmask != 0) {
1199 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1200 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1201 kn = *knp;
1202 while (kn != NULL) {
1203 kn0 = SLIST_NEXT(kn, kn_link);
1204 if (kq == kn->kn_kq) {
1205 kn->kn_fop->f_detach(kn);
1206 /* XXX non-fd release of kn->kn_ptr */
1207 pool_put(&knote_pool, kn);
1208 *knp = kn0;
1209 } else {
1210 knp = &SLIST_NEXT(kn, kn_link);
1211 }
1212 kn = kn0;
1213 }
1214 }
1215 }
1216 pool_put(&kqueue_pool, kq);
1217 fp->f_data = NULL;
1218
1219 return (0);
1220 }
1221
1222 /*
1223 * wakeup a kqueue
1224 */
1225 static void
1226 kqueue_wakeup(struct kqueue *kq)
1227 {
1228 int s;
1229
1230 s = splsched();
1231 simple_lock(&kq->kq_lock);
1232 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1233 kq->kq_state &= ~KQ_SLEEP;
1234 wakeup(kq); /* ... wakeup */
1235 }
1236
1237 /* Notify select/poll and kevent. */
1238 selnotify(&kq->kq_sel, 0);
1239 simple_unlock(&kq->kq_lock);
1240 splx(s);
1241 }
1242
1243 /*
1244 * struct fileops kqfilter method for a kqueue descriptor.
1245 * Event triggered when monitored kqueue changes.
1246 */
1247 /*ARGSUSED*/
1248 static int
1249 kqueue_kqfilter(struct file *fp, struct knote *kn)
1250 {
1251 struct kqueue *kq;
1252
1253 KASSERT(fp == kn->kn_fp);
1254 kq = (struct kqueue *)kn->kn_fp->f_data;
1255 if (kn->kn_filter != EVFILT_READ)
1256 return (1);
1257 kn->kn_fop = &kqread_filtops;
1258 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1259 return (0);
1260 }
1261
1262
1263 /*
1264 * Walk down a list of knotes, activating them if their event has triggered.
1265 */
1266 void
1267 knote(struct klist *list, long hint)
1268 {
1269 struct knote *kn;
1270
1271 SLIST_FOREACH(kn, list, kn_selnext)
1272 if (kn->kn_fop->f_event(kn, hint))
1273 KNOTE_ACTIVATE(kn);
1274 }
1275
1276 /*
1277 * Remove all knotes from a specified klist
1278 */
1279 void
1280 knote_remove(struct lwp *l, struct klist *list)
1281 {
1282 struct knote *kn;
1283
1284 while ((kn = SLIST_FIRST(list)) != NULL) {
1285 kn->kn_fop->f_detach(kn);
1286 knote_drop(kn, l, l->l_proc->p_fd);
1287 }
1288 }
1289
1290 /*
1291 * Remove all knotes referencing a specified fd
1292 */
1293 void
1294 knote_fdclose(struct lwp *l, int fd)
1295 {
1296 struct filedesc *fdp;
1297 struct klist *list;
1298
1299 fdp = l->l_proc->p_fd;
1300 list = &fdp->fd_knlist[fd];
1301 knote_remove(l, list);
1302 }
1303
1304 /*
1305 * Attach a new knote to a file descriptor
1306 */
1307 static void
1308 knote_attach(struct knote *kn, struct filedesc *fdp)
1309 {
1310 struct klist *list;
1311 int size;
1312
1313 if (! kn->kn_fop->f_isfd) {
1314 /* if knote is not on an fd, store on internal hash table */
1315 if (fdp->fd_knhashmask == 0)
1316 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1317 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1318 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1319 goto done;
1320 }
1321
1322 /*
1323 * otherwise, knote is on an fd.
1324 * knotes are stored in fd_knlist indexed by kn->kn_id.
1325 */
1326 if (fdp->fd_knlistsize <= kn->kn_id) {
1327 /* expand list, it's too small */
1328 size = fdp->fd_knlistsize;
1329 while (size <= kn->kn_id) {
1330 /* grow in KQ_EXTENT chunks */
1331 size += KQ_EXTENT;
1332 }
1333 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1334 if (fdp->fd_knlist) {
1335 /* copy existing knlist */
1336 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1337 fdp->fd_knlistsize * sizeof(struct klist *));
1338 }
1339 /*
1340 * Zero new memory. Stylistically, SLIST_INIT() should be
1341 * used here, but that does same thing as the memset() anyway.
1342 */
1343 memset(&list[fdp->fd_knlistsize], 0,
1344 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1345
1346 /* switch to new knlist */
1347 if (fdp->fd_knlist != NULL)
1348 free(fdp->fd_knlist, M_KEVENT);
1349 fdp->fd_knlistsize = size;
1350 fdp->fd_knlist = list;
1351 }
1352
1353 /* get list head for this fd */
1354 list = &fdp->fd_knlist[kn->kn_id];
1355 done:
1356 /* add new knote */
1357 SLIST_INSERT_HEAD(list, kn, kn_link);
1358 kn->kn_status = 0;
1359 }
1360
1361 /*
1362 * Drop knote.
1363 * Should be called at spl == 0, since we don't want to hold spl
1364 * while calling FILE_UNUSE and free.
1365 */
1366 static void
1367 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp)
1368 {
1369 struct klist *list;
1370
1371 if (kn->kn_fop->f_isfd)
1372 list = &fdp->fd_knlist[kn->kn_id];
1373 else
1374 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1375
1376 SLIST_REMOVE(list, kn, knote, kn_link);
1377 if (kn->kn_status & KN_QUEUED)
1378 knote_dequeue(kn);
1379 if (kn->kn_fop->f_isfd)
1380 FILE_UNUSE(kn->kn_fp, l);
1381 pool_put(&knote_pool, kn);
1382 }
1383
1384
1385 /*
1386 * Queue new event for knote.
1387 */
1388 static void
1389 knote_enqueue(struct knote *kn)
1390 {
1391 struct kqueue *kq;
1392 int s;
1393
1394 kq = kn->kn_kq;
1395 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1396
1397 s = splsched();
1398 simple_lock(&kq->kq_lock);
1399 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1400 kn->kn_status |= KN_QUEUED;
1401 kq->kq_count++;
1402 simple_unlock(&kq->kq_lock);
1403 splx(s);
1404 kqueue_wakeup(kq);
1405 }
1406
1407 /*
1408 * Dequeue event for knote.
1409 */
1410 static void
1411 knote_dequeue(struct knote *kn)
1412 {
1413 struct kqueue *kq;
1414 int s;
1415
1416 KASSERT(kn->kn_status & KN_QUEUED);
1417 kq = kn->kn_kq;
1418
1419 s = splsched();
1420 simple_lock(&kq->kq_lock);
1421 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1422 kn->kn_status &= ~KN_QUEUED;
1423 kq->kq_count--;
1424 simple_unlock(&kq->kq_lock);
1425 splx(s);
1426 }
1427