kern_event.c revision 1.23.2.11 1 /* $NetBSD: kern_event.c,v 1.23.2.11 2008/03/24 09:39:01 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*-
37 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
38 * All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.23.2.11 2008/03/24 09:39:01 yamt Exp $");
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/proc.h>
71 #include <sys/file.h>
72 #include <sys/select.h>
73 #include <sys/queue.h>
74 #include <sys/event.h>
75 #include <sys/eventvar.h>
76 #include <sys/poll.h>
77 #include <sys/malloc.h> /* for hashinit */
78 #include <sys/kmem.h>
79 #include <sys/stat.h>
80 #include <sys/filedesc.h>
81 #include <sys/syscallargs.h>
82 #include <sys/kauth.h>
83 #include <sys/conf.h>
84 #include <sys/atomic.h>
85
86 static int kqueue_scan(file_t *, size_t, struct kevent *,
87 const struct timespec *, register_t *,
88 const struct kevent_ops *, struct kevent *,
89 size_t);
90 static int kqueue_ioctl(file_t *, u_long, void *);
91 static int kqueue_fcntl(file_t *, u_int, void *);
92 static int kqueue_poll(file_t *, int);
93 static int kqueue_kqfilter(file_t *, struct knote *);
94 static int kqueue_stat(file_t *, struct stat *);
95 static int kqueue_close(file_t *);
96 static int kqueue_register(struct kqueue *, struct kevent *);
97 static void kqueue_doclose(struct kqueue *, struct klist *, int);
98
99 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
100 static void knote_enqueue(struct knote *);
101 static void knote_dequeue(struct knote *);
102 static void knote_activate(struct knote *);
103
104 static void filt_kqdetach(struct knote *);
105 static int filt_kqueue(struct knote *, long hint);
106 static int filt_procattach(struct knote *);
107 static void filt_procdetach(struct knote *);
108 static int filt_proc(struct knote *, long hint);
109 static int filt_fileattach(struct knote *);
110 static void filt_timerexpire(void *x);
111 static int filt_timerattach(struct knote *);
112 static void filt_timerdetach(struct knote *);
113 static int filt_timer(struct knote *, long hint);
114
115 static const struct fileops kqueueops = {
116 (void *)enxio, (void *)enxio, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
117 kqueue_stat, kqueue_close, kqueue_kqfilter
118 };
119
120 static const struct filterops kqread_filtops =
121 { 1, NULL, filt_kqdetach, filt_kqueue };
122 static const struct filterops proc_filtops =
123 { 0, filt_procattach, filt_procdetach, filt_proc };
124 static const struct filterops file_filtops =
125 { 1, filt_fileattach, NULL, NULL };
126 static const struct filterops timer_filtops =
127 { 0, filt_timerattach, filt_timerdetach, filt_timer };
128
129 static u_int kq_ncallouts = 0;
130 static int kq_calloutmax = (4 * 1024);
131
132 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes"); /* for hashinit */
133
134 #define KN_HASHSIZE 64 /* XXX should be tunable */
135 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
136
137 extern const struct filterops sig_filtops;
138
139 /*
140 * Table for for all system-defined filters.
141 * These should be listed in the numeric order of the EVFILT_* defines.
142 * If filtops is NULL, the filter isn't implemented in NetBSD.
143 * End of list is when name is NULL.
144 *
145 * Note that 'refcnt' is meaningless for built-in filters.
146 */
147 struct kfilter {
148 const char *name; /* name of filter */
149 uint32_t filter; /* id of filter */
150 unsigned refcnt; /* reference count */
151 const struct filterops *filtops;/* operations for filter */
152 size_t namelen; /* length of name string */
153 };
154
155 /* System defined filters */
156 static struct kfilter sys_kfilters[] = {
157 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
158 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
159 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
160 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
161 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
162 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
163 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
164 { NULL, 0, 0, NULL, 0 },
165 };
166
167 /* User defined kfilters */
168 static struct kfilter *user_kfilters; /* array */
169 static int user_kfilterc; /* current offset */
170 static int user_kfiltermaxc; /* max size so far */
171 static size_t user_kfiltersz; /* size of allocated memory */
172
173 /* Locks */
174 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
175 static kmutex_t kqueue_misc_lock; /* miscellaneous */
176
177 /*
178 * Initialize the kqueue subsystem.
179 */
180 void
181 kqueue_init(void)
182 {
183
184 rw_init(&kqueue_filter_lock);
185 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
186 }
187
188 /*
189 * Find kfilter entry by name, or NULL if not found.
190 */
191 static struct kfilter *
192 kfilter_byname_sys(const char *name)
193 {
194 int i;
195
196 KASSERT(rw_lock_held(&kqueue_filter_lock));
197
198 for (i = 0; sys_kfilters[i].name != NULL; i++) {
199 if (strcmp(name, sys_kfilters[i].name) == 0)
200 return &sys_kfilters[i];
201 }
202 return NULL;
203 }
204
205 static struct kfilter *
206 kfilter_byname_user(const char *name)
207 {
208 int i;
209
210 KASSERT(rw_lock_held(&kqueue_filter_lock));
211
212 /* user filter slots have a NULL name if previously deregistered */
213 for (i = 0; i < user_kfilterc ; i++) {
214 if (user_kfilters[i].name != NULL &&
215 strcmp(name, user_kfilters[i].name) == 0)
216 return &user_kfilters[i];
217 }
218 return NULL;
219 }
220
221 static struct kfilter *
222 kfilter_byname(const char *name)
223 {
224 struct kfilter *kfilter;
225
226 KASSERT(rw_lock_held(&kqueue_filter_lock));
227
228 if ((kfilter = kfilter_byname_sys(name)) != NULL)
229 return kfilter;
230
231 return kfilter_byname_user(name);
232 }
233
234 /*
235 * Find kfilter entry by filter id, or NULL if not found.
236 * Assumes entries are indexed in filter id order, for speed.
237 */
238 static struct kfilter *
239 kfilter_byfilter(uint32_t filter)
240 {
241 struct kfilter *kfilter;
242
243 KASSERT(rw_lock_held(&kqueue_filter_lock));
244
245 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
246 kfilter = &sys_kfilters[filter];
247 else if (user_kfilters != NULL &&
248 filter < EVFILT_SYSCOUNT + user_kfilterc)
249 /* it's a user filter */
250 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
251 else
252 return (NULL); /* out of range */
253 KASSERT(kfilter->filter == filter); /* sanity check! */
254 return (kfilter);
255 }
256
257 /*
258 * Register a new kfilter. Stores the entry in user_kfilters.
259 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
260 * If retfilter != NULL, the new filterid is returned in it.
261 */
262 int
263 kfilter_register(const char *name, const struct filterops *filtops,
264 int *retfilter)
265 {
266 struct kfilter *kfilter;
267 size_t len;
268 int i;
269
270 if (name == NULL || name[0] == '\0' || filtops == NULL)
271 return (EINVAL); /* invalid args */
272
273 rw_enter(&kqueue_filter_lock, RW_WRITER);
274 if (kfilter_byname(name) != NULL) {
275 rw_exit(&kqueue_filter_lock);
276 return (EEXIST); /* already exists */
277 }
278 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
279 rw_exit(&kqueue_filter_lock);
280 return (EINVAL); /* too many */
281 }
282
283 for (i = 0; i < user_kfilterc; i++) {
284 kfilter = &user_kfilters[i];
285 if (kfilter->name == NULL) {
286 /* Previously deregistered slot. Reuse. */
287 goto reuse;
288 }
289 }
290
291 /* check if need to grow user_kfilters */
292 if (user_kfilterc + 1 > user_kfiltermaxc) {
293 /* Grow in KFILTER_EXTENT chunks. */
294 user_kfiltermaxc += KFILTER_EXTENT;
295 len = user_kfiltermaxc * sizeof(struct filter *);
296 kfilter = kmem_alloc(len, KM_SLEEP);
297 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
298 if (user_kfilters != NULL) {
299 memcpy(kfilter, user_kfilters, user_kfiltersz);
300 kmem_free(user_kfilters, user_kfiltersz);
301 }
302 user_kfiltersz = len;
303 user_kfilters = kfilter;
304 }
305 /* Adding new slot */
306 kfilter = &user_kfilters[user_kfilterc++];
307 reuse:
308 kfilter->namelen = strlen(name) + 1;
309 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
310 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
311
312 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
313
314 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
315 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
316
317 if (retfilter != NULL)
318 *retfilter = kfilter->filter;
319 rw_exit(&kqueue_filter_lock);
320
321 return (0);
322 }
323
324 /*
325 * Unregister a kfilter previously registered with kfilter_register.
326 * This retains the filter id, but clears the name and frees filtops (filter
327 * operations), so that the number isn't reused during a boot.
328 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
329 */
330 int
331 kfilter_unregister(const char *name)
332 {
333 struct kfilter *kfilter;
334
335 if (name == NULL || name[0] == '\0')
336 return (EINVAL); /* invalid name */
337
338 rw_enter(&kqueue_filter_lock, RW_WRITER);
339 if (kfilter_byname_sys(name) != NULL) {
340 rw_exit(&kqueue_filter_lock);
341 return (EINVAL); /* can't detach system filters */
342 }
343
344 kfilter = kfilter_byname_user(name);
345 if (kfilter == NULL) {
346 rw_exit(&kqueue_filter_lock);
347 return (ENOENT);
348 }
349 if (kfilter->refcnt != 0) {
350 rw_exit(&kqueue_filter_lock);
351 return (EBUSY);
352 }
353
354 /* Cast away const (but we know it's safe. */
355 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
356 kfilter->name = NULL; /* mark as `not implemented' */
357
358 if (kfilter->filtops != NULL) {
359 /* Cast away const (but we know it's safe. */
360 kmem_free(__UNCONST(kfilter->filtops),
361 sizeof(*kfilter->filtops));
362 kfilter->filtops = NULL; /* mark as `not implemented' */
363 }
364 rw_exit(&kqueue_filter_lock);
365
366 return (0);
367 }
368
369
370 /*
371 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
372 * descriptors. Calls fileops kqfilter method for given file descriptor.
373 */
374 static int
375 filt_fileattach(struct knote *kn)
376 {
377 file_t *fp;
378
379 fp = kn->kn_obj;
380
381 return (*fp->f_ops->fo_kqfilter)(fp, kn);
382 }
383
384 /*
385 * Filter detach method for EVFILT_READ on kqueue descriptor.
386 */
387 static void
388 filt_kqdetach(struct knote *kn)
389 {
390 struct kqueue *kq;
391
392 kq = ((file_t *)kn->kn_obj)->f_data;
393
394 mutex_spin_enter(&kq->kq_lock);
395 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
396 mutex_spin_exit(&kq->kq_lock);
397 }
398
399 /*
400 * Filter event method for EVFILT_READ on kqueue descriptor.
401 */
402 /*ARGSUSED*/
403 static int
404 filt_kqueue(struct knote *kn, long hint)
405 {
406 struct kqueue *kq;
407 int rv;
408
409 kq = ((file_t *)kn->kn_obj)->f_data;
410
411 if (hint != NOTE_SUBMIT)
412 mutex_spin_enter(&kq->kq_lock);
413 kn->kn_data = kq->kq_count;
414 rv = (kn->kn_data > 0);
415 if (hint != NOTE_SUBMIT)
416 mutex_spin_exit(&kq->kq_lock);
417
418 return rv;
419 }
420
421 /*
422 * Filter attach method for EVFILT_PROC.
423 */
424 static int
425 filt_procattach(struct knote *kn)
426 {
427 struct proc *p, *curp;
428 struct lwp *curl;
429
430 curl = curlwp;
431 curp = curl->l_proc;
432
433 mutex_enter(&proclist_lock);
434 p = p_find(kn->kn_id, PFIND_LOCKED);
435 if (p == NULL) {
436 mutex_exit(&proclist_lock);
437 return ESRCH;
438 }
439
440 /*
441 * Fail if it's not owned by you, or the last exec gave us
442 * setuid/setgid privs (unless you're root).
443 */
444 mutex_enter(&p->p_mutex);
445 mutex_exit(&proclist_lock);
446 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
447 p, NULL, NULL, NULL) != 0) {
448 mutex_exit(&p->p_mutex);
449 return EACCES;
450 }
451
452 kn->kn_obj = p;
453 kn->kn_flags |= EV_CLEAR; /* automatically set */
454
455 /*
456 * internal flag indicating registration done by kernel
457 */
458 if (kn->kn_flags & EV_FLAG1) {
459 kn->kn_data = kn->kn_sdata; /* ppid */
460 kn->kn_fflags = NOTE_CHILD;
461 kn->kn_flags &= ~EV_FLAG1;
462 }
463 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
464 mutex_exit(&p->p_mutex);
465
466 return 0;
467 }
468
469 /*
470 * Filter detach method for EVFILT_PROC.
471 *
472 * The knote may be attached to a different process, which may exit,
473 * leaving nothing for the knote to be attached to. So when the process
474 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
475 * it will be deleted when read out. However, as part of the knote deletion,
476 * this routine is called, so a check is needed to avoid actually performing
477 * a detach, because the original process might not exist any more.
478 */
479 static void
480 filt_procdetach(struct knote *kn)
481 {
482 struct proc *p;
483
484 if (kn->kn_status & KN_DETACHED)
485 return;
486
487 p = kn->kn_obj;
488
489 mutex_enter(&p->p_mutex);
490 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
491 mutex_exit(&p->p_mutex);
492 }
493
494 /*
495 * Filter event method for EVFILT_PROC.
496 */
497 static int
498 filt_proc(struct knote *kn, long hint)
499 {
500 u_int event, fflag;
501 struct kevent kev;
502 struct kqueue *kq;
503 int error;
504
505 event = (u_int)hint & NOTE_PCTRLMASK;
506 kq = kn->kn_kq;
507 fflag = 0;
508
509 /* If the user is interested in this event, record it. */
510 if (kn->kn_sfflags & event)
511 fflag |= event;
512
513 if (event == NOTE_EXIT) {
514 /*
515 * Process is gone, so flag the event as finished.
516 *
517 * Detach the knote from watched process and mark
518 * it as such. We can't leave this to kqueue_scan(),
519 * since the process might not exist by then. And we
520 * have to do this now, since psignal KNOTE() is called
521 * also for zombies and we might end up reading freed
522 * memory if the kevent would already be picked up
523 * and knote g/c'ed.
524 */
525 filt_procdetach(kn);
526
527 mutex_spin_enter(&kq->kq_lock);
528 kn->kn_status |= KN_DETACHED;
529 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
530 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
531 kn->kn_fflags |= fflag;
532 mutex_spin_exit(&kq->kq_lock);
533
534 return 1;
535 }
536
537 mutex_spin_enter(&kq->kq_lock);
538 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
539 /*
540 * Process forked, and user wants to track the new process,
541 * so attach a new knote to it, and immediately report an
542 * event with the parent's pid. Register knote with new
543 * process.
544 */
545 kev.ident = hint & NOTE_PDATAMASK; /* pid */
546 kev.filter = kn->kn_filter;
547 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
548 kev.fflags = kn->kn_sfflags;
549 kev.data = kn->kn_id; /* parent */
550 kev.udata = kn->kn_kevent.udata; /* preserve udata */
551 mutex_spin_exit(&kq->kq_lock);
552 error = kqueue_register(kq, &kev);
553 mutex_spin_enter(&kq->kq_lock);
554 if (error != 0)
555 kn->kn_fflags |= NOTE_TRACKERR;
556 }
557 kn->kn_fflags |= fflag;
558 fflag = kn->kn_fflags;
559 mutex_spin_exit(&kq->kq_lock);
560
561 return fflag != 0;
562 }
563
564 static void
565 filt_timerexpire(void *knx)
566 {
567 struct knote *kn = knx;
568 int tticks;
569
570 mutex_enter(&kqueue_misc_lock);
571 kn->kn_data++;
572 knote_activate(kn);
573 if ((kn->kn_flags & EV_ONESHOT) == 0) {
574 tticks = mstohz(kn->kn_sdata);
575 callout_schedule((callout_t *)kn->kn_hook, tticks);
576 }
577 mutex_exit(&kqueue_misc_lock);
578 }
579
580 /*
581 * data contains amount of time to sleep, in milliseconds
582 */
583 static int
584 filt_timerattach(struct knote *kn)
585 {
586 callout_t *calloutp;
587 struct kqueue *kq;
588 int tticks;
589
590 tticks = mstohz(kn->kn_sdata);
591
592 /* if the supplied value is under our resolution, use 1 tick */
593 if (tticks == 0) {
594 if (kn->kn_sdata == 0)
595 return EINVAL;
596 tticks = 1;
597 }
598
599 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
600 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
601 atomic_dec_uint(&kq_ncallouts);
602 return ENOMEM;
603 }
604 callout_init(calloutp, 0);
605
606 kq = kn->kn_kq;
607 mutex_spin_enter(&kq->kq_lock);
608 kn->kn_flags |= EV_CLEAR; /* automatically set */
609 kn->kn_hook = calloutp;
610 mutex_spin_exit(&kq->kq_lock);
611
612 callout_reset(calloutp, tticks, filt_timerexpire, kn);
613
614 return (0);
615 }
616
617 static void
618 filt_timerdetach(struct knote *kn)
619 {
620 callout_t *calloutp;
621
622 calloutp = (callout_t *)kn->kn_hook;
623 callout_stop(calloutp);
624 callout_destroy(calloutp);
625 kmem_free(calloutp, sizeof(*calloutp));
626 atomic_dec_uint(&kq_ncallouts);
627 }
628
629 static int
630 filt_timer(struct knote *kn, long hint)
631 {
632 int rv;
633
634 mutex_enter(&kqueue_misc_lock);
635 rv = (kn->kn_data != 0);
636 mutex_exit(&kqueue_misc_lock);
637
638 return rv;
639 }
640
641 /*
642 * filt_seltrue:
643 *
644 * This filter "event" routine simulates seltrue().
645 */
646 int
647 filt_seltrue(struct knote *kn, long hint)
648 {
649
650 /*
651 * We don't know how much data can be read/written,
652 * but we know that it *can* be. This is about as
653 * good as select/poll does as well.
654 */
655 kn->kn_data = 0;
656 return (1);
657 }
658
659 /*
660 * This provides full kqfilter entry for device switch tables, which
661 * has same effect as filter using filt_seltrue() as filter method.
662 */
663 static void
664 filt_seltruedetach(struct knote *kn)
665 {
666 /* Nothing to do */
667 }
668
669 const struct filterops seltrue_filtops =
670 { 1, NULL, filt_seltruedetach, filt_seltrue };
671
672 int
673 seltrue_kqfilter(dev_t dev, struct knote *kn)
674 {
675 switch (kn->kn_filter) {
676 case EVFILT_READ:
677 case EVFILT_WRITE:
678 kn->kn_fop = &seltrue_filtops;
679 break;
680 default:
681 return (EINVAL);
682 }
683
684 /* Nothing more to do */
685 return (0);
686 }
687
688 /*
689 * kqueue(2) system call.
690 */
691 int
692 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
693 {
694 struct kqueue *kq;
695 file_t *fp;
696 int fd, error;
697
698 if ((error = fd_allocfile(&fp, &fd)) != 0)
699 return error;
700 fp->f_flag = FREAD | FWRITE;
701 fp->f_type = DTYPE_KQUEUE;
702 fp->f_ops = &kqueueops;
703 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
704 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
705 cv_init(&kq->kq_cv, "kqueue");
706 selinit(&kq->kq_sel);
707 TAILQ_INIT(&kq->kq_head);
708 fp->f_data = kq;
709 *retval = fd;
710 kq->kq_fdp = curlwp->l_fd;
711 fd_affix(curproc, fp, fd);
712 return error;
713 }
714
715 /*
716 * kevent(2) system call.
717 */
718 static int
719 kevent_fetch_changes(void *private, const struct kevent *changelist,
720 struct kevent *changes, size_t index, int n)
721 {
722
723 return copyin(changelist + index, changes, n * sizeof(*changes));
724 }
725
726 static int
727 kevent_put_events(void *private, struct kevent *events,
728 struct kevent *eventlist, size_t index, int n)
729 {
730
731 return copyout(events, eventlist + index, n * sizeof(*events));
732 }
733
734 static const struct kevent_ops kevent_native_ops = {
735 keo_private: NULL,
736 keo_fetch_timeout: copyin,
737 keo_fetch_changes: kevent_fetch_changes,
738 keo_put_events: kevent_put_events,
739 };
740
741 int
742 sys_kevent(struct lwp *l, const struct sys_kevent_args *uap, register_t *retval)
743 {
744 /* {
745 syscallarg(int) fd;
746 syscallarg(const struct kevent *) changelist;
747 syscallarg(size_t) nchanges;
748 syscallarg(struct kevent *) eventlist;
749 syscallarg(size_t) nevents;
750 syscallarg(const struct timespec *) timeout;
751 } */
752
753 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
754 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
755 SCARG(uap, timeout), &kevent_native_ops);
756 }
757
758 int
759 kevent1(register_t *retval, int fd,
760 const struct kevent *changelist, size_t nchanges,
761 struct kevent *eventlist, size_t nevents,
762 const struct timespec *timeout,
763 const struct kevent_ops *keops)
764 {
765 struct kevent *kevp;
766 struct kqueue *kq;
767 struct timespec ts;
768 size_t i, n, ichange;
769 int nerrors, error;
770 struct kevent kevbuf[8]; /* approx 300 bytes on 64-bit */
771 file_t *fp;
772
773 /* check that we're dealing with a kq */
774 fp = fd_getfile(fd);
775 if (fp == NULL)
776 return (EBADF);
777
778 if (fp->f_type != DTYPE_KQUEUE) {
779 fd_putfile(fd);
780 return (EBADF);
781 }
782
783 if (timeout != NULL) {
784 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
785 if (error)
786 goto done;
787 timeout = &ts;
788 }
789
790 kq = (struct kqueue *)fp->f_data;
791 nerrors = 0;
792 ichange = 0;
793
794 /* traverse list of events to register */
795 while (nchanges > 0) {
796 n = MIN(nchanges, __arraycount(kevbuf));
797 error = (*keops->keo_fetch_changes)(keops->keo_private,
798 changelist, kevbuf, ichange, n);
799 if (error)
800 goto done;
801 for (i = 0; i < n; i++) {
802 kevp = &kevbuf[i];
803 kevp->flags &= ~EV_SYSFLAGS;
804 /* register each knote */
805 error = kqueue_register(kq, kevp);
806 if (error) {
807 if (nevents != 0) {
808 kevp->flags = EV_ERROR;
809 kevp->data = error;
810 error = (*keops->keo_put_events)
811 (keops->keo_private, kevp,
812 eventlist, nerrors, 1);
813 if (error)
814 goto done;
815 nevents--;
816 nerrors++;
817 } else {
818 goto done;
819 }
820 }
821 }
822 nchanges -= n; /* update the results */
823 ichange += n;
824 }
825 if (nerrors) {
826 *retval = nerrors;
827 error = 0;
828 goto done;
829 }
830
831 /* actually scan through the events */
832 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
833 kevbuf, __arraycount(kevbuf));
834 done:
835 fd_putfile(fd);
836 return (error);
837 }
838
839 /*
840 * Register a given kevent kev onto the kqueue
841 */
842 static int
843 kqueue_register(struct kqueue *kq, struct kevent *kev)
844 {
845 struct kfilter *kfilter;
846 filedesc_t *fdp;
847 file_t *fp;
848 fdfile_t *ff;
849 struct knote *kn, *newkn;
850 struct klist *list;
851 int error, fd, rv;
852
853 fdp = kq->kq_fdp;
854 fp = NULL;
855 kn = NULL;
856 error = 0;
857 fd = 0;
858
859 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
860
861 rw_enter(&kqueue_filter_lock, RW_READER);
862 kfilter = kfilter_byfilter(kev->filter);
863 if (kfilter == NULL || kfilter->filtops == NULL) {
864 /* filter not found nor implemented */
865 rw_exit(&kqueue_filter_lock);
866 kmem_free(newkn, sizeof(*newkn));
867 return (EINVAL);
868 }
869
870 mutex_enter(&fdp->fd_lock);
871
872 /* search if knote already exists */
873 if (kfilter->filtops->f_isfd) {
874 /* monitoring a file descriptor */
875 fd = kev->ident;
876 if ((fp = fd_getfile(fd)) == NULL) {
877 mutex_exit(&fdp->fd_lock);
878 rw_exit(&kqueue_filter_lock);
879 kmem_free(newkn, sizeof(*newkn));
880 return EBADF;
881 }
882 ff = fdp->fd_ofiles[fd];
883 if (fd <= fdp->fd_lastkqfile) {
884 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
885 if (kq == kn->kn_kq &&
886 kev->filter == kn->kn_filter)
887 break;
888 }
889 }
890 } else {
891 /*
892 * not monitoring a file descriptor, so
893 * lookup knotes in internal hash table
894 */
895 if (fdp->fd_knhashmask != 0) {
896 list = &fdp->fd_knhash[
897 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
898 SLIST_FOREACH(kn, list, kn_link) {
899 if (kev->ident == kn->kn_id &&
900 kq == kn->kn_kq &&
901 kev->filter == kn->kn_filter)
902 break;
903 }
904 }
905 }
906
907 /*
908 * kn now contains the matching knote, or NULL if no match
909 */
910 if (kev->flags & EV_ADD) {
911 if (kn == NULL) {
912 /* create new knote */
913 kn = newkn;
914 newkn = NULL;
915 kn->kn_obj = fp;
916 kn->kn_kq = kq;
917 kn->kn_fop = kfilter->filtops;
918 kn->kn_kfilter = kfilter;
919 kn->kn_sfflags = kev->fflags;
920 kn->kn_sdata = kev->data;
921 kev->fflags = 0;
922 kev->data = 0;
923 kn->kn_kevent = *kev;
924
925 /*
926 * apply reference count to knote structure, and
927 * do not release it at the end of this routine.
928 */
929 fp = NULL;
930
931 if (!kn->kn_fop->f_isfd) {
932 /*
933 * If knote is not on an fd, store on
934 * internal hash table.
935 */
936 if (fdp->fd_knhashmask == 0) {
937 /* XXXAD can block with fd_lock held */
938 fdp->fd_knhash = hashinit(KN_HASHSIZE,
939 HASH_LIST, M_KEVENT, M_WAITOK,
940 &fdp->fd_knhashmask);
941 }
942 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
943 fdp->fd_knhashmask)];
944 } else {
945 /* Otherwise, knote is on an fd. */
946 list = (struct klist *)
947 &fdp->fd_ofiles[kn->kn_id]->ff_knlist;
948 if ((int)kn->kn_id > fdp->fd_lastkqfile)
949 fdp->fd_lastkqfile = kn->kn_id;
950 }
951 SLIST_INSERT_HEAD(list, kn, kn_link);
952
953 KERNEL_LOCK(1, NULL); /* XXXSMP */
954 error = (*kfilter->filtops->f_attach)(kn);
955 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
956 if (error != 0) {
957 /* knote_detach() drops fdp->fd_lock */
958 knote_detach(kn, fdp, false);
959 goto done;
960 }
961 atomic_inc_uint(&kfilter->refcnt);
962 } else {
963 /*
964 * The user may change some filter values after the
965 * initial EV_ADD, but doing so will not reset any
966 * filter which have already been triggered.
967 */
968 kn->kn_sfflags = kev->fflags;
969 kn->kn_sdata = kev->data;
970 kn->kn_kevent.udata = kev->udata;
971 }
972 KERNEL_LOCK(1, NULL); /* XXXSMP */
973 rv = (*kn->kn_fop->f_event)(kn, 0);
974 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
975 if (rv)
976 knote_activate(kn);
977 } else {
978 if (kn == NULL) {
979 error = ENOENT;
980 mutex_exit(&fdp->fd_lock);
981 goto done;
982 }
983 if (kev->flags & EV_DELETE) {
984 /* knote_detach() drops fdp->fd_lock */
985 knote_detach(kn, fdp, true);
986 goto done;
987 }
988 }
989
990 /* disable knote */
991 if ((kev->flags & EV_DISABLE)) {
992 mutex_spin_enter(&kq->kq_lock);
993 if ((kn->kn_status & KN_DISABLED) == 0)
994 kn->kn_status |= KN_DISABLED;
995 mutex_spin_exit(&kq->kq_lock);
996 }
997
998 /* enable knote */
999 if ((kev->flags & EV_ENABLE)) {
1000 knote_enqueue(kn);
1001 }
1002 mutex_exit(&fdp->fd_lock);
1003 done:
1004 rw_exit(&kqueue_filter_lock);
1005 if (newkn != NULL)
1006 kmem_free(newkn, sizeof(*newkn));
1007 if (fp != NULL)
1008 fd_putfile(fd);
1009 return (error);
1010 }
1011
1012 #if defined(DEBUG)
1013 static void
1014 kq_check(struct kqueue *kq)
1015 {
1016 const struct knote *kn;
1017 int count;
1018 int nmarker;
1019
1020 KASSERT(mutex_owned(&kq->kq_lock));
1021 KASSERT(kq->kq_count >= 0);
1022
1023 count = 0;
1024 nmarker = 0;
1025 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1026 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1027 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1028 }
1029 if ((kn->kn_status & KN_MARKER) == 0) {
1030 if (kn->kn_kq != kq) {
1031 panic("%s: kq=%p kn=%p inconsist 2",
1032 __func__, kq, kn);
1033 }
1034 if ((kn->kn_status & KN_ACTIVE) == 0) {
1035 panic("%s: kq=%p kn=%p: not active",
1036 __func__, kq, kn);
1037 }
1038 count++;
1039 if (count > kq->kq_count) {
1040 goto bad;
1041 }
1042 } else {
1043 nmarker++;
1044 #if 0
1045 if (nmarker > 10000) {
1046 panic("%s: kq=%p too many markers: %d != %d, "
1047 "nmarker=%d",
1048 __func__, kq, kq->kq_count, count, nmarker);
1049 }
1050 #endif
1051 }
1052 }
1053 if (kq->kq_count != count) {
1054 bad:
1055 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1056 __func__, kq, kq->kq_count, count, nmarker);
1057 }
1058 }
1059 #else /* defined(DEBUG) */
1060 #define kq_check(a) /* nothing */
1061 #endif /* defined(DEBUG) */
1062
1063 /*
1064 * Scan through the list of events on fp (for a maximum of maxevents),
1065 * returning the results in to ulistp. Timeout is determined by tsp; if
1066 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1067 * as appropriate.
1068 */
1069 static int
1070 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1071 const struct timespec *tsp, register_t *retval,
1072 const struct kevent_ops *keops, struct kevent *kevbuf,
1073 size_t kevcnt)
1074 {
1075 struct kqueue *kq;
1076 struct kevent *kevp;
1077 struct timeval atv, sleeptv;
1078 struct knote *kn, *marker;
1079 size_t count, nkev, nevents;
1080 int timeout, error, rv;
1081 filedesc_t *fdp;
1082
1083 fdp = curlwp->l_fd;
1084 kq = fp->f_data;
1085 count = maxevents;
1086 nkev = nevents = error = 0;
1087 if (count == 0) {
1088 *retval = 0;
1089 return 0;
1090 }
1091
1092 if (tsp) { /* timeout supplied */
1093 TIMESPEC_TO_TIMEVAL(&atv, tsp);
1094 if (inittimeleft(&atv, &sleeptv) == -1) {
1095 *retval = maxevents;
1096 return EINVAL;
1097 }
1098 timeout = tvtohz(&atv);
1099 if (timeout <= 0)
1100 timeout = -1; /* do poll */
1101 } else {
1102 /* no timeout, wait forever */
1103 timeout = 0;
1104 }
1105
1106 marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1107 marker->kn_status = KN_MARKER;
1108 mutex_spin_enter(&kq->kq_lock);
1109 retry:
1110 kevp = kevbuf;
1111 if (kq->kq_count == 0) {
1112 if (timeout >= 0) {
1113 error = cv_timedwait_sig(&kq->kq_cv,
1114 &kq->kq_lock, timeout);
1115 if (error == 0) {
1116 if (tsp == NULL || (timeout =
1117 gettimeleft(&atv, &sleeptv)) > 0)
1118 goto retry;
1119 } else {
1120 /* don't restart after signals... */
1121 if (error == ERESTART)
1122 error = EINTR;
1123 if (error == EWOULDBLOCK)
1124 error = 0;
1125 }
1126 }
1127 } else {
1128 /* mark end of knote list */
1129 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1130
1131 while (count != 0) {
1132 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1133 while ((kn->kn_status & KN_MARKER) != 0) {
1134 if (kn == marker) {
1135 /* it's our marker, stop */
1136 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1137 if (count < maxevents || (tsp != NULL &&
1138 (timeout = gettimeleft(&atv,
1139 &sleeptv)) <= 0))
1140 goto done;
1141 goto retry;
1142 }
1143 /* someone else's marker. */
1144 kn = TAILQ_NEXT(kn, kn_tqe);
1145 }
1146 kq_check(kq);
1147 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1148 kq->kq_count--;
1149 kn->kn_status &= ~KN_QUEUED;
1150 kq_check(kq);
1151 if (kn->kn_status & KN_DISABLED) {
1152 /* don't want disabled events */
1153 continue;
1154 }
1155 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1156 mutex_spin_exit(&kq->kq_lock);
1157 KERNEL_LOCK(1, NULL); /* XXXSMP */
1158 rv = (*kn->kn_fop->f_event)(kn, 0);
1159 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1160 if (rv == 0) {
1161 /*
1162 * non-ONESHOT event that hasn't
1163 * triggered again, so de-queue.
1164 */
1165 mutex_spin_enter(&kq->kq_lock);
1166 kn->kn_status &= ~KN_ACTIVE;
1167 continue;
1168 }
1169 mutex_spin_enter(&kq->kq_lock);
1170 }
1171 *kevp++ = kn->kn_kevent;
1172 nkev++;
1173 if (kn->kn_flags & EV_ONESHOT) {
1174 /* delete ONESHOT events after retrieval */
1175 mutex_spin_exit(&kq->kq_lock);
1176 mutex_enter(&fdp->fd_lock);
1177 knote_detach(kn, fdp, true);
1178 mutex_spin_enter(&kq->kq_lock);
1179 } else if (kn->kn_flags & EV_CLEAR) {
1180 /* clear state after retrieval */
1181 kn->kn_data = 0;
1182 kn->kn_fflags = 0;
1183 kn->kn_status &= ~KN_ACTIVE;
1184 } else {
1185 /* add event back on list */
1186 kq_check(kq);
1187 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1188 kq->kq_count++;
1189 kn->kn_status |= KN_QUEUED;
1190 kq_check(kq);
1191 }
1192 if (nkev == kevcnt) {
1193 /* do copyouts in kevcnt chunks */
1194 mutex_spin_exit(&kq->kq_lock);
1195 error = (*keops->keo_put_events)
1196 (keops->keo_private,
1197 kevbuf, ulistp, nevents, nkev);
1198 mutex_spin_enter(&kq->kq_lock);
1199 nevents += nkev;
1200 nkev = 0;
1201 kevp = kevbuf;
1202 }
1203 count--;
1204 if (error != 0 || count == 0) {
1205 /* remove marker */
1206 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1207 break;
1208 }
1209 }
1210 }
1211 done:
1212 mutex_spin_exit(&kq->kq_lock);
1213 if (marker != NULL)
1214 kmem_free(marker, sizeof(*marker));
1215 if (nkev != 0) {
1216 /* copyout remaining events */
1217 error = (*keops->keo_put_events)(keops->keo_private,
1218 kevbuf, ulistp, nevents, nkev);
1219 }
1220 *retval = maxevents - count;
1221
1222 return error;
1223 }
1224
1225 /*
1226 * fileops ioctl method for a kqueue descriptor.
1227 *
1228 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1229 * KFILTER_BYNAME find name for filter, and return result in
1230 * name, which is of size len.
1231 * KFILTER_BYFILTER find filter for name. len is ignored.
1232 */
1233 /*ARGSUSED*/
1234 static int
1235 kqueue_ioctl(file_t *fp, u_long com, void *data)
1236 {
1237 struct kfilter_mapping *km;
1238 const struct kfilter *kfilter;
1239 char *name;
1240 int error;
1241
1242 km = data;
1243 error = 0;
1244 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1245
1246 switch (com) {
1247 case KFILTER_BYFILTER: /* convert filter -> name */
1248 rw_enter(&kqueue_filter_lock, RW_READER);
1249 kfilter = kfilter_byfilter(km->filter);
1250 if (kfilter != NULL) {
1251 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1252 rw_exit(&kqueue_filter_lock);
1253 error = copyoutstr(name, km->name, km->len, NULL);
1254 } else {
1255 rw_exit(&kqueue_filter_lock);
1256 error = ENOENT;
1257 }
1258 break;
1259
1260 case KFILTER_BYNAME: /* convert name -> filter */
1261 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1262 if (error) {
1263 break;
1264 }
1265 rw_enter(&kqueue_filter_lock, RW_READER);
1266 kfilter = kfilter_byname(name);
1267 if (kfilter != NULL)
1268 km->filter = kfilter->filter;
1269 else
1270 error = ENOENT;
1271 rw_exit(&kqueue_filter_lock);
1272 break;
1273
1274 default:
1275 error = ENOTTY;
1276 break;
1277
1278 }
1279 kmem_free(name, KFILTER_MAXNAME);
1280 return (error);
1281 }
1282
1283 /*
1284 * fileops fcntl method for a kqueue descriptor.
1285 */
1286 static int
1287 kqueue_fcntl(file_t *fp, u_int com, void *data)
1288 {
1289
1290 return (ENOTTY);
1291 }
1292
1293 /*
1294 * fileops poll method for a kqueue descriptor.
1295 * Determine if kqueue has events pending.
1296 */
1297 static int
1298 kqueue_poll(file_t *fp, int events)
1299 {
1300 struct kqueue *kq;
1301 int revents;
1302
1303 kq = fp->f_data;
1304
1305 revents = 0;
1306 if (events & (POLLIN | POLLRDNORM)) {
1307 mutex_spin_enter(&kq->kq_lock);
1308 if (kq->kq_count != 0) {
1309 revents |= events & (POLLIN | POLLRDNORM);
1310 } else {
1311 selrecord(curlwp, &kq->kq_sel);
1312 }
1313 kq_check(kq);
1314 mutex_spin_exit(&kq->kq_lock);
1315 }
1316
1317 return revents;
1318 }
1319
1320 /*
1321 * fileops stat method for a kqueue descriptor.
1322 * Returns dummy info, with st_size being number of events pending.
1323 */
1324 static int
1325 kqueue_stat(file_t *fp, struct stat *st)
1326 {
1327 struct kqueue *kq;
1328
1329 kq = fp->f_data;
1330
1331 memset(st, 0, sizeof(*st));
1332 st->st_size = kq->kq_count;
1333 st->st_blksize = sizeof(struct kevent);
1334 st->st_mode = S_IFIFO;
1335
1336 return 0;
1337 }
1338
1339 static void
1340 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1341 {
1342 struct knote *kn;
1343 filedesc_t *fdp;
1344
1345 fdp = kq->kq_fdp;
1346
1347 KASSERT(mutex_owned(&fdp->fd_lock));
1348
1349 for (kn = SLIST_FIRST(list); kn != NULL;) {
1350 if (kq != kn->kn_kq) {
1351 kn = SLIST_NEXT(kn, kn_link);
1352 continue;
1353 }
1354 knote_detach(kn, fdp, true);
1355 mutex_enter(&fdp->fd_lock);
1356 kn = SLIST_FIRST(list);
1357 }
1358 }
1359
1360
1361 /*
1362 * fileops close method for a kqueue descriptor.
1363 */
1364 static int
1365 kqueue_close(file_t *fp)
1366 {
1367 struct kqueue *kq;
1368 filedesc_t *fdp;
1369 fdfile_t *ff;
1370 int i;
1371
1372 kq = fp->f_data;
1373 fdp = curlwp->l_fd;
1374
1375 mutex_enter(&fdp->fd_lock);
1376 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1377 if ((ff = fdp->fd_ofiles[i]) == NULL)
1378 continue;
1379 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1380 }
1381 if (fdp->fd_knhashmask != 0) {
1382 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1383 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1384 }
1385 }
1386 mutex_exit(&fdp->fd_lock);
1387
1388 KASSERT(kq->kq_count == 0);
1389 mutex_destroy(&kq->kq_lock);
1390 cv_destroy(&kq->kq_cv);
1391 seldestroy(&kq->kq_sel);
1392 kmem_free(kq, sizeof(*kq));
1393 fp->f_data = NULL;
1394
1395 return (0);
1396 }
1397
1398 /*
1399 * struct fileops kqfilter method for a kqueue descriptor.
1400 * Event triggered when monitored kqueue changes.
1401 */
1402 static int
1403 kqueue_kqfilter(file_t *fp, struct knote *kn)
1404 {
1405 struct kqueue *kq;
1406 filedesc_t *fdp;
1407
1408 kq = ((file_t *)kn->kn_obj)->f_data;
1409
1410 KASSERT(fp == kn->kn_obj);
1411
1412 if (kn->kn_filter != EVFILT_READ)
1413 return 1;
1414
1415 kn->kn_fop = &kqread_filtops;
1416 fdp = curlwp->l_fd;
1417 mutex_enter(&kq->kq_lock);
1418 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1419 mutex_exit(&kq->kq_lock);
1420
1421 return 0;
1422 }
1423
1424
1425 /*
1426 * Walk down a list of knotes, activating them if their event has
1427 * triggered. The caller's object lock (e.g. device driver lock)
1428 * must be held.
1429 */
1430 void
1431 knote(struct klist *list, long hint)
1432 {
1433 struct knote *kn;
1434
1435 SLIST_FOREACH(kn, list, kn_selnext) {
1436 if ((*kn->kn_fop->f_event)(kn, hint))
1437 knote_activate(kn);
1438 }
1439 }
1440
1441 /*
1442 * Remove all knotes referencing a specified fd
1443 */
1444 void
1445 knote_fdclose(int fd)
1446 {
1447 struct klist *list;
1448 struct knote *kn;
1449 filedesc_t *fdp;
1450
1451 fdp = curlwp->l_fd;
1452 list = (struct klist *)&fdp->fd_ofiles[fd]->ff_knlist;
1453 mutex_enter(&fdp->fd_lock);
1454 while ((kn = SLIST_FIRST(list)) != NULL) {
1455 knote_detach(kn, fdp, true);
1456 mutex_enter(&fdp->fd_lock);
1457 }
1458 mutex_exit(&fdp->fd_lock);
1459 }
1460
1461 /*
1462 * Drop knote. Called with fdp->fd_lock held, and will drop before
1463 * returning.
1464 */
1465 static void
1466 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1467 {
1468 struct klist *list;
1469
1470 KASSERT((kn->kn_status & KN_MARKER) == 0);
1471 KASSERT(mutex_owned(&fdp->fd_lock));
1472
1473 if (dofop) {
1474 KERNEL_LOCK(1, NULL); /* XXXSMP */
1475 (*kn->kn_fop->f_detach)(kn);
1476 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1477 }
1478
1479 if (kn->kn_fop->f_isfd)
1480 list = (struct klist *)&fdp->fd_ofiles[kn->kn_id]->ff_knlist;
1481 else
1482 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1483
1484 SLIST_REMOVE(list, kn, knote, kn_link);
1485 knote_dequeue(kn);
1486 mutex_exit(&fdp->fd_lock);
1487 if (kn->kn_fop->f_isfd)
1488 fd_putfile(kn->kn_id);
1489 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1490 kmem_free(kn, sizeof(*kn));
1491 }
1492
1493 /*
1494 * Queue new event for knote.
1495 */
1496 static void
1497 knote_enqueue(struct knote *kn)
1498 {
1499 struct kqueue *kq;
1500
1501 KASSERT((kn->kn_status & KN_MARKER) == 0);
1502
1503 kq = kn->kn_kq;
1504
1505 mutex_spin_enter(&kq->kq_lock);
1506 if ((kn->kn_status & KN_DISABLED) != 0) {
1507 kn->kn_status &= ~KN_DISABLED;
1508 }
1509 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1510 kq_check(kq);
1511 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1512 kn->kn_status |= KN_QUEUED;
1513 kq->kq_count++;
1514 kq_check(kq);
1515 cv_broadcast(&kq->kq_cv);
1516 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1517 }
1518 mutex_spin_exit(&kq->kq_lock);
1519 }
1520
1521 /*
1522 * Dequeue event for knote.
1523 */
1524 static void
1525 knote_dequeue(struct knote *kn)
1526 {
1527 struct kqueue *kq;
1528
1529 KASSERT((kn->kn_status & KN_MARKER) == 0);
1530
1531 kq = kn->kn_kq;
1532
1533 mutex_spin_enter(&kq->kq_lock);
1534 if ((kn->kn_status & KN_QUEUED) != 0) {
1535 kq_check(kq);
1536 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1537 kn->kn_status &= ~KN_QUEUED;
1538 kq->kq_count--;
1539 kq_check(kq);
1540 }
1541 mutex_spin_exit(&kq->kq_lock);
1542 }
1543
1544 /*
1545 * Queue new event for knote.
1546 */
1547 static void
1548 knote_activate(struct knote *kn)
1549 {
1550 struct kqueue *kq;
1551
1552 KASSERT((kn->kn_status & KN_MARKER) == 0);
1553
1554 kq = kn->kn_kq;
1555
1556 mutex_spin_enter(&kq->kq_lock);
1557 kn->kn_status |= KN_ACTIVE;
1558 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1559 kq_check(kq);
1560 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1561 kn->kn_status |= KN_QUEUED;
1562 kq->kq_count++;
1563 kq_check(kq);
1564 cv_broadcast(&kq->kq_cv);
1565 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1566 }
1567 mutex_spin_exit(&kq->kq_lock);
1568 }
1569