kern_event.c revision 1.25 1 /* $NetBSD: kern_event.c,v 1.25 2005/12/11 12:24:29 christos Exp $ */
2 /*-
3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.25 2005/12/11 12:24:29 christos Exp $");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/proc.h>
37 #include <sys/malloc.h>
38 #include <sys/unistd.h>
39 #include <sys/file.h>
40 #include <sys/fcntl.h>
41 #include <sys/select.h>
42 #include <sys/queue.h>
43 #include <sys/event.h>
44 #include <sys/eventvar.h>
45 #include <sys/poll.h>
46 #include <sys/pool.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/stat.h>
51 #include <sys/uio.h>
52 #include <sys/mount.h>
53 #include <sys/filedesc.h>
54 #include <sys/sa.h>
55 #include <sys/syscallargs.h>
56
57 static void kqueue_wakeup(struct kqueue *kq);
58
59 static int kqueue_scan(struct file *, size_t, struct kevent *,
60 const struct timespec *, struct lwp *, register_t *,
61 const struct kevent_ops *);
62 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
63 struct ucred *cred, int flags);
64 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
65 struct ucred *cred, int flags);
66 static int kqueue_ioctl(struct file *fp, u_long com, void *data,
67 struct lwp *l);
68 static int kqueue_fcntl(struct file *fp, u_int com, void *data,
69 struct lwp *l);
70 static int kqueue_poll(struct file *fp, int events, struct lwp *l);
71 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
72 static int kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l);
73 static int kqueue_close(struct file *fp, struct lwp *l);
74
75 static const struct fileops kqueueops = {
76 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
77 kqueue_stat, kqueue_close, kqueue_kqfilter
78 };
79
80 static void knote_attach(struct knote *kn, struct filedesc *fdp);
81 static void knote_drop(struct knote *kn, struct lwp *l,
82 struct filedesc *fdp);
83 static void knote_enqueue(struct knote *kn);
84 static void knote_dequeue(struct knote *kn);
85
86 static void filt_kqdetach(struct knote *kn);
87 static int filt_kqueue(struct knote *kn, long hint);
88 static int filt_procattach(struct knote *kn);
89 static void filt_procdetach(struct knote *kn);
90 static int filt_proc(struct knote *kn, long hint);
91 static int filt_fileattach(struct knote *kn);
92 static void filt_timerexpire(void *knx);
93 static int filt_timerattach(struct knote *kn);
94 static void filt_timerdetach(struct knote *kn);
95 static int filt_timer(struct knote *kn, long hint);
96
97 static const struct filterops kqread_filtops =
98 { 1, NULL, filt_kqdetach, filt_kqueue };
99 static const struct filterops proc_filtops =
100 { 0, filt_procattach, filt_procdetach, filt_proc };
101 static const struct filterops file_filtops =
102 { 1, filt_fileattach, NULL, NULL };
103 static struct filterops timer_filtops =
104 { 0, filt_timerattach, filt_timerdetach, filt_timer };
105
106 POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL);
107 POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL);
108 static int kq_ncallouts = 0;
109 static int kq_calloutmax = (4 * 1024);
110
111 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
112
113 #define KNOTE_ACTIVATE(kn) \
114 do { \
115 kn->kn_status |= KN_ACTIVE; \
116 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
117 knote_enqueue(kn); \
118 } while(0)
119
120 #define KN_HASHSIZE 64 /* XXX should be tunable */
121 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
122
123 extern const struct filterops sig_filtops;
124
125 /*
126 * Table for for all system-defined filters.
127 * These should be listed in the numeric order of the EVFILT_* defines.
128 * If filtops is NULL, the filter isn't implemented in NetBSD.
129 * End of list is when name is NULL.
130 */
131 struct kfilter {
132 const char *name; /* name of filter */
133 uint32_t filter; /* id of filter */
134 const struct filterops *filtops;/* operations for filter */
135 };
136
137 /* System defined filters */
138 static const struct kfilter sys_kfilters[] = {
139 { "EVFILT_READ", EVFILT_READ, &file_filtops },
140 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
141 { "EVFILT_AIO", EVFILT_AIO, NULL },
142 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
143 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
144 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
145 { "EVFILT_TIMER", EVFILT_TIMER, &timer_filtops },
146 { NULL, 0, NULL }, /* end of list */
147 };
148
149 /* User defined kfilters */
150 static struct kfilter *user_kfilters; /* array */
151 static int user_kfilterc; /* current offset */
152 static int user_kfiltermaxc; /* max size so far */
153
154 /*
155 * Find kfilter entry by name, or NULL if not found.
156 */
157 static const struct kfilter *
158 kfilter_byname_sys(const char *name)
159 {
160 int i;
161
162 for (i = 0; sys_kfilters[i].name != NULL; i++) {
163 if (strcmp(name, sys_kfilters[i].name) == 0)
164 return (&sys_kfilters[i]);
165 }
166 return (NULL);
167 }
168
169 static struct kfilter *
170 kfilter_byname_user(const char *name)
171 {
172 int i;
173
174 /* user_kfilters[] could be NULL if no filters were registered */
175 if (!user_kfilters)
176 return (NULL);
177
178 for (i = 0; user_kfilters[i].name != NULL; i++) {
179 if (user_kfilters[i].name != '\0' &&
180 strcmp(name, user_kfilters[i].name) == 0)
181 return (&user_kfilters[i]);
182 }
183 return (NULL);
184 }
185
186 static const struct kfilter *
187 kfilter_byname(const char *name)
188 {
189 const struct kfilter *kfilter;
190
191 if ((kfilter = kfilter_byname_sys(name)) != NULL)
192 return (kfilter);
193
194 return (kfilter_byname_user(name));
195 }
196
197 /*
198 * Find kfilter entry by filter id, or NULL if not found.
199 * Assumes entries are indexed in filter id order, for speed.
200 */
201 static const struct kfilter *
202 kfilter_byfilter(uint32_t filter)
203 {
204 const struct kfilter *kfilter;
205
206 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
207 kfilter = &sys_kfilters[filter];
208 else if (user_kfilters != NULL &&
209 filter < EVFILT_SYSCOUNT + user_kfilterc)
210 /* it's a user filter */
211 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
212 else
213 return (NULL); /* out of range */
214 KASSERT(kfilter->filter == filter); /* sanity check! */
215 return (kfilter);
216 }
217
218 /*
219 * Register a new kfilter. Stores the entry in user_kfilters.
220 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
221 * If retfilter != NULL, the new filterid is returned in it.
222 */
223 int
224 kfilter_register(const char *name, const struct filterops *filtops,
225 int *retfilter)
226 {
227 struct kfilter *kfilter;
228 void *space;
229 int len;
230
231 if (name == NULL || name[0] == '\0' || filtops == NULL)
232 return (EINVAL); /* invalid args */
233 if (kfilter_byname(name) != NULL)
234 return (EEXIST); /* already exists */
235 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
236 return (EINVAL); /* too many */
237
238 /* check if need to grow user_kfilters */
239 if (user_kfilterc + 1 > user_kfiltermaxc) {
240 /*
241 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
242 * want to traverse user_kfilters as an array.
243 */
244 user_kfiltermaxc += KFILTER_EXTENT;
245 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
246 M_KEVENT, M_WAITOK);
247
248 /* copy existing user_kfilters */
249 if (user_kfilters != NULL)
250 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
251 user_kfilterc * sizeof(struct kfilter *));
252 /* zero new sections */
253 memset((caddr_t)kfilter +
254 user_kfilterc * sizeof(struct kfilter *), 0,
255 (user_kfiltermaxc - user_kfilterc) *
256 sizeof(struct kfilter *));
257 /* switch to new kfilter */
258 if (user_kfilters != NULL)
259 free(user_kfilters, M_KEVENT);
260 user_kfilters = kfilter;
261 }
262 len = strlen(name) + 1; /* copy name */
263 space = malloc(len, M_KEVENT, M_WAITOK);
264 memcpy(space, name, len);
265 user_kfilters[user_kfilterc].name = space;
266
267 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
268
269 len = sizeof(struct filterops); /* copy filtops */
270 space = malloc(len, M_KEVENT, M_WAITOK);
271 memcpy(space, filtops, len);
272 user_kfilters[user_kfilterc].filtops = space;
273
274 if (retfilter != NULL)
275 *retfilter = user_kfilters[user_kfilterc].filter;
276 user_kfilterc++; /* finally, increment count */
277 return (0);
278 }
279
280 /*
281 * Unregister a kfilter previously registered with kfilter_register.
282 * This retains the filter id, but clears the name and frees filtops (filter
283 * operations), so that the number isn't reused during a boot.
284 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
285 */
286 int
287 kfilter_unregister(const char *name)
288 {
289 struct kfilter *kfilter;
290
291 if (name == NULL || name[0] == '\0')
292 return (EINVAL); /* invalid name */
293
294 if (kfilter_byname_sys(name) != NULL)
295 return (EINVAL); /* can't detach system filters */
296
297 kfilter = kfilter_byname_user(name);
298 if (kfilter == NULL) /* not found */
299 return (ENOENT);
300
301 if (kfilter->name[0] != '\0') {
302 /* XXXUNCONST Cast away const (but we know it's safe. */
303 free(__UNCONST(kfilter->name), M_KEVENT);
304 kfilter->name = ""; /* mark as `not implemented' */
305 }
306 if (kfilter->filtops != NULL) {
307 /* XXXUNCONST Cast away const (but we know it's safe. */
308 free(__UNCONST(kfilter->filtops), M_KEVENT);
309 kfilter->filtops = NULL; /* mark as `not implemented' */
310 }
311 return (0);
312 }
313
314
315 /*
316 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
317 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
318 */
319 static int
320 filt_fileattach(struct knote *kn)
321 {
322 struct file *fp;
323
324 fp = kn->kn_fp;
325 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
326 }
327
328 /*
329 * Filter detach method for EVFILT_READ on kqueue descriptor.
330 */
331 static void
332 filt_kqdetach(struct knote *kn)
333 {
334 struct kqueue *kq;
335
336 kq = (struct kqueue *)kn->kn_fp->f_data;
337 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
338 }
339
340 /*
341 * Filter event method for EVFILT_READ on kqueue descriptor.
342 */
343 /*ARGSUSED*/
344 static int
345 filt_kqueue(struct knote *kn, long hint)
346 {
347 struct kqueue *kq;
348
349 kq = (struct kqueue *)kn->kn_fp->f_data;
350 kn->kn_data = kq->kq_count;
351 return (kn->kn_data > 0);
352 }
353
354 /*
355 * Filter attach method for EVFILT_PROC.
356 */
357 static int
358 filt_procattach(struct knote *kn)
359 {
360 struct proc *p;
361
362 p = pfind(kn->kn_id);
363 if (p == NULL)
364 return (ESRCH);
365
366 /*
367 * Fail if it's not owned by you, or the last exec gave us
368 * setuid/setgid privs (unless you're root).
369 */
370 if ((p->p_cred->p_ruid != curproc->p_cred->p_ruid ||
371 (p->p_flag & P_SUGID))
372 && suser(curproc->p_ucred, &curproc->p_acflag) != 0)
373 return (EACCES);
374
375 kn->kn_ptr.p_proc = p;
376 kn->kn_flags |= EV_CLEAR; /* automatically set */
377
378 /*
379 * internal flag indicating registration done by kernel
380 */
381 if (kn->kn_flags & EV_FLAG1) {
382 kn->kn_data = kn->kn_sdata; /* ppid */
383 kn->kn_fflags = NOTE_CHILD;
384 kn->kn_flags &= ~EV_FLAG1;
385 }
386
387 /* XXXSMP lock the process? */
388 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
389
390 return (0);
391 }
392
393 /*
394 * Filter detach method for EVFILT_PROC.
395 *
396 * The knote may be attached to a different process, which may exit,
397 * leaving nothing for the knote to be attached to. So when the process
398 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
399 * it will be deleted when read out. However, as part of the knote deletion,
400 * this routine is called, so a check is needed to avoid actually performing
401 * a detach, because the original process might not exist any more.
402 */
403 static void
404 filt_procdetach(struct knote *kn)
405 {
406 struct proc *p;
407
408 if (kn->kn_status & KN_DETACHED)
409 return;
410
411 p = kn->kn_ptr.p_proc;
412 KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p);
413
414 /* XXXSMP lock the process? */
415 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
416 }
417
418 /*
419 * Filter event method for EVFILT_PROC.
420 */
421 static int
422 filt_proc(struct knote *kn, long hint)
423 {
424 u_int event;
425
426 /*
427 * mask off extra data
428 */
429 event = (u_int)hint & NOTE_PCTRLMASK;
430
431 /*
432 * if the user is interested in this event, record it.
433 */
434 if (kn->kn_sfflags & event)
435 kn->kn_fflags |= event;
436
437 /*
438 * process is gone, so flag the event as finished.
439 */
440 if (event == NOTE_EXIT) {
441 /*
442 * Detach the knote from watched process and mark
443 * it as such. We can't leave this to kqueue_scan(),
444 * since the process might not exist by then. And we
445 * have to do this now, since psignal KNOTE() is called
446 * also for zombies and we might end up reading freed
447 * memory if the kevent would already be picked up
448 * and knote g/c'ed.
449 */
450 kn->kn_fop->f_detach(kn);
451 kn->kn_status |= KN_DETACHED;
452
453 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
454 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
455 return (1);
456 }
457
458 /*
459 * process forked, and user wants to track the new process,
460 * so attach a new knote to it, and immediately report an
461 * event with the parent's pid.
462 */
463 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
464 struct kevent kev;
465 int error;
466
467 /*
468 * register knote with new process.
469 */
470 kev.ident = hint & NOTE_PDATAMASK; /* pid */
471 kev.filter = kn->kn_filter;
472 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
473 kev.fflags = kn->kn_sfflags;
474 kev.data = kn->kn_id; /* parent */
475 kev.udata = kn->kn_kevent.udata; /* preserve udata */
476 error = kqueue_register(kn->kn_kq, &kev, NULL);
477 if (error)
478 kn->kn_fflags |= NOTE_TRACKERR;
479 }
480
481 return (kn->kn_fflags != 0);
482 }
483
484 static void
485 filt_timerexpire(void *knx)
486 {
487 struct knote *kn = knx;
488 int tticks;
489
490 kn->kn_data++;
491 KNOTE_ACTIVATE(kn);
492
493 if ((kn->kn_flags & EV_ONESHOT) == 0) {
494 tticks = mstohz(kn->kn_sdata);
495 callout_schedule((struct callout *)kn->kn_hook, tticks);
496 }
497 }
498
499 /*
500 * data contains amount of time to sleep, in milliseconds
501 */
502 static int
503 filt_timerattach(struct knote *kn)
504 {
505 struct callout *calloutp;
506 int tticks;
507
508 if (kq_ncallouts >= kq_calloutmax)
509 return (ENOMEM);
510 kq_ncallouts++;
511
512 tticks = mstohz(kn->kn_sdata);
513
514 /* if the supplied value is under our resolution, use 1 tick */
515 if (tticks == 0) {
516 if (kn->kn_sdata == 0)
517 return (EINVAL);
518 tticks = 1;
519 }
520
521 kn->kn_flags |= EV_CLEAR; /* automatically set */
522 MALLOC(calloutp, struct callout *, sizeof(*calloutp),
523 M_KEVENT, 0);
524 callout_init(calloutp);
525 callout_reset(calloutp, tticks, filt_timerexpire, kn);
526 kn->kn_hook = calloutp;
527
528 return (0);
529 }
530
531 static void
532 filt_timerdetach(struct knote *kn)
533 {
534 struct callout *calloutp;
535
536 calloutp = (struct callout *)kn->kn_hook;
537 callout_stop(calloutp);
538 FREE(calloutp, M_KEVENT);
539 kq_ncallouts--;
540 }
541
542 static int
543 filt_timer(struct knote *kn, long hint)
544 {
545 return (kn->kn_data != 0);
546 }
547
548 /*
549 * filt_seltrue:
550 *
551 * This filter "event" routine simulates seltrue().
552 */
553 int
554 filt_seltrue(struct knote *kn, long hint)
555 {
556
557 /*
558 * We don't know how much data can be read/written,
559 * but we know that it *can* be. This is about as
560 * good as select/poll does as well.
561 */
562 kn->kn_data = 0;
563 return (1);
564 }
565
566 /*
567 * This provides full kqfilter entry for device switch tables, which
568 * has same effect as filter using filt_seltrue() as filter method.
569 */
570 static void
571 filt_seltruedetach(struct knote *kn)
572 {
573 /* Nothing to do */
574 }
575
576 static const struct filterops seltrue_filtops =
577 { 1, NULL, filt_seltruedetach, filt_seltrue };
578
579 int
580 seltrue_kqfilter(dev_t dev, struct knote *kn)
581 {
582 switch (kn->kn_filter) {
583 case EVFILT_READ:
584 case EVFILT_WRITE:
585 kn->kn_fop = &seltrue_filtops;
586 break;
587 default:
588 return (1);
589 }
590
591 /* Nothing more to do */
592 return (0);
593 }
594
595 /*
596 * kqueue(2) system call.
597 */
598 int
599 sys_kqueue(struct lwp *l, void *v, register_t *retval)
600 {
601 struct filedesc *fdp;
602 struct kqueue *kq;
603 struct file *fp;
604 struct proc *p;
605 int fd, error;
606
607 p = l->l_proc;
608 fdp = p->p_fd;
609 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
610 if (error)
611 return (error);
612 fp->f_flag = FREAD | FWRITE;
613 fp->f_type = DTYPE_KQUEUE;
614 fp->f_ops = &kqueueops;
615 kq = pool_get(&kqueue_pool, PR_WAITOK);
616 memset((char *)kq, 0, sizeof(struct kqueue));
617 simple_lock_init(&kq->kq_lock);
618 TAILQ_INIT(&kq->kq_head);
619 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
620 *retval = fd;
621 if (fdp->fd_knlistsize < 0)
622 fdp->fd_knlistsize = 0; /* this process has a kq */
623 kq->kq_fdp = fdp;
624 FILE_SET_MATURE(fp);
625 FILE_UNUSE(fp, l); /* falloc() does FILE_USE() */
626 return (error);
627 }
628
629 /*
630 * kevent(2) system call.
631 */
632 static int
633 kevent_fetch_changes(void *private, const struct kevent *changelist,
634 struct kevent *changes, size_t index, int n)
635 {
636 return copyin(changelist + index, changes, n * sizeof(*changes));
637 }
638
639 static int
640 kevent_put_events(void *private, struct kevent *events,
641 struct kevent *eventlist, size_t index, int n)
642 {
643 return copyout(events, eventlist + index, n * sizeof(*events));
644 }
645
646 static const struct kevent_ops kevent_native_ops = {
647 keo_private: NULL,
648 keo_fetch_timeout: copyin,
649 keo_fetch_changes: kevent_fetch_changes,
650 keo_put_events: kevent_put_events,
651 };
652
653 int
654 sys_kevent(struct lwp *l, void *v, register_t *retval)
655 {
656 struct sys_kevent_args /* {
657 syscallarg(int) fd;
658 syscallarg(const struct kevent *) changelist;
659 syscallarg(size_t) nchanges;
660 syscallarg(struct kevent *) eventlist;
661 syscallarg(size_t) nevents;
662 syscallarg(const struct timespec *) timeout;
663 } */ *uap = v;
664
665 return kevent1(l, retval, SCARG(uap, fd), SCARG(uap, changelist),
666 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
667 SCARG(uap, timeout), &kevent_native_ops);
668 }
669
670 int
671 kevent1(struct lwp *l, register_t *retval, int fd,
672 const struct kevent *changelist, size_t nchanges, struct kevent *eventlist,
673 size_t nevents, const struct timespec *timeout,
674 const struct kevent_ops *keops)
675 {
676 struct kevent *kevp;
677 struct kqueue *kq;
678 struct file *fp;
679 struct timespec ts;
680 struct proc *p;
681 size_t i, n, ichange;
682 int nerrors, error;
683
684 p = l->l_proc;
685 /* check that we're dealing with a kq */
686 fp = fd_getfile(p->p_fd, fd);
687 if (fp == NULL)
688 return (EBADF);
689
690 if (fp->f_type != DTYPE_KQUEUE) {
691 simple_unlock(&fp->f_slock);
692 return (EBADF);
693 }
694
695 FILE_USE(fp);
696
697 if (timeout != NULL) {
698 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
699 if (error)
700 goto done;
701 timeout = &ts;
702 }
703
704 kq = (struct kqueue *)fp->f_data;
705 nerrors = 0;
706 ichange = 0;
707
708 /* traverse list of events to register */
709 while (nchanges > 0) {
710 /* copyin a maximum of KQ_EVENTS at each pass */
711 n = MIN(nchanges, KQ_NEVENTS);
712 error = (*keops->keo_fetch_changes)(keops->keo_private,
713 changelist, kq->kq_kev, ichange, n);
714 if (error)
715 goto done;
716 for (i = 0; i < n; i++) {
717 kevp = &kq->kq_kev[i];
718 kevp->flags &= ~EV_SYSFLAGS;
719 /* register each knote */
720 error = kqueue_register(kq, kevp, l);
721 if (error) {
722 if (nevents != 0) {
723 kevp->flags = EV_ERROR;
724 kevp->data = error;
725 error = (*keops->keo_put_events)
726 (keops->keo_private, kevp,
727 eventlist, nerrors, 1);
728 if (error)
729 goto done;
730 nevents--;
731 nerrors++;
732 } else {
733 goto done;
734 }
735 }
736 }
737 nchanges -= n; /* update the results */
738 ichange += n;
739 }
740 if (nerrors) {
741 *retval = nerrors;
742 error = 0;
743 goto done;
744 }
745
746 /* actually scan through the events */
747 error = kqueue_scan(fp, nevents, eventlist, timeout, l, retval, keops);
748 done:
749 FILE_UNUSE(fp, l);
750 return (error);
751 }
752
753 /*
754 * Register a given kevent kev onto the kqueue
755 */
756 int
757 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l)
758 {
759 const struct kfilter *kfilter;
760 struct filedesc *fdp;
761 struct file *fp;
762 struct knote *kn;
763 int s, error;
764
765 fdp = kq->kq_fdp;
766 fp = NULL;
767 kn = NULL;
768 error = 0;
769 kfilter = kfilter_byfilter(kev->filter);
770 if (kfilter == NULL || kfilter->filtops == NULL) {
771 /* filter not found nor implemented */
772 return (EINVAL);
773 }
774
775 /* search if knote already exists */
776 if (kfilter->filtops->f_isfd) {
777 /* monitoring a file descriptor */
778 if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
779 return (EBADF); /* validate descriptor */
780 FILE_USE(fp);
781
782 if (kev->ident < fdp->fd_knlistsize) {
783 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
784 if (kq == kn->kn_kq &&
785 kev->filter == kn->kn_filter)
786 break;
787 }
788 } else {
789 /*
790 * not monitoring a file descriptor, so
791 * lookup knotes in internal hash table
792 */
793 if (fdp->fd_knhashmask != 0) {
794 struct klist *list;
795
796 list = &fdp->fd_knhash[
797 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
798 SLIST_FOREACH(kn, list, kn_link)
799 if (kev->ident == kn->kn_id &&
800 kq == kn->kn_kq &&
801 kev->filter == kn->kn_filter)
802 break;
803 }
804 }
805
806 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
807 error = ENOENT; /* filter not found */
808 goto done;
809 }
810
811 /*
812 * kn now contains the matching knote, or NULL if no match
813 */
814 if (kev->flags & EV_ADD) {
815 /* add knote */
816
817 if (kn == NULL) {
818 /* create new knote */
819 kn = pool_get(&knote_pool, PR_WAITOK);
820 if (kn == NULL) {
821 error = ENOMEM;
822 goto done;
823 }
824 kn->kn_fp = fp;
825 kn->kn_kq = kq;
826 kn->kn_fop = kfilter->filtops;
827
828 /*
829 * apply reference count to knote structure, and
830 * do not release it at the end of this routine.
831 */
832 fp = NULL;
833
834 kn->kn_sfflags = kev->fflags;
835 kn->kn_sdata = kev->data;
836 kev->fflags = 0;
837 kev->data = 0;
838 kn->kn_kevent = *kev;
839
840 knote_attach(kn, fdp);
841 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
842 knote_drop(kn, l, fdp);
843 goto done;
844 }
845 } else {
846 /* modify existing knote */
847
848 /*
849 * The user may change some filter values after the
850 * initial EV_ADD, but doing so will not reset any
851 * filter which have already been triggered.
852 */
853 kn->kn_sfflags = kev->fflags;
854 kn->kn_sdata = kev->data;
855 kn->kn_kevent.udata = kev->udata;
856 }
857
858 s = splsched();
859 if (kn->kn_fop->f_event(kn, 0))
860 KNOTE_ACTIVATE(kn);
861 splx(s);
862
863 } else if (kev->flags & EV_DELETE) { /* delete knote */
864 kn->kn_fop->f_detach(kn);
865 knote_drop(kn, l, fdp);
866 goto done;
867 }
868
869 /* disable knote */
870 if ((kev->flags & EV_DISABLE) &&
871 ((kn->kn_status & KN_DISABLED) == 0)) {
872 s = splsched();
873 kn->kn_status |= KN_DISABLED;
874 splx(s);
875 }
876
877 /* enable knote */
878 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
879 s = splsched();
880 kn->kn_status &= ~KN_DISABLED;
881 if ((kn->kn_status & KN_ACTIVE) &&
882 ((kn->kn_status & KN_QUEUED) == 0))
883 knote_enqueue(kn);
884 splx(s);
885 }
886
887 done:
888 if (fp != NULL)
889 FILE_UNUSE(fp, l);
890 return (error);
891 }
892
893 /*
894 * Scan through the list of events on fp (for a maximum of maxevents),
895 * returning the results in to ulistp. Timeout is determined by tsp; if
896 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
897 * as appropriate.
898 */
899 static int
900 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
901 const struct timespec *tsp, struct lwp *l, register_t *retval,
902 const struct kevent_ops *keops)
903 {
904 struct proc *p = l->l_proc;
905 struct kqueue *kq;
906 struct kevent *kevp;
907 struct timeval atv;
908 struct knote *kn, *marker=NULL;
909 size_t count, nkev, nevents;
910 int s, timeout, error;
911
912 kq = (struct kqueue *)fp->f_data;
913 count = maxevents;
914 nkev = nevents = error = 0;
915 if (count == 0)
916 goto done;
917
918 if (tsp) { /* timeout supplied */
919 TIMESPEC_TO_TIMEVAL(&atv, tsp);
920 if (itimerfix(&atv)) {
921 error = EINVAL;
922 goto done;
923 }
924 s = splclock();
925 timeradd(&atv, &time, &atv); /* calc. time to wait until */
926 splx(s);
927 timeout = hzto(&atv);
928 if (timeout <= 0)
929 timeout = -1; /* do poll */
930 } else {
931 /* no timeout, wait forever */
932 timeout = 0;
933 }
934
935 MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK);
936 memset(marker, 0, sizeof(*marker));
937
938 goto start;
939
940 retry:
941 if (tsp) {
942 /*
943 * We have to recalculate the timeout on every retry.
944 */
945 timeout = hzto(&atv);
946 if (timeout <= 0)
947 goto done;
948 }
949
950 start:
951 kevp = kq->kq_kev;
952 s = splsched();
953 simple_lock(&kq->kq_lock);
954 if (kq->kq_count == 0) {
955 if (timeout < 0) {
956 error = EWOULDBLOCK;
957 simple_unlock(&kq->kq_lock);
958 } else {
959 kq->kq_state |= KQ_SLEEP;
960 error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
961 "kqread", timeout, &kq->kq_lock);
962 }
963 splx(s);
964 if (error == 0)
965 goto retry;
966 /* don't restart after signals... */
967 if (error == ERESTART)
968 error = EINTR;
969 else if (error == EWOULDBLOCK)
970 error = 0;
971 goto done;
972 }
973
974 /* mark end of knote list */
975 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
976 simple_unlock(&kq->kq_lock);
977
978 while (count) { /* while user wants data ... */
979 simple_lock(&kq->kq_lock);
980 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
981 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
982 if (kn == marker) { /* if it's our marker, stop */
983 /* What if it's some else's marker? */
984 simple_unlock(&kq->kq_lock);
985 splx(s);
986 if (count == maxevents)
987 goto retry;
988 goto done;
989 }
990 kq->kq_count--;
991 simple_unlock(&kq->kq_lock);
992
993 if (kn->kn_status & KN_DISABLED) {
994 /* don't want disabled events */
995 kn->kn_status &= ~KN_QUEUED;
996 continue;
997 }
998 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
999 kn->kn_fop->f_event(kn, 0) == 0) {
1000 /*
1001 * non-ONESHOT event that hasn't
1002 * triggered again, so de-queue.
1003 */
1004 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1005 continue;
1006 }
1007 *kevp = kn->kn_kevent;
1008 kevp++;
1009 nkev++;
1010 if (kn->kn_flags & EV_ONESHOT) {
1011 /* delete ONESHOT events after retrieval */
1012 kn->kn_status &= ~KN_QUEUED;
1013 splx(s);
1014 kn->kn_fop->f_detach(kn);
1015 knote_drop(kn, l, p->p_fd);
1016 s = splsched();
1017 } else if (kn->kn_flags & EV_CLEAR) {
1018 /* clear state after retrieval */
1019 kn->kn_data = 0;
1020 kn->kn_fflags = 0;
1021 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1022 } else {
1023 /* add event back on list */
1024 simple_lock(&kq->kq_lock);
1025 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1026 kq->kq_count++;
1027 simple_unlock(&kq->kq_lock);
1028 }
1029 count--;
1030 if (nkev == KQ_NEVENTS) {
1031 /* do copyouts in KQ_NEVENTS chunks */
1032 splx(s);
1033 error = (*keops->keo_put_events)(keops->keo_private,
1034 &kq->kq_kev[0], ulistp, nevents, nkev);
1035 nevents += nkev;
1036 nkev = 0;
1037 kevp = kq->kq_kev;
1038 s = splsched();
1039 if (error)
1040 break;
1041 }
1042 }
1043
1044 /* remove marker */
1045 simple_lock(&kq->kq_lock);
1046 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1047 simple_unlock(&kq->kq_lock);
1048 splx(s);
1049 done:
1050 if (marker)
1051 FREE(marker, M_KEVENT);
1052
1053 if (nkev != 0)
1054 /* copyout remaining events */
1055 error = (*keops->keo_put_events)(keops->keo_private,
1056 &kq->kq_kev[0], ulistp, nevents, nkev);
1057 *retval = maxevents - count;
1058
1059 return (error);
1060 }
1061
1062 /*
1063 * struct fileops read method for a kqueue descriptor.
1064 * Not implemented.
1065 * XXX: This could be expanded to call kqueue_scan, if desired.
1066 */
1067 /*ARGSUSED*/
1068 static int
1069 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
1070 struct ucred *cred, int flags)
1071 {
1072
1073 return (ENXIO);
1074 }
1075
1076 /*
1077 * struct fileops write method for a kqueue descriptor.
1078 * Not implemented.
1079 */
1080 /*ARGSUSED*/
1081 static int
1082 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
1083 struct ucred *cred, int flags)
1084 {
1085
1086 return (ENXIO);
1087 }
1088
1089 /*
1090 * struct fileops ioctl method for a kqueue descriptor.
1091 *
1092 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1093 * KFILTER_BYNAME find name for filter, and return result in
1094 * name, which is of size len.
1095 * KFILTER_BYFILTER find filter for name. len is ignored.
1096 */
1097 /*ARGSUSED*/
1098 static int
1099 kqueue_ioctl(struct file *fp, u_long com, void *data, struct lwp *l)
1100 {
1101 struct kfilter_mapping *km;
1102 const struct kfilter *kfilter;
1103 char *name;
1104 int error;
1105
1106 km = (struct kfilter_mapping *)data;
1107 error = 0;
1108
1109 switch (com) {
1110 case KFILTER_BYFILTER: /* convert filter -> name */
1111 kfilter = kfilter_byfilter(km->filter);
1112 if (kfilter != NULL)
1113 error = copyoutstr(kfilter->name, km->name, km->len,
1114 NULL);
1115 else
1116 error = ENOENT;
1117 break;
1118
1119 case KFILTER_BYNAME: /* convert name -> filter */
1120 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
1121 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1122 if (error) {
1123 FREE(name, M_KEVENT);
1124 break;
1125 }
1126 kfilter = kfilter_byname(name);
1127 if (kfilter != NULL)
1128 km->filter = kfilter->filter;
1129 else
1130 error = ENOENT;
1131 FREE(name, M_KEVENT);
1132 break;
1133
1134 default:
1135 error = ENOTTY;
1136
1137 }
1138 return (error);
1139 }
1140
1141 /*
1142 * struct fileops fcntl method for a kqueue descriptor.
1143 * Not implemented.
1144 */
1145 /*ARGSUSED*/
1146 static int
1147 kqueue_fcntl(struct file *fp, u_int com, void *data, struct lwp *l)
1148 {
1149
1150 return (ENOTTY);
1151 }
1152
1153 /*
1154 * struct fileops poll method for a kqueue descriptor.
1155 * Determine if kqueue has events pending.
1156 */
1157 static int
1158 kqueue_poll(struct file *fp, int events, struct lwp *l)
1159 {
1160 struct kqueue *kq;
1161 int revents;
1162
1163 kq = (struct kqueue *)fp->f_data;
1164 revents = 0;
1165 if (events & (POLLIN | POLLRDNORM)) {
1166 if (kq->kq_count) {
1167 revents |= events & (POLLIN | POLLRDNORM);
1168 } else {
1169 selrecord(l, &kq->kq_sel);
1170 }
1171 }
1172 return (revents);
1173 }
1174
1175 /*
1176 * struct fileops stat method for a kqueue descriptor.
1177 * Returns dummy info, with st_size being number of events pending.
1178 */
1179 static int
1180 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l)
1181 {
1182 struct kqueue *kq;
1183
1184 kq = (struct kqueue *)fp->f_data;
1185 memset((void *)st, 0, sizeof(*st));
1186 st->st_size = kq->kq_count;
1187 st->st_blksize = sizeof(struct kevent);
1188 st->st_mode = S_IFIFO;
1189 return (0);
1190 }
1191
1192 /*
1193 * struct fileops close method for a kqueue descriptor.
1194 * Cleans up kqueue.
1195 */
1196 static int
1197 kqueue_close(struct file *fp, struct lwp *l)
1198 {
1199 struct proc *p = l->l_proc;
1200 struct kqueue *kq;
1201 struct filedesc *fdp;
1202 struct knote **knp, *kn, *kn0;
1203 int i;
1204
1205 kq = (struct kqueue *)fp->f_data;
1206 fdp = p->p_fd;
1207 for (i = 0; i < fdp->fd_knlistsize; i++) {
1208 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1209 kn = *knp;
1210 while (kn != NULL) {
1211 kn0 = SLIST_NEXT(kn, kn_link);
1212 if (kq == kn->kn_kq) {
1213 kn->kn_fop->f_detach(kn);
1214 FILE_UNUSE(kn->kn_fp, l);
1215 pool_put(&knote_pool, kn);
1216 *knp = kn0;
1217 } else {
1218 knp = &SLIST_NEXT(kn, kn_link);
1219 }
1220 kn = kn0;
1221 }
1222 }
1223 if (fdp->fd_knhashmask != 0) {
1224 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1225 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1226 kn = *knp;
1227 while (kn != NULL) {
1228 kn0 = SLIST_NEXT(kn, kn_link);
1229 if (kq == kn->kn_kq) {
1230 kn->kn_fop->f_detach(kn);
1231 /* XXX non-fd release of kn->kn_ptr */
1232 pool_put(&knote_pool, kn);
1233 *knp = kn0;
1234 } else {
1235 knp = &SLIST_NEXT(kn, kn_link);
1236 }
1237 kn = kn0;
1238 }
1239 }
1240 }
1241 pool_put(&kqueue_pool, kq);
1242 fp->f_data = NULL;
1243
1244 return (0);
1245 }
1246
1247 /*
1248 * wakeup a kqueue
1249 */
1250 static void
1251 kqueue_wakeup(struct kqueue *kq)
1252 {
1253 int s;
1254
1255 s = splsched();
1256 simple_lock(&kq->kq_lock);
1257 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1258 kq->kq_state &= ~KQ_SLEEP;
1259 wakeup(kq); /* ... wakeup */
1260 }
1261
1262 /* Notify select/poll and kevent. */
1263 selnotify(&kq->kq_sel, 0);
1264 simple_unlock(&kq->kq_lock);
1265 splx(s);
1266 }
1267
1268 /*
1269 * struct fileops kqfilter method for a kqueue descriptor.
1270 * Event triggered when monitored kqueue changes.
1271 */
1272 /*ARGSUSED*/
1273 static int
1274 kqueue_kqfilter(struct file *fp, struct knote *kn)
1275 {
1276 struct kqueue *kq;
1277
1278 KASSERT(fp == kn->kn_fp);
1279 kq = (struct kqueue *)kn->kn_fp->f_data;
1280 if (kn->kn_filter != EVFILT_READ)
1281 return (1);
1282 kn->kn_fop = &kqread_filtops;
1283 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1284 return (0);
1285 }
1286
1287
1288 /*
1289 * Walk down a list of knotes, activating them if their event has triggered.
1290 */
1291 void
1292 knote(struct klist *list, long hint)
1293 {
1294 struct knote *kn;
1295
1296 SLIST_FOREACH(kn, list, kn_selnext)
1297 if (kn->kn_fop->f_event(kn, hint))
1298 KNOTE_ACTIVATE(kn);
1299 }
1300
1301 /*
1302 * Remove all knotes from a specified klist
1303 */
1304 void
1305 knote_remove(struct lwp *l, struct klist *list)
1306 {
1307 struct knote *kn;
1308
1309 while ((kn = SLIST_FIRST(list)) != NULL) {
1310 kn->kn_fop->f_detach(kn);
1311 knote_drop(kn, l, l->l_proc->p_fd);
1312 }
1313 }
1314
1315 /*
1316 * Remove all knotes referencing a specified fd
1317 */
1318 void
1319 knote_fdclose(struct lwp *l, int fd)
1320 {
1321 struct filedesc *fdp;
1322 struct klist *list;
1323
1324 fdp = l->l_proc->p_fd;
1325 list = &fdp->fd_knlist[fd];
1326 knote_remove(l, list);
1327 }
1328
1329 /*
1330 * Attach a new knote to a file descriptor
1331 */
1332 static void
1333 knote_attach(struct knote *kn, struct filedesc *fdp)
1334 {
1335 struct klist *list;
1336 int size;
1337
1338 if (! kn->kn_fop->f_isfd) {
1339 /* if knote is not on an fd, store on internal hash table */
1340 if (fdp->fd_knhashmask == 0)
1341 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1342 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1343 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1344 goto done;
1345 }
1346
1347 /*
1348 * otherwise, knote is on an fd.
1349 * knotes are stored in fd_knlist indexed by kn->kn_id.
1350 */
1351 if (fdp->fd_knlistsize <= kn->kn_id) {
1352 /* expand list, it's too small */
1353 size = fdp->fd_knlistsize;
1354 while (size <= kn->kn_id) {
1355 /* grow in KQ_EXTENT chunks */
1356 size += KQ_EXTENT;
1357 }
1358 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1359 if (fdp->fd_knlist) {
1360 /* copy existing knlist */
1361 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1362 fdp->fd_knlistsize * sizeof(struct klist *));
1363 }
1364 /*
1365 * Zero new memory. Stylistically, SLIST_INIT() should be
1366 * used here, but that does same thing as the memset() anyway.
1367 */
1368 memset(&list[fdp->fd_knlistsize], 0,
1369 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1370
1371 /* switch to new knlist */
1372 if (fdp->fd_knlist != NULL)
1373 free(fdp->fd_knlist, M_KEVENT);
1374 fdp->fd_knlistsize = size;
1375 fdp->fd_knlist = list;
1376 }
1377
1378 /* get list head for this fd */
1379 list = &fdp->fd_knlist[kn->kn_id];
1380 done:
1381 /* add new knote */
1382 SLIST_INSERT_HEAD(list, kn, kn_link);
1383 kn->kn_status = 0;
1384 }
1385
1386 /*
1387 * Drop knote.
1388 * Should be called at spl == 0, since we don't want to hold spl
1389 * while calling FILE_UNUSE and free.
1390 */
1391 static void
1392 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp)
1393 {
1394 struct klist *list;
1395
1396 if (kn->kn_fop->f_isfd)
1397 list = &fdp->fd_knlist[kn->kn_id];
1398 else
1399 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1400
1401 SLIST_REMOVE(list, kn, knote, kn_link);
1402 if (kn->kn_status & KN_QUEUED)
1403 knote_dequeue(kn);
1404 if (kn->kn_fop->f_isfd)
1405 FILE_UNUSE(kn->kn_fp, l);
1406 pool_put(&knote_pool, kn);
1407 }
1408
1409
1410 /*
1411 * Queue new event for knote.
1412 */
1413 static void
1414 knote_enqueue(struct knote *kn)
1415 {
1416 struct kqueue *kq;
1417 int s;
1418
1419 kq = kn->kn_kq;
1420 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1421
1422 s = splsched();
1423 simple_lock(&kq->kq_lock);
1424 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1425 kn->kn_status |= KN_QUEUED;
1426 kq->kq_count++;
1427 simple_unlock(&kq->kq_lock);
1428 splx(s);
1429 kqueue_wakeup(kq);
1430 }
1431
1432 /*
1433 * Dequeue event for knote.
1434 */
1435 static void
1436 knote_dequeue(struct knote *kn)
1437 {
1438 struct kqueue *kq;
1439 int s;
1440
1441 KASSERT(kn->kn_status & KN_QUEUED);
1442 kq = kn->kn_kq;
1443
1444 s = splsched();
1445 simple_lock(&kq->kq_lock);
1446 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1447 kn->kn_status &= ~KN_QUEUED;
1448 kq->kq_count--;
1449 simple_unlock(&kq->kq_lock);
1450 splx(s);
1451 }
1452