Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.25.10.2
      1 /*	$NetBSD: kern_event.c,v 1.25.10.2 2006/03/10 13:53:24 elad Exp $	*/
      2 /*-
      3  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  *
     27  * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.25.10.2 2006/03/10 13:53:24 elad Exp $");
     32 
     33 #include <sys/param.h>
     34 #include <sys/systm.h>
     35 #include <sys/kernel.h>
     36 #include <sys/proc.h>
     37 #include <sys/malloc.h>
     38 #include <sys/unistd.h>
     39 #include <sys/file.h>
     40 #include <sys/fcntl.h>
     41 #include <sys/select.h>
     42 #include <sys/queue.h>
     43 #include <sys/event.h>
     44 #include <sys/eventvar.h>
     45 #include <sys/poll.h>
     46 #include <sys/pool.h>
     47 #include <sys/protosw.h>
     48 #include <sys/socket.h>
     49 #include <sys/socketvar.h>
     50 #include <sys/stat.h>
     51 #include <sys/uio.h>
     52 #include <sys/mount.h>
     53 #include <sys/filedesc.h>
     54 #include <sys/sa.h>
     55 #include <sys/syscallargs.h>
     56 
     57 static void	kqueue_wakeup(struct kqueue *kq);
     58 
     59 static int	kqueue_scan(struct file *, size_t, struct kevent *,
     60     const struct timespec *, struct lwp *, register_t *,
     61     const struct kevent_ops *);
     62 static int	kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
     63 		    kauth_cred_t cred, int flags);
     64 static int	kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
     65 		    kauth_cred_t cred, int flags);
     66 static int	kqueue_ioctl(struct file *fp, u_long com, void *data,
     67 		    struct lwp *l);
     68 static int	kqueue_fcntl(struct file *fp, u_int com, void *data,
     69 		    struct lwp *l);
     70 static int	kqueue_poll(struct file *fp, int events, struct lwp *l);
     71 static int	kqueue_kqfilter(struct file *fp, struct knote *kn);
     72 static int	kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l);
     73 static int	kqueue_close(struct file *fp, struct lwp *l);
     74 
     75 static const struct fileops kqueueops = {
     76 	kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
     77 	kqueue_stat, kqueue_close, kqueue_kqfilter
     78 };
     79 
     80 static void	knote_attach(struct knote *kn, struct filedesc *fdp);
     81 static void	knote_drop(struct knote *kn, struct lwp *l,
     82 		    struct filedesc *fdp);
     83 static void	knote_enqueue(struct knote *kn);
     84 static void	knote_dequeue(struct knote *kn);
     85 
     86 static void	filt_kqdetach(struct knote *kn);
     87 static int	filt_kqueue(struct knote *kn, long hint);
     88 static int	filt_procattach(struct knote *kn);
     89 static void	filt_procdetach(struct knote *kn);
     90 static int	filt_proc(struct knote *kn, long hint);
     91 static int	filt_fileattach(struct knote *kn);
     92 static void	filt_timerexpire(void *knx);
     93 static int	filt_timerattach(struct knote *kn);
     94 static void	filt_timerdetach(struct knote *kn);
     95 static int	filt_timer(struct knote *kn, long hint);
     96 
     97 static const struct filterops kqread_filtops =
     98 	{ 1, NULL, filt_kqdetach, filt_kqueue };
     99 static const struct filterops proc_filtops =
    100 	{ 0, filt_procattach, filt_procdetach, filt_proc };
    101 static const struct filterops file_filtops =
    102 	{ 1, filt_fileattach, NULL, NULL };
    103 static struct filterops timer_filtops =
    104 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
    105 
    106 POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL);
    107 POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL);
    108 static int	kq_ncallouts = 0;
    109 static int	kq_calloutmax = (4 * 1024);
    110 
    111 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
    112 
    113 #define	KNOTE_ACTIVATE(kn)						\
    114 do {									\
    115 	kn->kn_status |= KN_ACTIVE;					\
    116 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
    117 		knote_enqueue(kn);					\
    118 } while(0)
    119 
    120 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    121 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    122 
    123 extern const struct filterops sig_filtops;
    124 
    125 /*
    126  * Table for for all system-defined filters.
    127  * These should be listed in the numeric order of the EVFILT_* defines.
    128  * If filtops is NULL, the filter isn't implemented in NetBSD.
    129  * End of list is when name is NULL.
    130  */
    131 struct kfilter {
    132 	const char	 *name;		/* name of filter */
    133 	uint32_t	  filter;	/* id of filter */
    134 	const struct filterops *filtops;/* operations for filter */
    135 };
    136 
    137 		/* System defined filters */
    138 static const struct kfilter sys_kfilters[] = {
    139 	{ "EVFILT_READ",	EVFILT_READ,	&file_filtops },
    140 	{ "EVFILT_WRITE",	EVFILT_WRITE,	&file_filtops },
    141 	{ "EVFILT_AIO",		EVFILT_AIO,	NULL },
    142 	{ "EVFILT_VNODE",	EVFILT_VNODE,	&file_filtops },
    143 	{ "EVFILT_PROC",	EVFILT_PROC,	&proc_filtops },
    144 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	&sig_filtops },
    145 	{ "EVFILT_TIMER",	EVFILT_TIMER,	&timer_filtops },
    146 	{ NULL,			0,		NULL },	/* end of list */
    147 };
    148 
    149 		/* User defined kfilters */
    150 static struct kfilter	*user_kfilters;		/* array */
    151 static int		user_kfilterc;		/* current offset */
    152 static int		user_kfiltermaxc;	/* max size so far */
    153 
    154 /*
    155  * Find kfilter entry by name, or NULL if not found.
    156  */
    157 static const struct kfilter *
    158 kfilter_byname_sys(const char *name)
    159 {
    160 	int i;
    161 
    162 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    163 		if (strcmp(name, sys_kfilters[i].name) == 0)
    164 			return (&sys_kfilters[i]);
    165 	}
    166 	return (NULL);
    167 }
    168 
    169 static struct kfilter *
    170 kfilter_byname_user(const char *name)
    171 {
    172 	int i;
    173 
    174 	/* user_kfilters[] could be NULL if no filters were registered */
    175 	if (!user_kfilters)
    176 		return (NULL);
    177 
    178 	for (i = 0; user_kfilters[i].name != NULL; i++) {
    179 		if (user_kfilters[i].name != '\0' &&
    180 		    strcmp(name, user_kfilters[i].name) == 0)
    181 			return (&user_kfilters[i]);
    182 	}
    183 	return (NULL);
    184 }
    185 
    186 static const struct kfilter *
    187 kfilter_byname(const char *name)
    188 {
    189 	const struct kfilter *kfilter;
    190 
    191 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    192 		return (kfilter);
    193 
    194 	return (kfilter_byname_user(name));
    195 }
    196 
    197 /*
    198  * Find kfilter entry by filter id, or NULL if not found.
    199  * Assumes entries are indexed in filter id order, for speed.
    200  */
    201 static const struct kfilter *
    202 kfilter_byfilter(uint32_t filter)
    203 {
    204 	const struct kfilter *kfilter;
    205 
    206 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    207 		kfilter = &sys_kfilters[filter];
    208 	else if (user_kfilters != NULL &&
    209 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    210 					/* it's a user filter */
    211 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    212 	else
    213 		return (NULL);		/* out of range */
    214 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    215 	return (kfilter);
    216 }
    217 
    218 /*
    219  * Register a new kfilter. Stores the entry in user_kfilters.
    220  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    221  * If retfilter != NULL, the new filterid is returned in it.
    222  */
    223 int
    224 kfilter_register(const char *name, const struct filterops *filtops,
    225     int *retfilter)
    226 {
    227 	struct kfilter *kfilter;
    228 	void *space;
    229 	int len;
    230 
    231 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    232 		return (EINVAL);	/* invalid args */
    233 	if (kfilter_byname(name) != NULL)
    234 		return (EEXIST);	/* already exists */
    235 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
    236 		return (EINVAL);	/* too many */
    237 
    238 	/* check if need to grow user_kfilters */
    239 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    240 		/*
    241 		 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
    242 		 * want to traverse user_kfilters as an array.
    243 		 */
    244 		user_kfiltermaxc += KFILTER_EXTENT;
    245 		kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
    246 		    M_KEVENT, M_WAITOK);
    247 
    248 		/* copy existing user_kfilters */
    249 		if (user_kfilters != NULL)
    250 			memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
    251 			    user_kfilterc * sizeof(struct kfilter *));
    252 					/* zero new sections */
    253 		memset((caddr_t)kfilter +
    254 		    user_kfilterc * sizeof(struct kfilter *), 0,
    255 		    (user_kfiltermaxc - user_kfilterc) *
    256 		    sizeof(struct kfilter *));
    257 					/* switch to new kfilter */
    258 		if (user_kfilters != NULL)
    259 			free(user_kfilters, M_KEVENT);
    260 		user_kfilters = kfilter;
    261 	}
    262 	len = strlen(name) + 1;		/* copy name */
    263 	space = malloc(len, M_KEVENT, M_WAITOK);
    264 	memcpy(space, name, len);
    265 	user_kfilters[user_kfilterc].name = space;
    266 
    267 	user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
    268 
    269 	len = sizeof(struct filterops);	/* copy filtops */
    270 	space = malloc(len, M_KEVENT, M_WAITOK);
    271 	memcpy(space, filtops, len);
    272 	user_kfilters[user_kfilterc].filtops = space;
    273 
    274 	if (retfilter != NULL)
    275 		*retfilter = user_kfilters[user_kfilterc].filter;
    276 	user_kfilterc++;		/* finally, increment count */
    277 	return (0);
    278 }
    279 
    280 /*
    281  * Unregister a kfilter previously registered with kfilter_register.
    282  * This retains the filter id, but clears the name and frees filtops (filter
    283  * operations), so that the number isn't reused during a boot.
    284  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    285  */
    286 int
    287 kfilter_unregister(const char *name)
    288 {
    289 	struct kfilter *kfilter;
    290 
    291 	if (name == NULL || name[0] == '\0')
    292 		return (EINVAL);	/* invalid name */
    293 
    294 	if (kfilter_byname_sys(name) != NULL)
    295 		return (EINVAL);	/* can't detach system filters */
    296 
    297 	kfilter = kfilter_byname_user(name);
    298 	if (kfilter == NULL)		/* not found */
    299 		return (ENOENT);
    300 
    301 	if (kfilter->name[0] != '\0') {
    302 		/* XXXUNCONST Cast away const (but we know it's safe. */
    303 		free(__UNCONST(kfilter->name), M_KEVENT);
    304 		kfilter->name = "";	/* mark as `not implemented' */
    305 	}
    306 	if (kfilter->filtops != NULL) {
    307 		/* XXXUNCONST Cast away const (but we know it's safe. */
    308 		free(__UNCONST(kfilter->filtops), M_KEVENT);
    309 		kfilter->filtops = NULL; /* mark as `not implemented' */
    310 	}
    311 	return (0);
    312 }
    313 
    314 
    315 /*
    316  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    317  * descriptors. Calls struct fileops kqfilter method for given file descriptor.
    318  */
    319 static int
    320 filt_fileattach(struct knote *kn)
    321 {
    322 	struct file *fp;
    323 
    324 	fp = kn->kn_fp;
    325 	return ((*fp->f_ops->fo_kqfilter)(fp, kn));
    326 }
    327 
    328 /*
    329  * Filter detach method for EVFILT_READ on kqueue descriptor.
    330  */
    331 static void
    332 filt_kqdetach(struct knote *kn)
    333 {
    334 	struct kqueue *kq;
    335 
    336 	kq = (struct kqueue *)kn->kn_fp->f_data;
    337 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
    338 }
    339 
    340 /*
    341  * Filter event method for EVFILT_READ on kqueue descriptor.
    342  */
    343 /*ARGSUSED*/
    344 static int
    345 filt_kqueue(struct knote *kn, long hint)
    346 {
    347 	struct kqueue *kq;
    348 
    349 	kq = (struct kqueue *)kn->kn_fp->f_data;
    350 	kn->kn_data = kq->kq_count;
    351 	return (kn->kn_data > 0);
    352 }
    353 
    354 /*
    355  * Filter attach method for EVFILT_PROC.
    356  */
    357 static int
    358 filt_procattach(struct knote *kn)
    359 {
    360 	struct proc *p;
    361 
    362 	p = pfind(kn->kn_id);
    363 	if (p == NULL)
    364 		return (ESRCH);
    365 
    366 	/*
    367 	 * Fail if it's not owned by you, or the last exec gave us
    368 	 * setuid/setgid privs (unless you're root).
    369 	 */
    370 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(curproc->p_cred) ||
    371 		(p->p_flag & P_SUGID))
    372 	    && kauth_authorize_generic(curproc->p_cred, KAUTH_GENERIC_ISSUSER,
    373 				 &curproc->p_acflag) != 0)
    374 		return (EACCES);
    375 
    376 	kn->kn_ptr.p_proc = p;
    377 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    378 
    379 	/*
    380 	 * internal flag indicating registration done by kernel
    381 	 */
    382 	if (kn->kn_flags & EV_FLAG1) {
    383 		kn->kn_data = kn->kn_sdata;	/* ppid */
    384 		kn->kn_fflags = NOTE_CHILD;
    385 		kn->kn_flags &= ~EV_FLAG1;
    386 	}
    387 
    388 	/* XXXSMP lock the process? */
    389 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    390 
    391 	return (0);
    392 }
    393 
    394 /*
    395  * Filter detach method for EVFILT_PROC.
    396  *
    397  * The knote may be attached to a different process, which may exit,
    398  * leaving nothing for the knote to be attached to.  So when the process
    399  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    400  * it will be deleted when read out.  However, as part of the knote deletion,
    401  * this routine is called, so a check is needed to avoid actually performing
    402  * a detach, because the original process might not exist any more.
    403  */
    404 static void
    405 filt_procdetach(struct knote *kn)
    406 {
    407 	struct proc *p;
    408 
    409 	if (kn->kn_status & KN_DETACHED)
    410 		return;
    411 
    412 	p = kn->kn_ptr.p_proc;
    413 	KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p);
    414 
    415 	/* XXXSMP lock the process? */
    416 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    417 }
    418 
    419 /*
    420  * Filter event method for EVFILT_PROC.
    421  */
    422 static int
    423 filt_proc(struct knote *kn, long hint)
    424 {
    425 	u_int event;
    426 
    427 	/*
    428 	 * mask off extra data
    429 	 */
    430 	event = (u_int)hint & NOTE_PCTRLMASK;
    431 
    432 	/*
    433 	 * if the user is interested in this event, record it.
    434 	 */
    435 	if (kn->kn_sfflags & event)
    436 		kn->kn_fflags |= event;
    437 
    438 	/*
    439 	 * process is gone, so flag the event as finished.
    440 	 */
    441 	if (event == NOTE_EXIT) {
    442 		/*
    443 		 * Detach the knote from watched process and mark
    444 		 * it as such. We can't leave this to kqueue_scan(),
    445 		 * since the process might not exist by then. And we
    446 		 * have to do this now, since psignal KNOTE() is called
    447 		 * also for zombies and we might end up reading freed
    448 		 * memory if the kevent would already be picked up
    449 		 * and knote g/c'ed.
    450 		 */
    451 		kn->kn_fop->f_detach(kn);
    452 		kn->kn_status |= KN_DETACHED;
    453 
    454 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
    455 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
    456 		return (1);
    457 	}
    458 
    459 	/*
    460 	 * process forked, and user wants to track the new process,
    461 	 * so attach a new knote to it, and immediately report an
    462 	 * event with the parent's pid.
    463 	 */
    464 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
    465 		struct kevent kev;
    466 		int error;
    467 
    468 		/*
    469 		 * register knote with new process.
    470 		 */
    471 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
    472 		kev.filter = kn->kn_filter;
    473 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
    474 		kev.fflags = kn->kn_sfflags;
    475 		kev.data = kn->kn_id;			/* parent */
    476 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
    477 		error = kqueue_register(kn->kn_kq, &kev, NULL);
    478 		if (error)
    479 			kn->kn_fflags |= NOTE_TRACKERR;
    480 	}
    481 
    482 	return (kn->kn_fflags != 0);
    483 }
    484 
    485 static void
    486 filt_timerexpire(void *knx)
    487 {
    488 	struct knote *kn = knx;
    489 	int tticks;
    490 
    491 	kn->kn_data++;
    492 	KNOTE_ACTIVATE(kn);
    493 
    494 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
    495 		tticks = mstohz(kn->kn_sdata);
    496 		callout_schedule((struct callout *)kn->kn_hook, tticks);
    497 	}
    498 }
    499 
    500 /*
    501  * data contains amount of time to sleep, in milliseconds
    502  */
    503 static int
    504 filt_timerattach(struct knote *kn)
    505 {
    506 	struct callout *calloutp;
    507 	int tticks;
    508 
    509 	if (kq_ncallouts >= kq_calloutmax)
    510 		return (ENOMEM);
    511 	kq_ncallouts++;
    512 
    513 	tticks = mstohz(kn->kn_sdata);
    514 
    515 	/* if the supplied value is under our resolution, use 1 tick */
    516 	if (tticks == 0) {
    517 		if (kn->kn_sdata == 0)
    518 			return (EINVAL);
    519 		tticks = 1;
    520 	}
    521 
    522 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
    523 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
    524 	    M_KEVENT, 0);
    525 	callout_init(calloutp);
    526 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
    527 	kn->kn_hook = calloutp;
    528 
    529 	return (0);
    530 }
    531 
    532 static void
    533 filt_timerdetach(struct knote *kn)
    534 {
    535 	struct callout *calloutp;
    536 
    537 	calloutp = (struct callout *)kn->kn_hook;
    538 	callout_stop(calloutp);
    539 	FREE(calloutp, M_KEVENT);
    540 	kq_ncallouts--;
    541 }
    542 
    543 static int
    544 filt_timer(struct knote *kn, long hint)
    545 {
    546 	return (kn->kn_data != 0);
    547 }
    548 
    549 /*
    550  * filt_seltrue:
    551  *
    552  *	This filter "event" routine simulates seltrue().
    553  */
    554 int
    555 filt_seltrue(struct knote *kn, long hint)
    556 {
    557 
    558 	/*
    559 	 * We don't know how much data can be read/written,
    560 	 * but we know that it *can* be.  This is about as
    561 	 * good as select/poll does as well.
    562 	 */
    563 	kn->kn_data = 0;
    564 	return (1);
    565 }
    566 
    567 /*
    568  * This provides full kqfilter entry for device switch tables, which
    569  * has same effect as filter using filt_seltrue() as filter method.
    570  */
    571 static void
    572 filt_seltruedetach(struct knote *kn)
    573 {
    574 	/* Nothing to do */
    575 }
    576 
    577 static const struct filterops seltrue_filtops =
    578 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
    579 
    580 int
    581 seltrue_kqfilter(dev_t dev, struct knote *kn)
    582 {
    583 	switch (kn->kn_filter) {
    584 	case EVFILT_READ:
    585 	case EVFILT_WRITE:
    586 		kn->kn_fop = &seltrue_filtops;
    587 		break;
    588 	default:
    589 		return (1);
    590 	}
    591 
    592 	/* Nothing more to do */
    593 	return (0);
    594 }
    595 
    596 /*
    597  * kqueue(2) system call.
    598  */
    599 int
    600 sys_kqueue(struct lwp *l, void *v, register_t *retval)
    601 {
    602 	struct filedesc	*fdp;
    603 	struct kqueue	*kq;
    604 	struct file	*fp;
    605 	struct proc	*p;
    606 	int		fd, error;
    607 
    608 	p = l->l_proc;
    609 	fdp = p->p_fd;
    610 	error = falloc(p, &fp, &fd);	/* setup a new file descriptor */
    611 	if (error)
    612 		return (error);
    613 	fp->f_flag = FREAD | FWRITE;
    614 	fp->f_type = DTYPE_KQUEUE;
    615 	fp->f_ops = &kqueueops;
    616 	kq = pool_get(&kqueue_pool, PR_WAITOK);
    617 	memset((char *)kq, 0, sizeof(struct kqueue));
    618 	simple_lock_init(&kq->kq_lock);
    619 	TAILQ_INIT(&kq->kq_head);
    620 	fp->f_data = (caddr_t)kq;	/* store the kqueue with the fp */
    621 	*retval = fd;
    622 	if (fdp->fd_knlistsize < 0)
    623 		fdp->fd_knlistsize = 0;	/* this process has a kq */
    624 	kq->kq_fdp = fdp;
    625 	FILE_SET_MATURE(fp);
    626 	FILE_UNUSE(fp, l);		/* falloc() does FILE_USE() */
    627 	return (error);
    628 }
    629 
    630 /*
    631  * kevent(2) system call.
    632  */
    633 static int
    634 kevent_fetch_changes(void *private, const struct kevent *changelist,
    635     struct kevent *changes, size_t index, int n)
    636 {
    637 	return copyin(changelist + index, changes, n * sizeof(*changes));
    638 }
    639 
    640 static int
    641 kevent_put_events(void *private, struct kevent *events,
    642     struct kevent *eventlist, size_t index, int n)
    643 {
    644 	return copyout(events, eventlist + index, n * sizeof(*events));
    645 }
    646 
    647 static const struct kevent_ops kevent_native_ops = {
    648 	keo_private: NULL,
    649 	keo_fetch_timeout: copyin,
    650 	keo_fetch_changes: kevent_fetch_changes,
    651 	keo_put_events: kevent_put_events,
    652 };
    653 
    654 int
    655 sys_kevent(struct lwp *l, void *v, register_t *retval)
    656 {
    657 	struct sys_kevent_args /* {
    658 		syscallarg(int) fd;
    659 		syscallarg(const struct kevent *) changelist;
    660 		syscallarg(size_t) nchanges;
    661 		syscallarg(struct kevent *) eventlist;
    662 		syscallarg(size_t) nevents;
    663 		syscallarg(const struct timespec *) timeout;
    664 	} */ *uap = v;
    665 
    666 	return kevent1(l, retval, SCARG(uap, fd), SCARG(uap, changelist),
    667 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
    668 	    SCARG(uap, timeout), &kevent_native_ops);
    669 }
    670 
    671 int
    672 kevent1(struct lwp *l, register_t *retval, int fd,
    673     const struct kevent *changelist, size_t nchanges, struct kevent *eventlist,
    674     size_t nevents, const struct timespec *timeout,
    675     const struct kevent_ops *keops)
    676 {
    677 	struct kevent	*kevp;
    678 	struct kqueue	*kq;
    679 	struct file	*fp;
    680 	struct timespec	ts;
    681 	struct proc	*p;
    682 	size_t		i, n, ichange;
    683 	int		nerrors, error;
    684 
    685 	p = l->l_proc;
    686 	/* check that we're dealing with a kq */
    687 	fp = fd_getfile(p->p_fd, fd);
    688 	if (fp == NULL)
    689 		return (EBADF);
    690 
    691 	if (fp->f_type != DTYPE_KQUEUE) {
    692 		simple_unlock(&fp->f_slock);
    693 		return (EBADF);
    694 	}
    695 
    696 	FILE_USE(fp);
    697 
    698 	if (timeout != NULL) {
    699 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
    700 		if (error)
    701 			goto done;
    702 		timeout = &ts;
    703 	}
    704 
    705 	kq = (struct kqueue *)fp->f_data;
    706 	nerrors = 0;
    707 	ichange = 0;
    708 
    709 	/* traverse list of events to register */
    710 	while (nchanges > 0) {
    711 		/* copyin a maximum of KQ_EVENTS at each pass */
    712 		n = MIN(nchanges, KQ_NEVENTS);
    713 		error = (*keops->keo_fetch_changes)(keops->keo_private,
    714 		    changelist, kq->kq_kev, ichange, n);
    715 		if (error)
    716 			goto done;
    717 		for (i = 0; i < n; i++) {
    718 			kevp = &kq->kq_kev[i];
    719 			kevp->flags &= ~EV_SYSFLAGS;
    720 			/* register each knote */
    721 			error = kqueue_register(kq, kevp, l);
    722 			if (error) {
    723 				if (nevents != 0) {
    724 					kevp->flags = EV_ERROR;
    725 					kevp->data = error;
    726 					error = (*keops->keo_put_events)
    727 					    (keops->keo_private, kevp,
    728 					    eventlist, nerrors, 1);
    729 					if (error)
    730 						goto done;
    731 					nevents--;
    732 					nerrors++;
    733 				} else {
    734 					goto done;
    735 				}
    736 			}
    737 		}
    738 		nchanges -= n;	/* update the results */
    739 		ichange += n;
    740 	}
    741 	if (nerrors) {
    742 		*retval = nerrors;
    743 		error = 0;
    744 		goto done;
    745 	}
    746 
    747 	/* actually scan through the events */
    748 	error = kqueue_scan(fp, nevents, eventlist, timeout, l, retval, keops);
    749  done:
    750 	FILE_UNUSE(fp, l);
    751 	return (error);
    752 }
    753 
    754 /*
    755  * Register a given kevent kev onto the kqueue
    756  */
    757 int
    758 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l)
    759 {
    760 	const struct kfilter *kfilter;
    761 	struct filedesc	*fdp;
    762 	struct file	*fp;
    763 	struct knote	*kn;
    764 	int		s, error;
    765 
    766 	fdp = kq->kq_fdp;
    767 	fp = NULL;
    768 	kn = NULL;
    769 	error = 0;
    770 	kfilter = kfilter_byfilter(kev->filter);
    771 	if (kfilter == NULL || kfilter->filtops == NULL) {
    772 		/* filter not found nor implemented */
    773 		return (EINVAL);
    774 	}
    775 
    776 	/* search if knote already exists */
    777 	if (kfilter->filtops->f_isfd) {
    778 		/* monitoring a file descriptor */
    779 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
    780 			return (EBADF);	/* validate descriptor */
    781 		FILE_USE(fp);
    782 
    783 		if (kev->ident < fdp->fd_knlistsize) {
    784 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
    785 				if (kq == kn->kn_kq &&
    786 				    kev->filter == kn->kn_filter)
    787 					break;
    788 		}
    789 	} else {
    790 		/*
    791 		 * not monitoring a file descriptor, so
    792 		 * lookup knotes in internal hash table
    793 		 */
    794 		if (fdp->fd_knhashmask != 0) {
    795 			struct klist *list;
    796 
    797 			list = &fdp->fd_knhash[
    798 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
    799 			SLIST_FOREACH(kn, list, kn_link)
    800 				if (kev->ident == kn->kn_id &&
    801 				    kq == kn->kn_kq &&
    802 				    kev->filter == kn->kn_filter)
    803 					break;
    804 		}
    805 	}
    806 
    807 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
    808 		error = ENOENT;		/* filter not found */
    809 		goto done;
    810 	}
    811 
    812 	/*
    813 	 * kn now contains the matching knote, or NULL if no match
    814 	 */
    815 	if (kev->flags & EV_ADD) {
    816 		/* add knote */
    817 
    818 		if (kn == NULL) {
    819 			/* create new knote */
    820 			kn = pool_get(&knote_pool, PR_WAITOK);
    821 			if (kn == NULL) {
    822 				error = ENOMEM;
    823 				goto done;
    824 			}
    825 			kn->kn_fp = fp;
    826 			kn->kn_kq = kq;
    827 			kn->kn_fop = kfilter->filtops;
    828 
    829 			/*
    830 			 * apply reference count to knote structure, and
    831 			 * do not release it at the end of this routine.
    832 			 */
    833 			fp = NULL;
    834 
    835 			kn->kn_sfflags = kev->fflags;
    836 			kn->kn_sdata = kev->data;
    837 			kev->fflags = 0;
    838 			kev->data = 0;
    839 			kn->kn_kevent = *kev;
    840 
    841 			knote_attach(kn, fdp);
    842 			if ((error = kfilter->filtops->f_attach(kn)) != 0) {
    843 				knote_drop(kn, l, fdp);
    844 				goto done;
    845 			}
    846 		} else {
    847 			/* modify existing knote */
    848 
    849 			/*
    850 			 * The user may change some filter values after the
    851 			 * initial EV_ADD, but doing so will not reset any
    852 			 * filter which have already been triggered.
    853 			 */
    854 			kn->kn_sfflags = kev->fflags;
    855 			kn->kn_sdata = kev->data;
    856 			kn->kn_kevent.udata = kev->udata;
    857 		}
    858 
    859 		s = splsched();
    860 		if (kn->kn_fop->f_event(kn, 0))
    861 			KNOTE_ACTIVATE(kn);
    862 		splx(s);
    863 
    864 	} else if (kev->flags & EV_DELETE) {	/* delete knote */
    865 		kn->kn_fop->f_detach(kn);
    866 		knote_drop(kn, l, fdp);
    867 		goto done;
    868 	}
    869 
    870 	/* disable knote */
    871 	if ((kev->flags & EV_DISABLE) &&
    872 	    ((kn->kn_status & KN_DISABLED) == 0)) {
    873 		s = splsched();
    874 		kn->kn_status |= KN_DISABLED;
    875 		splx(s);
    876 	}
    877 
    878 	/* enable knote */
    879 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
    880 		s = splsched();
    881 		kn->kn_status &= ~KN_DISABLED;
    882 		if ((kn->kn_status & KN_ACTIVE) &&
    883 		    ((kn->kn_status & KN_QUEUED) == 0))
    884 			knote_enqueue(kn);
    885 		splx(s);
    886 	}
    887 
    888  done:
    889 	if (fp != NULL)
    890 		FILE_UNUSE(fp, l);
    891 	return (error);
    892 }
    893 
    894 /*
    895  * Scan through the list of events on fp (for a maximum of maxevents),
    896  * returning the results in to ulistp. Timeout is determined by tsp; if
    897  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
    898  * as appropriate.
    899  */
    900 static int
    901 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
    902     const struct timespec *tsp, struct lwp *l, register_t *retval,
    903     const struct kevent_ops *keops)
    904 {
    905 	struct proc	*p = l->l_proc;
    906 	struct kqueue	*kq;
    907 	struct kevent	*kevp;
    908 	struct timeval	atv;
    909 	struct knote	*kn, *marker=NULL;
    910 	size_t		count, nkev, nevents;
    911 	int		s, timeout, error;
    912 
    913 	kq = (struct kqueue *)fp->f_data;
    914 	count = maxevents;
    915 	nkev = nevents = error = 0;
    916 	if (count == 0)
    917 		goto done;
    918 
    919 	if (tsp) {				/* timeout supplied */
    920 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
    921 		if (itimerfix(&atv)) {
    922 			error = EINVAL;
    923 			goto done;
    924 		}
    925 		s = splclock();
    926 		timeradd(&atv, &time, &atv);	/* calc. time to wait until */
    927 		splx(s);
    928 		timeout = hzto(&atv);
    929 		if (timeout <= 0)
    930 			timeout = -1;		/* do poll */
    931 	} else {
    932 		/* no timeout, wait forever */
    933 		timeout = 0;
    934 	}
    935 
    936 	MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK);
    937 	memset(marker, 0, sizeof(*marker));
    938 
    939 	goto start;
    940 
    941  retry:
    942 	if (tsp) {
    943 		/*
    944 		 * We have to recalculate the timeout on every retry.
    945 		 */
    946 		timeout = hzto(&atv);
    947 		if (timeout <= 0)
    948 			goto done;
    949 	}
    950 
    951  start:
    952 	kevp = kq->kq_kev;
    953 	s = splsched();
    954 	simple_lock(&kq->kq_lock);
    955 	if (kq->kq_count == 0) {
    956 		if (timeout < 0) {
    957 			error = EWOULDBLOCK;
    958 			simple_unlock(&kq->kq_lock);
    959 		} else {
    960 			kq->kq_state |= KQ_SLEEP;
    961 			error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
    962 					"kqread", timeout, &kq->kq_lock);
    963 		}
    964 		splx(s);
    965 		if (error == 0)
    966 			goto retry;
    967 		/* don't restart after signals... */
    968 		if (error == ERESTART)
    969 			error = EINTR;
    970 		else if (error == EWOULDBLOCK)
    971 			error = 0;
    972 		goto done;
    973 	}
    974 
    975 	/* mark end of knote list */
    976 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
    977 	simple_unlock(&kq->kq_lock);
    978 
    979 	while (count) {				/* while user wants data ... */
    980 		simple_lock(&kq->kq_lock);
    981 		kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
    982 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
    983 		if (kn == marker) {		/* if it's our marker, stop */
    984 			/* What if it's some else's marker? */
    985 			simple_unlock(&kq->kq_lock);
    986 			splx(s);
    987 			if (count == maxevents)
    988 				goto retry;
    989 			goto done;
    990 		}
    991 		kq->kq_count--;
    992 		simple_unlock(&kq->kq_lock);
    993 
    994 		if (kn->kn_status & KN_DISABLED) {
    995 			/* don't want disabled events */
    996 			kn->kn_status &= ~KN_QUEUED;
    997 			continue;
    998 		}
    999 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
   1000 		    kn->kn_fop->f_event(kn, 0) == 0) {
   1001 			/*
   1002 			 * non-ONESHOT event that hasn't
   1003 			 * triggered again, so de-queue.
   1004 			 */
   1005 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
   1006 			continue;
   1007 		}
   1008 		*kevp = kn->kn_kevent;
   1009 		kevp++;
   1010 		nkev++;
   1011 		if (kn->kn_flags & EV_ONESHOT) {
   1012 			/* delete ONESHOT events after retrieval */
   1013 			kn->kn_status &= ~KN_QUEUED;
   1014 			splx(s);
   1015 			kn->kn_fop->f_detach(kn);
   1016 			knote_drop(kn, l, p->p_fd);
   1017 			s = splsched();
   1018 		} else if (kn->kn_flags & EV_CLEAR) {
   1019 			/* clear state after retrieval */
   1020 			kn->kn_data = 0;
   1021 			kn->kn_fflags = 0;
   1022 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
   1023 		} else {
   1024 			/* add event back on list */
   1025 			simple_lock(&kq->kq_lock);
   1026 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1027 			kq->kq_count++;
   1028 			simple_unlock(&kq->kq_lock);
   1029 		}
   1030 		count--;
   1031 		if (nkev == KQ_NEVENTS) {
   1032 			/* do copyouts in KQ_NEVENTS chunks */
   1033 			splx(s);
   1034 			error = (*keops->keo_put_events)(keops->keo_private,
   1035 			    &kq->kq_kev[0], ulistp, nevents, nkev);
   1036 			nevents += nkev;
   1037 			nkev = 0;
   1038 			kevp = kq->kq_kev;
   1039 			s = splsched();
   1040 			if (error)
   1041 				break;
   1042 		}
   1043 	}
   1044 
   1045 	/* remove marker */
   1046 	simple_lock(&kq->kq_lock);
   1047 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   1048 	simple_unlock(&kq->kq_lock);
   1049 	splx(s);
   1050  done:
   1051 	if (marker)
   1052 		FREE(marker, M_KEVENT);
   1053 
   1054 	if (nkev != 0)
   1055 		/* copyout remaining events */
   1056 		error = (*keops->keo_put_events)(keops->keo_private,
   1057 		    &kq->kq_kev[0], ulistp, nevents, nkev);
   1058 	*retval = maxevents - count;
   1059 
   1060 	return (error);
   1061 }
   1062 
   1063 /*
   1064  * struct fileops read method for a kqueue descriptor.
   1065  * Not implemented.
   1066  * XXX: This could be expanded to call kqueue_scan, if desired.
   1067  */
   1068 /*ARGSUSED*/
   1069 static int
   1070 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
   1071 	kauth_cred_t cred, int flags)
   1072 {
   1073 
   1074 	return (ENXIO);
   1075 }
   1076 
   1077 /*
   1078  * struct fileops write method for a kqueue descriptor.
   1079  * Not implemented.
   1080  */
   1081 /*ARGSUSED*/
   1082 static int
   1083 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
   1084 	kauth_cred_t cred, int flags)
   1085 {
   1086 
   1087 	return (ENXIO);
   1088 }
   1089 
   1090 /*
   1091  * struct fileops ioctl method for a kqueue descriptor.
   1092  *
   1093  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   1094  *	KFILTER_BYNAME		find name for filter, and return result in
   1095  *				name, which is of size len.
   1096  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   1097  */
   1098 /*ARGSUSED*/
   1099 static int
   1100 kqueue_ioctl(struct file *fp, u_long com, void *data, struct lwp *l)
   1101 {
   1102 	struct kfilter_mapping	*km;
   1103 	const struct kfilter	*kfilter;
   1104 	char			*name;
   1105 	int			error;
   1106 
   1107 	km = (struct kfilter_mapping *)data;
   1108 	error = 0;
   1109 
   1110 	switch (com) {
   1111 	case KFILTER_BYFILTER:	/* convert filter -> name */
   1112 		kfilter = kfilter_byfilter(km->filter);
   1113 		if (kfilter != NULL)
   1114 			error = copyoutstr(kfilter->name, km->name, km->len,
   1115 			    NULL);
   1116 		else
   1117 			error = ENOENT;
   1118 		break;
   1119 
   1120 	case KFILTER_BYNAME:	/* convert name -> filter */
   1121 		MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
   1122 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   1123 		if (error) {
   1124 			FREE(name, M_KEVENT);
   1125 			break;
   1126 		}
   1127 		kfilter = kfilter_byname(name);
   1128 		if (kfilter != NULL)
   1129 			km->filter = kfilter->filter;
   1130 		else
   1131 			error = ENOENT;
   1132 		FREE(name, M_KEVENT);
   1133 		break;
   1134 
   1135 	default:
   1136 		error = ENOTTY;
   1137 
   1138 	}
   1139 	return (error);
   1140 }
   1141 
   1142 /*
   1143  * struct fileops fcntl method for a kqueue descriptor.
   1144  * Not implemented.
   1145  */
   1146 /*ARGSUSED*/
   1147 static int
   1148 kqueue_fcntl(struct file *fp, u_int com, void *data, struct lwp *l)
   1149 {
   1150 
   1151 	return (ENOTTY);
   1152 }
   1153 
   1154 /*
   1155  * struct fileops poll method for a kqueue descriptor.
   1156  * Determine if kqueue has events pending.
   1157  */
   1158 static int
   1159 kqueue_poll(struct file *fp, int events, struct lwp *l)
   1160 {
   1161 	struct kqueue	*kq;
   1162 	int		revents;
   1163 
   1164 	kq = (struct kqueue *)fp->f_data;
   1165 	revents = 0;
   1166 	if (events & (POLLIN | POLLRDNORM)) {
   1167 		if (kq->kq_count) {
   1168 			revents |= events & (POLLIN | POLLRDNORM);
   1169 		} else {
   1170 			selrecord(l, &kq->kq_sel);
   1171 		}
   1172 	}
   1173 	return (revents);
   1174 }
   1175 
   1176 /*
   1177  * struct fileops stat method for a kqueue descriptor.
   1178  * Returns dummy info, with st_size being number of events pending.
   1179  */
   1180 static int
   1181 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l)
   1182 {
   1183 	struct kqueue	*kq;
   1184 
   1185 	kq = (struct kqueue *)fp->f_data;
   1186 	memset((void *)st, 0, sizeof(*st));
   1187 	st->st_size = kq->kq_count;
   1188 	st->st_blksize = sizeof(struct kevent);
   1189 	st->st_mode = S_IFIFO;
   1190 	return (0);
   1191 }
   1192 
   1193 /*
   1194  * struct fileops close method for a kqueue descriptor.
   1195  * Cleans up kqueue.
   1196  */
   1197 static int
   1198 kqueue_close(struct file *fp, struct lwp *l)
   1199 {
   1200 	struct proc	*p = l->l_proc;
   1201 	struct kqueue	*kq;
   1202 	struct filedesc	*fdp;
   1203 	struct knote	**knp, *kn, *kn0;
   1204 	int		i;
   1205 
   1206 	kq = (struct kqueue *)fp->f_data;
   1207 	fdp = p->p_fd;
   1208 	for (i = 0; i < fdp->fd_knlistsize; i++) {
   1209 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
   1210 		kn = *knp;
   1211 		while (kn != NULL) {
   1212 			kn0 = SLIST_NEXT(kn, kn_link);
   1213 			if (kq == kn->kn_kq) {
   1214 				kn->kn_fop->f_detach(kn);
   1215 				FILE_UNUSE(kn->kn_fp, l);
   1216 				pool_put(&knote_pool, kn);
   1217 				*knp = kn0;
   1218 			} else {
   1219 				knp = &SLIST_NEXT(kn, kn_link);
   1220 			}
   1221 			kn = kn0;
   1222 		}
   1223 	}
   1224 	if (fdp->fd_knhashmask != 0) {
   1225 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   1226 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
   1227 			kn = *knp;
   1228 			while (kn != NULL) {
   1229 				kn0 = SLIST_NEXT(kn, kn_link);
   1230 				if (kq == kn->kn_kq) {
   1231 					kn->kn_fop->f_detach(kn);
   1232 					/* XXX non-fd release of kn->kn_ptr */
   1233 					pool_put(&knote_pool, kn);
   1234 					*knp = kn0;
   1235 				} else {
   1236 					knp = &SLIST_NEXT(kn, kn_link);
   1237 				}
   1238 				kn = kn0;
   1239 			}
   1240 		}
   1241 	}
   1242 	pool_put(&kqueue_pool, kq);
   1243 	fp->f_data = NULL;
   1244 
   1245 	return (0);
   1246 }
   1247 
   1248 /*
   1249  * wakeup a kqueue
   1250  */
   1251 static void
   1252 kqueue_wakeup(struct kqueue *kq)
   1253 {
   1254 	int s;
   1255 
   1256 	s = splsched();
   1257 	simple_lock(&kq->kq_lock);
   1258 	if (kq->kq_state & KQ_SLEEP) {		/* if currently sleeping ...  */
   1259 		kq->kq_state &= ~KQ_SLEEP;
   1260 		wakeup(kq);			/* ... wakeup */
   1261 	}
   1262 
   1263 	/* Notify select/poll and kevent. */
   1264 	selnotify(&kq->kq_sel, 0);
   1265 	simple_unlock(&kq->kq_lock);
   1266 	splx(s);
   1267 }
   1268 
   1269 /*
   1270  * struct fileops kqfilter method for a kqueue descriptor.
   1271  * Event triggered when monitored kqueue changes.
   1272  */
   1273 /*ARGSUSED*/
   1274 static int
   1275 kqueue_kqfilter(struct file *fp, struct knote *kn)
   1276 {
   1277 	struct kqueue *kq;
   1278 
   1279 	KASSERT(fp == kn->kn_fp);
   1280 	kq = (struct kqueue *)kn->kn_fp->f_data;
   1281 	if (kn->kn_filter != EVFILT_READ)
   1282 		return (1);
   1283 	kn->kn_fop = &kqread_filtops;
   1284 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
   1285 	return (0);
   1286 }
   1287 
   1288 
   1289 /*
   1290  * Walk down a list of knotes, activating them if their event has triggered.
   1291  */
   1292 void
   1293 knote(struct klist *list, long hint)
   1294 {
   1295 	struct knote *kn;
   1296 
   1297 	SLIST_FOREACH(kn, list, kn_selnext)
   1298 		if (kn->kn_fop->f_event(kn, hint))
   1299 			KNOTE_ACTIVATE(kn);
   1300 }
   1301 
   1302 /*
   1303  * Remove all knotes from a specified klist
   1304  */
   1305 void
   1306 knote_remove(struct lwp *l, struct klist *list)
   1307 {
   1308 	struct knote *kn;
   1309 
   1310 	while ((kn = SLIST_FIRST(list)) != NULL) {
   1311 		kn->kn_fop->f_detach(kn);
   1312 		knote_drop(kn, l, l->l_proc->p_fd);
   1313 	}
   1314 }
   1315 
   1316 /*
   1317  * Remove all knotes referencing a specified fd
   1318  */
   1319 void
   1320 knote_fdclose(struct lwp *l, int fd)
   1321 {
   1322 	struct filedesc	*fdp;
   1323 	struct klist	*list;
   1324 
   1325 	fdp = l->l_proc->p_fd;
   1326 	list = &fdp->fd_knlist[fd];
   1327 	knote_remove(l, list);
   1328 }
   1329 
   1330 /*
   1331  * Attach a new knote to a file descriptor
   1332  */
   1333 static void
   1334 knote_attach(struct knote *kn, struct filedesc *fdp)
   1335 {
   1336 	struct klist	*list;
   1337 	int		size;
   1338 
   1339 	if (! kn->kn_fop->f_isfd) {
   1340 		/* if knote is not on an fd, store on internal hash table */
   1341 		if (fdp->fd_knhashmask == 0)
   1342 			fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
   1343 			    M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
   1344 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1345 		goto done;
   1346 	}
   1347 
   1348 	/*
   1349 	 * otherwise, knote is on an fd.
   1350 	 * knotes are stored in fd_knlist indexed by kn->kn_id.
   1351 	 */
   1352 	if (fdp->fd_knlistsize <= kn->kn_id) {
   1353 		/* expand list, it's too small */
   1354 		size = fdp->fd_knlistsize;
   1355 		while (size <= kn->kn_id) {
   1356 			/* grow in KQ_EXTENT chunks */
   1357 			size += KQ_EXTENT;
   1358 		}
   1359 		list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
   1360 		if (fdp->fd_knlist) {
   1361 			/* copy existing knlist */
   1362 			memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
   1363 			    fdp->fd_knlistsize * sizeof(struct klist *));
   1364 		}
   1365 		/*
   1366 		 * Zero new memory. Stylistically, SLIST_INIT() should be
   1367 		 * used here, but that does same thing as the memset() anyway.
   1368 		 */
   1369 		memset(&list[fdp->fd_knlistsize], 0,
   1370 		    (size - fdp->fd_knlistsize) * sizeof(struct klist *));
   1371 
   1372 		/* switch to new knlist */
   1373 		if (fdp->fd_knlist != NULL)
   1374 			free(fdp->fd_knlist, M_KEVENT);
   1375 		fdp->fd_knlistsize = size;
   1376 		fdp->fd_knlist = list;
   1377 	}
   1378 
   1379 	/* get list head for this fd */
   1380 	list = &fdp->fd_knlist[kn->kn_id];
   1381  done:
   1382 	/* add new knote */
   1383 	SLIST_INSERT_HEAD(list, kn, kn_link);
   1384 	kn->kn_status = 0;
   1385 }
   1386 
   1387 /*
   1388  * Drop knote.
   1389  * Should be called at spl == 0, since we don't want to hold spl
   1390  * while calling FILE_UNUSE and free.
   1391  */
   1392 static void
   1393 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp)
   1394 {
   1395 	struct klist	*list;
   1396 
   1397 	if (kn->kn_fop->f_isfd)
   1398 		list = &fdp->fd_knlist[kn->kn_id];
   1399 	else
   1400 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1401 
   1402 	SLIST_REMOVE(list, kn, knote, kn_link);
   1403 	if (kn->kn_status & KN_QUEUED)
   1404 		knote_dequeue(kn);
   1405 	if (kn->kn_fop->f_isfd)
   1406 		FILE_UNUSE(kn->kn_fp, l);
   1407 	pool_put(&knote_pool, kn);
   1408 }
   1409 
   1410 
   1411 /*
   1412  * Queue new event for knote.
   1413  */
   1414 static void
   1415 knote_enqueue(struct knote *kn)
   1416 {
   1417 	struct kqueue	*kq;
   1418 	int		s;
   1419 
   1420 	kq = kn->kn_kq;
   1421 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
   1422 
   1423 	s = splsched();
   1424 	simple_lock(&kq->kq_lock);
   1425 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1426 	kn->kn_status |= KN_QUEUED;
   1427 	kq->kq_count++;
   1428 	simple_unlock(&kq->kq_lock);
   1429 	splx(s);
   1430 	kqueue_wakeup(kq);
   1431 }
   1432 
   1433 /*
   1434  * Dequeue event for knote.
   1435  */
   1436 static void
   1437 knote_dequeue(struct knote *kn)
   1438 {
   1439 	struct kqueue	*kq;
   1440 	int		s;
   1441 
   1442 	KASSERT(kn->kn_status & KN_QUEUED);
   1443 	kq = kn->kn_kq;
   1444 
   1445 	s = splsched();
   1446 	simple_lock(&kq->kq_lock);
   1447 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1448 	kn->kn_status &= ~KN_QUEUED;
   1449 	kq->kq_count--;
   1450 	simple_unlock(&kq->kq_lock);
   1451 	splx(s);
   1452 }
   1453