Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.25.6.2
      1 /*	$NetBSD: kern_event.c,v 1.25.6.2 2006/04/22 11:39:58 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
     29  */
     30 
     31 #include <sys/cdefs.h>
     32 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.25.6.2 2006/04/22 11:39:58 simonb Exp $");
     33 
     34 #include <sys/param.h>
     35 #include <sys/systm.h>
     36 #include <sys/kernel.h>
     37 #include <sys/proc.h>
     38 #include <sys/malloc.h>
     39 #include <sys/unistd.h>
     40 #include <sys/file.h>
     41 #include <sys/fcntl.h>
     42 #include <sys/select.h>
     43 #include <sys/queue.h>
     44 #include <sys/event.h>
     45 #include <sys/eventvar.h>
     46 #include <sys/poll.h>
     47 #include <sys/pool.h>
     48 #include <sys/protosw.h>
     49 #include <sys/socket.h>
     50 #include <sys/socketvar.h>
     51 #include <sys/stat.h>
     52 #include <sys/uio.h>
     53 #include <sys/mount.h>
     54 #include <sys/filedesc.h>
     55 #include <sys/sa.h>
     56 #include <sys/syscallargs.h>
     57 
     58 static void	kqueue_wakeup(struct kqueue *kq);
     59 
     60 static int	kqueue_scan(struct file *, size_t, struct kevent *,
     61     const struct timespec *, struct lwp *, register_t *,
     62     const struct kevent_ops *);
     63 static int	kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
     64 		    struct ucred *cred, int flags);
     65 static int	kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
     66 		    struct ucred *cred, int flags);
     67 static int	kqueue_ioctl(struct file *fp, u_long com, void *data,
     68 		    struct lwp *l);
     69 static int	kqueue_fcntl(struct file *fp, u_int com, void *data,
     70 		    struct lwp *l);
     71 static int	kqueue_poll(struct file *fp, int events, struct lwp *l);
     72 static int	kqueue_kqfilter(struct file *fp, struct knote *kn);
     73 static int	kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l);
     74 static int	kqueue_close(struct file *fp, struct lwp *l);
     75 
     76 static const struct fileops kqueueops = {
     77 	kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
     78 	kqueue_stat, kqueue_close, kqueue_kqfilter
     79 };
     80 
     81 static void	knote_attach(struct knote *kn, struct filedesc *fdp);
     82 static void	knote_drop(struct knote *kn, struct lwp *l,
     83 		    struct filedesc *fdp);
     84 static void	knote_enqueue(struct knote *kn);
     85 static void	knote_dequeue(struct knote *kn);
     86 
     87 static void	filt_kqdetach(struct knote *kn);
     88 static int	filt_kqueue(struct knote *kn, long hint);
     89 static int	filt_procattach(struct knote *kn);
     90 static void	filt_procdetach(struct knote *kn);
     91 static int	filt_proc(struct knote *kn, long hint);
     92 static int	filt_fileattach(struct knote *kn);
     93 static void	filt_timerexpire(void *knx);
     94 static int	filt_timerattach(struct knote *kn);
     95 static void	filt_timerdetach(struct knote *kn);
     96 static int	filt_timer(struct knote *kn, long hint);
     97 
     98 static const struct filterops kqread_filtops =
     99 	{ 1, NULL, filt_kqdetach, filt_kqueue };
    100 static const struct filterops proc_filtops =
    101 	{ 0, filt_procattach, filt_procdetach, filt_proc };
    102 static const struct filterops file_filtops =
    103 	{ 1, filt_fileattach, NULL, NULL };
    104 static const struct filterops timer_filtops =
    105 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
    106 
    107 static POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL);
    108 static POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL);
    109 static int	kq_ncallouts = 0;
    110 static int	kq_calloutmax = (4 * 1024);
    111 
    112 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
    113 
    114 #define	KNOTE_ACTIVATE(kn)						\
    115 do {									\
    116 	kn->kn_status |= KN_ACTIVE;					\
    117 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
    118 		knote_enqueue(kn);					\
    119 } while(0)
    120 
    121 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    122 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    123 
    124 extern const struct filterops sig_filtops;
    125 
    126 /*
    127  * Table for for all system-defined filters.
    128  * These should be listed in the numeric order of the EVFILT_* defines.
    129  * If filtops is NULL, the filter isn't implemented in NetBSD.
    130  * End of list is when name is NULL.
    131  */
    132 struct kfilter {
    133 	const char	 *name;		/* name of filter */
    134 	uint32_t	  filter;	/* id of filter */
    135 	const struct filterops *filtops;/* operations for filter */
    136 };
    137 
    138 		/* System defined filters */
    139 static const struct kfilter sys_kfilters[] = {
    140 	{ "EVFILT_READ",	EVFILT_READ,	&file_filtops },
    141 	{ "EVFILT_WRITE",	EVFILT_WRITE,	&file_filtops },
    142 	{ "EVFILT_AIO",		EVFILT_AIO,	NULL },
    143 	{ "EVFILT_VNODE",	EVFILT_VNODE,	&file_filtops },
    144 	{ "EVFILT_PROC",	EVFILT_PROC,	&proc_filtops },
    145 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	&sig_filtops },
    146 	{ "EVFILT_TIMER",	EVFILT_TIMER,	&timer_filtops },
    147 	{ NULL,			0,		NULL },	/* end of list */
    148 };
    149 
    150 		/* User defined kfilters */
    151 static struct kfilter	*user_kfilters;		/* array */
    152 static int		user_kfilterc;		/* current offset */
    153 static int		user_kfiltermaxc;	/* max size so far */
    154 
    155 /*
    156  * Find kfilter entry by name, or NULL if not found.
    157  */
    158 static const struct kfilter *
    159 kfilter_byname_sys(const char *name)
    160 {
    161 	int i;
    162 
    163 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    164 		if (strcmp(name, sys_kfilters[i].name) == 0)
    165 			return (&sys_kfilters[i]);
    166 	}
    167 	return (NULL);
    168 }
    169 
    170 static struct kfilter *
    171 kfilter_byname_user(const char *name)
    172 {
    173 	int i;
    174 
    175 	/* user_kfilters[] could be NULL if no filters were registered */
    176 	if (!user_kfilters)
    177 		return (NULL);
    178 
    179 	for (i = 0; user_kfilters[i].name != NULL; i++) {
    180 		if (user_kfilters[i].name != '\0' &&
    181 		    strcmp(name, user_kfilters[i].name) == 0)
    182 			return (&user_kfilters[i]);
    183 	}
    184 	return (NULL);
    185 }
    186 
    187 static const struct kfilter *
    188 kfilter_byname(const char *name)
    189 {
    190 	const struct kfilter *kfilter;
    191 
    192 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    193 		return (kfilter);
    194 
    195 	return (kfilter_byname_user(name));
    196 }
    197 
    198 /*
    199  * Find kfilter entry by filter id, or NULL if not found.
    200  * Assumes entries are indexed in filter id order, for speed.
    201  */
    202 static const struct kfilter *
    203 kfilter_byfilter(uint32_t filter)
    204 {
    205 	const struct kfilter *kfilter;
    206 
    207 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    208 		kfilter = &sys_kfilters[filter];
    209 	else if (user_kfilters != NULL &&
    210 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    211 					/* it's a user filter */
    212 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    213 	else
    214 		return (NULL);		/* out of range */
    215 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    216 	return (kfilter);
    217 }
    218 
    219 /*
    220  * Register a new kfilter. Stores the entry in user_kfilters.
    221  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    222  * If retfilter != NULL, the new filterid is returned in it.
    223  */
    224 int
    225 kfilter_register(const char *name, const struct filterops *filtops,
    226     int *retfilter)
    227 {
    228 	struct kfilter *kfilter;
    229 	void *space;
    230 	int len;
    231 
    232 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    233 		return (EINVAL);	/* invalid args */
    234 	if (kfilter_byname(name) != NULL)
    235 		return (EEXIST);	/* already exists */
    236 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
    237 		return (EINVAL);	/* too many */
    238 
    239 	/* check if need to grow user_kfilters */
    240 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    241 		/*
    242 		 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
    243 		 * want to traverse user_kfilters as an array.
    244 		 */
    245 		user_kfiltermaxc += KFILTER_EXTENT;
    246 		kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
    247 		    M_KEVENT, M_WAITOK);
    248 
    249 		/* copy existing user_kfilters */
    250 		if (user_kfilters != NULL)
    251 			memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
    252 			    user_kfilterc * sizeof(struct kfilter *));
    253 					/* zero new sections */
    254 		memset((caddr_t)kfilter +
    255 		    user_kfilterc * sizeof(struct kfilter *), 0,
    256 		    (user_kfiltermaxc - user_kfilterc) *
    257 		    sizeof(struct kfilter *));
    258 					/* switch to new kfilter */
    259 		if (user_kfilters != NULL)
    260 			free(user_kfilters, M_KEVENT);
    261 		user_kfilters = kfilter;
    262 	}
    263 	len = strlen(name) + 1;		/* copy name */
    264 	space = malloc(len, M_KEVENT, M_WAITOK);
    265 	memcpy(space, name, len);
    266 	user_kfilters[user_kfilterc].name = space;
    267 
    268 	user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
    269 
    270 	len = sizeof(struct filterops);	/* copy filtops */
    271 	space = malloc(len, M_KEVENT, M_WAITOK);
    272 	memcpy(space, filtops, len);
    273 	user_kfilters[user_kfilterc].filtops = space;
    274 
    275 	if (retfilter != NULL)
    276 		*retfilter = user_kfilters[user_kfilterc].filter;
    277 	user_kfilterc++;		/* finally, increment count */
    278 	return (0);
    279 }
    280 
    281 /*
    282  * Unregister a kfilter previously registered with kfilter_register.
    283  * This retains the filter id, but clears the name and frees filtops (filter
    284  * operations), so that the number isn't reused during a boot.
    285  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    286  */
    287 int
    288 kfilter_unregister(const char *name)
    289 {
    290 	struct kfilter *kfilter;
    291 
    292 	if (name == NULL || name[0] == '\0')
    293 		return (EINVAL);	/* invalid name */
    294 
    295 	if (kfilter_byname_sys(name) != NULL)
    296 		return (EINVAL);	/* can't detach system filters */
    297 
    298 	kfilter = kfilter_byname_user(name);
    299 	if (kfilter == NULL)		/* not found */
    300 		return (ENOENT);
    301 
    302 	if (kfilter->name[0] != '\0') {
    303 		/* XXXUNCONST Cast away const (but we know it's safe. */
    304 		free(__UNCONST(kfilter->name), M_KEVENT);
    305 		kfilter->name = "";	/* mark as `not implemented' */
    306 	}
    307 	if (kfilter->filtops != NULL) {
    308 		/* XXXUNCONST Cast away const (but we know it's safe. */
    309 		free(__UNCONST(kfilter->filtops), M_KEVENT);
    310 		kfilter->filtops = NULL; /* mark as `not implemented' */
    311 	}
    312 	return (0);
    313 }
    314 
    315 
    316 /*
    317  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    318  * descriptors. Calls struct fileops kqfilter method for given file descriptor.
    319  */
    320 static int
    321 filt_fileattach(struct knote *kn)
    322 {
    323 	struct file *fp;
    324 
    325 	fp = kn->kn_fp;
    326 	return ((*fp->f_ops->fo_kqfilter)(fp, kn));
    327 }
    328 
    329 /*
    330  * Filter detach method for EVFILT_READ on kqueue descriptor.
    331  */
    332 static void
    333 filt_kqdetach(struct knote *kn)
    334 {
    335 	struct kqueue *kq;
    336 
    337 	kq = (struct kqueue *)kn->kn_fp->f_data;
    338 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
    339 }
    340 
    341 /*
    342  * Filter event method for EVFILT_READ on kqueue descriptor.
    343  */
    344 /*ARGSUSED*/
    345 static int
    346 filt_kqueue(struct knote *kn, long hint)
    347 {
    348 	struct kqueue *kq;
    349 
    350 	kq = (struct kqueue *)kn->kn_fp->f_data;
    351 	kn->kn_data = kq->kq_count;
    352 	return (kn->kn_data > 0);
    353 }
    354 
    355 /*
    356  * Filter attach method for EVFILT_PROC.
    357  */
    358 static int
    359 filt_procattach(struct knote *kn)
    360 {
    361 	struct proc *p;
    362 
    363 	p = pfind(kn->kn_id);
    364 	if (p == NULL)
    365 		return (ESRCH);
    366 
    367 	/*
    368 	 * Fail if it's not owned by you, or the last exec gave us
    369 	 * setuid/setgid privs (unless you're root).
    370 	 */
    371 	if ((p->p_cred->p_ruid != curproc->p_cred->p_ruid ||
    372 		(p->p_flag & P_SUGID))
    373 	    && suser(curproc->p_ucred, &curproc->p_acflag) != 0)
    374 		return (EACCES);
    375 
    376 	kn->kn_ptr.p_proc = p;
    377 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    378 
    379 	/*
    380 	 * internal flag indicating registration done by kernel
    381 	 */
    382 	if (kn->kn_flags & EV_FLAG1) {
    383 		kn->kn_data = kn->kn_sdata;	/* ppid */
    384 		kn->kn_fflags = NOTE_CHILD;
    385 		kn->kn_flags &= ~EV_FLAG1;
    386 	}
    387 
    388 	/* XXXSMP lock the process? */
    389 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    390 
    391 	return (0);
    392 }
    393 
    394 /*
    395  * Filter detach method for EVFILT_PROC.
    396  *
    397  * The knote may be attached to a different process, which may exit,
    398  * leaving nothing for the knote to be attached to.  So when the process
    399  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    400  * it will be deleted when read out.  However, as part of the knote deletion,
    401  * this routine is called, so a check is needed to avoid actually performing
    402  * a detach, because the original process might not exist any more.
    403  */
    404 static void
    405 filt_procdetach(struct knote *kn)
    406 {
    407 	struct proc *p;
    408 
    409 	if (kn->kn_status & KN_DETACHED)
    410 		return;
    411 
    412 	p = kn->kn_ptr.p_proc;
    413 	KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p);
    414 
    415 	/* XXXSMP lock the process? */
    416 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    417 }
    418 
    419 /*
    420  * Filter event method for EVFILT_PROC.
    421  */
    422 static int
    423 filt_proc(struct knote *kn, long hint)
    424 {
    425 	u_int event;
    426 
    427 	/*
    428 	 * mask off extra data
    429 	 */
    430 	event = (u_int)hint & NOTE_PCTRLMASK;
    431 
    432 	/*
    433 	 * if the user is interested in this event, record it.
    434 	 */
    435 	if (kn->kn_sfflags & event)
    436 		kn->kn_fflags |= event;
    437 
    438 	/*
    439 	 * process is gone, so flag the event as finished.
    440 	 */
    441 	if (event == NOTE_EXIT) {
    442 		/*
    443 		 * Detach the knote from watched process and mark
    444 		 * it as such. We can't leave this to kqueue_scan(),
    445 		 * since the process might not exist by then. And we
    446 		 * have to do this now, since psignal KNOTE() is called
    447 		 * also for zombies and we might end up reading freed
    448 		 * memory if the kevent would already be picked up
    449 		 * and knote g/c'ed.
    450 		 */
    451 		kn->kn_fop->f_detach(kn);
    452 		kn->kn_status |= KN_DETACHED;
    453 
    454 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
    455 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
    456 		return (1);
    457 	}
    458 
    459 	/*
    460 	 * process forked, and user wants to track the new process,
    461 	 * so attach a new knote to it, and immediately report an
    462 	 * event with the parent's pid.
    463 	 */
    464 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
    465 		struct kevent kev;
    466 		int error;
    467 
    468 		/*
    469 		 * register knote with new process.
    470 		 */
    471 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
    472 		kev.filter = kn->kn_filter;
    473 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
    474 		kev.fflags = kn->kn_sfflags;
    475 		kev.data = kn->kn_id;			/* parent */
    476 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
    477 		error = kqueue_register(kn->kn_kq, &kev, NULL);
    478 		if (error)
    479 			kn->kn_fflags |= NOTE_TRACKERR;
    480 	}
    481 
    482 	return (kn->kn_fflags != 0);
    483 }
    484 
    485 static void
    486 filt_timerexpire(void *knx)
    487 {
    488 	struct knote *kn = knx;
    489 	int tticks;
    490 
    491 	kn->kn_data++;
    492 	KNOTE_ACTIVATE(kn);
    493 
    494 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
    495 		tticks = mstohz(kn->kn_sdata);
    496 		callout_schedule((struct callout *)kn->kn_hook, tticks);
    497 	}
    498 }
    499 
    500 /*
    501  * data contains amount of time to sleep, in milliseconds
    502  */
    503 static int
    504 filt_timerattach(struct knote *kn)
    505 {
    506 	struct callout *calloutp;
    507 	int tticks;
    508 
    509 	if (kq_ncallouts >= kq_calloutmax)
    510 		return (ENOMEM);
    511 	kq_ncallouts++;
    512 
    513 	tticks = mstohz(kn->kn_sdata);
    514 
    515 	/* if the supplied value is under our resolution, use 1 tick */
    516 	if (tticks == 0) {
    517 		if (kn->kn_sdata == 0)
    518 			return (EINVAL);
    519 		tticks = 1;
    520 	}
    521 
    522 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
    523 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
    524 	    M_KEVENT, 0);
    525 	callout_init(calloutp);
    526 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
    527 	kn->kn_hook = calloutp;
    528 
    529 	return (0);
    530 }
    531 
    532 static void
    533 filt_timerdetach(struct knote *kn)
    534 {
    535 	struct callout *calloutp;
    536 
    537 	calloutp = (struct callout *)kn->kn_hook;
    538 	callout_stop(calloutp);
    539 	FREE(calloutp, M_KEVENT);
    540 	kq_ncallouts--;
    541 }
    542 
    543 static int
    544 filt_timer(struct knote *kn, long hint)
    545 {
    546 	return (kn->kn_data != 0);
    547 }
    548 
    549 /*
    550  * filt_seltrue:
    551  *
    552  *	This filter "event" routine simulates seltrue().
    553  */
    554 int
    555 filt_seltrue(struct knote *kn, long hint)
    556 {
    557 
    558 	/*
    559 	 * We don't know how much data can be read/written,
    560 	 * but we know that it *can* be.  This is about as
    561 	 * good as select/poll does as well.
    562 	 */
    563 	kn->kn_data = 0;
    564 	return (1);
    565 }
    566 
    567 /*
    568  * This provides full kqfilter entry for device switch tables, which
    569  * has same effect as filter using filt_seltrue() as filter method.
    570  */
    571 static void
    572 filt_seltruedetach(struct knote *kn)
    573 {
    574 	/* Nothing to do */
    575 }
    576 
    577 static const struct filterops seltrue_filtops =
    578 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
    579 
    580 int
    581 seltrue_kqfilter(dev_t dev, struct knote *kn)
    582 {
    583 	switch (kn->kn_filter) {
    584 	case EVFILT_READ:
    585 	case EVFILT_WRITE:
    586 		kn->kn_fop = &seltrue_filtops;
    587 		break;
    588 	default:
    589 		return (1);
    590 	}
    591 
    592 	/* Nothing more to do */
    593 	return (0);
    594 }
    595 
    596 /*
    597  * kqueue(2) system call.
    598  */
    599 int
    600 sys_kqueue(struct lwp *l, void *v, register_t *retval)
    601 {
    602 	struct filedesc	*fdp;
    603 	struct kqueue	*kq;
    604 	struct file	*fp;
    605 	struct proc	*p;
    606 	int		fd, error;
    607 
    608 	p = l->l_proc;
    609 	fdp = p->p_fd;
    610 	error = falloc(p, &fp, &fd);	/* setup a new file descriptor */
    611 	if (error)
    612 		return (error);
    613 	fp->f_flag = FREAD | FWRITE;
    614 	fp->f_type = DTYPE_KQUEUE;
    615 	fp->f_ops = &kqueueops;
    616 	kq = pool_get(&kqueue_pool, PR_WAITOK);
    617 	memset((char *)kq, 0, sizeof(struct kqueue));
    618 	simple_lock_init(&kq->kq_lock);
    619 	TAILQ_INIT(&kq->kq_head);
    620 	fp->f_data = (caddr_t)kq;	/* store the kqueue with the fp */
    621 	*retval = fd;
    622 	if (fdp->fd_knlistsize < 0)
    623 		fdp->fd_knlistsize = 0;	/* this process has a kq */
    624 	kq->kq_fdp = fdp;
    625 	FILE_SET_MATURE(fp);
    626 	FILE_UNUSE(fp, l);		/* falloc() does FILE_USE() */
    627 	return (error);
    628 }
    629 
    630 /*
    631  * kevent(2) system call.
    632  */
    633 static int
    634 kevent_fetch_changes(void *private, const struct kevent *changelist,
    635     struct kevent *changes, size_t index, int n)
    636 {
    637 	return copyin(changelist + index, changes, n * sizeof(*changes));
    638 }
    639 
    640 static int
    641 kevent_put_events(void *private, struct kevent *events,
    642     struct kevent *eventlist, size_t index, int n)
    643 {
    644 	return copyout(events, eventlist + index, n * sizeof(*events));
    645 }
    646 
    647 static const struct kevent_ops kevent_native_ops = {
    648 	keo_private: NULL,
    649 	keo_fetch_timeout: copyin,
    650 	keo_fetch_changes: kevent_fetch_changes,
    651 	keo_put_events: kevent_put_events,
    652 };
    653 
    654 int
    655 sys_kevent(struct lwp *l, void *v, register_t *retval)
    656 {
    657 	struct sys_kevent_args /* {
    658 		syscallarg(int) fd;
    659 		syscallarg(const struct kevent *) changelist;
    660 		syscallarg(size_t) nchanges;
    661 		syscallarg(struct kevent *) eventlist;
    662 		syscallarg(size_t) nevents;
    663 		syscallarg(const struct timespec *) timeout;
    664 	} */ *uap = v;
    665 
    666 	return kevent1(l, retval, SCARG(uap, fd), SCARG(uap, changelist),
    667 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
    668 	    SCARG(uap, timeout), &kevent_native_ops);
    669 }
    670 
    671 int
    672 kevent1(struct lwp *l, register_t *retval, int fd,
    673     const struct kevent *changelist, size_t nchanges, struct kevent *eventlist,
    674     size_t nevents, const struct timespec *timeout,
    675     const struct kevent_ops *keops)
    676 {
    677 	struct kevent	*kevp;
    678 	struct kqueue	*kq;
    679 	struct file	*fp;
    680 	struct timespec	ts;
    681 	struct proc	*p;
    682 	size_t		i, n, ichange;
    683 	int		nerrors, error;
    684 
    685 	p = l->l_proc;
    686 	/* check that we're dealing with a kq */
    687 	fp = fd_getfile(p->p_fd, fd);
    688 	if (fp == NULL)
    689 		return (EBADF);
    690 
    691 	if (fp->f_type != DTYPE_KQUEUE) {
    692 		simple_unlock(&fp->f_slock);
    693 		return (EBADF);
    694 	}
    695 
    696 	FILE_USE(fp);
    697 
    698 	if (timeout != NULL) {
    699 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
    700 		if (error)
    701 			goto done;
    702 		timeout = &ts;
    703 	}
    704 
    705 	kq = (struct kqueue *)fp->f_data;
    706 	nerrors = 0;
    707 	ichange = 0;
    708 
    709 	/* traverse list of events to register */
    710 	while (nchanges > 0) {
    711 		/* copyin a maximum of KQ_EVENTS at each pass */
    712 		n = MIN(nchanges, KQ_NEVENTS);
    713 		error = (*keops->keo_fetch_changes)(keops->keo_private,
    714 		    changelist, kq->kq_kev, ichange, n);
    715 		if (error)
    716 			goto done;
    717 		for (i = 0; i < n; i++) {
    718 			kevp = &kq->kq_kev[i];
    719 			kevp->flags &= ~EV_SYSFLAGS;
    720 			/* register each knote */
    721 			error = kqueue_register(kq, kevp, l);
    722 			if (error) {
    723 				if (nevents != 0) {
    724 					kevp->flags = EV_ERROR;
    725 					kevp->data = error;
    726 					error = (*keops->keo_put_events)
    727 					    (keops->keo_private, kevp,
    728 					    eventlist, nerrors, 1);
    729 					if (error)
    730 						goto done;
    731 					nevents--;
    732 					nerrors++;
    733 				} else {
    734 					goto done;
    735 				}
    736 			}
    737 		}
    738 		nchanges -= n;	/* update the results */
    739 		ichange += n;
    740 	}
    741 	if (nerrors) {
    742 		*retval = nerrors;
    743 		error = 0;
    744 		goto done;
    745 	}
    746 
    747 	/* actually scan through the events */
    748 	error = kqueue_scan(fp, nevents, eventlist, timeout, l, retval, keops);
    749  done:
    750 	FILE_UNUSE(fp, l);
    751 	return (error);
    752 }
    753 
    754 /*
    755  * Register a given kevent kev onto the kqueue
    756  */
    757 int
    758 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l)
    759 {
    760 	const struct kfilter *kfilter;
    761 	struct filedesc	*fdp;
    762 	struct file	*fp;
    763 	struct knote	*kn;
    764 	int		s, error;
    765 
    766 	fdp = kq->kq_fdp;
    767 	fp = NULL;
    768 	kn = NULL;
    769 	error = 0;
    770 	kfilter = kfilter_byfilter(kev->filter);
    771 	if (kfilter == NULL || kfilter->filtops == NULL) {
    772 		/* filter not found nor implemented */
    773 		return (EINVAL);
    774 	}
    775 
    776 	/* search if knote already exists */
    777 	if (kfilter->filtops->f_isfd) {
    778 		/* monitoring a file descriptor */
    779 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
    780 			return (EBADF);	/* validate descriptor */
    781 		FILE_USE(fp);
    782 
    783 		if (kev->ident < fdp->fd_knlistsize) {
    784 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
    785 				if (kq == kn->kn_kq &&
    786 				    kev->filter == kn->kn_filter)
    787 					break;
    788 		}
    789 	} else {
    790 		/*
    791 		 * not monitoring a file descriptor, so
    792 		 * lookup knotes in internal hash table
    793 		 */
    794 		if (fdp->fd_knhashmask != 0) {
    795 			struct klist *list;
    796 
    797 			list = &fdp->fd_knhash[
    798 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
    799 			SLIST_FOREACH(kn, list, kn_link)
    800 				if (kev->ident == kn->kn_id &&
    801 				    kq == kn->kn_kq &&
    802 				    kev->filter == kn->kn_filter)
    803 					break;
    804 		}
    805 	}
    806 
    807 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
    808 		error = ENOENT;		/* filter not found */
    809 		goto done;
    810 	}
    811 
    812 	/*
    813 	 * kn now contains the matching knote, or NULL if no match
    814 	 */
    815 	if (kev->flags & EV_ADD) {
    816 		/* add knote */
    817 
    818 		if (kn == NULL) {
    819 			/* create new knote */
    820 			kn = pool_get(&knote_pool, PR_WAITOK);
    821 			if (kn == NULL) {
    822 				error = ENOMEM;
    823 				goto done;
    824 			}
    825 			kn->kn_fp = fp;
    826 			kn->kn_kq = kq;
    827 			kn->kn_fop = kfilter->filtops;
    828 
    829 			/*
    830 			 * apply reference count to knote structure, and
    831 			 * do not release it at the end of this routine.
    832 			 */
    833 			fp = NULL;
    834 
    835 			kn->kn_sfflags = kev->fflags;
    836 			kn->kn_sdata = kev->data;
    837 			kev->fflags = 0;
    838 			kev->data = 0;
    839 			kn->kn_kevent = *kev;
    840 
    841 			knote_attach(kn, fdp);
    842 			if ((error = kfilter->filtops->f_attach(kn)) != 0) {
    843 				knote_drop(kn, l, fdp);
    844 				goto done;
    845 			}
    846 		} else {
    847 			/* modify existing knote */
    848 
    849 			/*
    850 			 * The user may change some filter values after the
    851 			 * initial EV_ADD, but doing so will not reset any
    852 			 * filter which have already been triggered.
    853 			 */
    854 			kn->kn_sfflags = kev->fflags;
    855 			kn->kn_sdata = kev->data;
    856 			kn->kn_kevent.udata = kev->udata;
    857 		}
    858 
    859 		s = splsched();
    860 		if (kn->kn_fop->f_event(kn, 0))
    861 			KNOTE_ACTIVATE(kn);
    862 		splx(s);
    863 
    864 	} else if (kev->flags & EV_DELETE) {	/* delete knote */
    865 		kn->kn_fop->f_detach(kn);
    866 		knote_drop(kn, l, fdp);
    867 		goto done;
    868 	}
    869 
    870 	/* disable knote */
    871 	if ((kev->flags & EV_DISABLE) &&
    872 	    ((kn->kn_status & KN_DISABLED) == 0)) {
    873 		s = splsched();
    874 		kn->kn_status |= KN_DISABLED;
    875 		splx(s);
    876 	}
    877 
    878 	/* enable knote */
    879 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
    880 		s = splsched();
    881 		kn->kn_status &= ~KN_DISABLED;
    882 		if ((kn->kn_status & KN_ACTIVE) &&
    883 		    ((kn->kn_status & KN_QUEUED) == 0))
    884 			knote_enqueue(kn);
    885 		splx(s);
    886 	}
    887 
    888  done:
    889 	if (fp != NULL)
    890 		FILE_UNUSE(fp, l);
    891 	return (error);
    892 }
    893 
    894 /*
    895  * Scan through the list of events on fp (for a maximum of maxevents),
    896  * returning the results in to ulistp. Timeout is determined by tsp; if
    897  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
    898  * as appropriate.
    899  */
    900 static int
    901 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
    902     const struct timespec *tsp, struct lwp *l, register_t *retval,
    903     const struct kevent_ops *keops)
    904 {
    905 	struct proc	*p = l->l_proc;
    906 	struct kqueue	*kq;
    907 	struct kevent	*kevp;
    908 	struct timeval	atv;
    909 	struct knote	*kn, *marker=NULL;
    910 	size_t		count, nkev, nevents;
    911 	int		s, timeout, error;
    912 
    913 	kq = (struct kqueue *)fp->f_data;
    914 	count = maxevents;
    915 	nkev = nevents = error = 0;
    916 	if (count == 0)
    917 		goto done;
    918 
    919 	if (tsp) {				/* timeout supplied */
    920 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
    921 		if (itimerfix(&atv)) {
    922 			error = EINVAL;
    923 			goto done;
    924 		}
    925 		timeout = tvtohz(&atv);
    926 		if (timeout <= 0)
    927 			timeout = -1;		/* do poll */
    928 	} else {
    929 		/* no timeout, wait forever */
    930 		timeout = 0;
    931 	}
    932 
    933 	MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK);
    934 	memset(marker, 0, sizeof(*marker));
    935 
    936 	goto start;
    937 
    938  retry:
    939 	if (tsp) {
    940 		/*
    941 		 * We have to recalculate the timeout on every retry.
    942 		 */
    943 		timeout = hzto(&atv);
    944 		if (timeout <= 0)
    945 			goto done;
    946 	}
    947 
    948  start:
    949 	kevp = kq->kq_kev;
    950 	s = splsched();
    951 	simple_lock(&kq->kq_lock);
    952 	if (kq->kq_count == 0) {
    953 		if (timeout < 0) {
    954 			error = EWOULDBLOCK;
    955 			simple_unlock(&kq->kq_lock);
    956 		} else {
    957 			kq->kq_state |= KQ_SLEEP;
    958 			error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
    959 					"kqread", timeout, &kq->kq_lock);
    960 		}
    961 		splx(s);
    962 		if (error == 0)
    963 			goto retry;
    964 		/* don't restart after signals... */
    965 		if (error == ERESTART)
    966 			error = EINTR;
    967 		else if (error == EWOULDBLOCK)
    968 			error = 0;
    969 		goto done;
    970 	}
    971 
    972 	/* mark end of knote list */
    973 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
    974 	simple_unlock(&kq->kq_lock);
    975 
    976 	while (count) {				/* while user wants data ... */
    977 		simple_lock(&kq->kq_lock);
    978 		kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
    979 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
    980 		if (kn == marker) {		/* if it's our marker, stop */
    981 			/* What if it's some else's marker? */
    982 			simple_unlock(&kq->kq_lock);
    983 			splx(s);
    984 			if (count == maxevents)
    985 				goto retry;
    986 			goto done;
    987 		}
    988 		kq->kq_count--;
    989 		simple_unlock(&kq->kq_lock);
    990 
    991 		if (kn->kn_status & KN_DISABLED) {
    992 			/* don't want disabled events */
    993 			kn->kn_status &= ~KN_QUEUED;
    994 			continue;
    995 		}
    996 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
    997 		    kn->kn_fop->f_event(kn, 0) == 0) {
    998 			/*
    999 			 * non-ONESHOT event that hasn't
   1000 			 * triggered again, so de-queue.
   1001 			 */
   1002 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
   1003 			continue;
   1004 		}
   1005 		*kevp = kn->kn_kevent;
   1006 		kevp++;
   1007 		nkev++;
   1008 		if (kn->kn_flags & EV_ONESHOT) {
   1009 			/* delete ONESHOT events after retrieval */
   1010 			kn->kn_status &= ~KN_QUEUED;
   1011 			splx(s);
   1012 			kn->kn_fop->f_detach(kn);
   1013 			knote_drop(kn, l, p->p_fd);
   1014 			s = splsched();
   1015 		} else if (kn->kn_flags & EV_CLEAR) {
   1016 			/* clear state after retrieval */
   1017 			kn->kn_data = 0;
   1018 			kn->kn_fflags = 0;
   1019 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
   1020 		} else {
   1021 			/* add event back on list */
   1022 			simple_lock(&kq->kq_lock);
   1023 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1024 			kq->kq_count++;
   1025 			simple_unlock(&kq->kq_lock);
   1026 		}
   1027 		count--;
   1028 		if (nkev == KQ_NEVENTS) {
   1029 			/* do copyouts in KQ_NEVENTS chunks */
   1030 			splx(s);
   1031 			error = (*keops->keo_put_events)(keops->keo_private,
   1032 			    &kq->kq_kev[0], ulistp, nevents, nkev);
   1033 			nevents += nkev;
   1034 			nkev = 0;
   1035 			kevp = kq->kq_kev;
   1036 			s = splsched();
   1037 			if (error)
   1038 				break;
   1039 		}
   1040 	}
   1041 
   1042 	/* remove marker */
   1043 	simple_lock(&kq->kq_lock);
   1044 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   1045 	simple_unlock(&kq->kq_lock);
   1046 	splx(s);
   1047  done:
   1048 	if (marker)
   1049 		FREE(marker, M_KEVENT);
   1050 
   1051 	if (nkev != 0)
   1052 		/* copyout remaining events */
   1053 		error = (*keops->keo_put_events)(keops->keo_private,
   1054 		    &kq->kq_kev[0], ulistp, nevents, nkev);
   1055 	*retval = maxevents - count;
   1056 
   1057 	return (error);
   1058 }
   1059 
   1060 /*
   1061  * struct fileops read method for a kqueue descriptor.
   1062  * Not implemented.
   1063  * XXX: This could be expanded to call kqueue_scan, if desired.
   1064  */
   1065 /*ARGSUSED*/
   1066 static int
   1067 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
   1068 	struct ucred *cred, int flags)
   1069 {
   1070 
   1071 	return (ENXIO);
   1072 }
   1073 
   1074 /*
   1075  * struct fileops write method for a kqueue descriptor.
   1076  * Not implemented.
   1077  */
   1078 /*ARGSUSED*/
   1079 static int
   1080 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
   1081 	struct ucred *cred, int flags)
   1082 {
   1083 
   1084 	return (ENXIO);
   1085 }
   1086 
   1087 /*
   1088  * struct fileops ioctl method for a kqueue descriptor.
   1089  *
   1090  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   1091  *	KFILTER_BYNAME		find name for filter, and return result in
   1092  *				name, which is of size len.
   1093  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   1094  */
   1095 /*ARGSUSED*/
   1096 static int
   1097 kqueue_ioctl(struct file *fp, u_long com, void *data, struct lwp *l)
   1098 {
   1099 	struct kfilter_mapping	*km;
   1100 	const struct kfilter	*kfilter;
   1101 	char			*name;
   1102 	int			error;
   1103 
   1104 	km = (struct kfilter_mapping *)data;
   1105 	error = 0;
   1106 
   1107 	switch (com) {
   1108 	case KFILTER_BYFILTER:	/* convert filter -> name */
   1109 		kfilter = kfilter_byfilter(km->filter);
   1110 		if (kfilter != NULL)
   1111 			error = copyoutstr(kfilter->name, km->name, km->len,
   1112 			    NULL);
   1113 		else
   1114 			error = ENOENT;
   1115 		break;
   1116 
   1117 	case KFILTER_BYNAME:	/* convert name -> filter */
   1118 		MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
   1119 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   1120 		if (error) {
   1121 			FREE(name, M_KEVENT);
   1122 			break;
   1123 		}
   1124 		kfilter = kfilter_byname(name);
   1125 		if (kfilter != NULL)
   1126 			km->filter = kfilter->filter;
   1127 		else
   1128 			error = ENOENT;
   1129 		FREE(name, M_KEVENT);
   1130 		break;
   1131 
   1132 	default:
   1133 		error = ENOTTY;
   1134 
   1135 	}
   1136 	return (error);
   1137 }
   1138 
   1139 /*
   1140  * struct fileops fcntl method for a kqueue descriptor.
   1141  * Not implemented.
   1142  */
   1143 /*ARGSUSED*/
   1144 static int
   1145 kqueue_fcntl(struct file *fp, u_int com, void *data, struct lwp *l)
   1146 {
   1147 
   1148 	return (ENOTTY);
   1149 }
   1150 
   1151 /*
   1152  * struct fileops poll method for a kqueue descriptor.
   1153  * Determine if kqueue has events pending.
   1154  */
   1155 static int
   1156 kqueue_poll(struct file *fp, int events, struct lwp *l)
   1157 {
   1158 	struct kqueue	*kq;
   1159 	int		revents;
   1160 
   1161 	kq = (struct kqueue *)fp->f_data;
   1162 	revents = 0;
   1163 	if (events & (POLLIN | POLLRDNORM)) {
   1164 		if (kq->kq_count) {
   1165 			revents |= events & (POLLIN | POLLRDNORM);
   1166 		} else {
   1167 			selrecord(l, &kq->kq_sel);
   1168 		}
   1169 	}
   1170 	return (revents);
   1171 }
   1172 
   1173 /*
   1174  * struct fileops stat method for a kqueue descriptor.
   1175  * Returns dummy info, with st_size being number of events pending.
   1176  */
   1177 static int
   1178 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l)
   1179 {
   1180 	struct kqueue	*kq;
   1181 
   1182 	kq = (struct kqueue *)fp->f_data;
   1183 	memset((void *)st, 0, sizeof(*st));
   1184 	st->st_size = kq->kq_count;
   1185 	st->st_blksize = sizeof(struct kevent);
   1186 	st->st_mode = S_IFIFO;
   1187 	return (0);
   1188 }
   1189 
   1190 /*
   1191  * struct fileops close method for a kqueue descriptor.
   1192  * Cleans up kqueue.
   1193  */
   1194 static int
   1195 kqueue_close(struct file *fp, struct lwp *l)
   1196 {
   1197 	struct proc	*p = l->l_proc;
   1198 	struct kqueue	*kq;
   1199 	struct filedesc	*fdp;
   1200 	struct knote	**knp, *kn, *kn0;
   1201 	int		i;
   1202 
   1203 	kq = (struct kqueue *)fp->f_data;
   1204 	fdp = p->p_fd;
   1205 	for (i = 0; i < fdp->fd_knlistsize; i++) {
   1206 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
   1207 		kn = *knp;
   1208 		while (kn != NULL) {
   1209 			kn0 = SLIST_NEXT(kn, kn_link);
   1210 			if (kq == kn->kn_kq) {
   1211 				kn->kn_fop->f_detach(kn);
   1212 				FILE_UNUSE(kn->kn_fp, l);
   1213 				pool_put(&knote_pool, kn);
   1214 				*knp = kn0;
   1215 			} else {
   1216 				knp = &SLIST_NEXT(kn, kn_link);
   1217 			}
   1218 			kn = kn0;
   1219 		}
   1220 	}
   1221 	if (fdp->fd_knhashmask != 0) {
   1222 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   1223 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
   1224 			kn = *knp;
   1225 			while (kn != NULL) {
   1226 				kn0 = SLIST_NEXT(kn, kn_link);
   1227 				if (kq == kn->kn_kq) {
   1228 					kn->kn_fop->f_detach(kn);
   1229 					/* XXX non-fd release of kn->kn_ptr */
   1230 					pool_put(&knote_pool, kn);
   1231 					*knp = kn0;
   1232 				} else {
   1233 					knp = &SLIST_NEXT(kn, kn_link);
   1234 				}
   1235 				kn = kn0;
   1236 			}
   1237 		}
   1238 	}
   1239 	pool_put(&kqueue_pool, kq);
   1240 	fp->f_data = NULL;
   1241 
   1242 	return (0);
   1243 }
   1244 
   1245 /*
   1246  * wakeup a kqueue
   1247  */
   1248 static void
   1249 kqueue_wakeup(struct kqueue *kq)
   1250 {
   1251 	int s;
   1252 
   1253 	s = splsched();
   1254 	simple_lock(&kq->kq_lock);
   1255 	if (kq->kq_state & KQ_SLEEP) {		/* if currently sleeping ...  */
   1256 		kq->kq_state &= ~KQ_SLEEP;
   1257 		wakeup(kq);			/* ... wakeup */
   1258 	}
   1259 
   1260 	/* Notify select/poll and kevent. */
   1261 	selnotify(&kq->kq_sel, 0);
   1262 	simple_unlock(&kq->kq_lock);
   1263 	splx(s);
   1264 }
   1265 
   1266 /*
   1267  * struct fileops kqfilter method for a kqueue descriptor.
   1268  * Event triggered when monitored kqueue changes.
   1269  */
   1270 /*ARGSUSED*/
   1271 static int
   1272 kqueue_kqfilter(struct file *fp, struct knote *kn)
   1273 {
   1274 	struct kqueue *kq;
   1275 
   1276 	KASSERT(fp == kn->kn_fp);
   1277 	kq = (struct kqueue *)kn->kn_fp->f_data;
   1278 	if (kn->kn_filter != EVFILT_READ)
   1279 		return (1);
   1280 	kn->kn_fop = &kqread_filtops;
   1281 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
   1282 	return (0);
   1283 }
   1284 
   1285 
   1286 /*
   1287  * Walk down a list of knotes, activating them if their event has triggered.
   1288  */
   1289 void
   1290 knote(struct klist *list, long hint)
   1291 {
   1292 	struct knote *kn;
   1293 
   1294 	SLIST_FOREACH(kn, list, kn_selnext)
   1295 		if (kn->kn_fop->f_event(kn, hint))
   1296 			KNOTE_ACTIVATE(kn);
   1297 }
   1298 
   1299 /*
   1300  * Remove all knotes from a specified klist
   1301  */
   1302 void
   1303 knote_remove(struct lwp *l, struct klist *list)
   1304 {
   1305 	struct knote *kn;
   1306 
   1307 	while ((kn = SLIST_FIRST(list)) != NULL) {
   1308 		kn->kn_fop->f_detach(kn);
   1309 		knote_drop(kn, l, l->l_proc->p_fd);
   1310 	}
   1311 }
   1312 
   1313 /*
   1314  * Remove all knotes referencing a specified fd
   1315  */
   1316 void
   1317 knote_fdclose(struct lwp *l, int fd)
   1318 {
   1319 	struct filedesc	*fdp;
   1320 	struct klist	*list;
   1321 
   1322 	fdp = l->l_proc->p_fd;
   1323 	list = &fdp->fd_knlist[fd];
   1324 	knote_remove(l, list);
   1325 }
   1326 
   1327 /*
   1328  * Attach a new knote to a file descriptor
   1329  */
   1330 static void
   1331 knote_attach(struct knote *kn, struct filedesc *fdp)
   1332 {
   1333 	struct klist	*list;
   1334 	int		size;
   1335 
   1336 	if (! kn->kn_fop->f_isfd) {
   1337 		/* if knote is not on an fd, store on internal hash table */
   1338 		if (fdp->fd_knhashmask == 0)
   1339 			fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
   1340 			    M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
   1341 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1342 		goto done;
   1343 	}
   1344 
   1345 	/*
   1346 	 * otherwise, knote is on an fd.
   1347 	 * knotes are stored in fd_knlist indexed by kn->kn_id.
   1348 	 */
   1349 	if (fdp->fd_knlistsize <= kn->kn_id) {
   1350 		/* expand list, it's too small */
   1351 		size = fdp->fd_knlistsize;
   1352 		while (size <= kn->kn_id) {
   1353 			/* grow in KQ_EXTENT chunks */
   1354 			size += KQ_EXTENT;
   1355 		}
   1356 		list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
   1357 		if (fdp->fd_knlist) {
   1358 			/* copy existing knlist */
   1359 			memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
   1360 			    fdp->fd_knlistsize * sizeof(struct klist *));
   1361 		}
   1362 		/*
   1363 		 * Zero new memory. Stylistically, SLIST_INIT() should be
   1364 		 * used here, but that does same thing as the memset() anyway.
   1365 		 */
   1366 		memset(&list[fdp->fd_knlistsize], 0,
   1367 		    (size - fdp->fd_knlistsize) * sizeof(struct klist *));
   1368 
   1369 		/* switch to new knlist */
   1370 		if (fdp->fd_knlist != NULL)
   1371 			free(fdp->fd_knlist, M_KEVENT);
   1372 		fdp->fd_knlistsize = size;
   1373 		fdp->fd_knlist = list;
   1374 	}
   1375 
   1376 	/* get list head for this fd */
   1377 	list = &fdp->fd_knlist[kn->kn_id];
   1378  done:
   1379 	/* add new knote */
   1380 	SLIST_INSERT_HEAD(list, kn, kn_link);
   1381 	kn->kn_status = 0;
   1382 }
   1383 
   1384 /*
   1385  * Drop knote.
   1386  * Should be called at spl == 0, since we don't want to hold spl
   1387  * while calling FILE_UNUSE and free.
   1388  */
   1389 static void
   1390 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp)
   1391 {
   1392 	struct klist	*list;
   1393 
   1394 	if (kn->kn_fop->f_isfd)
   1395 		list = &fdp->fd_knlist[kn->kn_id];
   1396 	else
   1397 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1398 
   1399 	SLIST_REMOVE(list, kn, knote, kn_link);
   1400 	if (kn->kn_status & KN_QUEUED)
   1401 		knote_dequeue(kn);
   1402 	if (kn->kn_fop->f_isfd)
   1403 		FILE_UNUSE(kn->kn_fp, l);
   1404 	pool_put(&knote_pool, kn);
   1405 }
   1406 
   1407 
   1408 /*
   1409  * Queue new event for knote.
   1410  */
   1411 static void
   1412 knote_enqueue(struct knote *kn)
   1413 {
   1414 	struct kqueue	*kq;
   1415 	int		s;
   1416 
   1417 	kq = kn->kn_kq;
   1418 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
   1419 
   1420 	s = splsched();
   1421 	simple_lock(&kq->kq_lock);
   1422 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1423 	kn->kn_status |= KN_QUEUED;
   1424 	kq->kq_count++;
   1425 	simple_unlock(&kq->kq_lock);
   1426 	splx(s);
   1427 	kqueue_wakeup(kq);
   1428 }
   1429 
   1430 /*
   1431  * Dequeue event for knote.
   1432  */
   1433 static void
   1434 knote_dequeue(struct knote *kn)
   1435 {
   1436 	struct kqueue	*kq;
   1437 	int		s;
   1438 
   1439 	KASSERT(kn->kn_status & KN_QUEUED);
   1440 	kq = kn->kn_kq;
   1441 
   1442 	s = splsched();
   1443 	simple_lock(&kq->kq_lock);
   1444 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1445 	kn->kn_status &= ~KN_QUEUED;
   1446 	kq->kq_count--;
   1447 	simple_unlock(&kq->kq_lock);
   1448 	splx(s);
   1449 }
   1450