kern_event.c revision 1.25.6.2 1 /* $NetBSD: kern_event.c,v 1.25.6.2 2006/04/22 11:39:58 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.25.6.2 2006/04/22 11:39:58 simonb Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/malloc.h>
39 #include <sys/unistd.h>
40 #include <sys/file.h>
41 #include <sys/fcntl.h>
42 #include <sys/select.h>
43 #include <sys/queue.h>
44 #include <sys/event.h>
45 #include <sys/eventvar.h>
46 #include <sys/poll.h>
47 #include <sys/pool.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/stat.h>
52 #include <sys/uio.h>
53 #include <sys/mount.h>
54 #include <sys/filedesc.h>
55 #include <sys/sa.h>
56 #include <sys/syscallargs.h>
57
58 static void kqueue_wakeup(struct kqueue *kq);
59
60 static int kqueue_scan(struct file *, size_t, struct kevent *,
61 const struct timespec *, struct lwp *, register_t *,
62 const struct kevent_ops *);
63 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
64 struct ucred *cred, int flags);
65 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
66 struct ucred *cred, int flags);
67 static int kqueue_ioctl(struct file *fp, u_long com, void *data,
68 struct lwp *l);
69 static int kqueue_fcntl(struct file *fp, u_int com, void *data,
70 struct lwp *l);
71 static int kqueue_poll(struct file *fp, int events, struct lwp *l);
72 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
73 static int kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l);
74 static int kqueue_close(struct file *fp, struct lwp *l);
75
76 static const struct fileops kqueueops = {
77 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
78 kqueue_stat, kqueue_close, kqueue_kqfilter
79 };
80
81 static void knote_attach(struct knote *kn, struct filedesc *fdp);
82 static void knote_drop(struct knote *kn, struct lwp *l,
83 struct filedesc *fdp);
84 static void knote_enqueue(struct knote *kn);
85 static void knote_dequeue(struct knote *kn);
86
87 static void filt_kqdetach(struct knote *kn);
88 static int filt_kqueue(struct knote *kn, long hint);
89 static int filt_procattach(struct knote *kn);
90 static void filt_procdetach(struct knote *kn);
91 static int filt_proc(struct knote *kn, long hint);
92 static int filt_fileattach(struct knote *kn);
93 static void filt_timerexpire(void *knx);
94 static int filt_timerattach(struct knote *kn);
95 static void filt_timerdetach(struct knote *kn);
96 static int filt_timer(struct knote *kn, long hint);
97
98 static const struct filterops kqread_filtops =
99 { 1, NULL, filt_kqdetach, filt_kqueue };
100 static const struct filterops proc_filtops =
101 { 0, filt_procattach, filt_procdetach, filt_proc };
102 static const struct filterops file_filtops =
103 { 1, filt_fileattach, NULL, NULL };
104 static const struct filterops timer_filtops =
105 { 0, filt_timerattach, filt_timerdetach, filt_timer };
106
107 static POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL);
108 static POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL);
109 static int kq_ncallouts = 0;
110 static int kq_calloutmax = (4 * 1024);
111
112 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
113
114 #define KNOTE_ACTIVATE(kn) \
115 do { \
116 kn->kn_status |= KN_ACTIVE; \
117 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
118 knote_enqueue(kn); \
119 } while(0)
120
121 #define KN_HASHSIZE 64 /* XXX should be tunable */
122 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
123
124 extern const struct filterops sig_filtops;
125
126 /*
127 * Table for for all system-defined filters.
128 * These should be listed in the numeric order of the EVFILT_* defines.
129 * If filtops is NULL, the filter isn't implemented in NetBSD.
130 * End of list is when name is NULL.
131 */
132 struct kfilter {
133 const char *name; /* name of filter */
134 uint32_t filter; /* id of filter */
135 const struct filterops *filtops;/* operations for filter */
136 };
137
138 /* System defined filters */
139 static const struct kfilter sys_kfilters[] = {
140 { "EVFILT_READ", EVFILT_READ, &file_filtops },
141 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
142 { "EVFILT_AIO", EVFILT_AIO, NULL },
143 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
144 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
145 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
146 { "EVFILT_TIMER", EVFILT_TIMER, &timer_filtops },
147 { NULL, 0, NULL }, /* end of list */
148 };
149
150 /* User defined kfilters */
151 static struct kfilter *user_kfilters; /* array */
152 static int user_kfilterc; /* current offset */
153 static int user_kfiltermaxc; /* max size so far */
154
155 /*
156 * Find kfilter entry by name, or NULL if not found.
157 */
158 static const struct kfilter *
159 kfilter_byname_sys(const char *name)
160 {
161 int i;
162
163 for (i = 0; sys_kfilters[i].name != NULL; i++) {
164 if (strcmp(name, sys_kfilters[i].name) == 0)
165 return (&sys_kfilters[i]);
166 }
167 return (NULL);
168 }
169
170 static struct kfilter *
171 kfilter_byname_user(const char *name)
172 {
173 int i;
174
175 /* user_kfilters[] could be NULL if no filters were registered */
176 if (!user_kfilters)
177 return (NULL);
178
179 for (i = 0; user_kfilters[i].name != NULL; i++) {
180 if (user_kfilters[i].name != '\0' &&
181 strcmp(name, user_kfilters[i].name) == 0)
182 return (&user_kfilters[i]);
183 }
184 return (NULL);
185 }
186
187 static const struct kfilter *
188 kfilter_byname(const char *name)
189 {
190 const struct kfilter *kfilter;
191
192 if ((kfilter = kfilter_byname_sys(name)) != NULL)
193 return (kfilter);
194
195 return (kfilter_byname_user(name));
196 }
197
198 /*
199 * Find kfilter entry by filter id, or NULL if not found.
200 * Assumes entries are indexed in filter id order, for speed.
201 */
202 static const struct kfilter *
203 kfilter_byfilter(uint32_t filter)
204 {
205 const struct kfilter *kfilter;
206
207 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
208 kfilter = &sys_kfilters[filter];
209 else if (user_kfilters != NULL &&
210 filter < EVFILT_SYSCOUNT + user_kfilterc)
211 /* it's a user filter */
212 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
213 else
214 return (NULL); /* out of range */
215 KASSERT(kfilter->filter == filter); /* sanity check! */
216 return (kfilter);
217 }
218
219 /*
220 * Register a new kfilter. Stores the entry in user_kfilters.
221 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
222 * If retfilter != NULL, the new filterid is returned in it.
223 */
224 int
225 kfilter_register(const char *name, const struct filterops *filtops,
226 int *retfilter)
227 {
228 struct kfilter *kfilter;
229 void *space;
230 int len;
231
232 if (name == NULL || name[0] == '\0' || filtops == NULL)
233 return (EINVAL); /* invalid args */
234 if (kfilter_byname(name) != NULL)
235 return (EEXIST); /* already exists */
236 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
237 return (EINVAL); /* too many */
238
239 /* check if need to grow user_kfilters */
240 if (user_kfilterc + 1 > user_kfiltermaxc) {
241 /*
242 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
243 * want to traverse user_kfilters as an array.
244 */
245 user_kfiltermaxc += KFILTER_EXTENT;
246 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
247 M_KEVENT, M_WAITOK);
248
249 /* copy existing user_kfilters */
250 if (user_kfilters != NULL)
251 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
252 user_kfilterc * sizeof(struct kfilter *));
253 /* zero new sections */
254 memset((caddr_t)kfilter +
255 user_kfilterc * sizeof(struct kfilter *), 0,
256 (user_kfiltermaxc - user_kfilterc) *
257 sizeof(struct kfilter *));
258 /* switch to new kfilter */
259 if (user_kfilters != NULL)
260 free(user_kfilters, M_KEVENT);
261 user_kfilters = kfilter;
262 }
263 len = strlen(name) + 1; /* copy name */
264 space = malloc(len, M_KEVENT, M_WAITOK);
265 memcpy(space, name, len);
266 user_kfilters[user_kfilterc].name = space;
267
268 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
269
270 len = sizeof(struct filterops); /* copy filtops */
271 space = malloc(len, M_KEVENT, M_WAITOK);
272 memcpy(space, filtops, len);
273 user_kfilters[user_kfilterc].filtops = space;
274
275 if (retfilter != NULL)
276 *retfilter = user_kfilters[user_kfilterc].filter;
277 user_kfilterc++; /* finally, increment count */
278 return (0);
279 }
280
281 /*
282 * Unregister a kfilter previously registered with kfilter_register.
283 * This retains the filter id, but clears the name and frees filtops (filter
284 * operations), so that the number isn't reused during a boot.
285 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286 */
287 int
288 kfilter_unregister(const char *name)
289 {
290 struct kfilter *kfilter;
291
292 if (name == NULL || name[0] == '\0')
293 return (EINVAL); /* invalid name */
294
295 if (kfilter_byname_sys(name) != NULL)
296 return (EINVAL); /* can't detach system filters */
297
298 kfilter = kfilter_byname_user(name);
299 if (kfilter == NULL) /* not found */
300 return (ENOENT);
301
302 if (kfilter->name[0] != '\0') {
303 /* XXXUNCONST Cast away const (but we know it's safe. */
304 free(__UNCONST(kfilter->name), M_KEVENT);
305 kfilter->name = ""; /* mark as `not implemented' */
306 }
307 if (kfilter->filtops != NULL) {
308 /* XXXUNCONST Cast away const (but we know it's safe. */
309 free(__UNCONST(kfilter->filtops), M_KEVENT);
310 kfilter->filtops = NULL; /* mark as `not implemented' */
311 }
312 return (0);
313 }
314
315
316 /*
317 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
318 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
319 */
320 static int
321 filt_fileattach(struct knote *kn)
322 {
323 struct file *fp;
324
325 fp = kn->kn_fp;
326 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
327 }
328
329 /*
330 * Filter detach method for EVFILT_READ on kqueue descriptor.
331 */
332 static void
333 filt_kqdetach(struct knote *kn)
334 {
335 struct kqueue *kq;
336
337 kq = (struct kqueue *)kn->kn_fp->f_data;
338 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
339 }
340
341 /*
342 * Filter event method for EVFILT_READ on kqueue descriptor.
343 */
344 /*ARGSUSED*/
345 static int
346 filt_kqueue(struct knote *kn, long hint)
347 {
348 struct kqueue *kq;
349
350 kq = (struct kqueue *)kn->kn_fp->f_data;
351 kn->kn_data = kq->kq_count;
352 return (kn->kn_data > 0);
353 }
354
355 /*
356 * Filter attach method for EVFILT_PROC.
357 */
358 static int
359 filt_procattach(struct knote *kn)
360 {
361 struct proc *p;
362
363 p = pfind(kn->kn_id);
364 if (p == NULL)
365 return (ESRCH);
366
367 /*
368 * Fail if it's not owned by you, or the last exec gave us
369 * setuid/setgid privs (unless you're root).
370 */
371 if ((p->p_cred->p_ruid != curproc->p_cred->p_ruid ||
372 (p->p_flag & P_SUGID))
373 && suser(curproc->p_ucred, &curproc->p_acflag) != 0)
374 return (EACCES);
375
376 kn->kn_ptr.p_proc = p;
377 kn->kn_flags |= EV_CLEAR; /* automatically set */
378
379 /*
380 * internal flag indicating registration done by kernel
381 */
382 if (kn->kn_flags & EV_FLAG1) {
383 kn->kn_data = kn->kn_sdata; /* ppid */
384 kn->kn_fflags = NOTE_CHILD;
385 kn->kn_flags &= ~EV_FLAG1;
386 }
387
388 /* XXXSMP lock the process? */
389 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
390
391 return (0);
392 }
393
394 /*
395 * Filter detach method for EVFILT_PROC.
396 *
397 * The knote may be attached to a different process, which may exit,
398 * leaving nothing for the knote to be attached to. So when the process
399 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
400 * it will be deleted when read out. However, as part of the knote deletion,
401 * this routine is called, so a check is needed to avoid actually performing
402 * a detach, because the original process might not exist any more.
403 */
404 static void
405 filt_procdetach(struct knote *kn)
406 {
407 struct proc *p;
408
409 if (kn->kn_status & KN_DETACHED)
410 return;
411
412 p = kn->kn_ptr.p_proc;
413 KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p);
414
415 /* XXXSMP lock the process? */
416 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
417 }
418
419 /*
420 * Filter event method for EVFILT_PROC.
421 */
422 static int
423 filt_proc(struct knote *kn, long hint)
424 {
425 u_int event;
426
427 /*
428 * mask off extra data
429 */
430 event = (u_int)hint & NOTE_PCTRLMASK;
431
432 /*
433 * if the user is interested in this event, record it.
434 */
435 if (kn->kn_sfflags & event)
436 kn->kn_fflags |= event;
437
438 /*
439 * process is gone, so flag the event as finished.
440 */
441 if (event == NOTE_EXIT) {
442 /*
443 * Detach the knote from watched process and mark
444 * it as such. We can't leave this to kqueue_scan(),
445 * since the process might not exist by then. And we
446 * have to do this now, since psignal KNOTE() is called
447 * also for zombies and we might end up reading freed
448 * memory if the kevent would already be picked up
449 * and knote g/c'ed.
450 */
451 kn->kn_fop->f_detach(kn);
452 kn->kn_status |= KN_DETACHED;
453
454 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
455 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
456 return (1);
457 }
458
459 /*
460 * process forked, and user wants to track the new process,
461 * so attach a new knote to it, and immediately report an
462 * event with the parent's pid.
463 */
464 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
465 struct kevent kev;
466 int error;
467
468 /*
469 * register knote with new process.
470 */
471 kev.ident = hint & NOTE_PDATAMASK; /* pid */
472 kev.filter = kn->kn_filter;
473 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
474 kev.fflags = kn->kn_sfflags;
475 kev.data = kn->kn_id; /* parent */
476 kev.udata = kn->kn_kevent.udata; /* preserve udata */
477 error = kqueue_register(kn->kn_kq, &kev, NULL);
478 if (error)
479 kn->kn_fflags |= NOTE_TRACKERR;
480 }
481
482 return (kn->kn_fflags != 0);
483 }
484
485 static void
486 filt_timerexpire(void *knx)
487 {
488 struct knote *kn = knx;
489 int tticks;
490
491 kn->kn_data++;
492 KNOTE_ACTIVATE(kn);
493
494 if ((kn->kn_flags & EV_ONESHOT) == 0) {
495 tticks = mstohz(kn->kn_sdata);
496 callout_schedule((struct callout *)kn->kn_hook, tticks);
497 }
498 }
499
500 /*
501 * data contains amount of time to sleep, in milliseconds
502 */
503 static int
504 filt_timerattach(struct knote *kn)
505 {
506 struct callout *calloutp;
507 int tticks;
508
509 if (kq_ncallouts >= kq_calloutmax)
510 return (ENOMEM);
511 kq_ncallouts++;
512
513 tticks = mstohz(kn->kn_sdata);
514
515 /* if the supplied value is under our resolution, use 1 tick */
516 if (tticks == 0) {
517 if (kn->kn_sdata == 0)
518 return (EINVAL);
519 tticks = 1;
520 }
521
522 kn->kn_flags |= EV_CLEAR; /* automatically set */
523 MALLOC(calloutp, struct callout *, sizeof(*calloutp),
524 M_KEVENT, 0);
525 callout_init(calloutp);
526 callout_reset(calloutp, tticks, filt_timerexpire, kn);
527 kn->kn_hook = calloutp;
528
529 return (0);
530 }
531
532 static void
533 filt_timerdetach(struct knote *kn)
534 {
535 struct callout *calloutp;
536
537 calloutp = (struct callout *)kn->kn_hook;
538 callout_stop(calloutp);
539 FREE(calloutp, M_KEVENT);
540 kq_ncallouts--;
541 }
542
543 static int
544 filt_timer(struct knote *kn, long hint)
545 {
546 return (kn->kn_data != 0);
547 }
548
549 /*
550 * filt_seltrue:
551 *
552 * This filter "event" routine simulates seltrue().
553 */
554 int
555 filt_seltrue(struct knote *kn, long hint)
556 {
557
558 /*
559 * We don't know how much data can be read/written,
560 * but we know that it *can* be. This is about as
561 * good as select/poll does as well.
562 */
563 kn->kn_data = 0;
564 return (1);
565 }
566
567 /*
568 * This provides full kqfilter entry for device switch tables, which
569 * has same effect as filter using filt_seltrue() as filter method.
570 */
571 static void
572 filt_seltruedetach(struct knote *kn)
573 {
574 /* Nothing to do */
575 }
576
577 static const struct filterops seltrue_filtops =
578 { 1, NULL, filt_seltruedetach, filt_seltrue };
579
580 int
581 seltrue_kqfilter(dev_t dev, struct knote *kn)
582 {
583 switch (kn->kn_filter) {
584 case EVFILT_READ:
585 case EVFILT_WRITE:
586 kn->kn_fop = &seltrue_filtops;
587 break;
588 default:
589 return (1);
590 }
591
592 /* Nothing more to do */
593 return (0);
594 }
595
596 /*
597 * kqueue(2) system call.
598 */
599 int
600 sys_kqueue(struct lwp *l, void *v, register_t *retval)
601 {
602 struct filedesc *fdp;
603 struct kqueue *kq;
604 struct file *fp;
605 struct proc *p;
606 int fd, error;
607
608 p = l->l_proc;
609 fdp = p->p_fd;
610 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
611 if (error)
612 return (error);
613 fp->f_flag = FREAD | FWRITE;
614 fp->f_type = DTYPE_KQUEUE;
615 fp->f_ops = &kqueueops;
616 kq = pool_get(&kqueue_pool, PR_WAITOK);
617 memset((char *)kq, 0, sizeof(struct kqueue));
618 simple_lock_init(&kq->kq_lock);
619 TAILQ_INIT(&kq->kq_head);
620 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
621 *retval = fd;
622 if (fdp->fd_knlistsize < 0)
623 fdp->fd_knlistsize = 0; /* this process has a kq */
624 kq->kq_fdp = fdp;
625 FILE_SET_MATURE(fp);
626 FILE_UNUSE(fp, l); /* falloc() does FILE_USE() */
627 return (error);
628 }
629
630 /*
631 * kevent(2) system call.
632 */
633 static int
634 kevent_fetch_changes(void *private, const struct kevent *changelist,
635 struct kevent *changes, size_t index, int n)
636 {
637 return copyin(changelist + index, changes, n * sizeof(*changes));
638 }
639
640 static int
641 kevent_put_events(void *private, struct kevent *events,
642 struct kevent *eventlist, size_t index, int n)
643 {
644 return copyout(events, eventlist + index, n * sizeof(*events));
645 }
646
647 static const struct kevent_ops kevent_native_ops = {
648 keo_private: NULL,
649 keo_fetch_timeout: copyin,
650 keo_fetch_changes: kevent_fetch_changes,
651 keo_put_events: kevent_put_events,
652 };
653
654 int
655 sys_kevent(struct lwp *l, void *v, register_t *retval)
656 {
657 struct sys_kevent_args /* {
658 syscallarg(int) fd;
659 syscallarg(const struct kevent *) changelist;
660 syscallarg(size_t) nchanges;
661 syscallarg(struct kevent *) eventlist;
662 syscallarg(size_t) nevents;
663 syscallarg(const struct timespec *) timeout;
664 } */ *uap = v;
665
666 return kevent1(l, retval, SCARG(uap, fd), SCARG(uap, changelist),
667 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
668 SCARG(uap, timeout), &kevent_native_ops);
669 }
670
671 int
672 kevent1(struct lwp *l, register_t *retval, int fd,
673 const struct kevent *changelist, size_t nchanges, struct kevent *eventlist,
674 size_t nevents, const struct timespec *timeout,
675 const struct kevent_ops *keops)
676 {
677 struct kevent *kevp;
678 struct kqueue *kq;
679 struct file *fp;
680 struct timespec ts;
681 struct proc *p;
682 size_t i, n, ichange;
683 int nerrors, error;
684
685 p = l->l_proc;
686 /* check that we're dealing with a kq */
687 fp = fd_getfile(p->p_fd, fd);
688 if (fp == NULL)
689 return (EBADF);
690
691 if (fp->f_type != DTYPE_KQUEUE) {
692 simple_unlock(&fp->f_slock);
693 return (EBADF);
694 }
695
696 FILE_USE(fp);
697
698 if (timeout != NULL) {
699 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
700 if (error)
701 goto done;
702 timeout = &ts;
703 }
704
705 kq = (struct kqueue *)fp->f_data;
706 nerrors = 0;
707 ichange = 0;
708
709 /* traverse list of events to register */
710 while (nchanges > 0) {
711 /* copyin a maximum of KQ_EVENTS at each pass */
712 n = MIN(nchanges, KQ_NEVENTS);
713 error = (*keops->keo_fetch_changes)(keops->keo_private,
714 changelist, kq->kq_kev, ichange, n);
715 if (error)
716 goto done;
717 for (i = 0; i < n; i++) {
718 kevp = &kq->kq_kev[i];
719 kevp->flags &= ~EV_SYSFLAGS;
720 /* register each knote */
721 error = kqueue_register(kq, kevp, l);
722 if (error) {
723 if (nevents != 0) {
724 kevp->flags = EV_ERROR;
725 kevp->data = error;
726 error = (*keops->keo_put_events)
727 (keops->keo_private, kevp,
728 eventlist, nerrors, 1);
729 if (error)
730 goto done;
731 nevents--;
732 nerrors++;
733 } else {
734 goto done;
735 }
736 }
737 }
738 nchanges -= n; /* update the results */
739 ichange += n;
740 }
741 if (nerrors) {
742 *retval = nerrors;
743 error = 0;
744 goto done;
745 }
746
747 /* actually scan through the events */
748 error = kqueue_scan(fp, nevents, eventlist, timeout, l, retval, keops);
749 done:
750 FILE_UNUSE(fp, l);
751 return (error);
752 }
753
754 /*
755 * Register a given kevent kev onto the kqueue
756 */
757 int
758 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l)
759 {
760 const struct kfilter *kfilter;
761 struct filedesc *fdp;
762 struct file *fp;
763 struct knote *kn;
764 int s, error;
765
766 fdp = kq->kq_fdp;
767 fp = NULL;
768 kn = NULL;
769 error = 0;
770 kfilter = kfilter_byfilter(kev->filter);
771 if (kfilter == NULL || kfilter->filtops == NULL) {
772 /* filter not found nor implemented */
773 return (EINVAL);
774 }
775
776 /* search if knote already exists */
777 if (kfilter->filtops->f_isfd) {
778 /* monitoring a file descriptor */
779 if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
780 return (EBADF); /* validate descriptor */
781 FILE_USE(fp);
782
783 if (kev->ident < fdp->fd_knlistsize) {
784 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
785 if (kq == kn->kn_kq &&
786 kev->filter == kn->kn_filter)
787 break;
788 }
789 } else {
790 /*
791 * not monitoring a file descriptor, so
792 * lookup knotes in internal hash table
793 */
794 if (fdp->fd_knhashmask != 0) {
795 struct klist *list;
796
797 list = &fdp->fd_knhash[
798 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
799 SLIST_FOREACH(kn, list, kn_link)
800 if (kev->ident == kn->kn_id &&
801 kq == kn->kn_kq &&
802 kev->filter == kn->kn_filter)
803 break;
804 }
805 }
806
807 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
808 error = ENOENT; /* filter not found */
809 goto done;
810 }
811
812 /*
813 * kn now contains the matching knote, or NULL if no match
814 */
815 if (kev->flags & EV_ADD) {
816 /* add knote */
817
818 if (kn == NULL) {
819 /* create new knote */
820 kn = pool_get(&knote_pool, PR_WAITOK);
821 if (kn == NULL) {
822 error = ENOMEM;
823 goto done;
824 }
825 kn->kn_fp = fp;
826 kn->kn_kq = kq;
827 kn->kn_fop = kfilter->filtops;
828
829 /*
830 * apply reference count to knote structure, and
831 * do not release it at the end of this routine.
832 */
833 fp = NULL;
834
835 kn->kn_sfflags = kev->fflags;
836 kn->kn_sdata = kev->data;
837 kev->fflags = 0;
838 kev->data = 0;
839 kn->kn_kevent = *kev;
840
841 knote_attach(kn, fdp);
842 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
843 knote_drop(kn, l, fdp);
844 goto done;
845 }
846 } else {
847 /* modify existing knote */
848
849 /*
850 * The user may change some filter values after the
851 * initial EV_ADD, but doing so will not reset any
852 * filter which have already been triggered.
853 */
854 kn->kn_sfflags = kev->fflags;
855 kn->kn_sdata = kev->data;
856 kn->kn_kevent.udata = kev->udata;
857 }
858
859 s = splsched();
860 if (kn->kn_fop->f_event(kn, 0))
861 KNOTE_ACTIVATE(kn);
862 splx(s);
863
864 } else if (kev->flags & EV_DELETE) { /* delete knote */
865 kn->kn_fop->f_detach(kn);
866 knote_drop(kn, l, fdp);
867 goto done;
868 }
869
870 /* disable knote */
871 if ((kev->flags & EV_DISABLE) &&
872 ((kn->kn_status & KN_DISABLED) == 0)) {
873 s = splsched();
874 kn->kn_status |= KN_DISABLED;
875 splx(s);
876 }
877
878 /* enable knote */
879 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
880 s = splsched();
881 kn->kn_status &= ~KN_DISABLED;
882 if ((kn->kn_status & KN_ACTIVE) &&
883 ((kn->kn_status & KN_QUEUED) == 0))
884 knote_enqueue(kn);
885 splx(s);
886 }
887
888 done:
889 if (fp != NULL)
890 FILE_UNUSE(fp, l);
891 return (error);
892 }
893
894 /*
895 * Scan through the list of events on fp (for a maximum of maxevents),
896 * returning the results in to ulistp. Timeout is determined by tsp; if
897 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
898 * as appropriate.
899 */
900 static int
901 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
902 const struct timespec *tsp, struct lwp *l, register_t *retval,
903 const struct kevent_ops *keops)
904 {
905 struct proc *p = l->l_proc;
906 struct kqueue *kq;
907 struct kevent *kevp;
908 struct timeval atv;
909 struct knote *kn, *marker=NULL;
910 size_t count, nkev, nevents;
911 int s, timeout, error;
912
913 kq = (struct kqueue *)fp->f_data;
914 count = maxevents;
915 nkev = nevents = error = 0;
916 if (count == 0)
917 goto done;
918
919 if (tsp) { /* timeout supplied */
920 TIMESPEC_TO_TIMEVAL(&atv, tsp);
921 if (itimerfix(&atv)) {
922 error = EINVAL;
923 goto done;
924 }
925 timeout = tvtohz(&atv);
926 if (timeout <= 0)
927 timeout = -1; /* do poll */
928 } else {
929 /* no timeout, wait forever */
930 timeout = 0;
931 }
932
933 MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK);
934 memset(marker, 0, sizeof(*marker));
935
936 goto start;
937
938 retry:
939 if (tsp) {
940 /*
941 * We have to recalculate the timeout on every retry.
942 */
943 timeout = hzto(&atv);
944 if (timeout <= 0)
945 goto done;
946 }
947
948 start:
949 kevp = kq->kq_kev;
950 s = splsched();
951 simple_lock(&kq->kq_lock);
952 if (kq->kq_count == 0) {
953 if (timeout < 0) {
954 error = EWOULDBLOCK;
955 simple_unlock(&kq->kq_lock);
956 } else {
957 kq->kq_state |= KQ_SLEEP;
958 error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
959 "kqread", timeout, &kq->kq_lock);
960 }
961 splx(s);
962 if (error == 0)
963 goto retry;
964 /* don't restart after signals... */
965 if (error == ERESTART)
966 error = EINTR;
967 else if (error == EWOULDBLOCK)
968 error = 0;
969 goto done;
970 }
971
972 /* mark end of knote list */
973 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
974 simple_unlock(&kq->kq_lock);
975
976 while (count) { /* while user wants data ... */
977 simple_lock(&kq->kq_lock);
978 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
979 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
980 if (kn == marker) { /* if it's our marker, stop */
981 /* What if it's some else's marker? */
982 simple_unlock(&kq->kq_lock);
983 splx(s);
984 if (count == maxevents)
985 goto retry;
986 goto done;
987 }
988 kq->kq_count--;
989 simple_unlock(&kq->kq_lock);
990
991 if (kn->kn_status & KN_DISABLED) {
992 /* don't want disabled events */
993 kn->kn_status &= ~KN_QUEUED;
994 continue;
995 }
996 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
997 kn->kn_fop->f_event(kn, 0) == 0) {
998 /*
999 * non-ONESHOT event that hasn't
1000 * triggered again, so de-queue.
1001 */
1002 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1003 continue;
1004 }
1005 *kevp = kn->kn_kevent;
1006 kevp++;
1007 nkev++;
1008 if (kn->kn_flags & EV_ONESHOT) {
1009 /* delete ONESHOT events after retrieval */
1010 kn->kn_status &= ~KN_QUEUED;
1011 splx(s);
1012 kn->kn_fop->f_detach(kn);
1013 knote_drop(kn, l, p->p_fd);
1014 s = splsched();
1015 } else if (kn->kn_flags & EV_CLEAR) {
1016 /* clear state after retrieval */
1017 kn->kn_data = 0;
1018 kn->kn_fflags = 0;
1019 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1020 } else {
1021 /* add event back on list */
1022 simple_lock(&kq->kq_lock);
1023 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1024 kq->kq_count++;
1025 simple_unlock(&kq->kq_lock);
1026 }
1027 count--;
1028 if (nkev == KQ_NEVENTS) {
1029 /* do copyouts in KQ_NEVENTS chunks */
1030 splx(s);
1031 error = (*keops->keo_put_events)(keops->keo_private,
1032 &kq->kq_kev[0], ulistp, nevents, nkev);
1033 nevents += nkev;
1034 nkev = 0;
1035 kevp = kq->kq_kev;
1036 s = splsched();
1037 if (error)
1038 break;
1039 }
1040 }
1041
1042 /* remove marker */
1043 simple_lock(&kq->kq_lock);
1044 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1045 simple_unlock(&kq->kq_lock);
1046 splx(s);
1047 done:
1048 if (marker)
1049 FREE(marker, M_KEVENT);
1050
1051 if (nkev != 0)
1052 /* copyout remaining events */
1053 error = (*keops->keo_put_events)(keops->keo_private,
1054 &kq->kq_kev[0], ulistp, nevents, nkev);
1055 *retval = maxevents - count;
1056
1057 return (error);
1058 }
1059
1060 /*
1061 * struct fileops read method for a kqueue descriptor.
1062 * Not implemented.
1063 * XXX: This could be expanded to call kqueue_scan, if desired.
1064 */
1065 /*ARGSUSED*/
1066 static int
1067 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
1068 struct ucred *cred, int flags)
1069 {
1070
1071 return (ENXIO);
1072 }
1073
1074 /*
1075 * struct fileops write method for a kqueue descriptor.
1076 * Not implemented.
1077 */
1078 /*ARGSUSED*/
1079 static int
1080 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
1081 struct ucred *cred, int flags)
1082 {
1083
1084 return (ENXIO);
1085 }
1086
1087 /*
1088 * struct fileops ioctl method for a kqueue descriptor.
1089 *
1090 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1091 * KFILTER_BYNAME find name for filter, and return result in
1092 * name, which is of size len.
1093 * KFILTER_BYFILTER find filter for name. len is ignored.
1094 */
1095 /*ARGSUSED*/
1096 static int
1097 kqueue_ioctl(struct file *fp, u_long com, void *data, struct lwp *l)
1098 {
1099 struct kfilter_mapping *km;
1100 const struct kfilter *kfilter;
1101 char *name;
1102 int error;
1103
1104 km = (struct kfilter_mapping *)data;
1105 error = 0;
1106
1107 switch (com) {
1108 case KFILTER_BYFILTER: /* convert filter -> name */
1109 kfilter = kfilter_byfilter(km->filter);
1110 if (kfilter != NULL)
1111 error = copyoutstr(kfilter->name, km->name, km->len,
1112 NULL);
1113 else
1114 error = ENOENT;
1115 break;
1116
1117 case KFILTER_BYNAME: /* convert name -> filter */
1118 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
1119 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1120 if (error) {
1121 FREE(name, M_KEVENT);
1122 break;
1123 }
1124 kfilter = kfilter_byname(name);
1125 if (kfilter != NULL)
1126 km->filter = kfilter->filter;
1127 else
1128 error = ENOENT;
1129 FREE(name, M_KEVENT);
1130 break;
1131
1132 default:
1133 error = ENOTTY;
1134
1135 }
1136 return (error);
1137 }
1138
1139 /*
1140 * struct fileops fcntl method for a kqueue descriptor.
1141 * Not implemented.
1142 */
1143 /*ARGSUSED*/
1144 static int
1145 kqueue_fcntl(struct file *fp, u_int com, void *data, struct lwp *l)
1146 {
1147
1148 return (ENOTTY);
1149 }
1150
1151 /*
1152 * struct fileops poll method for a kqueue descriptor.
1153 * Determine if kqueue has events pending.
1154 */
1155 static int
1156 kqueue_poll(struct file *fp, int events, struct lwp *l)
1157 {
1158 struct kqueue *kq;
1159 int revents;
1160
1161 kq = (struct kqueue *)fp->f_data;
1162 revents = 0;
1163 if (events & (POLLIN | POLLRDNORM)) {
1164 if (kq->kq_count) {
1165 revents |= events & (POLLIN | POLLRDNORM);
1166 } else {
1167 selrecord(l, &kq->kq_sel);
1168 }
1169 }
1170 return (revents);
1171 }
1172
1173 /*
1174 * struct fileops stat method for a kqueue descriptor.
1175 * Returns dummy info, with st_size being number of events pending.
1176 */
1177 static int
1178 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l)
1179 {
1180 struct kqueue *kq;
1181
1182 kq = (struct kqueue *)fp->f_data;
1183 memset((void *)st, 0, sizeof(*st));
1184 st->st_size = kq->kq_count;
1185 st->st_blksize = sizeof(struct kevent);
1186 st->st_mode = S_IFIFO;
1187 return (0);
1188 }
1189
1190 /*
1191 * struct fileops close method for a kqueue descriptor.
1192 * Cleans up kqueue.
1193 */
1194 static int
1195 kqueue_close(struct file *fp, struct lwp *l)
1196 {
1197 struct proc *p = l->l_proc;
1198 struct kqueue *kq;
1199 struct filedesc *fdp;
1200 struct knote **knp, *kn, *kn0;
1201 int i;
1202
1203 kq = (struct kqueue *)fp->f_data;
1204 fdp = p->p_fd;
1205 for (i = 0; i < fdp->fd_knlistsize; i++) {
1206 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1207 kn = *knp;
1208 while (kn != NULL) {
1209 kn0 = SLIST_NEXT(kn, kn_link);
1210 if (kq == kn->kn_kq) {
1211 kn->kn_fop->f_detach(kn);
1212 FILE_UNUSE(kn->kn_fp, l);
1213 pool_put(&knote_pool, kn);
1214 *knp = kn0;
1215 } else {
1216 knp = &SLIST_NEXT(kn, kn_link);
1217 }
1218 kn = kn0;
1219 }
1220 }
1221 if (fdp->fd_knhashmask != 0) {
1222 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1223 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1224 kn = *knp;
1225 while (kn != NULL) {
1226 kn0 = SLIST_NEXT(kn, kn_link);
1227 if (kq == kn->kn_kq) {
1228 kn->kn_fop->f_detach(kn);
1229 /* XXX non-fd release of kn->kn_ptr */
1230 pool_put(&knote_pool, kn);
1231 *knp = kn0;
1232 } else {
1233 knp = &SLIST_NEXT(kn, kn_link);
1234 }
1235 kn = kn0;
1236 }
1237 }
1238 }
1239 pool_put(&kqueue_pool, kq);
1240 fp->f_data = NULL;
1241
1242 return (0);
1243 }
1244
1245 /*
1246 * wakeup a kqueue
1247 */
1248 static void
1249 kqueue_wakeup(struct kqueue *kq)
1250 {
1251 int s;
1252
1253 s = splsched();
1254 simple_lock(&kq->kq_lock);
1255 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1256 kq->kq_state &= ~KQ_SLEEP;
1257 wakeup(kq); /* ... wakeup */
1258 }
1259
1260 /* Notify select/poll and kevent. */
1261 selnotify(&kq->kq_sel, 0);
1262 simple_unlock(&kq->kq_lock);
1263 splx(s);
1264 }
1265
1266 /*
1267 * struct fileops kqfilter method for a kqueue descriptor.
1268 * Event triggered when monitored kqueue changes.
1269 */
1270 /*ARGSUSED*/
1271 static int
1272 kqueue_kqfilter(struct file *fp, struct knote *kn)
1273 {
1274 struct kqueue *kq;
1275
1276 KASSERT(fp == kn->kn_fp);
1277 kq = (struct kqueue *)kn->kn_fp->f_data;
1278 if (kn->kn_filter != EVFILT_READ)
1279 return (1);
1280 kn->kn_fop = &kqread_filtops;
1281 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1282 return (0);
1283 }
1284
1285
1286 /*
1287 * Walk down a list of knotes, activating them if their event has triggered.
1288 */
1289 void
1290 knote(struct klist *list, long hint)
1291 {
1292 struct knote *kn;
1293
1294 SLIST_FOREACH(kn, list, kn_selnext)
1295 if (kn->kn_fop->f_event(kn, hint))
1296 KNOTE_ACTIVATE(kn);
1297 }
1298
1299 /*
1300 * Remove all knotes from a specified klist
1301 */
1302 void
1303 knote_remove(struct lwp *l, struct klist *list)
1304 {
1305 struct knote *kn;
1306
1307 while ((kn = SLIST_FIRST(list)) != NULL) {
1308 kn->kn_fop->f_detach(kn);
1309 knote_drop(kn, l, l->l_proc->p_fd);
1310 }
1311 }
1312
1313 /*
1314 * Remove all knotes referencing a specified fd
1315 */
1316 void
1317 knote_fdclose(struct lwp *l, int fd)
1318 {
1319 struct filedesc *fdp;
1320 struct klist *list;
1321
1322 fdp = l->l_proc->p_fd;
1323 list = &fdp->fd_knlist[fd];
1324 knote_remove(l, list);
1325 }
1326
1327 /*
1328 * Attach a new knote to a file descriptor
1329 */
1330 static void
1331 knote_attach(struct knote *kn, struct filedesc *fdp)
1332 {
1333 struct klist *list;
1334 int size;
1335
1336 if (! kn->kn_fop->f_isfd) {
1337 /* if knote is not on an fd, store on internal hash table */
1338 if (fdp->fd_knhashmask == 0)
1339 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1340 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1341 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1342 goto done;
1343 }
1344
1345 /*
1346 * otherwise, knote is on an fd.
1347 * knotes are stored in fd_knlist indexed by kn->kn_id.
1348 */
1349 if (fdp->fd_knlistsize <= kn->kn_id) {
1350 /* expand list, it's too small */
1351 size = fdp->fd_knlistsize;
1352 while (size <= kn->kn_id) {
1353 /* grow in KQ_EXTENT chunks */
1354 size += KQ_EXTENT;
1355 }
1356 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1357 if (fdp->fd_knlist) {
1358 /* copy existing knlist */
1359 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1360 fdp->fd_knlistsize * sizeof(struct klist *));
1361 }
1362 /*
1363 * Zero new memory. Stylistically, SLIST_INIT() should be
1364 * used here, but that does same thing as the memset() anyway.
1365 */
1366 memset(&list[fdp->fd_knlistsize], 0,
1367 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1368
1369 /* switch to new knlist */
1370 if (fdp->fd_knlist != NULL)
1371 free(fdp->fd_knlist, M_KEVENT);
1372 fdp->fd_knlistsize = size;
1373 fdp->fd_knlist = list;
1374 }
1375
1376 /* get list head for this fd */
1377 list = &fdp->fd_knlist[kn->kn_id];
1378 done:
1379 /* add new knote */
1380 SLIST_INSERT_HEAD(list, kn, kn_link);
1381 kn->kn_status = 0;
1382 }
1383
1384 /*
1385 * Drop knote.
1386 * Should be called at spl == 0, since we don't want to hold spl
1387 * while calling FILE_UNUSE and free.
1388 */
1389 static void
1390 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp)
1391 {
1392 struct klist *list;
1393
1394 if (kn->kn_fop->f_isfd)
1395 list = &fdp->fd_knlist[kn->kn_id];
1396 else
1397 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1398
1399 SLIST_REMOVE(list, kn, knote, kn_link);
1400 if (kn->kn_status & KN_QUEUED)
1401 knote_dequeue(kn);
1402 if (kn->kn_fop->f_isfd)
1403 FILE_UNUSE(kn->kn_fp, l);
1404 pool_put(&knote_pool, kn);
1405 }
1406
1407
1408 /*
1409 * Queue new event for knote.
1410 */
1411 static void
1412 knote_enqueue(struct knote *kn)
1413 {
1414 struct kqueue *kq;
1415 int s;
1416
1417 kq = kn->kn_kq;
1418 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1419
1420 s = splsched();
1421 simple_lock(&kq->kq_lock);
1422 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1423 kn->kn_status |= KN_QUEUED;
1424 kq->kq_count++;
1425 simple_unlock(&kq->kq_lock);
1426 splx(s);
1427 kqueue_wakeup(kq);
1428 }
1429
1430 /*
1431 * Dequeue event for knote.
1432 */
1433 static void
1434 knote_dequeue(struct knote *kn)
1435 {
1436 struct kqueue *kq;
1437 int s;
1438
1439 KASSERT(kn->kn_status & KN_QUEUED);
1440 kq = kn->kn_kq;
1441
1442 s = splsched();
1443 simple_lock(&kq->kq_lock);
1444 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1445 kn->kn_status &= ~KN_QUEUED;
1446 kq->kq_count--;
1447 simple_unlock(&kq->kq_lock);
1448 splx(s);
1449 }
1450