kern_event.c revision 1.27 1 /* $NetBSD: kern_event.c,v 1.27 2006/05/14 21:15:11 elad Exp $ */
2 /*-
3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.27 2006/05/14 21:15:11 elad Exp $");
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/proc.h>
37 #include <sys/malloc.h>
38 #include <sys/unistd.h>
39 #include <sys/file.h>
40 #include <sys/fcntl.h>
41 #include <sys/select.h>
42 #include <sys/queue.h>
43 #include <sys/event.h>
44 #include <sys/eventvar.h>
45 #include <sys/poll.h>
46 #include <sys/pool.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/stat.h>
51 #include <sys/uio.h>
52 #include <sys/mount.h>
53 #include <sys/filedesc.h>
54 #include <sys/sa.h>
55 #include <sys/syscallargs.h>
56 #include <sys/kauth.h>
57
58 static void kqueue_wakeup(struct kqueue *kq);
59
60 static int kqueue_scan(struct file *, size_t, struct kevent *,
61 const struct timespec *, struct lwp *, register_t *,
62 const struct kevent_ops *);
63 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
64 kauth_cred_t cred, int flags);
65 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
66 kauth_cred_t cred, int flags);
67 static int kqueue_ioctl(struct file *fp, u_long com, void *data,
68 struct lwp *l);
69 static int kqueue_fcntl(struct file *fp, u_int com, void *data,
70 struct lwp *l);
71 static int kqueue_poll(struct file *fp, int events, struct lwp *l);
72 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
73 static int kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l);
74 static int kqueue_close(struct file *fp, struct lwp *l);
75
76 static const struct fileops kqueueops = {
77 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
78 kqueue_stat, kqueue_close, kqueue_kqfilter
79 };
80
81 static void knote_attach(struct knote *kn, struct filedesc *fdp);
82 static void knote_drop(struct knote *kn, struct lwp *l,
83 struct filedesc *fdp);
84 static void knote_enqueue(struct knote *kn);
85 static void knote_dequeue(struct knote *kn);
86
87 static void filt_kqdetach(struct knote *kn);
88 static int filt_kqueue(struct knote *kn, long hint);
89 static int filt_procattach(struct knote *kn);
90 static void filt_procdetach(struct knote *kn);
91 static int filt_proc(struct knote *kn, long hint);
92 static int filt_fileattach(struct knote *kn);
93 static void filt_timerexpire(void *knx);
94 static int filt_timerattach(struct knote *kn);
95 static void filt_timerdetach(struct knote *kn);
96 static int filt_timer(struct knote *kn, long hint);
97
98 static const struct filterops kqread_filtops =
99 { 1, NULL, filt_kqdetach, filt_kqueue };
100 static const struct filterops proc_filtops =
101 { 0, filt_procattach, filt_procdetach, filt_proc };
102 static const struct filterops file_filtops =
103 { 1, filt_fileattach, NULL, NULL };
104 static const struct filterops timer_filtops =
105 { 0, filt_timerattach, filt_timerdetach, filt_timer };
106
107 static POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL);
108 static POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL);
109 static int kq_ncallouts = 0;
110 static int kq_calloutmax = (4 * 1024);
111
112 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
113
114 #define KNOTE_ACTIVATE(kn) \
115 do { \
116 kn->kn_status |= KN_ACTIVE; \
117 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
118 knote_enqueue(kn); \
119 } while(0)
120
121 #define KN_HASHSIZE 64 /* XXX should be tunable */
122 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
123
124 extern const struct filterops sig_filtops;
125
126 /*
127 * Table for for all system-defined filters.
128 * These should be listed in the numeric order of the EVFILT_* defines.
129 * If filtops is NULL, the filter isn't implemented in NetBSD.
130 * End of list is when name is NULL.
131 */
132 struct kfilter {
133 const char *name; /* name of filter */
134 uint32_t filter; /* id of filter */
135 const struct filterops *filtops;/* operations for filter */
136 };
137
138 /* System defined filters */
139 static const struct kfilter sys_kfilters[] = {
140 { "EVFILT_READ", EVFILT_READ, &file_filtops },
141 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
142 { "EVFILT_AIO", EVFILT_AIO, NULL },
143 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
144 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
145 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
146 { "EVFILT_TIMER", EVFILT_TIMER, &timer_filtops },
147 { NULL, 0, NULL }, /* end of list */
148 };
149
150 /* User defined kfilters */
151 static struct kfilter *user_kfilters; /* array */
152 static int user_kfilterc; /* current offset */
153 static int user_kfiltermaxc; /* max size so far */
154
155 /*
156 * Find kfilter entry by name, or NULL if not found.
157 */
158 static const struct kfilter *
159 kfilter_byname_sys(const char *name)
160 {
161 int i;
162
163 for (i = 0; sys_kfilters[i].name != NULL; i++) {
164 if (strcmp(name, sys_kfilters[i].name) == 0)
165 return (&sys_kfilters[i]);
166 }
167 return (NULL);
168 }
169
170 static struct kfilter *
171 kfilter_byname_user(const char *name)
172 {
173 int i;
174
175 /* user_kfilters[] could be NULL if no filters were registered */
176 if (!user_kfilters)
177 return (NULL);
178
179 for (i = 0; user_kfilters[i].name != NULL; i++) {
180 if (user_kfilters[i].name != '\0' &&
181 strcmp(name, user_kfilters[i].name) == 0)
182 return (&user_kfilters[i]);
183 }
184 return (NULL);
185 }
186
187 static const struct kfilter *
188 kfilter_byname(const char *name)
189 {
190 const struct kfilter *kfilter;
191
192 if ((kfilter = kfilter_byname_sys(name)) != NULL)
193 return (kfilter);
194
195 return (kfilter_byname_user(name));
196 }
197
198 /*
199 * Find kfilter entry by filter id, or NULL if not found.
200 * Assumes entries are indexed in filter id order, for speed.
201 */
202 static const struct kfilter *
203 kfilter_byfilter(uint32_t filter)
204 {
205 const struct kfilter *kfilter;
206
207 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
208 kfilter = &sys_kfilters[filter];
209 else if (user_kfilters != NULL &&
210 filter < EVFILT_SYSCOUNT + user_kfilterc)
211 /* it's a user filter */
212 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
213 else
214 return (NULL); /* out of range */
215 KASSERT(kfilter->filter == filter); /* sanity check! */
216 return (kfilter);
217 }
218
219 /*
220 * Register a new kfilter. Stores the entry in user_kfilters.
221 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
222 * If retfilter != NULL, the new filterid is returned in it.
223 */
224 int
225 kfilter_register(const char *name, const struct filterops *filtops,
226 int *retfilter)
227 {
228 struct kfilter *kfilter;
229 void *space;
230 int len;
231
232 if (name == NULL || name[0] == '\0' || filtops == NULL)
233 return (EINVAL); /* invalid args */
234 if (kfilter_byname(name) != NULL)
235 return (EEXIST); /* already exists */
236 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
237 return (EINVAL); /* too many */
238
239 /* check if need to grow user_kfilters */
240 if (user_kfilterc + 1 > user_kfiltermaxc) {
241 /*
242 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
243 * want to traverse user_kfilters as an array.
244 */
245 user_kfiltermaxc += KFILTER_EXTENT;
246 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
247 M_KEVENT, M_WAITOK);
248
249 /* copy existing user_kfilters */
250 if (user_kfilters != NULL)
251 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
252 user_kfilterc * sizeof(struct kfilter *));
253 /* zero new sections */
254 memset((caddr_t)kfilter +
255 user_kfilterc * sizeof(struct kfilter *), 0,
256 (user_kfiltermaxc - user_kfilterc) *
257 sizeof(struct kfilter *));
258 /* switch to new kfilter */
259 if (user_kfilters != NULL)
260 free(user_kfilters, M_KEVENT);
261 user_kfilters = kfilter;
262 }
263 len = strlen(name) + 1; /* copy name */
264 space = malloc(len, M_KEVENT, M_WAITOK);
265 memcpy(space, name, len);
266 user_kfilters[user_kfilterc].name = space;
267
268 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
269
270 len = sizeof(struct filterops); /* copy filtops */
271 space = malloc(len, M_KEVENT, M_WAITOK);
272 memcpy(space, filtops, len);
273 user_kfilters[user_kfilterc].filtops = space;
274
275 if (retfilter != NULL)
276 *retfilter = user_kfilters[user_kfilterc].filter;
277 user_kfilterc++; /* finally, increment count */
278 return (0);
279 }
280
281 /*
282 * Unregister a kfilter previously registered with kfilter_register.
283 * This retains the filter id, but clears the name and frees filtops (filter
284 * operations), so that the number isn't reused during a boot.
285 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286 */
287 int
288 kfilter_unregister(const char *name)
289 {
290 struct kfilter *kfilter;
291
292 if (name == NULL || name[0] == '\0')
293 return (EINVAL); /* invalid name */
294
295 if (kfilter_byname_sys(name) != NULL)
296 return (EINVAL); /* can't detach system filters */
297
298 kfilter = kfilter_byname_user(name);
299 if (kfilter == NULL) /* not found */
300 return (ENOENT);
301
302 if (kfilter->name[0] != '\0') {
303 /* XXXUNCONST Cast away const (but we know it's safe. */
304 free(__UNCONST(kfilter->name), M_KEVENT);
305 kfilter->name = ""; /* mark as `not implemented' */
306 }
307 if (kfilter->filtops != NULL) {
308 /* XXXUNCONST Cast away const (but we know it's safe. */
309 free(__UNCONST(kfilter->filtops), M_KEVENT);
310 kfilter->filtops = NULL; /* mark as `not implemented' */
311 }
312 return (0);
313 }
314
315
316 /*
317 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
318 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
319 */
320 static int
321 filt_fileattach(struct knote *kn)
322 {
323 struct file *fp;
324
325 fp = kn->kn_fp;
326 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
327 }
328
329 /*
330 * Filter detach method for EVFILT_READ on kqueue descriptor.
331 */
332 static void
333 filt_kqdetach(struct knote *kn)
334 {
335 struct kqueue *kq;
336
337 kq = (struct kqueue *)kn->kn_fp->f_data;
338 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
339 }
340
341 /*
342 * Filter event method for EVFILT_READ on kqueue descriptor.
343 */
344 /*ARGSUSED*/
345 static int
346 filt_kqueue(struct knote *kn, long hint)
347 {
348 struct kqueue *kq;
349
350 kq = (struct kqueue *)kn->kn_fp->f_data;
351 kn->kn_data = kq->kq_count;
352 return (kn->kn_data > 0);
353 }
354
355 /*
356 * Filter attach method for EVFILT_PROC.
357 */
358 static int
359 filt_procattach(struct knote *kn)
360 {
361 struct proc *p;
362
363 p = pfind(kn->kn_id);
364 if (p == NULL)
365 return (ESRCH);
366
367 /*
368 * Fail if it's not owned by you, or the last exec gave us
369 * setuid/setgid privs (unless you're root).
370 */
371 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(curproc->p_cred) ||
372 (p->p_flag & P_SUGID))
373 && kauth_authorize_generic(curproc->p_cred, KAUTH_GENERIC_ISSUSER,
374 &curproc->p_acflag) != 0)
375 return (EACCES);
376
377 kn->kn_ptr.p_proc = p;
378 kn->kn_flags |= EV_CLEAR; /* automatically set */
379
380 /*
381 * internal flag indicating registration done by kernel
382 */
383 if (kn->kn_flags & EV_FLAG1) {
384 kn->kn_data = kn->kn_sdata; /* ppid */
385 kn->kn_fflags = NOTE_CHILD;
386 kn->kn_flags &= ~EV_FLAG1;
387 }
388
389 /* XXXSMP lock the process? */
390 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
391
392 return (0);
393 }
394
395 /*
396 * Filter detach method for EVFILT_PROC.
397 *
398 * The knote may be attached to a different process, which may exit,
399 * leaving nothing for the knote to be attached to. So when the process
400 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
401 * it will be deleted when read out. However, as part of the knote deletion,
402 * this routine is called, so a check is needed to avoid actually performing
403 * a detach, because the original process might not exist any more.
404 */
405 static void
406 filt_procdetach(struct knote *kn)
407 {
408 struct proc *p;
409
410 if (kn->kn_status & KN_DETACHED)
411 return;
412
413 p = kn->kn_ptr.p_proc;
414 KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p);
415
416 /* XXXSMP lock the process? */
417 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
418 }
419
420 /*
421 * Filter event method for EVFILT_PROC.
422 */
423 static int
424 filt_proc(struct knote *kn, long hint)
425 {
426 u_int event;
427
428 /*
429 * mask off extra data
430 */
431 event = (u_int)hint & NOTE_PCTRLMASK;
432
433 /*
434 * if the user is interested in this event, record it.
435 */
436 if (kn->kn_sfflags & event)
437 kn->kn_fflags |= event;
438
439 /*
440 * process is gone, so flag the event as finished.
441 */
442 if (event == NOTE_EXIT) {
443 /*
444 * Detach the knote from watched process and mark
445 * it as such. We can't leave this to kqueue_scan(),
446 * since the process might not exist by then. And we
447 * have to do this now, since psignal KNOTE() is called
448 * also for zombies and we might end up reading freed
449 * memory if the kevent would already be picked up
450 * and knote g/c'ed.
451 */
452 kn->kn_fop->f_detach(kn);
453 kn->kn_status |= KN_DETACHED;
454
455 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
456 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
457 return (1);
458 }
459
460 /*
461 * process forked, and user wants to track the new process,
462 * so attach a new knote to it, and immediately report an
463 * event with the parent's pid.
464 */
465 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
466 struct kevent kev;
467 int error;
468
469 /*
470 * register knote with new process.
471 */
472 kev.ident = hint & NOTE_PDATAMASK; /* pid */
473 kev.filter = kn->kn_filter;
474 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
475 kev.fflags = kn->kn_sfflags;
476 kev.data = kn->kn_id; /* parent */
477 kev.udata = kn->kn_kevent.udata; /* preserve udata */
478 error = kqueue_register(kn->kn_kq, &kev, NULL);
479 if (error)
480 kn->kn_fflags |= NOTE_TRACKERR;
481 }
482
483 return (kn->kn_fflags != 0);
484 }
485
486 static void
487 filt_timerexpire(void *knx)
488 {
489 struct knote *kn = knx;
490 int tticks;
491
492 kn->kn_data++;
493 KNOTE_ACTIVATE(kn);
494
495 if ((kn->kn_flags & EV_ONESHOT) == 0) {
496 tticks = mstohz(kn->kn_sdata);
497 callout_schedule((struct callout *)kn->kn_hook, tticks);
498 }
499 }
500
501 /*
502 * data contains amount of time to sleep, in milliseconds
503 */
504 static int
505 filt_timerattach(struct knote *kn)
506 {
507 struct callout *calloutp;
508 int tticks;
509
510 if (kq_ncallouts >= kq_calloutmax)
511 return (ENOMEM);
512 kq_ncallouts++;
513
514 tticks = mstohz(kn->kn_sdata);
515
516 /* if the supplied value is under our resolution, use 1 tick */
517 if (tticks == 0) {
518 if (kn->kn_sdata == 0)
519 return (EINVAL);
520 tticks = 1;
521 }
522
523 kn->kn_flags |= EV_CLEAR; /* automatically set */
524 MALLOC(calloutp, struct callout *, sizeof(*calloutp),
525 M_KEVENT, 0);
526 callout_init(calloutp);
527 callout_reset(calloutp, tticks, filt_timerexpire, kn);
528 kn->kn_hook = calloutp;
529
530 return (0);
531 }
532
533 static void
534 filt_timerdetach(struct knote *kn)
535 {
536 struct callout *calloutp;
537
538 calloutp = (struct callout *)kn->kn_hook;
539 callout_stop(calloutp);
540 FREE(calloutp, M_KEVENT);
541 kq_ncallouts--;
542 }
543
544 static int
545 filt_timer(struct knote *kn, long hint)
546 {
547 return (kn->kn_data != 0);
548 }
549
550 /*
551 * filt_seltrue:
552 *
553 * This filter "event" routine simulates seltrue().
554 */
555 int
556 filt_seltrue(struct knote *kn, long hint)
557 {
558
559 /*
560 * We don't know how much data can be read/written,
561 * but we know that it *can* be. This is about as
562 * good as select/poll does as well.
563 */
564 kn->kn_data = 0;
565 return (1);
566 }
567
568 /*
569 * This provides full kqfilter entry for device switch tables, which
570 * has same effect as filter using filt_seltrue() as filter method.
571 */
572 static void
573 filt_seltruedetach(struct knote *kn)
574 {
575 /* Nothing to do */
576 }
577
578 static const struct filterops seltrue_filtops =
579 { 1, NULL, filt_seltruedetach, filt_seltrue };
580
581 int
582 seltrue_kqfilter(dev_t dev, struct knote *kn)
583 {
584 switch (kn->kn_filter) {
585 case EVFILT_READ:
586 case EVFILT_WRITE:
587 kn->kn_fop = &seltrue_filtops;
588 break;
589 default:
590 return (1);
591 }
592
593 /* Nothing more to do */
594 return (0);
595 }
596
597 /*
598 * kqueue(2) system call.
599 */
600 int
601 sys_kqueue(struct lwp *l, void *v, register_t *retval)
602 {
603 struct filedesc *fdp;
604 struct kqueue *kq;
605 struct file *fp;
606 struct proc *p;
607 int fd, error;
608
609 p = l->l_proc;
610 fdp = p->p_fd;
611 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
612 if (error)
613 return (error);
614 fp->f_flag = FREAD | FWRITE;
615 fp->f_type = DTYPE_KQUEUE;
616 fp->f_ops = &kqueueops;
617 kq = pool_get(&kqueue_pool, PR_WAITOK);
618 memset((char *)kq, 0, sizeof(struct kqueue));
619 simple_lock_init(&kq->kq_lock);
620 TAILQ_INIT(&kq->kq_head);
621 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
622 *retval = fd;
623 if (fdp->fd_knlistsize < 0)
624 fdp->fd_knlistsize = 0; /* this process has a kq */
625 kq->kq_fdp = fdp;
626 FILE_SET_MATURE(fp);
627 FILE_UNUSE(fp, l); /* falloc() does FILE_USE() */
628 return (error);
629 }
630
631 /*
632 * kevent(2) system call.
633 */
634 static int
635 kevent_fetch_changes(void *private, const struct kevent *changelist,
636 struct kevent *changes, size_t index, int n)
637 {
638 return copyin(changelist + index, changes, n * sizeof(*changes));
639 }
640
641 static int
642 kevent_put_events(void *private, struct kevent *events,
643 struct kevent *eventlist, size_t index, int n)
644 {
645 return copyout(events, eventlist + index, n * sizeof(*events));
646 }
647
648 static const struct kevent_ops kevent_native_ops = {
649 keo_private: NULL,
650 keo_fetch_timeout: copyin,
651 keo_fetch_changes: kevent_fetch_changes,
652 keo_put_events: kevent_put_events,
653 };
654
655 int
656 sys_kevent(struct lwp *l, void *v, register_t *retval)
657 {
658 struct sys_kevent_args /* {
659 syscallarg(int) fd;
660 syscallarg(const struct kevent *) changelist;
661 syscallarg(size_t) nchanges;
662 syscallarg(struct kevent *) eventlist;
663 syscallarg(size_t) nevents;
664 syscallarg(const struct timespec *) timeout;
665 } */ *uap = v;
666
667 return kevent1(l, retval, SCARG(uap, fd), SCARG(uap, changelist),
668 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
669 SCARG(uap, timeout), &kevent_native_ops);
670 }
671
672 int
673 kevent1(struct lwp *l, register_t *retval, int fd,
674 const struct kevent *changelist, size_t nchanges, struct kevent *eventlist,
675 size_t nevents, const struct timespec *timeout,
676 const struct kevent_ops *keops)
677 {
678 struct kevent *kevp;
679 struct kqueue *kq;
680 struct file *fp;
681 struct timespec ts;
682 struct proc *p;
683 size_t i, n, ichange;
684 int nerrors, error;
685
686 p = l->l_proc;
687 /* check that we're dealing with a kq */
688 fp = fd_getfile(p->p_fd, fd);
689 if (fp == NULL)
690 return (EBADF);
691
692 if (fp->f_type != DTYPE_KQUEUE) {
693 simple_unlock(&fp->f_slock);
694 return (EBADF);
695 }
696
697 FILE_USE(fp);
698
699 if (timeout != NULL) {
700 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
701 if (error)
702 goto done;
703 timeout = &ts;
704 }
705
706 kq = (struct kqueue *)fp->f_data;
707 nerrors = 0;
708 ichange = 0;
709
710 /* traverse list of events to register */
711 while (nchanges > 0) {
712 /* copyin a maximum of KQ_EVENTS at each pass */
713 n = MIN(nchanges, KQ_NEVENTS);
714 error = (*keops->keo_fetch_changes)(keops->keo_private,
715 changelist, kq->kq_kev, ichange, n);
716 if (error)
717 goto done;
718 for (i = 0; i < n; i++) {
719 kevp = &kq->kq_kev[i];
720 kevp->flags &= ~EV_SYSFLAGS;
721 /* register each knote */
722 error = kqueue_register(kq, kevp, l);
723 if (error) {
724 if (nevents != 0) {
725 kevp->flags = EV_ERROR;
726 kevp->data = error;
727 error = (*keops->keo_put_events)
728 (keops->keo_private, kevp,
729 eventlist, nerrors, 1);
730 if (error)
731 goto done;
732 nevents--;
733 nerrors++;
734 } else {
735 goto done;
736 }
737 }
738 }
739 nchanges -= n; /* update the results */
740 ichange += n;
741 }
742 if (nerrors) {
743 *retval = nerrors;
744 error = 0;
745 goto done;
746 }
747
748 /* actually scan through the events */
749 error = kqueue_scan(fp, nevents, eventlist, timeout, l, retval, keops);
750 done:
751 FILE_UNUSE(fp, l);
752 return (error);
753 }
754
755 /*
756 * Register a given kevent kev onto the kqueue
757 */
758 int
759 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l)
760 {
761 const struct kfilter *kfilter;
762 struct filedesc *fdp;
763 struct file *fp;
764 struct knote *kn;
765 int s, error;
766
767 fdp = kq->kq_fdp;
768 fp = NULL;
769 kn = NULL;
770 error = 0;
771 kfilter = kfilter_byfilter(kev->filter);
772 if (kfilter == NULL || kfilter->filtops == NULL) {
773 /* filter not found nor implemented */
774 return (EINVAL);
775 }
776
777 /* search if knote already exists */
778 if (kfilter->filtops->f_isfd) {
779 /* monitoring a file descriptor */
780 if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
781 return (EBADF); /* validate descriptor */
782 FILE_USE(fp);
783
784 if (kev->ident < fdp->fd_knlistsize) {
785 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
786 if (kq == kn->kn_kq &&
787 kev->filter == kn->kn_filter)
788 break;
789 }
790 } else {
791 /*
792 * not monitoring a file descriptor, so
793 * lookup knotes in internal hash table
794 */
795 if (fdp->fd_knhashmask != 0) {
796 struct klist *list;
797
798 list = &fdp->fd_knhash[
799 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
800 SLIST_FOREACH(kn, list, kn_link)
801 if (kev->ident == kn->kn_id &&
802 kq == kn->kn_kq &&
803 kev->filter == kn->kn_filter)
804 break;
805 }
806 }
807
808 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
809 error = ENOENT; /* filter not found */
810 goto done;
811 }
812
813 /*
814 * kn now contains the matching knote, or NULL if no match
815 */
816 if (kev->flags & EV_ADD) {
817 /* add knote */
818
819 if (kn == NULL) {
820 /* create new knote */
821 kn = pool_get(&knote_pool, PR_WAITOK);
822 if (kn == NULL) {
823 error = ENOMEM;
824 goto done;
825 }
826 kn->kn_fp = fp;
827 kn->kn_kq = kq;
828 kn->kn_fop = kfilter->filtops;
829
830 /*
831 * apply reference count to knote structure, and
832 * do not release it at the end of this routine.
833 */
834 fp = NULL;
835
836 kn->kn_sfflags = kev->fflags;
837 kn->kn_sdata = kev->data;
838 kev->fflags = 0;
839 kev->data = 0;
840 kn->kn_kevent = *kev;
841
842 knote_attach(kn, fdp);
843 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
844 knote_drop(kn, l, fdp);
845 goto done;
846 }
847 } else {
848 /* modify existing knote */
849
850 /*
851 * The user may change some filter values after the
852 * initial EV_ADD, but doing so will not reset any
853 * filter which have already been triggered.
854 */
855 kn->kn_sfflags = kev->fflags;
856 kn->kn_sdata = kev->data;
857 kn->kn_kevent.udata = kev->udata;
858 }
859
860 s = splsched();
861 if (kn->kn_fop->f_event(kn, 0))
862 KNOTE_ACTIVATE(kn);
863 splx(s);
864
865 } else if (kev->flags & EV_DELETE) { /* delete knote */
866 kn->kn_fop->f_detach(kn);
867 knote_drop(kn, l, fdp);
868 goto done;
869 }
870
871 /* disable knote */
872 if ((kev->flags & EV_DISABLE) &&
873 ((kn->kn_status & KN_DISABLED) == 0)) {
874 s = splsched();
875 kn->kn_status |= KN_DISABLED;
876 splx(s);
877 }
878
879 /* enable knote */
880 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
881 s = splsched();
882 kn->kn_status &= ~KN_DISABLED;
883 if ((kn->kn_status & KN_ACTIVE) &&
884 ((kn->kn_status & KN_QUEUED) == 0))
885 knote_enqueue(kn);
886 splx(s);
887 }
888
889 done:
890 if (fp != NULL)
891 FILE_UNUSE(fp, l);
892 return (error);
893 }
894
895 /*
896 * Scan through the list of events on fp (for a maximum of maxevents),
897 * returning the results in to ulistp. Timeout is determined by tsp; if
898 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
899 * as appropriate.
900 */
901 static int
902 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
903 const struct timespec *tsp, struct lwp *l, register_t *retval,
904 const struct kevent_ops *keops)
905 {
906 struct proc *p = l->l_proc;
907 struct kqueue *kq;
908 struct kevent *kevp;
909 struct timeval atv;
910 struct knote *kn, *marker=NULL;
911 size_t count, nkev, nevents;
912 int s, timeout, error;
913
914 kq = (struct kqueue *)fp->f_data;
915 count = maxevents;
916 nkev = nevents = error = 0;
917 if (count == 0)
918 goto done;
919
920 if (tsp) { /* timeout supplied */
921 TIMESPEC_TO_TIMEVAL(&atv, tsp);
922 if (itimerfix(&atv)) {
923 error = EINVAL;
924 goto done;
925 }
926 s = splclock();
927 timeradd(&atv, &time, &atv); /* calc. time to wait until */
928 splx(s);
929 timeout = hzto(&atv);
930 if (timeout <= 0)
931 timeout = -1; /* do poll */
932 } else {
933 /* no timeout, wait forever */
934 timeout = 0;
935 }
936
937 MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK);
938 memset(marker, 0, sizeof(*marker));
939
940 goto start;
941
942 retry:
943 if (tsp) {
944 /*
945 * We have to recalculate the timeout on every retry.
946 */
947 timeout = hzto(&atv);
948 if (timeout <= 0)
949 goto done;
950 }
951
952 start:
953 kevp = kq->kq_kev;
954 s = splsched();
955 simple_lock(&kq->kq_lock);
956 if (kq->kq_count == 0) {
957 if (timeout < 0) {
958 error = EWOULDBLOCK;
959 simple_unlock(&kq->kq_lock);
960 } else {
961 kq->kq_state |= KQ_SLEEP;
962 error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
963 "kqread", timeout, &kq->kq_lock);
964 }
965 splx(s);
966 if (error == 0)
967 goto retry;
968 /* don't restart after signals... */
969 if (error == ERESTART)
970 error = EINTR;
971 else if (error == EWOULDBLOCK)
972 error = 0;
973 goto done;
974 }
975
976 /* mark end of knote list */
977 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
978 simple_unlock(&kq->kq_lock);
979
980 while (count) { /* while user wants data ... */
981 simple_lock(&kq->kq_lock);
982 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
983 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
984 if (kn == marker) { /* if it's our marker, stop */
985 /* What if it's some else's marker? */
986 simple_unlock(&kq->kq_lock);
987 splx(s);
988 if (count == maxevents)
989 goto retry;
990 goto done;
991 }
992 kq->kq_count--;
993 simple_unlock(&kq->kq_lock);
994
995 if (kn->kn_status & KN_DISABLED) {
996 /* don't want disabled events */
997 kn->kn_status &= ~KN_QUEUED;
998 continue;
999 }
1000 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
1001 kn->kn_fop->f_event(kn, 0) == 0) {
1002 /*
1003 * non-ONESHOT event that hasn't
1004 * triggered again, so de-queue.
1005 */
1006 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1007 continue;
1008 }
1009 *kevp = kn->kn_kevent;
1010 kevp++;
1011 nkev++;
1012 if (kn->kn_flags & EV_ONESHOT) {
1013 /* delete ONESHOT events after retrieval */
1014 kn->kn_status &= ~KN_QUEUED;
1015 splx(s);
1016 kn->kn_fop->f_detach(kn);
1017 knote_drop(kn, l, p->p_fd);
1018 s = splsched();
1019 } else if (kn->kn_flags & EV_CLEAR) {
1020 /* clear state after retrieval */
1021 kn->kn_data = 0;
1022 kn->kn_fflags = 0;
1023 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1024 } else {
1025 /* add event back on list */
1026 simple_lock(&kq->kq_lock);
1027 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1028 kq->kq_count++;
1029 simple_unlock(&kq->kq_lock);
1030 }
1031 count--;
1032 if (nkev == KQ_NEVENTS) {
1033 /* do copyouts in KQ_NEVENTS chunks */
1034 splx(s);
1035 error = (*keops->keo_put_events)(keops->keo_private,
1036 &kq->kq_kev[0], ulistp, nevents, nkev);
1037 nevents += nkev;
1038 nkev = 0;
1039 kevp = kq->kq_kev;
1040 s = splsched();
1041 if (error)
1042 break;
1043 }
1044 }
1045
1046 /* remove marker */
1047 simple_lock(&kq->kq_lock);
1048 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1049 simple_unlock(&kq->kq_lock);
1050 splx(s);
1051 done:
1052 if (marker)
1053 FREE(marker, M_KEVENT);
1054
1055 if (nkev != 0)
1056 /* copyout remaining events */
1057 error = (*keops->keo_put_events)(keops->keo_private,
1058 &kq->kq_kev[0], ulistp, nevents, nkev);
1059 *retval = maxevents - count;
1060
1061 return (error);
1062 }
1063
1064 /*
1065 * struct fileops read method for a kqueue descriptor.
1066 * Not implemented.
1067 * XXX: This could be expanded to call kqueue_scan, if desired.
1068 */
1069 /*ARGSUSED*/
1070 static int
1071 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
1072 kauth_cred_t cred, int flags)
1073 {
1074
1075 return (ENXIO);
1076 }
1077
1078 /*
1079 * struct fileops write method for a kqueue descriptor.
1080 * Not implemented.
1081 */
1082 /*ARGSUSED*/
1083 static int
1084 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
1085 kauth_cred_t cred, int flags)
1086 {
1087
1088 return (ENXIO);
1089 }
1090
1091 /*
1092 * struct fileops ioctl method for a kqueue descriptor.
1093 *
1094 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1095 * KFILTER_BYNAME find name for filter, and return result in
1096 * name, which is of size len.
1097 * KFILTER_BYFILTER find filter for name. len is ignored.
1098 */
1099 /*ARGSUSED*/
1100 static int
1101 kqueue_ioctl(struct file *fp, u_long com, void *data, struct lwp *l)
1102 {
1103 struct kfilter_mapping *km;
1104 const struct kfilter *kfilter;
1105 char *name;
1106 int error;
1107
1108 km = (struct kfilter_mapping *)data;
1109 error = 0;
1110
1111 switch (com) {
1112 case KFILTER_BYFILTER: /* convert filter -> name */
1113 kfilter = kfilter_byfilter(km->filter);
1114 if (kfilter != NULL)
1115 error = copyoutstr(kfilter->name, km->name, km->len,
1116 NULL);
1117 else
1118 error = ENOENT;
1119 break;
1120
1121 case KFILTER_BYNAME: /* convert name -> filter */
1122 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
1123 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1124 if (error) {
1125 FREE(name, M_KEVENT);
1126 break;
1127 }
1128 kfilter = kfilter_byname(name);
1129 if (kfilter != NULL)
1130 km->filter = kfilter->filter;
1131 else
1132 error = ENOENT;
1133 FREE(name, M_KEVENT);
1134 break;
1135
1136 default:
1137 error = ENOTTY;
1138
1139 }
1140 return (error);
1141 }
1142
1143 /*
1144 * struct fileops fcntl method for a kqueue descriptor.
1145 * Not implemented.
1146 */
1147 /*ARGSUSED*/
1148 static int
1149 kqueue_fcntl(struct file *fp, u_int com, void *data, struct lwp *l)
1150 {
1151
1152 return (ENOTTY);
1153 }
1154
1155 /*
1156 * struct fileops poll method for a kqueue descriptor.
1157 * Determine if kqueue has events pending.
1158 */
1159 static int
1160 kqueue_poll(struct file *fp, int events, struct lwp *l)
1161 {
1162 struct kqueue *kq;
1163 int revents;
1164
1165 kq = (struct kqueue *)fp->f_data;
1166 revents = 0;
1167 if (events & (POLLIN | POLLRDNORM)) {
1168 if (kq->kq_count) {
1169 revents |= events & (POLLIN | POLLRDNORM);
1170 } else {
1171 selrecord(l, &kq->kq_sel);
1172 }
1173 }
1174 return (revents);
1175 }
1176
1177 /*
1178 * struct fileops stat method for a kqueue descriptor.
1179 * Returns dummy info, with st_size being number of events pending.
1180 */
1181 static int
1182 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l)
1183 {
1184 struct kqueue *kq;
1185
1186 kq = (struct kqueue *)fp->f_data;
1187 memset((void *)st, 0, sizeof(*st));
1188 st->st_size = kq->kq_count;
1189 st->st_blksize = sizeof(struct kevent);
1190 st->st_mode = S_IFIFO;
1191 return (0);
1192 }
1193
1194 /*
1195 * struct fileops close method for a kqueue descriptor.
1196 * Cleans up kqueue.
1197 */
1198 static int
1199 kqueue_close(struct file *fp, struct lwp *l)
1200 {
1201 struct proc *p = l->l_proc;
1202 struct kqueue *kq;
1203 struct filedesc *fdp;
1204 struct knote **knp, *kn, *kn0;
1205 int i;
1206
1207 kq = (struct kqueue *)fp->f_data;
1208 fdp = p->p_fd;
1209 for (i = 0; i < fdp->fd_knlistsize; i++) {
1210 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1211 kn = *knp;
1212 while (kn != NULL) {
1213 kn0 = SLIST_NEXT(kn, kn_link);
1214 if (kq == kn->kn_kq) {
1215 kn->kn_fop->f_detach(kn);
1216 FILE_UNUSE(kn->kn_fp, l);
1217 pool_put(&knote_pool, kn);
1218 *knp = kn0;
1219 } else {
1220 knp = &SLIST_NEXT(kn, kn_link);
1221 }
1222 kn = kn0;
1223 }
1224 }
1225 if (fdp->fd_knhashmask != 0) {
1226 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1227 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1228 kn = *knp;
1229 while (kn != NULL) {
1230 kn0 = SLIST_NEXT(kn, kn_link);
1231 if (kq == kn->kn_kq) {
1232 kn->kn_fop->f_detach(kn);
1233 /* XXX non-fd release of kn->kn_ptr */
1234 pool_put(&knote_pool, kn);
1235 *knp = kn0;
1236 } else {
1237 knp = &SLIST_NEXT(kn, kn_link);
1238 }
1239 kn = kn0;
1240 }
1241 }
1242 }
1243 pool_put(&kqueue_pool, kq);
1244 fp->f_data = NULL;
1245
1246 return (0);
1247 }
1248
1249 /*
1250 * wakeup a kqueue
1251 */
1252 static void
1253 kqueue_wakeup(struct kqueue *kq)
1254 {
1255 int s;
1256
1257 s = splsched();
1258 simple_lock(&kq->kq_lock);
1259 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1260 kq->kq_state &= ~KQ_SLEEP;
1261 wakeup(kq); /* ... wakeup */
1262 }
1263
1264 /* Notify select/poll and kevent. */
1265 selnotify(&kq->kq_sel, 0);
1266 simple_unlock(&kq->kq_lock);
1267 splx(s);
1268 }
1269
1270 /*
1271 * struct fileops kqfilter method for a kqueue descriptor.
1272 * Event triggered when monitored kqueue changes.
1273 */
1274 /*ARGSUSED*/
1275 static int
1276 kqueue_kqfilter(struct file *fp, struct knote *kn)
1277 {
1278 struct kqueue *kq;
1279
1280 KASSERT(fp == kn->kn_fp);
1281 kq = (struct kqueue *)kn->kn_fp->f_data;
1282 if (kn->kn_filter != EVFILT_READ)
1283 return (1);
1284 kn->kn_fop = &kqread_filtops;
1285 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1286 return (0);
1287 }
1288
1289
1290 /*
1291 * Walk down a list of knotes, activating them if their event has triggered.
1292 */
1293 void
1294 knote(struct klist *list, long hint)
1295 {
1296 struct knote *kn;
1297
1298 SLIST_FOREACH(kn, list, kn_selnext)
1299 if (kn->kn_fop->f_event(kn, hint))
1300 KNOTE_ACTIVATE(kn);
1301 }
1302
1303 /*
1304 * Remove all knotes from a specified klist
1305 */
1306 void
1307 knote_remove(struct lwp *l, struct klist *list)
1308 {
1309 struct knote *kn;
1310
1311 while ((kn = SLIST_FIRST(list)) != NULL) {
1312 kn->kn_fop->f_detach(kn);
1313 knote_drop(kn, l, l->l_proc->p_fd);
1314 }
1315 }
1316
1317 /*
1318 * Remove all knotes referencing a specified fd
1319 */
1320 void
1321 knote_fdclose(struct lwp *l, int fd)
1322 {
1323 struct filedesc *fdp;
1324 struct klist *list;
1325
1326 fdp = l->l_proc->p_fd;
1327 list = &fdp->fd_knlist[fd];
1328 knote_remove(l, list);
1329 }
1330
1331 /*
1332 * Attach a new knote to a file descriptor
1333 */
1334 static void
1335 knote_attach(struct knote *kn, struct filedesc *fdp)
1336 {
1337 struct klist *list;
1338 int size;
1339
1340 if (! kn->kn_fop->f_isfd) {
1341 /* if knote is not on an fd, store on internal hash table */
1342 if (fdp->fd_knhashmask == 0)
1343 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1344 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1345 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1346 goto done;
1347 }
1348
1349 /*
1350 * otherwise, knote is on an fd.
1351 * knotes are stored in fd_knlist indexed by kn->kn_id.
1352 */
1353 if (fdp->fd_knlistsize <= kn->kn_id) {
1354 /* expand list, it's too small */
1355 size = fdp->fd_knlistsize;
1356 while (size <= kn->kn_id) {
1357 /* grow in KQ_EXTENT chunks */
1358 size += KQ_EXTENT;
1359 }
1360 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1361 if (fdp->fd_knlist) {
1362 /* copy existing knlist */
1363 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1364 fdp->fd_knlistsize * sizeof(struct klist *));
1365 }
1366 /*
1367 * Zero new memory. Stylistically, SLIST_INIT() should be
1368 * used here, but that does same thing as the memset() anyway.
1369 */
1370 memset(&list[fdp->fd_knlistsize], 0,
1371 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1372
1373 /* switch to new knlist */
1374 if (fdp->fd_knlist != NULL)
1375 free(fdp->fd_knlist, M_KEVENT);
1376 fdp->fd_knlistsize = size;
1377 fdp->fd_knlist = list;
1378 }
1379
1380 /* get list head for this fd */
1381 list = &fdp->fd_knlist[kn->kn_id];
1382 done:
1383 /* add new knote */
1384 SLIST_INSERT_HEAD(list, kn, kn_link);
1385 kn->kn_status = 0;
1386 }
1387
1388 /*
1389 * Drop knote.
1390 * Should be called at spl == 0, since we don't want to hold spl
1391 * while calling FILE_UNUSE and free.
1392 */
1393 static void
1394 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp)
1395 {
1396 struct klist *list;
1397
1398 if (kn->kn_fop->f_isfd)
1399 list = &fdp->fd_knlist[kn->kn_id];
1400 else
1401 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1402
1403 SLIST_REMOVE(list, kn, knote, kn_link);
1404 if (kn->kn_status & KN_QUEUED)
1405 knote_dequeue(kn);
1406 if (kn->kn_fop->f_isfd)
1407 FILE_UNUSE(kn->kn_fp, l);
1408 pool_put(&knote_pool, kn);
1409 }
1410
1411
1412 /*
1413 * Queue new event for knote.
1414 */
1415 static void
1416 knote_enqueue(struct knote *kn)
1417 {
1418 struct kqueue *kq;
1419 int s;
1420
1421 kq = kn->kn_kq;
1422 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1423
1424 s = splsched();
1425 simple_lock(&kq->kq_lock);
1426 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1427 kn->kn_status |= KN_QUEUED;
1428 kq->kq_count++;
1429 simple_unlock(&kq->kq_lock);
1430 splx(s);
1431 kqueue_wakeup(kq);
1432 }
1433
1434 /*
1435 * Dequeue event for knote.
1436 */
1437 static void
1438 knote_dequeue(struct knote *kn)
1439 {
1440 struct kqueue *kq;
1441 int s;
1442
1443 KASSERT(kn->kn_status & KN_QUEUED);
1444 kq = kn->kn_kq;
1445
1446 s = splsched();
1447 simple_lock(&kq->kq_lock);
1448 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1449 kn->kn_status &= ~KN_QUEUED;
1450 kq->kq_count--;
1451 simple_unlock(&kq->kq_lock);
1452 splx(s);
1453 }
1454