Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.27
      1 /*	$NetBSD: kern_event.c,v 1.27 2006/05/14 21:15:11 elad Exp $	*/
      2 /*-
      3  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  *
     27  * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.27 2006/05/14 21:15:11 elad Exp $");
     32 
     33 #include <sys/param.h>
     34 #include <sys/systm.h>
     35 #include <sys/kernel.h>
     36 #include <sys/proc.h>
     37 #include <sys/malloc.h>
     38 #include <sys/unistd.h>
     39 #include <sys/file.h>
     40 #include <sys/fcntl.h>
     41 #include <sys/select.h>
     42 #include <sys/queue.h>
     43 #include <sys/event.h>
     44 #include <sys/eventvar.h>
     45 #include <sys/poll.h>
     46 #include <sys/pool.h>
     47 #include <sys/protosw.h>
     48 #include <sys/socket.h>
     49 #include <sys/socketvar.h>
     50 #include <sys/stat.h>
     51 #include <sys/uio.h>
     52 #include <sys/mount.h>
     53 #include <sys/filedesc.h>
     54 #include <sys/sa.h>
     55 #include <sys/syscallargs.h>
     56 #include <sys/kauth.h>
     57 
     58 static void	kqueue_wakeup(struct kqueue *kq);
     59 
     60 static int	kqueue_scan(struct file *, size_t, struct kevent *,
     61     const struct timespec *, struct lwp *, register_t *,
     62     const struct kevent_ops *);
     63 static int	kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
     64 		    kauth_cred_t cred, int flags);
     65 static int	kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
     66 		    kauth_cred_t cred, int flags);
     67 static int	kqueue_ioctl(struct file *fp, u_long com, void *data,
     68 		    struct lwp *l);
     69 static int	kqueue_fcntl(struct file *fp, u_int com, void *data,
     70 		    struct lwp *l);
     71 static int	kqueue_poll(struct file *fp, int events, struct lwp *l);
     72 static int	kqueue_kqfilter(struct file *fp, struct knote *kn);
     73 static int	kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l);
     74 static int	kqueue_close(struct file *fp, struct lwp *l);
     75 
     76 static const struct fileops kqueueops = {
     77 	kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
     78 	kqueue_stat, kqueue_close, kqueue_kqfilter
     79 };
     80 
     81 static void	knote_attach(struct knote *kn, struct filedesc *fdp);
     82 static void	knote_drop(struct knote *kn, struct lwp *l,
     83 		    struct filedesc *fdp);
     84 static void	knote_enqueue(struct knote *kn);
     85 static void	knote_dequeue(struct knote *kn);
     86 
     87 static void	filt_kqdetach(struct knote *kn);
     88 static int	filt_kqueue(struct knote *kn, long hint);
     89 static int	filt_procattach(struct knote *kn);
     90 static void	filt_procdetach(struct knote *kn);
     91 static int	filt_proc(struct knote *kn, long hint);
     92 static int	filt_fileattach(struct knote *kn);
     93 static void	filt_timerexpire(void *knx);
     94 static int	filt_timerattach(struct knote *kn);
     95 static void	filt_timerdetach(struct knote *kn);
     96 static int	filt_timer(struct knote *kn, long hint);
     97 
     98 static const struct filterops kqread_filtops =
     99 	{ 1, NULL, filt_kqdetach, filt_kqueue };
    100 static const struct filterops proc_filtops =
    101 	{ 0, filt_procattach, filt_procdetach, filt_proc };
    102 static const struct filterops file_filtops =
    103 	{ 1, filt_fileattach, NULL, NULL };
    104 static const struct filterops timer_filtops =
    105 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
    106 
    107 static POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL);
    108 static POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL);
    109 static int	kq_ncallouts = 0;
    110 static int	kq_calloutmax = (4 * 1024);
    111 
    112 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
    113 
    114 #define	KNOTE_ACTIVATE(kn)						\
    115 do {									\
    116 	kn->kn_status |= KN_ACTIVE;					\
    117 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
    118 		knote_enqueue(kn);					\
    119 } while(0)
    120 
    121 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    122 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    123 
    124 extern const struct filterops sig_filtops;
    125 
    126 /*
    127  * Table for for all system-defined filters.
    128  * These should be listed in the numeric order of the EVFILT_* defines.
    129  * If filtops is NULL, the filter isn't implemented in NetBSD.
    130  * End of list is when name is NULL.
    131  */
    132 struct kfilter {
    133 	const char	 *name;		/* name of filter */
    134 	uint32_t	  filter;	/* id of filter */
    135 	const struct filterops *filtops;/* operations for filter */
    136 };
    137 
    138 		/* System defined filters */
    139 static const struct kfilter sys_kfilters[] = {
    140 	{ "EVFILT_READ",	EVFILT_READ,	&file_filtops },
    141 	{ "EVFILT_WRITE",	EVFILT_WRITE,	&file_filtops },
    142 	{ "EVFILT_AIO",		EVFILT_AIO,	NULL },
    143 	{ "EVFILT_VNODE",	EVFILT_VNODE,	&file_filtops },
    144 	{ "EVFILT_PROC",	EVFILT_PROC,	&proc_filtops },
    145 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	&sig_filtops },
    146 	{ "EVFILT_TIMER",	EVFILT_TIMER,	&timer_filtops },
    147 	{ NULL,			0,		NULL },	/* end of list */
    148 };
    149 
    150 		/* User defined kfilters */
    151 static struct kfilter	*user_kfilters;		/* array */
    152 static int		user_kfilterc;		/* current offset */
    153 static int		user_kfiltermaxc;	/* max size so far */
    154 
    155 /*
    156  * Find kfilter entry by name, or NULL if not found.
    157  */
    158 static const struct kfilter *
    159 kfilter_byname_sys(const char *name)
    160 {
    161 	int i;
    162 
    163 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    164 		if (strcmp(name, sys_kfilters[i].name) == 0)
    165 			return (&sys_kfilters[i]);
    166 	}
    167 	return (NULL);
    168 }
    169 
    170 static struct kfilter *
    171 kfilter_byname_user(const char *name)
    172 {
    173 	int i;
    174 
    175 	/* user_kfilters[] could be NULL if no filters were registered */
    176 	if (!user_kfilters)
    177 		return (NULL);
    178 
    179 	for (i = 0; user_kfilters[i].name != NULL; i++) {
    180 		if (user_kfilters[i].name != '\0' &&
    181 		    strcmp(name, user_kfilters[i].name) == 0)
    182 			return (&user_kfilters[i]);
    183 	}
    184 	return (NULL);
    185 }
    186 
    187 static const struct kfilter *
    188 kfilter_byname(const char *name)
    189 {
    190 	const struct kfilter *kfilter;
    191 
    192 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    193 		return (kfilter);
    194 
    195 	return (kfilter_byname_user(name));
    196 }
    197 
    198 /*
    199  * Find kfilter entry by filter id, or NULL if not found.
    200  * Assumes entries are indexed in filter id order, for speed.
    201  */
    202 static const struct kfilter *
    203 kfilter_byfilter(uint32_t filter)
    204 {
    205 	const struct kfilter *kfilter;
    206 
    207 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    208 		kfilter = &sys_kfilters[filter];
    209 	else if (user_kfilters != NULL &&
    210 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    211 					/* it's a user filter */
    212 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    213 	else
    214 		return (NULL);		/* out of range */
    215 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    216 	return (kfilter);
    217 }
    218 
    219 /*
    220  * Register a new kfilter. Stores the entry in user_kfilters.
    221  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    222  * If retfilter != NULL, the new filterid is returned in it.
    223  */
    224 int
    225 kfilter_register(const char *name, const struct filterops *filtops,
    226     int *retfilter)
    227 {
    228 	struct kfilter *kfilter;
    229 	void *space;
    230 	int len;
    231 
    232 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    233 		return (EINVAL);	/* invalid args */
    234 	if (kfilter_byname(name) != NULL)
    235 		return (EEXIST);	/* already exists */
    236 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
    237 		return (EINVAL);	/* too many */
    238 
    239 	/* check if need to grow user_kfilters */
    240 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    241 		/*
    242 		 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
    243 		 * want to traverse user_kfilters as an array.
    244 		 */
    245 		user_kfiltermaxc += KFILTER_EXTENT;
    246 		kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
    247 		    M_KEVENT, M_WAITOK);
    248 
    249 		/* copy existing user_kfilters */
    250 		if (user_kfilters != NULL)
    251 			memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
    252 			    user_kfilterc * sizeof(struct kfilter *));
    253 					/* zero new sections */
    254 		memset((caddr_t)kfilter +
    255 		    user_kfilterc * sizeof(struct kfilter *), 0,
    256 		    (user_kfiltermaxc - user_kfilterc) *
    257 		    sizeof(struct kfilter *));
    258 					/* switch to new kfilter */
    259 		if (user_kfilters != NULL)
    260 			free(user_kfilters, M_KEVENT);
    261 		user_kfilters = kfilter;
    262 	}
    263 	len = strlen(name) + 1;		/* copy name */
    264 	space = malloc(len, M_KEVENT, M_WAITOK);
    265 	memcpy(space, name, len);
    266 	user_kfilters[user_kfilterc].name = space;
    267 
    268 	user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
    269 
    270 	len = sizeof(struct filterops);	/* copy filtops */
    271 	space = malloc(len, M_KEVENT, M_WAITOK);
    272 	memcpy(space, filtops, len);
    273 	user_kfilters[user_kfilterc].filtops = space;
    274 
    275 	if (retfilter != NULL)
    276 		*retfilter = user_kfilters[user_kfilterc].filter;
    277 	user_kfilterc++;		/* finally, increment count */
    278 	return (0);
    279 }
    280 
    281 /*
    282  * Unregister a kfilter previously registered with kfilter_register.
    283  * This retains the filter id, but clears the name and frees filtops (filter
    284  * operations), so that the number isn't reused during a boot.
    285  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    286  */
    287 int
    288 kfilter_unregister(const char *name)
    289 {
    290 	struct kfilter *kfilter;
    291 
    292 	if (name == NULL || name[0] == '\0')
    293 		return (EINVAL);	/* invalid name */
    294 
    295 	if (kfilter_byname_sys(name) != NULL)
    296 		return (EINVAL);	/* can't detach system filters */
    297 
    298 	kfilter = kfilter_byname_user(name);
    299 	if (kfilter == NULL)		/* not found */
    300 		return (ENOENT);
    301 
    302 	if (kfilter->name[0] != '\0') {
    303 		/* XXXUNCONST Cast away const (but we know it's safe. */
    304 		free(__UNCONST(kfilter->name), M_KEVENT);
    305 		kfilter->name = "";	/* mark as `not implemented' */
    306 	}
    307 	if (kfilter->filtops != NULL) {
    308 		/* XXXUNCONST Cast away const (but we know it's safe. */
    309 		free(__UNCONST(kfilter->filtops), M_KEVENT);
    310 		kfilter->filtops = NULL; /* mark as `not implemented' */
    311 	}
    312 	return (0);
    313 }
    314 
    315 
    316 /*
    317  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    318  * descriptors. Calls struct fileops kqfilter method for given file descriptor.
    319  */
    320 static int
    321 filt_fileattach(struct knote *kn)
    322 {
    323 	struct file *fp;
    324 
    325 	fp = kn->kn_fp;
    326 	return ((*fp->f_ops->fo_kqfilter)(fp, kn));
    327 }
    328 
    329 /*
    330  * Filter detach method for EVFILT_READ on kqueue descriptor.
    331  */
    332 static void
    333 filt_kqdetach(struct knote *kn)
    334 {
    335 	struct kqueue *kq;
    336 
    337 	kq = (struct kqueue *)kn->kn_fp->f_data;
    338 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
    339 }
    340 
    341 /*
    342  * Filter event method for EVFILT_READ on kqueue descriptor.
    343  */
    344 /*ARGSUSED*/
    345 static int
    346 filt_kqueue(struct knote *kn, long hint)
    347 {
    348 	struct kqueue *kq;
    349 
    350 	kq = (struct kqueue *)kn->kn_fp->f_data;
    351 	kn->kn_data = kq->kq_count;
    352 	return (kn->kn_data > 0);
    353 }
    354 
    355 /*
    356  * Filter attach method for EVFILT_PROC.
    357  */
    358 static int
    359 filt_procattach(struct knote *kn)
    360 {
    361 	struct proc *p;
    362 
    363 	p = pfind(kn->kn_id);
    364 	if (p == NULL)
    365 		return (ESRCH);
    366 
    367 	/*
    368 	 * Fail if it's not owned by you, or the last exec gave us
    369 	 * setuid/setgid privs (unless you're root).
    370 	 */
    371 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(curproc->p_cred) ||
    372 		(p->p_flag & P_SUGID))
    373 	    && kauth_authorize_generic(curproc->p_cred, KAUTH_GENERIC_ISSUSER,
    374 				 &curproc->p_acflag) != 0)
    375 		return (EACCES);
    376 
    377 	kn->kn_ptr.p_proc = p;
    378 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    379 
    380 	/*
    381 	 * internal flag indicating registration done by kernel
    382 	 */
    383 	if (kn->kn_flags & EV_FLAG1) {
    384 		kn->kn_data = kn->kn_sdata;	/* ppid */
    385 		kn->kn_fflags = NOTE_CHILD;
    386 		kn->kn_flags &= ~EV_FLAG1;
    387 	}
    388 
    389 	/* XXXSMP lock the process? */
    390 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    391 
    392 	return (0);
    393 }
    394 
    395 /*
    396  * Filter detach method for EVFILT_PROC.
    397  *
    398  * The knote may be attached to a different process, which may exit,
    399  * leaving nothing for the knote to be attached to.  So when the process
    400  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    401  * it will be deleted when read out.  However, as part of the knote deletion,
    402  * this routine is called, so a check is needed to avoid actually performing
    403  * a detach, because the original process might not exist any more.
    404  */
    405 static void
    406 filt_procdetach(struct knote *kn)
    407 {
    408 	struct proc *p;
    409 
    410 	if (kn->kn_status & KN_DETACHED)
    411 		return;
    412 
    413 	p = kn->kn_ptr.p_proc;
    414 	KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p);
    415 
    416 	/* XXXSMP lock the process? */
    417 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    418 }
    419 
    420 /*
    421  * Filter event method for EVFILT_PROC.
    422  */
    423 static int
    424 filt_proc(struct knote *kn, long hint)
    425 {
    426 	u_int event;
    427 
    428 	/*
    429 	 * mask off extra data
    430 	 */
    431 	event = (u_int)hint & NOTE_PCTRLMASK;
    432 
    433 	/*
    434 	 * if the user is interested in this event, record it.
    435 	 */
    436 	if (kn->kn_sfflags & event)
    437 		kn->kn_fflags |= event;
    438 
    439 	/*
    440 	 * process is gone, so flag the event as finished.
    441 	 */
    442 	if (event == NOTE_EXIT) {
    443 		/*
    444 		 * Detach the knote from watched process and mark
    445 		 * it as such. We can't leave this to kqueue_scan(),
    446 		 * since the process might not exist by then. And we
    447 		 * have to do this now, since psignal KNOTE() is called
    448 		 * also for zombies and we might end up reading freed
    449 		 * memory if the kevent would already be picked up
    450 		 * and knote g/c'ed.
    451 		 */
    452 		kn->kn_fop->f_detach(kn);
    453 		kn->kn_status |= KN_DETACHED;
    454 
    455 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
    456 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
    457 		return (1);
    458 	}
    459 
    460 	/*
    461 	 * process forked, and user wants to track the new process,
    462 	 * so attach a new knote to it, and immediately report an
    463 	 * event with the parent's pid.
    464 	 */
    465 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
    466 		struct kevent kev;
    467 		int error;
    468 
    469 		/*
    470 		 * register knote with new process.
    471 		 */
    472 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
    473 		kev.filter = kn->kn_filter;
    474 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
    475 		kev.fflags = kn->kn_sfflags;
    476 		kev.data = kn->kn_id;			/* parent */
    477 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
    478 		error = kqueue_register(kn->kn_kq, &kev, NULL);
    479 		if (error)
    480 			kn->kn_fflags |= NOTE_TRACKERR;
    481 	}
    482 
    483 	return (kn->kn_fflags != 0);
    484 }
    485 
    486 static void
    487 filt_timerexpire(void *knx)
    488 {
    489 	struct knote *kn = knx;
    490 	int tticks;
    491 
    492 	kn->kn_data++;
    493 	KNOTE_ACTIVATE(kn);
    494 
    495 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
    496 		tticks = mstohz(kn->kn_sdata);
    497 		callout_schedule((struct callout *)kn->kn_hook, tticks);
    498 	}
    499 }
    500 
    501 /*
    502  * data contains amount of time to sleep, in milliseconds
    503  */
    504 static int
    505 filt_timerattach(struct knote *kn)
    506 {
    507 	struct callout *calloutp;
    508 	int tticks;
    509 
    510 	if (kq_ncallouts >= kq_calloutmax)
    511 		return (ENOMEM);
    512 	kq_ncallouts++;
    513 
    514 	tticks = mstohz(kn->kn_sdata);
    515 
    516 	/* if the supplied value is under our resolution, use 1 tick */
    517 	if (tticks == 0) {
    518 		if (kn->kn_sdata == 0)
    519 			return (EINVAL);
    520 		tticks = 1;
    521 	}
    522 
    523 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
    524 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
    525 	    M_KEVENT, 0);
    526 	callout_init(calloutp);
    527 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
    528 	kn->kn_hook = calloutp;
    529 
    530 	return (0);
    531 }
    532 
    533 static void
    534 filt_timerdetach(struct knote *kn)
    535 {
    536 	struct callout *calloutp;
    537 
    538 	calloutp = (struct callout *)kn->kn_hook;
    539 	callout_stop(calloutp);
    540 	FREE(calloutp, M_KEVENT);
    541 	kq_ncallouts--;
    542 }
    543 
    544 static int
    545 filt_timer(struct knote *kn, long hint)
    546 {
    547 	return (kn->kn_data != 0);
    548 }
    549 
    550 /*
    551  * filt_seltrue:
    552  *
    553  *	This filter "event" routine simulates seltrue().
    554  */
    555 int
    556 filt_seltrue(struct knote *kn, long hint)
    557 {
    558 
    559 	/*
    560 	 * We don't know how much data can be read/written,
    561 	 * but we know that it *can* be.  This is about as
    562 	 * good as select/poll does as well.
    563 	 */
    564 	kn->kn_data = 0;
    565 	return (1);
    566 }
    567 
    568 /*
    569  * This provides full kqfilter entry for device switch tables, which
    570  * has same effect as filter using filt_seltrue() as filter method.
    571  */
    572 static void
    573 filt_seltruedetach(struct knote *kn)
    574 {
    575 	/* Nothing to do */
    576 }
    577 
    578 static const struct filterops seltrue_filtops =
    579 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
    580 
    581 int
    582 seltrue_kqfilter(dev_t dev, struct knote *kn)
    583 {
    584 	switch (kn->kn_filter) {
    585 	case EVFILT_READ:
    586 	case EVFILT_WRITE:
    587 		kn->kn_fop = &seltrue_filtops;
    588 		break;
    589 	default:
    590 		return (1);
    591 	}
    592 
    593 	/* Nothing more to do */
    594 	return (0);
    595 }
    596 
    597 /*
    598  * kqueue(2) system call.
    599  */
    600 int
    601 sys_kqueue(struct lwp *l, void *v, register_t *retval)
    602 {
    603 	struct filedesc	*fdp;
    604 	struct kqueue	*kq;
    605 	struct file	*fp;
    606 	struct proc	*p;
    607 	int		fd, error;
    608 
    609 	p = l->l_proc;
    610 	fdp = p->p_fd;
    611 	error = falloc(p, &fp, &fd);	/* setup a new file descriptor */
    612 	if (error)
    613 		return (error);
    614 	fp->f_flag = FREAD | FWRITE;
    615 	fp->f_type = DTYPE_KQUEUE;
    616 	fp->f_ops = &kqueueops;
    617 	kq = pool_get(&kqueue_pool, PR_WAITOK);
    618 	memset((char *)kq, 0, sizeof(struct kqueue));
    619 	simple_lock_init(&kq->kq_lock);
    620 	TAILQ_INIT(&kq->kq_head);
    621 	fp->f_data = (caddr_t)kq;	/* store the kqueue with the fp */
    622 	*retval = fd;
    623 	if (fdp->fd_knlistsize < 0)
    624 		fdp->fd_knlistsize = 0;	/* this process has a kq */
    625 	kq->kq_fdp = fdp;
    626 	FILE_SET_MATURE(fp);
    627 	FILE_UNUSE(fp, l);		/* falloc() does FILE_USE() */
    628 	return (error);
    629 }
    630 
    631 /*
    632  * kevent(2) system call.
    633  */
    634 static int
    635 kevent_fetch_changes(void *private, const struct kevent *changelist,
    636     struct kevent *changes, size_t index, int n)
    637 {
    638 	return copyin(changelist + index, changes, n * sizeof(*changes));
    639 }
    640 
    641 static int
    642 kevent_put_events(void *private, struct kevent *events,
    643     struct kevent *eventlist, size_t index, int n)
    644 {
    645 	return copyout(events, eventlist + index, n * sizeof(*events));
    646 }
    647 
    648 static const struct kevent_ops kevent_native_ops = {
    649 	keo_private: NULL,
    650 	keo_fetch_timeout: copyin,
    651 	keo_fetch_changes: kevent_fetch_changes,
    652 	keo_put_events: kevent_put_events,
    653 };
    654 
    655 int
    656 sys_kevent(struct lwp *l, void *v, register_t *retval)
    657 {
    658 	struct sys_kevent_args /* {
    659 		syscallarg(int) fd;
    660 		syscallarg(const struct kevent *) changelist;
    661 		syscallarg(size_t) nchanges;
    662 		syscallarg(struct kevent *) eventlist;
    663 		syscallarg(size_t) nevents;
    664 		syscallarg(const struct timespec *) timeout;
    665 	} */ *uap = v;
    666 
    667 	return kevent1(l, retval, SCARG(uap, fd), SCARG(uap, changelist),
    668 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
    669 	    SCARG(uap, timeout), &kevent_native_ops);
    670 }
    671 
    672 int
    673 kevent1(struct lwp *l, register_t *retval, int fd,
    674     const struct kevent *changelist, size_t nchanges, struct kevent *eventlist,
    675     size_t nevents, const struct timespec *timeout,
    676     const struct kevent_ops *keops)
    677 {
    678 	struct kevent	*kevp;
    679 	struct kqueue	*kq;
    680 	struct file	*fp;
    681 	struct timespec	ts;
    682 	struct proc	*p;
    683 	size_t		i, n, ichange;
    684 	int		nerrors, error;
    685 
    686 	p = l->l_proc;
    687 	/* check that we're dealing with a kq */
    688 	fp = fd_getfile(p->p_fd, fd);
    689 	if (fp == NULL)
    690 		return (EBADF);
    691 
    692 	if (fp->f_type != DTYPE_KQUEUE) {
    693 		simple_unlock(&fp->f_slock);
    694 		return (EBADF);
    695 	}
    696 
    697 	FILE_USE(fp);
    698 
    699 	if (timeout != NULL) {
    700 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
    701 		if (error)
    702 			goto done;
    703 		timeout = &ts;
    704 	}
    705 
    706 	kq = (struct kqueue *)fp->f_data;
    707 	nerrors = 0;
    708 	ichange = 0;
    709 
    710 	/* traverse list of events to register */
    711 	while (nchanges > 0) {
    712 		/* copyin a maximum of KQ_EVENTS at each pass */
    713 		n = MIN(nchanges, KQ_NEVENTS);
    714 		error = (*keops->keo_fetch_changes)(keops->keo_private,
    715 		    changelist, kq->kq_kev, ichange, n);
    716 		if (error)
    717 			goto done;
    718 		for (i = 0; i < n; i++) {
    719 			kevp = &kq->kq_kev[i];
    720 			kevp->flags &= ~EV_SYSFLAGS;
    721 			/* register each knote */
    722 			error = kqueue_register(kq, kevp, l);
    723 			if (error) {
    724 				if (nevents != 0) {
    725 					kevp->flags = EV_ERROR;
    726 					kevp->data = error;
    727 					error = (*keops->keo_put_events)
    728 					    (keops->keo_private, kevp,
    729 					    eventlist, nerrors, 1);
    730 					if (error)
    731 						goto done;
    732 					nevents--;
    733 					nerrors++;
    734 				} else {
    735 					goto done;
    736 				}
    737 			}
    738 		}
    739 		nchanges -= n;	/* update the results */
    740 		ichange += n;
    741 	}
    742 	if (nerrors) {
    743 		*retval = nerrors;
    744 		error = 0;
    745 		goto done;
    746 	}
    747 
    748 	/* actually scan through the events */
    749 	error = kqueue_scan(fp, nevents, eventlist, timeout, l, retval, keops);
    750  done:
    751 	FILE_UNUSE(fp, l);
    752 	return (error);
    753 }
    754 
    755 /*
    756  * Register a given kevent kev onto the kqueue
    757  */
    758 int
    759 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l)
    760 {
    761 	const struct kfilter *kfilter;
    762 	struct filedesc	*fdp;
    763 	struct file	*fp;
    764 	struct knote	*kn;
    765 	int		s, error;
    766 
    767 	fdp = kq->kq_fdp;
    768 	fp = NULL;
    769 	kn = NULL;
    770 	error = 0;
    771 	kfilter = kfilter_byfilter(kev->filter);
    772 	if (kfilter == NULL || kfilter->filtops == NULL) {
    773 		/* filter not found nor implemented */
    774 		return (EINVAL);
    775 	}
    776 
    777 	/* search if knote already exists */
    778 	if (kfilter->filtops->f_isfd) {
    779 		/* monitoring a file descriptor */
    780 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
    781 			return (EBADF);	/* validate descriptor */
    782 		FILE_USE(fp);
    783 
    784 		if (kev->ident < fdp->fd_knlistsize) {
    785 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
    786 				if (kq == kn->kn_kq &&
    787 				    kev->filter == kn->kn_filter)
    788 					break;
    789 		}
    790 	} else {
    791 		/*
    792 		 * not monitoring a file descriptor, so
    793 		 * lookup knotes in internal hash table
    794 		 */
    795 		if (fdp->fd_knhashmask != 0) {
    796 			struct klist *list;
    797 
    798 			list = &fdp->fd_knhash[
    799 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
    800 			SLIST_FOREACH(kn, list, kn_link)
    801 				if (kev->ident == kn->kn_id &&
    802 				    kq == kn->kn_kq &&
    803 				    kev->filter == kn->kn_filter)
    804 					break;
    805 		}
    806 	}
    807 
    808 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
    809 		error = ENOENT;		/* filter not found */
    810 		goto done;
    811 	}
    812 
    813 	/*
    814 	 * kn now contains the matching knote, or NULL if no match
    815 	 */
    816 	if (kev->flags & EV_ADD) {
    817 		/* add knote */
    818 
    819 		if (kn == NULL) {
    820 			/* create new knote */
    821 			kn = pool_get(&knote_pool, PR_WAITOK);
    822 			if (kn == NULL) {
    823 				error = ENOMEM;
    824 				goto done;
    825 			}
    826 			kn->kn_fp = fp;
    827 			kn->kn_kq = kq;
    828 			kn->kn_fop = kfilter->filtops;
    829 
    830 			/*
    831 			 * apply reference count to knote structure, and
    832 			 * do not release it at the end of this routine.
    833 			 */
    834 			fp = NULL;
    835 
    836 			kn->kn_sfflags = kev->fflags;
    837 			kn->kn_sdata = kev->data;
    838 			kev->fflags = 0;
    839 			kev->data = 0;
    840 			kn->kn_kevent = *kev;
    841 
    842 			knote_attach(kn, fdp);
    843 			if ((error = kfilter->filtops->f_attach(kn)) != 0) {
    844 				knote_drop(kn, l, fdp);
    845 				goto done;
    846 			}
    847 		} else {
    848 			/* modify existing knote */
    849 
    850 			/*
    851 			 * The user may change some filter values after the
    852 			 * initial EV_ADD, but doing so will not reset any
    853 			 * filter which have already been triggered.
    854 			 */
    855 			kn->kn_sfflags = kev->fflags;
    856 			kn->kn_sdata = kev->data;
    857 			kn->kn_kevent.udata = kev->udata;
    858 		}
    859 
    860 		s = splsched();
    861 		if (kn->kn_fop->f_event(kn, 0))
    862 			KNOTE_ACTIVATE(kn);
    863 		splx(s);
    864 
    865 	} else if (kev->flags & EV_DELETE) {	/* delete knote */
    866 		kn->kn_fop->f_detach(kn);
    867 		knote_drop(kn, l, fdp);
    868 		goto done;
    869 	}
    870 
    871 	/* disable knote */
    872 	if ((kev->flags & EV_DISABLE) &&
    873 	    ((kn->kn_status & KN_DISABLED) == 0)) {
    874 		s = splsched();
    875 		kn->kn_status |= KN_DISABLED;
    876 		splx(s);
    877 	}
    878 
    879 	/* enable knote */
    880 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
    881 		s = splsched();
    882 		kn->kn_status &= ~KN_DISABLED;
    883 		if ((kn->kn_status & KN_ACTIVE) &&
    884 		    ((kn->kn_status & KN_QUEUED) == 0))
    885 			knote_enqueue(kn);
    886 		splx(s);
    887 	}
    888 
    889  done:
    890 	if (fp != NULL)
    891 		FILE_UNUSE(fp, l);
    892 	return (error);
    893 }
    894 
    895 /*
    896  * Scan through the list of events on fp (for a maximum of maxevents),
    897  * returning the results in to ulistp. Timeout is determined by tsp; if
    898  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
    899  * as appropriate.
    900  */
    901 static int
    902 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
    903     const struct timespec *tsp, struct lwp *l, register_t *retval,
    904     const struct kevent_ops *keops)
    905 {
    906 	struct proc	*p = l->l_proc;
    907 	struct kqueue	*kq;
    908 	struct kevent	*kevp;
    909 	struct timeval	atv;
    910 	struct knote	*kn, *marker=NULL;
    911 	size_t		count, nkev, nevents;
    912 	int		s, timeout, error;
    913 
    914 	kq = (struct kqueue *)fp->f_data;
    915 	count = maxevents;
    916 	nkev = nevents = error = 0;
    917 	if (count == 0)
    918 		goto done;
    919 
    920 	if (tsp) {				/* timeout supplied */
    921 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
    922 		if (itimerfix(&atv)) {
    923 			error = EINVAL;
    924 			goto done;
    925 		}
    926 		s = splclock();
    927 		timeradd(&atv, &time, &atv);	/* calc. time to wait until */
    928 		splx(s);
    929 		timeout = hzto(&atv);
    930 		if (timeout <= 0)
    931 			timeout = -1;		/* do poll */
    932 	} else {
    933 		/* no timeout, wait forever */
    934 		timeout = 0;
    935 	}
    936 
    937 	MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK);
    938 	memset(marker, 0, sizeof(*marker));
    939 
    940 	goto start;
    941 
    942  retry:
    943 	if (tsp) {
    944 		/*
    945 		 * We have to recalculate the timeout on every retry.
    946 		 */
    947 		timeout = hzto(&atv);
    948 		if (timeout <= 0)
    949 			goto done;
    950 	}
    951 
    952  start:
    953 	kevp = kq->kq_kev;
    954 	s = splsched();
    955 	simple_lock(&kq->kq_lock);
    956 	if (kq->kq_count == 0) {
    957 		if (timeout < 0) {
    958 			error = EWOULDBLOCK;
    959 			simple_unlock(&kq->kq_lock);
    960 		} else {
    961 			kq->kq_state |= KQ_SLEEP;
    962 			error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
    963 					"kqread", timeout, &kq->kq_lock);
    964 		}
    965 		splx(s);
    966 		if (error == 0)
    967 			goto retry;
    968 		/* don't restart after signals... */
    969 		if (error == ERESTART)
    970 			error = EINTR;
    971 		else if (error == EWOULDBLOCK)
    972 			error = 0;
    973 		goto done;
    974 	}
    975 
    976 	/* mark end of knote list */
    977 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
    978 	simple_unlock(&kq->kq_lock);
    979 
    980 	while (count) {				/* while user wants data ... */
    981 		simple_lock(&kq->kq_lock);
    982 		kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
    983 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
    984 		if (kn == marker) {		/* if it's our marker, stop */
    985 			/* What if it's some else's marker? */
    986 			simple_unlock(&kq->kq_lock);
    987 			splx(s);
    988 			if (count == maxevents)
    989 				goto retry;
    990 			goto done;
    991 		}
    992 		kq->kq_count--;
    993 		simple_unlock(&kq->kq_lock);
    994 
    995 		if (kn->kn_status & KN_DISABLED) {
    996 			/* don't want disabled events */
    997 			kn->kn_status &= ~KN_QUEUED;
    998 			continue;
    999 		}
   1000 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
   1001 		    kn->kn_fop->f_event(kn, 0) == 0) {
   1002 			/*
   1003 			 * non-ONESHOT event that hasn't
   1004 			 * triggered again, so de-queue.
   1005 			 */
   1006 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
   1007 			continue;
   1008 		}
   1009 		*kevp = kn->kn_kevent;
   1010 		kevp++;
   1011 		nkev++;
   1012 		if (kn->kn_flags & EV_ONESHOT) {
   1013 			/* delete ONESHOT events after retrieval */
   1014 			kn->kn_status &= ~KN_QUEUED;
   1015 			splx(s);
   1016 			kn->kn_fop->f_detach(kn);
   1017 			knote_drop(kn, l, p->p_fd);
   1018 			s = splsched();
   1019 		} else if (kn->kn_flags & EV_CLEAR) {
   1020 			/* clear state after retrieval */
   1021 			kn->kn_data = 0;
   1022 			kn->kn_fflags = 0;
   1023 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
   1024 		} else {
   1025 			/* add event back on list */
   1026 			simple_lock(&kq->kq_lock);
   1027 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1028 			kq->kq_count++;
   1029 			simple_unlock(&kq->kq_lock);
   1030 		}
   1031 		count--;
   1032 		if (nkev == KQ_NEVENTS) {
   1033 			/* do copyouts in KQ_NEVENTS chunks */
   1034 			splx(s);
   1035 			error = (*keops->keo_put_events)(keops->keo_private,
   1036 			    &kq->kq_kev[0], ulistp, nevents, nkev);
   1037 			nevents += nkev;
   1038 			nkev = 0;
   1039 			kevp = kq->kq_kev;
   1040 			s = splsched();
   1041 			if (error)
   1042 				break;
   1043 		}
   1044 	}
   1045 
   1046 	/* remove marker */
   1047 	simple_lock(&kq->kq_lock);
   1048 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   1049 	simple_unlock(&kq->kq_lock);
   1050 	splx(s);
   1051  done:
   1052 	if (marker)
   1053 		FREE(marker, M_KEVENT);
   1054 
   1055 	if (nkev != 0)
   1056 		/* copyout remaining events */
   1057 		error = (*keops->keo_put_events)(keops->keo_private,
   1058 		    &kq->kq_kev[0], ulistp, nevents, nkev);
   1059 	*retval = maxevents - count;
   1060 
   1061 	return (error);
   1062 }
   1063 
   1064 /*
   1065  * struct fileops read method for a kqueue descriptor.
   1066  * Not implemented.
   1067  * XXX: This could be expanded to call kqueue_scan, if desired.
   1068  */
   1069 /*ARGSUSED*/
   1070 static int
   1071 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
   1072 	kauth_cred_t cred, int flags)
   1073 {
   1074 
   1075 	return (ENXIO);
   1076 }
   1077 
   1078 /*
   1079  * struct fileops write method for a kqueue descriptor.
   1080  * Not implemented.
   1081  */
   1082 /*ARGSUSED*/
   1083 static int
   1084 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
   1085 	kauth_cred_t cred, int flags)
   1086 {
   1087 
   1088 	return (ENXIO);
   1089 }
   1090 
   1091 /*
   1092  * struct fileops ioctl method for a kqueue descriptor.
   1093  *
   1094  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   1095  *	KFILTER_BYNAME		find name for filter, and return result in
   1096  *				name, which is of size len.
   1097  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   1098  */
   1099 /*ARGSUSED*/
   1100 static int
   1101 kqueue_ioctl(struct file *fp, u_long com, void *data, struct lwp *l)
   1102 {
   1103 	struct kfilter_mapping	*km;
   1104 	const struct kfilter	*kfilter;
   1105 	char			*name;
   1106 	int			error;
   1107 
   1108 	km = (struct kfilter_mapping *)data;
   1109 	error = 0;
   1110 
   1111 	switch (com) {
   1112 	case KFILTER_BYFILTER:	/* convert filter -> name */
   1113 		kfilter = kfilter_byfilter(km->filter);
   1114 		if (kfilter != NULL)
   1115 			error = copyoutstr(kfilter->name, km->name, km->len,
   1116 			    NULL);
   1117 		else
   1118 			error = ENOENT;
   1119 		break;
   1120 
   1121 	case KFILTER_BYNAME:	/* convert name -> filter */
   1122 		MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
   1123 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   1124 		if (error) {
   1125 			FREE(name, M_KEVENT);
   1126 			break;
   1127 		}
   1128 		kfilter = kfilter_byname(name);
   1129 		if (kfilter != NULL)
   1130 			km->filter = kfilter->filter;
   1131 		else
   1132 			error = ENOENT;
   1133 		FREE(name, M_KEVENT);
   1134 		break;
   1135 
   1136 	default:
   1137 		error = ENOTTY;
   1138 
   1139 	}
   1140 	return (error);
   1141 }
   1142 
   1143 /*
   1144  * struct fileops fcntl method for a kqueue descriptor.
   1145  * Not implemented.
   1146  */
   1147 /*ARGSUSED*/
   1148 static int
   1149 kqueue_fcntl(struct file *fp, u_int com, void *data, struct lwp *l)
   1150 {
   1151 
   1152 	return (ENOTTY);
   1153 }
   1154 
   1155 /*
   1156  * struct fileops poll method for a kqueue descriptor.
   1157  * Determine if kqueue has events pending.
   1158  */
   1159 static int
   1160 kqueue_poll(struct file *fp, int events, struct lwp *l)
   1161 {
   1162 	struct kqueue	*kq;
   1163 	int		revents;
   1164 
   1165 	kq = (struct kqueue *)fp->f_data;
   1166 	revents = 0;
   1167 	if (events & (POLLIN | POLLRDNORM)) {
   1168 		if (kq->kq_count) {
   1169 			revents |= events & (POLLIN | POLLRDNORM);
   1170 		} else {
   1171 			selrecord(l, &kq->kq_sel);
   1172 		}
   1173 	}
   1174 	return (revents);
   1175 }
   1176 
   1177 /*
   1178  * struct fileops stat method for a kqueue descriptor.
   1179  * Returns dummy info, with st_size being number of events pending.
   1180  */
   1181 static int
   1182 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l)
   1183 {
   1184 	struct kqueue	*kq;
   1185 
   1186 	kq = (struct kqueue *)fp->f_data;
   1187 	memset((void *)st, 0, sizeof(*st));
   1188 	st->st_size = kq->kq_count;
   1189 	st->st_blksize = sizeof(struct kevent);
   1190 	st->st_mode = S_IFIFO;
   1191 	return (0);
   1192 }
   1193 
   1194 /*
   1195  * struct fileops close method for a kqueue descriptor.
   1196  * Cleans up kqueue.
   1197  */
   1198 static int
   1199 kqueue_close(struct file *fp, struct lwp *l)
   1200 {
   1201 	struct proc	*p = l->l_proc;
   1202 	struct kqueue	*kq;
   1203 	struct filedesc	*fdp;
   1204 	struct knote	**knp, *kn, *kn0;
   1205 	int		i;
   1206 
   1207 	kq = (struct kqueue *)fp->f_data;
   1208 	fdp = p->p_fd;
   1209 	for (i = 0; i < fdp->fd_knlistsize; i++) {
   1210 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
   1211 		kn = *knp;
   1212 		while (kn != NULL) {
   1213 			kn0 = SLIST_NEXT(kn, kn_link);
   1214 			if (kq == kn->kn_kq) {
   1215 				kn->kn_fop->f_detach(kn);
   1216 				FILE_UNUSE(kn->kn_fp, l);
   1217 				pool_put(&knote_pool, kn);
   1218 				*knp = kn0;
   1219 			} else {
   1220 				knp = &SLIST_NEXT(kn, kn_link);
   1221 			}
   1222 			kn = kn0;
   1223 		}
   1224 	}
   1225 	if (fdp->fd_knhashmask != 0) {
   1226 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   1227 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
   1228 			kn = *knp;
   1229 			while (kn != NULL) {
   1230 				kn0 = SLIST_NEXT(kn, kn_link);
   1231 				if (kq == kn->kn_kq) {
   1232 					kn->kn_fop->f_detach(kn);
   1233 					/* XXX non-fd release of kn->kn_ptr */
   1234 					pool_put(&knote_pool, kn);
   1235 					*knp = kn0;
   1236 				} else {
   1237 					knp = &SLIST_NEXT(kn, kn_link);
   1238 				}
   1239 				kn = kn0;
   1240 			}
   1241 		}
   1242 	}
   1243 	pool_put(&kqueue_pool, kq);
   1244 	fp->f_data = NULL;
   1245 
   1246 	return (0);
   1247 }
   1248 
   1249 /*
   1250  * wakeup a kqueue
   1251  */
   1252 static void
   1253 kqueue_wakeup(struct kqueue *kq)
   1254 {
   1255 	int s;
   1256 
   1257 	s = splsched();
   1258 	simple_lock(&kq->kq_lock);
   1259 	if (kq->kq_state & KQ_SLEEP) {		/* if currently sleeping ...  */
   1260 		kq->kq_state &= ~KQ_SLEEP;
   1261 		wakeup(kq);			/* ... wakeup */
   1262 	}
   1263 
   1264 	/* Notify select/poll and kevent. */
   1265 	selnotify(&kq->kq_sel, 0);
   1266 	simple_unlock(&kq->kq_lock);
   1267 	splx(s);
   1268 }
   1269 
   1270 /*
   1271  * struct fileops kqfilter method for a kqueue descriptor.
   1272  * Event triggered when monitored kqueue changes.
   1273  */
   1274 /*ARGSUSED*/
   1275 static int
   1276 kqueue_kqfilter(struct file *fp, struct knote *kn)
   1277 {
   1278 	struct kqueue *kq;
   1279 
   1280 	KASSERT(fp == kn->kn_fp);
   1281 	kq = (struct kqueue *)kn->kn_fp->f_data;
   1282 	if (kn->kn_filter != EVFILT_READ)
   1283 		return (1);
   1284 	kn->kn_fop = &kqread_filtops;
   1285 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
   1286 	return (0);
   1287 }
   1288 
   1289 
   1290 /*
   1291  * Walk down a list of knotes, activating them if their event has triggered.
   1292  */
   1293 void
   1294 knote(struct klist *list, long hint)
   1295 {
   1296 	struct knote *kn;
   1297 
   1298 	SLIST_FOREACH(kn, list, kn_selnext)
   1299 		if (kn->kn_fop->f_event(kn, hint))
   1300 			KNOTE_ACTIVATE(kn);
   1301 }
   1302 
   1303 /*
   1304  * Remove all knotes from a specified klist
   1305  */
   1306 void
   1307 knote_remove(struct lwp *l, struct klist *list)
   1308 {
   1309 	struct knote *kn;
   1310 
   1311 	while ((kn = SLIST_FIRST(list)) != NULL) {
   1312 		kn->kn_fop->f_detach(kn);
   1313 		knote_drop(kn, l, l->l_proc->p_fd);
   1314 	}
   1315 }
   1316 
   1317 /*
   1318  * Remove all knotes referencing a specified fd
   1319  */
   1320 void
   1321 knote_fdclose(struct lwp *l, int fd)
   1322 {
   1323 	struct filedesc	*fdp;
   1324 	struct klist	*list;
   1325 
   1326 	fdp = l->l_proc->p_fd;
   1327 	list = &fdp->fd_knlist[fd];
   1328 	knote_remove(l, list);
   1329 }
   1330 
   1331 /*
   1332  * Attach a new knote to a file descriptor
   1333  */
   1334 static void
   1335 knote_attach(struct knote *kn, struct filedesc *fdp)
   1336 {
   1337 	struct klist	*list;
   1338 	int		size;
   1339 
   1340 	if (! kn->kn_fop->f_isfd) {
   1341 		/* if knote is not on an fd, store on internal hash table */
   1342 		if (fdp->fd_knhashmask == 0)
   1343 			fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
   1344 			    M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
   1345 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1346 		goto done;
   1347 	}
   1348 
   1349 	/*
   1350 	 * otherwise, knote is on an fd.
   1351 	 * knotes are stored in fd_knlist indexed by kn->kn_id.
   1352 	 */
   1353 	if (fdp->fd_knlistsize <= kn->kn_id) {
   1354 		/* expand list, it's too small */
   1355 		size = fdp->fd_knlistsize;
   1356 		while (size <= kn->kn_id) {
   1357 			/* grow in KQ_EXTENT chunks */
   1358 			size += KQ_EXTENT;
   1359 		}
   1360 		list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
   1361 		if (fdp->fd_knlist) {
   1362 			/* copy existing knlist */
   1363 			memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
   1364 			    fdp->fd_knlistsize * sizeof(struct klist *));
   1365 		}
   1366 		/*
   1367 		 * Zero new memory. Stylistically, SLIST_INIT() should be
   1368 		 * used here, but that does same thing as the memset() anyway.
   1369 		 */
   1370 		memset(&list[fdp->fd_knlistsize], 0,
   1371 		    (size - fdp->fd_knlistsize) * sizeof(struct klist *));
   1372 
   1373 		/* switch to new knlist */
   1374 		if (fdp->fd_knlist != NULL)
   1375 			free(fdp->fd_knlist, M_KEVENT);
   1376 		fdp->fd_knlistsize = size;
   1377 		fdp->fd_knlist = list;
   1378 	}
   1379 
   1380 	/* get list head for this fd */
   1381 	list = &fdp->fd_knlist[kn->kn_id];
   1382  done:
   1383 	/* add new knote */
   1384 	SLIST_INSERT_HEAD(list, kn, kn_link);
   1385 	kn->kn_status = 0;
   1386 }
   1387 
   1388 /*
   1389  * Drop knote.
   1390  * Should be called at spl == 0, since we don't want to hold spl
   1391  * while calling FILE_UNUSE and free.
   1392  */
   1393 static void
   1394 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp)
   1395 {
   1396 	struct klist	*list;
   1397 
   1398 	if (kn->kn_fop->f_isfd)
   1399 		list = &fdp->fd_knlist[kn->kn_id];
   1400 	else
   1401 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1402 
   1403 	SLIST_REMOVE(list, kn, knote, kn_link);
   1404 	if (kn->kn_status & KN_QUEUED)
   1405 		knote_dequeue(kn);
   1406 	if (kn->kn_fop->f_isfd)
   1407 		FILE_UNUSE(kn->kn_fp, l);
   1408 	pool_put(&knote_pool, kn);
   1409 }
   1410 
   1411 
   1412 /*
   1413  * Queue new event for knote.
   1414  */
   1415 static void
   1416 knote_enqueue(struct knote *kn)
   1417 {
   1418 	struct kqueue	*kq;
   1419 	int		s;
   1420 
   1421 	kq = kn->kn_kq;
   1422 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
   1423 
   1424 	s = splsched();
   1425 	simple_lock(&kq->kq_lock);
   1426 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1427 	kn->kn_status |= KN_QUEUED;
   1428 	kq->kq_count++;
   1429 	simple_unlock(&kq->kq_lock);
   1430 	splx(s);
   1431 	kqueue_wakeup(kq);
   1432 }
   1433 
   1434 /*
   1435  * Dequeue event for knote.
   1436  */
   1437 static void
   1438 knote_dequeue(struct knote *kn)
   1439 {
   1440 	struct kqueue	*kq;
   1441 	int		s;
   1442 
   1443 	KASSERT(kn->kn_status & KN_QUEUED);
   1444 	kq = kn->kn_kq;
   1445 
   1446 	s = splsched();
   1447 	simple_lock(&kq->kq_lock);
   1448 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1449 	kn->kn_status &= ~KN_QUEUED;
   1450 	kq->kq_count--;
   1451 	simple_unlock(&kq->kq_lock);
   1452 	splx(s);
   1453 }
   1454