kern_event.c revision 1.29 1 /* $NetBSD: kern_event.c,v 1.29 2006/07/14 22:35:15 kardel Exp $ */
2
3 /*-
4 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.29 2006/07/14 22:35:15 kardel Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/malloc.h>
39 #include <sys/unistd.h>
40 #include <sys/file.h>
41 #include <sys/fcntl.h>
42 #include <sys/select.h>
43 #include <sys/queue.h>
44 #include <sys/event.h>
45 #include <sys/eventvar.h>
46 #include <sys/poll.h>
47 #include <sys/pool.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/stat.h>
52 #include <sys/uio.h>
53 #include <sys/mount.h>
54 #include <sys/filedesc.h>
55 #include <sys/sa.h>
56 #include <sys/syscallargs.h>
57 #include <sys/kauth.h>
58
59 static void kqueue_wakeup(struct kqueue *kq);
60
61 static int kqueue_scan(struct file *, size_t, struct kevent *,
62 const struct timespec *, struct lwp *, register_t *,
63 const struct kevent_ops *);
64 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
65 kauth_cred_t cred, int flags);
66 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
67 kauth_cred_t cred, int flags);
68 static int kqueue_ioctl(struct file *fp, u_long com, void *data,
69 struct lwp *l);
70 static int kqueue_fcntl(struct file *fp, u_int com, void *data,
71 struct lwp *l);
72 static int kqueue_poll(struct file *fp, int events, struct lwp *l);
73 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
74 static int kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l);
75 static int kqueue_close(struct file *fp, struct lwp *l);
76
77 static const struct fileops kqueueops = {
78 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
79 kqueue_stat, kqueue_close, kqueue_kqfilter
80 };
81
82 static void knote_attach(struct knote *kn, struct filedesc *fdp);
83 static void knote_drop(struct knote *kn, struct lwp *l,
84 struct filedesc *fdp);
85 static void knote_enqueue(struct knote *kn);
86 static void knote_dequeue(struct knote *kn);
87
88 static void filt_kqdetach(struct knote *kn);
89 static int filt_kqueue(struct knote *kn, long hint);
90 static int filt_procattach(struct knote *kn);
91 static void filt_procdetach(struct knote *kn);
92 static int filt_proc(struct knote *kn, long hint);
93 static int filt_fileattach(struct knote *kn);
94 static void filt_timerexpire(void *knx);
95 static int filt_timerattach(struct knote *kn);
96 static void filt_timerdetach(struct knote *kn);
97 static int filt_timer(struct knote *kn, long hint);
98
99 static const struct filterops kqread_filtops =
100 { 1, NULL, filt_kqdetach, filt_kqueue };
101 static const struct filterops proc_filtops =
102 { 0, filt_procattach, filt_procdetach, filt_proc };
103 static const struct filterops file_filtops =
104 { 1, filt_fileattach, NULL, NULL };
105 static const struct filterops timer_filtops =
106 { 0, filt_timerattach, filt_timerdetach, filt_timer };
107
108 static POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL);
109 static POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL);
110 static int kq_ncallouts = 0;
111 static int kq_calloutmax = (4 * 1024);
112
113 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
114
115 #define KNOTE_ACTIVATE(kn) \
116 do { \
117 kn->kn_status |= KN_ACTIVE; \
118 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
119 knote_enqueue(kn); \
120 } while(0)
121
122 #define KN_HASHSIZE 64 /* XXX should be tunable */
123 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
124
125 extern const struct filterops sig_filtops;
126
127 /*
128 * Table for for all system-defined filters.
129 * These should be listed in the numeric order of the EVFILT_* defines.
130 * If filtops is NULL, the filter isn't implemented in NetBSD.
131 * End of list is when name is NULL.
132 */
133 struct kfilter {
134 const char *name; /* name of filter */
135 uint32_t filter; /* id of filter */
136 const struct filterops *filtops;/* operations for filter */
137 };
138
139 /* System defined filters */
140 static const struct kfilter sys_kfilters[] = {
141 { "EVFILT_READ", EVFILT_READ, &file_filtops },
142 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
143 { "EVFILT_AIO", EVFILT_AIO, NULL },
144 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
145 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
146 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
147 { "EVFILT_TIMER", EVFILT_TIMER, &timer_filtops },
148 { NULL, 0, NULL }, /* end of list */
149 };
150
151 /* User defined kfilters */
152 static struct kfilter *user_kfilters; /* array */
153 static int user_kfilterc; /* current offset */
154 static int user_kfiltermaxc; /* max size so far */
155
156 /*
157 * Find kfilter entry by name, or NULL if not found.
158 */
159 static const struct kfilter *
160 kfilter_byname_sys(const char *name)
161 {
162 int i;
163
164 for (i = 0; sys_kfilters[i].name != NULL; i++) {
165 if (strcmp(name, sys_kfilters[i].name) == 0)
166 return (&sys_kfilters[i]);
167 }
168 return (NULL);
169 }
170
171 static struct kfilter *
172 kfilter_byname_user(const char *name)
173 {
174 int i;
175
176 /* user_kfilters[] could be NULL if no filters were registered */
177 if (!user_kfilters)
178 return (NULL);
179
180 for (i = 0; user_kfilters[i].name != NULL; i++) {
181 if (user_kfilters[i].name != '\0' &&
182 strcmp(name, user_kfilters[i].name) == 0)
183 return (&user_kfilters[i]);
184 }
185 return (NULL);
186 }
187
188 static const struct kfilter *
189 kfilter_byname(const char *name)
190 {
191 const struct kfilter *kfilter;
192
193 if ((kfilter = kfilter_byname_sys(name)) != NULL)
194 return (kfilter);
195
196 return (kfilter_byname_user(name));
197 }
198
199 /*
200 * Find kfilter entry by filter id, or NULL if not found.
201 * Assumes entries are indexed in filter id order, for speed.
202 */
203 static const struct kfilter *
204 kfilter_byfilter(uint32_t filter)
205 {
206 const struct kfilter *kfilter;
207
208 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
209 kfilter = &sys_kfilters[filter];
210 else if (user_kfilters != NULL &&
211 filter < EVFILT_SYSCOUNT + user_kfilterc)
212 /* it's a user filter */
213 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
214 else
215 return (NULL); /* out of range */
216 KASSERT(kfilter->filter == filter); /* sanity check! */
217 return (kfilter);
218 }
219
220 /*
221 * Register a new kfilter. Stores the entry in user_kfilters.
222 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
223 * If retfilter != NULL, the new filterid is returned in it.
224 */
225 int
226 kfilter_register(const char *name, const struct filterops *filtops,
227 int *retfilter)
228 {
229 struct kfilter *kfilter;
230 void *space;
231 int len;
232
233 if (name == NULL || name[0] == '\0' || filtops == NULL)
234 return (EINVAL); /* invalid args */
235 if (kfilter_byname(name) != NULL)
236 return (EEXIST); /* already exists */
237 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
238 return (EINVAL); /* too many */
239
240 /* check if need to grow user_kfilters */
241 if (user_kfilterc + 1 > user_kfiltermaxc) {
242 /*
243 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
244 * want to traverse user_kfilters as an array.
245 */
246 user_kfiltermaxc += KFILTER_EXTENT;
247 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
248 M_KEVENT, M_WAITOK);
249
250 /* copy existing user_kfilters */
251 if (user_kfilters != NULL)
252 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
253 user_kfilterc * sizeof(struct kfilter *));
254 /* zero new sections */
255 memset((caddr_t)kfilter +
256 user_kfilterc * sizeof(struct kfilter *), 0,
257 (user_kfiltermaxc - user_kfilterc) *
258 sizeof(struct kfilter *));
259 /* switch to new kfilter */
260 if (user_kfilters != NULL)
261 free(user_kfilters, M_KEVENT);
262 user_kfilters = kfilter;
263 }
264 len = strlen(name) + 1; /* copy name */
265 space = malloc(len, M_KEVENT, M_WAITOK);
266 memcpy(space, name, len);
267 user_kfilters[user_kfilterc].name = space;
268
269 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
270
271 len = sizeof(struct filterops); /* copy filtops */
272 space = malloc(len, M_KEVENT, M_WAITOK);
273 memcpy(space, filtops, len);
274 user_kfilters[user_kfilterc].filtops = space;
275
276 if (retfilter != NULL)
277 *retfilter = user_kfilters[user_kfilterc].filter;
278 user_kfilterc++; /* finally, increment count */
279 return (0);
280 }
281
282 /*
283 * Unregister a kfilter previously registered with kfilter_register.
284 * This retains the filter id, but clears the name and frees filtops (filter
285 * operations), so that the number isn't reused during a boot.
286 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
287 */
288 int
289 kfilter_unregister(const char *name)
290 {
291 struct kfilter *kfilter;
292
293 if (name == NULL || name[0] == '\0')
294 return (EINVAL); /* invalid name */
295
296 if (kfilter_byname_sys(name) != NULL)
297 return (EINVAL); /* can't detach system filters */
298
299 kfilter = kfilter_byname_user(name);
300 if (kfilter == NULL) /* not found */
301 return (ENOENT);
302
303 if (kfilter->name[0] != '\0') {
304 /* XXXUNCONST Cast away const (but we know it's safe. */
305 free(__UNCONST(kfilter->name), M_KEVENT);
306 kfilter->name = ""; /* mark as `not implemented' */
307 }
308 if (kfilter->filtops != NULL) {
309 /* XXXUNCONST Cast away const (but we know it's safe. */
310 free(__UNCONST(kfilter->filtops), M_KEVENT);
311 kfilter->filtops = NULL; /* mark as `not implemented' */
312 }
313 return (0);
314 }
315
316
317 /*
318 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
319 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
320 */
321 static int
322 filt_fileattach(struct knote *kn)
323 {
324 struct file *fp;
325
326 fp = kn->kn_fp;
327 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
328 }
329
330 /*
331 * Filter detach method for EVFILT_READ on kqueue descriptor.
332 */
333 static void
334 filt_kqdetach(struct knote *kn)
335 {
336 struct kqueue *kq;
337
338 kq = (struct kqueue *)kn->kn_fp->f_data;
339 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
340 }
341
342 /*
343 * Filter event method for EVFILT_READ on kqueue descriptor.
344 */
345 /*ARGSUSED*/
346 static int
347 filt_kqueue(struct knote *kn, long hint)
348 {
349 struct kqueue *kq;
350
351 kq = (struct kqueue *)kn->kn_fp->f_data;
352 kn->kn_data = kq->kq_count;
353 return (kn->kn_data > 0);
354 }
355
356 /*
357 * Filter attach method for EVFILT_PROC.
358 */
359 static int
360 filt_procattach(struct knote *kn)
361 {
362 struct proc *p;
363
364 p = pfind(kn->kn_id);
365 if (p == NULL)
366 return (ESRCH);
367
368 /*
369 * Fail if it's not owned by you, or the last exec gave us
370 * setuid/setgid privs (unless you're root).
371 */
372 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(curproc->p_cred) ||
373 (p->p_flag & P_SUGID))
374 && kauth_authorize_generic(curproc->p_cred, KAUTH_GENERIC_ISSUSER,
375 &curproc->p_acflag) != 0)
376 return (EACCES);
377
378 kn->kn_ptr.p_proc = p;
379 kn->kn_flags |= EV_CLEAR; /* automatically set */
380
381 /*
382 * internal flag indicating registration done by kernel
383 */
384 if (kn->kn_flags & EV_FLAG1) {
385 kn->kn_data = kn->kn_sdata; /* ppid */
386 kn->kn_fflags = NOTE_CHILD;
387 kn->kn_flags &= ~EV_FLAG1;
388 }
389
390 /* XXXSMP lock the process? */
391 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
392
393 return (0);
394 }
395
396 /*
397 * Filter detach method for EVFILT_PROC.
398 *
399 * The knote may be attached to a different process, which may exit,
400 * leaving nothing for the knote to be attached to. So when the process
401 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
402 * it will be deleted when read out. However, as part of the knote deletion,
403 * this routine is called, so a check is needed to avoid actually performing
404 * a detach, because the original process might not exist any more.
405 */
406 static void
407 filt_procdetach(struct knote *kn)
408 {
409 struct proc *p;
410
411 if (kn->kn_status & KN_DETACHED)
412 return;
413
414 p = kn->kn_ptr.p_proc;
415 KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p);
416
417 /* XXXSMP lock the process? */
418 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
419 }
420
421 /*
422 * Filter event method for EVFILT_PROC.
423 */
424 static int
425 filt_proc(struct knote *kn, long hint)
426 {
427 u_int event;
428
429 /*
430 * mask off extra data
431 */
432 event = (u_int)hint & NOTE_PCTRLMASK;
433
434 /*
435 * if the user is interested in this event, record it.
436 */
437 if (kn->kn_sfflags & event)
438 kn->kn_fflags |= event;
439
440 /*
441 * process is gone, so flag the event as finished.
442 */
443 if (event == NOTE_EXIT) {
444 /*
445 * Detach the knote from watched process and mark
446 * it as such. We can't leave this to kqueue_scan(),
447 * since the process might not exist by then. And we
448 * have to do this now, since psignal KNOTE() is called
449 * also for zombies and we might end up reading freed
450 * memory if the kevent would already be picked up
451 * and knote g/c'ed.
452 */
453 kn->kn_fop->f_detach(kn);
454 kn->kn_status |= KN_DETACHED;
455
456 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
457 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
458 return (1);
459 }
460
461 /*
462 * process forked, and user wants to track the new process,
463 * so attach a new knote to it, and immediately report an
464 * event with the parent's pid.
465 */
466 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
467 struct kevent kev;
468 int error;
469
470 /*
471 * register knote with new process.
472 */
473 kev.ident = hint & NOTE_PDATAMASK; /* pid */
474 kev.filter = kn->kn_filter;
475 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
476 kev.fflags = kn->kn_sfflags;
477 kev.data = kn->kn_id; /* parent */
478 kev.udata = kn->kn_kevent.udata; /* preserve udata */
479 error = kqueue_register(kn->kn_kq, &kev, NULL);
480 if (error)
481 kn->kn_fflags |= NOTE_TRACKERR;
482 }
483
484 return (kn->kn_fflags != 0);
485 }
486
487 static void
488 filt_timerexpire(void *knx)
489 {
490 struct knote *kn = knx;
491 int tticks;
492
493 kn->kn_data++;
494 KNOTE_ACTIVATE(kn);
495
496 if ((kn->kn_flags & EV_ONESHOT) == 0) {
497 tticks = mstohz(kn->kn_sdata);
498 callout_schedule((struct callout *)kn->kn_hook, tticks);
499 }
500 }
501
502 /*
503 * data contains amount of time to sleep, in milliseconds
504 */
505 static int
506 filt_timerattach(struct knote *kn)
507 {
508 struct callout *calloutp;
509 int tticks;
510
511 if (kq_ncallouts >= kq_calloutmax)
512 return (ENOMEM);
513 kq_ncallouts++;
514
515 tticks = mstohz(kn->kn_sdata);
516
517 /* if the supplied value is under our resolution, use 1 tick */
518 if (tticks == 0) {
519 if (kn->kn_sdata == 0)
520 return (EINVAL);
521 tticks = 1;
522 }
523
524 kn->kn_flags |= EV_CLEAR; /* automatically set */
525 MALLOC(calloutp, struct callout *, sizeof(*calloutp),
526 M_KEVENT, 0);
527 callout_init(calloutp);
528 callout_reset(calloutp, tticks, filt_timerexpire, kn);
529 kn->kn_hook = calloutp;
530
531 return (0);
532 }
533
534 static void
535 filt_timerdetach(struct knote *kn)
536 {
537 struct callout *calloutp;
538
539 calloutp = (struct callout *)kn->kn_hook;
540 callout_stop(calloutp);
541 FREE(calloutp, M_KEVENT);
542 kq_ncallouts--;
543 }
544
545 static int
546 filt_timer(struct knote *kn, long hint)
547 {
548 return (kn->kn_data != 0);
549 }
550
551 /*
552 * filt_seltrue:
553 *
554 * This filter "event" routine simulates seltrue().
555 */
556 int
557 filt_seltrue(struct knote *kn, long hint)
558 {
559
560 /*
561 * We don't know how much data can be read/written,
562 * but we know that it *can* be. This is about as
563 * good as select/poll does as well.
564 */
565 kn->kn_data = 0;
566 return (1);
567 }
568
569 /*
570 * This provides full kqfilter entry for device switch tables, which
571 * has same effect as filter using filt_seltrue() as filter method.
572 */
573 static void
574 filt_seltruedetach(struct knote *kn)
575 {
576 /* Nothing to do */
577 }
578
579 static const struct filterops seltrue_filtops =
580 { 1, NULL, filt_seltruedetach, filt_seltrue };
581
582 int
583 seltrue_kqfilter(dev_t dev, struct knote *kn)
584 {
585 switch (kn->kn_filter) {
586 case EVFILT_READ:
587 case EVFILT_WRITE:
588 kn->kn_fop = &seltrue_filtops;
589 break;
590 default:
591 return (1);
592 }
593
594 /* Nothing more to do */
595 return (0);
596 }
597
598 /*
599 * kqueue(2) system call.
600 */
601 int
602 sys_kqueue(struct lwp *l, void *v, register_t *retval)
603 {
604 struct filedesc *fdp;
605 struct kqueue *kq;
606 struct file *fp;
607 struct proc *p;
608 int fd, error;
609
610 p = l->l_proc;
611 fdp = p->p_fd;
612 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
613 if (error)
614 return (error);
615 fp->f_flag = FREAD | FWRITE;
616 fp->f_type = DTYPE_KQUEUE;
617 fp->f_ops = &kqueueops;
618 kq = pool_get(&kqueue_pool, PR_WAITOK);
619 memset((char *)kq, 0, sizeof(struct kqueue));
620 simple_lock_init(&kq->kq_lock);
621 TAILQ_INIT(&kq->kq_head);
622 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
623 *retval = fd;
624 if (fdp->fd_knlistsize < 0)
625 fdp->fd_knlistsize = 0; /* this process has a kq */
626 kq->kq_fdp = fdp;
627 FILE_SET_MATURE(fp);
628 FILE_UNUSE(fp, l); /* falloc() does FILE_USE() */
629 return (error);
630 }
631
632 /*
633 * kevent(2) system call.
634 */
635 static int
636 kevent_fetch_changes(void *private, const struct kevent *changelist,
637 struct kevent *changes, size_t index, int n)
638 {
639 return copyin(changelist + index, changes, n * sizeof(*changes));
640 }
641
642 static int
643 kevent_put_events(void *private, struct kevent *events,
644 struct kevent *eventlist, size_t index, int n)
645 {
646 return copyout(events, eventlist + index, n * sizeof(*events));
647 }
648
649 static const struct kevent_ops kevent_native_ops = {
650 keo_private: NULL,
651 keo_fetch_timeout: copyin,
652 keo_fetch_changes: kevent_fetch_changes,
653 keo_put_events: kevent_put_events,
654 };
655
656 int
657 sys_kevent(struct lwp *l, void *v, register_t *retval)
658 {
659 struct sys_kevent_args /* {
660 syscallarg(int) fd;
661 syscallarg(const struct kevent *) changelist;
662 syscallarg(size_t) nchanges;
663 syscallarg(struct kevent *) eventlist;
664 syscallarg(size_t) nevents;
665 syscallarg(const struct timespec *) timeout;
666 } */ *uap = v;
667
668 return kevent1(l, retval, SCARG(uap, fd), SCARG(uap, changelist),
669 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
670 SCARG(uap, timeout), &kevent_native_ops);
671 }
672
673 int
674 kevent1(struct lwp *l, register_t *retval, int fd,
675 const struct kevent *changelist, size_t nchanges, struct kevent *eventlist,
676 size_t nevents, const struct timespec *timeout,
677 const struct kevent_ops *keops)
678 {
679 struct kevent *kevp;
680 struct kqueue *kq;
681 struct file *fp;
682 struct timespec ts;
683 struct proc *p;
684 size_t i, n, ichange;
685 int nerrors, error;
686
687 p = l->l_proc;
688 /* check that we're dealing with a kq */
689 fp = fd_getfile(p->p_fd, fd);
690 if (fp == NULL)
691 return (EBADF);
692
693 if (fp->f_type != DTYPE_KQUEUE) {
694 simple_unlock(&fp->f_slock);
695 return (EBADF);
696 }
697
698 FILE_USE(fp);
699
700 if (timeout != NULL) {
701 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
702 if (error)
703 goto done;
704 timeout = &ts;
705 }
706
707 kq = (struct kqueue *)fp->f_data;
708 nerrors = 0;
709 ichange = 0;
710
711 /* traverse list of events to register */
712 while (nchanges > 0) {
713 /* copyin a maximum of KQ_EVENTS at each pass */
714 n = MIN(nchanges, KQ_NEVENTS);
715 error = (*keops->keo_fetch_changes)(keops->keo_private,
716 changelist, kq->kq_kev, ichange, n);
717 if (error)
718 goto done;
719 for (i = 0; i < n; i++) {
720 kevp = &kq->kq_kev[i];
721 kevp->flags &= ~EV_SYSFLAGS;
722 /* register each knote */
723 error = kqueue_register(kq, kevp, l);
724 if (error) {
725 if (nevents != 0) {
726 kevp->flags = EV_ERROR;
727 kevp->data = error;
728 error = (*keops->keo_put_events)
729 (keops->keo_private, kevp,
730 eventlist, nerrors, 1);
731 if (error)
732 goto done;
733 nevents--;
734 nerrors++;
735 } else {
736 goto done;
737 }
738 }
739 }
740 nchanges -= n; /* update the results */
741 ichange += n;
742 }
743 if (nerrors) {
744 *retval = nerrors;
745 error = 0;
746 goto done;
747 }
748
749 /* actually scan through the events */
750 error = kqueue_scan(fp, nevents, eventlist, timeout, l, retval, keops);
751 done:
752 FILE_UNUSE(fp, l);
753 return (error);
754 }
755
756 /*
757 * Register a given kevent kev onto the kqueue
758 */
759 int
760 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l)
761 {
762 const struct kfilter *kfilter;
763 struct filedesc *fdp;
764 struct file *fp;
765 struct knote *kn;
766 int s, error;
767
768 fdp = kq->kq_fdp;
769 fp = NULL;
770 kn = NULL;
771 error = 0;
772 kfilter = kfilter_byfilter(kev->filter);
773 if (kfilter == NULL || kfilter->filtops == NULL) {
774 /* filter not found nor implemented */
775 return (EINVAL);
776 }
777
778 /* search if knote already exists */
779 if (kfilter->filtops->f_isfd) {
780 /* monitoring a file descriptor */
781 if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
782 return (EBADF); /* validate descriptor */
783 FILE_USE(fp);
784
785 if (kev->ident < fdp->fd_knlistsize) {
786 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
787 if (kq == kn->kn_kq &&
788 kev->filter == kn->kn_filter)
789 break;
790 }
791 } else {
792 /*
793 * not monitoring a file descriptor, so
794 * lookup knotes in internal hash table
795 */
796 if (fdp->fd_knhashmask != 0) {
797 struct klist *list;
798
799 list = &fdp->fd_knhash[
800 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
801 SLIST_FOREACH(kn, list, kn_link)
802 if (kev->ident == kn->kn_id &&
803 kq == kn->kn_kq &&
804 kev->filter == kn->kn_filter)
805 break;
806 }
807 }
808
809 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
810 error = ENOENT; /* filter not found */
811 goto done;
812 }
813
814 /*
815 * kn now contains the matching knote, or NULL if no match
816 */
817 if (kev->flags & EV_ADD) {
818 /* add knote */
819
820 if (kn == NULL) {
821 /* create new knote */
822 kn = pool_get(&knote_pool, PR_WAITOK);
823 if (kn == NULL) {
824 error = ENOMEM;
825 goto done;
826 }
827 kn->kn_fp = fp;
828 kn->kn_kq = kq;
829 kn->kn_fop = kfilter->filtops;
830
831 /*
832 * apply reference count to knote structure, and
833 * do not release it at the end of this routine.
834 */
835 fp = NULL;
836
837 kn->kn_sfflags = kev->fflags;
838 kn->kn_sdata = kev->data;
839 kev->fflags = 0;
840 kev->data = 0;
841 kn->kn_kevent = *kev;
842
843 knote_attach(kn, fdp);
844 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
845 knote_drop(kn, l, fdp);
846 goto done;
847 }
848 } else {
849 /* modify existing knote */
850
851 /*
852 * The user may change some filter values after the
853 * initial EV_ADD, but doing so will not reset any
854 * filter which have already been triggered.
855 */
856 kn->kn_sfflags = kev->fflags;
857 kn->kn_sdata = kev->data;
858 kn->kn_kevent.udata = kev->udata;
859 }
860
861 s = splsched();
862 if (kn->kn_fop->f_event(kn, 0))
863 KNOTE_ACTIVATE(kn);
864 splx(s);
865
866 } else if (kev->flags & EV_DELETE) { /* delete knote */
867 kn->kn_fop->f_detach(kn);
868 knote_drop(kn, l, fdp);
869 goto done;
870 }
871
872 /* disable knote */
873 if ((kev->flags & EV_DISABLE) &&
874 ((kn->kn_status & KN_DISABLED) == 0)) {
875 s = splsched();
876 kn->kn_status |= KN_DISABLED;
877 splx(s);
878 }
879
880 /* enable knote */
881 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
882 s = splsched();
883 kn->kn_status &= ~KN_DISABLED;
884 if ((kn->kn_status & KN_ACTIVE) &&
885 ((kn->kn_status & KN_QUEUED) == 0))
886 knote_enqueue(kn);
887 splx(s);
888 }
889
890 done:
891 if (fp != NULL)
892 FILE_UNUSE(fp, l);
893 return (error);
894 }
895
896 /*
897 * Scan through the list of events on fp (for a maximum of maxevents),
898 * returning the results in to ulistp. Timeout is determined by tsp; if
899 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
900 * as appropriate.
901 */
902 static int
903 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
904 const struct timespec *tsp, struct lwp *l, register_t *retval,
905 const struct kevent_ops *keops)
906 {
907 struct proc *p = l->l_proc;
908 struct kqueue *kq;
909 struct kevent *kevp;
910 struct timeval atv, sleeptv;
911 struct knote *kn, *marker=NULL;
912 size_t count, nkev, nevents;
913 int s, timeout, error;
914
915 kq = (struct kqueue *)fp->f_data;
916 count = maxevents;
917 nkev = nevents = error = 0;
918 if (count == 0)
919 goto done;
920
921 if (tsp) { /* timeout supplied */
922 TIMESPEC_TO_TIMEVAL(&atv, tsp);
923 if (inittimeleft(&atv, &sleeptv) == -1) {
924 error = EINVAL;
925 goto done;
926 }
927 timeout = tvtohz(&atv);
928 if (timeout <= 0)
929 timeout = -1; /* do poll */
930 } else {
931 /* no timeout, wait forever */
932 timeout = 0;
933 }
934
935 MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK);
936 memset(marker, 0, sizeof(*marker));
937
938 goto start;
939
940 retry:
941 if (tsp && (timeout = gettimeleft(&atv, &sleeptv)) <= 0) {
942 goto done;
943 }
944
945 start:
946 kevp = kq->kq_kev;
947 s = splsched();
948 simple_lock(&kq->kq_lock);
949 if (kq->kq_count == 0) {
950 if (timeout < 0) {
951 error = EWOULDBLOCK;
952 simple_unlock(&kq->kq_lock);
953 } else {
954 kq->kq_state |= KQ_SLEEP;
955 error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
956 "kqread", timeout, &kq->kq_lock);
957 }
958 splx(s);
959 if (error == 0)
960 goto retry;
961 /* don't restart after signals... */
962 if (error == ERESTART)
963 error = EINTR;
964 else if (error == EWOULDBLOCK)
965 error = 0;
966 goto done;
967 }
968
969 /* mark end of knote list */
970 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
971 simple_unlock(&kq->kq_lock);
972
973 while (count) { /* while user wants data ... */
974 simple_lock(&kq->kq_lock);
975 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
976 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
977 if (kn == marker) { /* if it's our marker, stop */
978 /* What if it's some else's marker? */
979 simple_unlock(&kq->kq_lock);
980 splx(s);
981 if (count == maxevents)
982 goto retry;
983 goto done;
984 }
985 kq->kq_count--;
986 simple_unlock(&kq->kq_lock);
987
988 if (kn->kn_status & KN_DISABLED) {
989 /* don't want disabled events */
990 kn->kn_status &= ~KN_QUEUED;
991 continue;
992 }
993 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
994 kn->kn_fop->f_event(kn, 0) == 0) {
995 /*
996 * non-ONESHOT event that hasn't
997 * triggered again, so de-queue.
998 */
999 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1000 continue;
1001 }
1002 *kevp = kn->kn_kevent;
1003 kevp++;
1004 nkev++;
1005 if (kn->kn_flags & EV_ONESHOT) {
1006 /* delete ONESHOT events after retrieval */
1007 kn->kn_status &= ~KN_QUEUED;
1008 splx(s);
1009 kn->kn_fop->f_detach(kn);
1010 knote_drop(kn, l, p->p_fd);
1011 s = splsched();
1012 } else if (kn->kn_flags & EV_CLEAR) {
1013 /* clear state after retrieval */
1014 kn->kn_data = 0;
1015 kn->kn_fflags = 0;
1016 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1017 } else {
1018 /* add event back on list */
1019 simple_lock(&kq->kq_lock);
1020 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1021 kq->kq_count++;
1022 simple_unlock(&kq->kq_lock);
1023 }
1024 count--;
1025 if (nkev == KQ_NEVENTS) {
1026 /* do copyouts in KQ_NEVENTS chunks */
1027 splx(s);
1028 error = (*keops->keo_put_events)(keops->keo_private,
1029 &kq->kq_kev[0], ulistp, nevents, nkev);
1030 nevents += nkev;
1031 nkev = 0;
1032 kevp = kq->kq_kev;
1033 s = splsched();
1034 if (error)
1035 break;
1036 }
1037 }
1038
1039 /* remove marker */
1040 simple_lock(&kq->kq_lock);
1041 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1042 simple_unlock(&kq->kq_lock);
1043 splx(s);
1044 done:
1045 if (marker)
1046 FREE(marker, M_KEVENT);
1047
1048 if (nkev != 0)
1049 /* copyout remaining events */
1050 error = (*keops->keo_put_events)(keops->keo_private,
1051 &kq->kq_kev[0], ulistp, nevents, nkev);
1052 *retval = maxevents - count;
1053
1054 return (error);
1055 }
1056
1057 /*
1058 * struct fileops read method for a kqueue descriptor.
1059 * Not implemented.
1060 * XXX: This could be expanded to call kqueue_scan, if desired.
1061 */
1062 /*ARGSUSED*/
1063 static int
1064 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
1065 kauth_cred_t cred, int flags)
1066 {
1067
1068 return (ENXIO);
1069 }
1070
1071 /*
1072 * struct fileops write method for a kqueue descriptor.
1073 * Not implemented.
1074 */
1075 /*ARGSUSED*/
1076 static int
1077 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
1078 kauth_cred_t cred, int flags)
1079 {
1080
1081 return (ENXIO);
1082 }
1083
1084 /*
1085 * struct fileops ioctl method for a kqueue descriptor.
1086 *
1087 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1088 * KFILTER_BYNAME find name for filter, and return result in
1089 * name, which is of size len.
1090 * KFILTER_BYFILTER find filter for name. len is ignored.
1091 */
1092 /*ARGSUSED*/
1093 static int
1094 kqueue_ioctl(struct file *fp, u_long com, void *data, struct lwp *l)
1095 {
1096 struct kfilter_mapping *km;
1097 const struct kfilter *kfilter;
1098 char *name;
1099 int error;
1100
1101 km = (struct kfilter_mapping *)data;
1102 error = 0;
1103
1104 switch (com) {
1105 case KFILTER_BYFILTER: /* convert filter -> name */
1106 kfilter = kfilter_byfilter(km->filter);
1107 if (kfilter != NULL)
1108 error = copyoutstr(kfilter->name, km->name, km->len,
1109 NULL);
1110 else
1111 error = ENOENT;
1112 break;
1113
1114 case KFILTER_BYNAME: /* convert name -> filter */
1115 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
1116 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1117 if (error) {
1118 FREE(name, M_KEVENT);
1119 break;
1120 }
1121 kfilter = kfilter_byname(name);
1122 if (kfilter != NULL)
1123 km->filter = kfilter->filter;
1124 else
1125 error = ENOENT;
1126 FREE(name, M_KEVENT);
1127 break;
1128
1129 default:
1130 error = ENOTTY;
1131
1132 }
1133 return (error);
1134 }
1135
1136 /*
1137 * struct fileops fcntl method for a kqueue descriptor.
1138 * Not implemented.
1139 */
1140 /*ARGSUSED*/
1141 static int
1142 kqueue_fcntl(struct file *fp, u_int com, void *data, struct lwp *l)
1143 {
1144
1145 return (ENOTTY);
1146 }
1147
1148 /*
1149 * struct fileops poll method for a kqueue descriptor.
1150 * Determine if kqueue has events pending.
1151 */
1152 static int
1153 kqueue_poll(struct file *fp, int events, struct lwp *l)
1154 {
1155 struct kqueue *kq;
1156 int revents;
1157
1158 kq = (struct kqueue *)fp->f_data;
1159 revents = 0;
1160 if (events & (POLLIN | POLLRDNORM)) {
1161 if (kq->kq_count) {
1162 revents |= events & (POLLIN | POLLRDNORM);
1163 } else {
1164 selrecord(l, &kq->kq_sel);
1165 }
1166 }
1167 return (revents);
1168 }
1169
1170 /*
1171 * struct fileops stat method for a kqueue descriptor.
1172 * Returns dummy info, with st_size being number of events pending.
1173 */
1174 static int
1175 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l)
1176 {
1177 struct kqueue *kq;
1178
1179 kq = (struct kqueue *)fp->f_data;
1180 memset((void *)st, 0, sizeof(*st));
1181 st->st_size = kq->kq_count;
1182 st->st_blksize = sizeof(struct kevent);
1183 st->st_mode = S_IFIFO;
1184 return (0);
1185 }
1186
1187 /*
1188 * struct fileops close method for a kqueue descriptor.
1189 * Cleans up kqueue.
1190 */
1191 static int
1192 kqueue_close(struct file *fp, struct lwp *l)
1193 {
1194 struct proc *p = l->l_proc;
1195 struct kqueue *kq;
1196 struct filedesc *fdp;
1197 struct knote **knp, *kn, *kn0;
1198 int i;
1199
1200 kq = (struct kqueue *)fp->f_data;
1201 fdp = p->p_fd;
1202 for (i = 0; i < fdp->fd_knlistsize; i++) {
1203 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1204 kn = *knp;
1205 while (kn != NULL) {
1206 kn0 = SLIST_NEXT(kn, kn_link);
1207 if (kq == kn->kn_kq) {
1208 kn->kn_fop->f_detach(kn);
1209 FILE_UNUSE(kn->kn_fp, l);
1210 pool_put(&knote_pool, kn);
1211 *knp = kn0;
1212 } else {
1213 knp = &SLIST_NEXT(kn, kn_link);
1214 }
1215 kn = kn0;
1216 }
1217 }
1218 if (fdp->fd_knhashmask != 0) {
1219 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1220 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1221 kn = *knp;
1222 while (kn != NULL) {
1223 kn0 = SLIST_NEXT(kn, kn_link);
1224 if (kq == kn->kn_kq) {
1225 kn->kn_fop->f_detach(kn);
1226 /* XXX non-fd release of kn->kn_ptr */
1227 pool_put(&knote_pool, kn);
1228 *knp = kn0;
1229 } else {
1230 knp = &SLIST_NEXT(kn, kn_link);
1231 }
1232 kn = kn0;
1233 }
1234 }
1235 }
1236 pool_put(&kqueue_pool, kq);
1237 fp->f_data = NULL;
1238
1239 return (0);
1240 }
1241
1242 /*
1243 * wakeup a kqueue
1244 */
1245 static void
1246 kqueue_wakeup(struct kqueue *kq)
1247 {
1248 int s;
1249
1250 s = splsched();
1251 simple_lock(&kq->kq_lock);
1252 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1253 kq->kq_state &= ~KQ_SLEEP;
1254 wakeup(kq); /* ... wakeup */
1255 }
1256
1257 /* Notify select/poll and kevent. */
1258 selnotify(&kq->kq_sel, 0);
1259 simple_unlock(&kq->kq_lock);
1260 splx(s);
1261 }
1262
1263 /*
1264 * struct fileops kqfilter method for a kqueue descriptor.
1265 * Event triggered when monitored kqueue changes.
1266 */
1267 /*ARGSUSED*/
1268 static int
1269 kqueue_kqfilter(struct file *fp, struct knote *kn)
1270 {
1271 struct kqueue *kq;
1272
1273 KASSERT(fp == kn->kn_fp);
1274 kq = (struct kqueue *)kn->kn_fp->f_data;
1275 if (kn->kn_filter != EVFILT_READ)
1276 return (1);
1277 kn->kn_fop = &kqread_filtops;
1278 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1279 return (0);
1280 }
1281
1282
1283 /*
1284 * Walk down a list of knotes, activating them if their event has triggered.
1285 */
1286 void
1287 knote(struct klist *list, long hint)
1288 {
1289 struct knote *kn;
1290
1291 SLIST_FOREACH(kn, list, kn_selnext)
1292 if (kn->kn_fop->f_event(kn, hint))
1293 KNOTE_ACTIVATE(kn);
1294 }
1295
1296 /*
1297 * Remove all knotes from a specified klist
1298 */
1299 void
1300 knote_remove(struct lwp *l, struct klist *list)
1301 {
1302 struct knote *kn;
1303
1304 while ((kn = SLIST_FIRST(list)) != NULL) {
1305 kn->kn_fop->f_detach(kn);
1306 knote_drop(kn, l, l->l_proc->p_fd);
1307 }
1308 }
1309
1310 /*
1311 * Remove all knotes referencing a specified fd
1312 */
1313 void
1314 knote_fdclose(struct lwp *l, int fd)
1315 {
1316 struct filedesc *fdp;
1317 struct klist *list;
1318
1319 fdp = l->l_proc->p_fd;
1320 list = &fdp->fd_knlist[fd];
1321 knote_remove(l, list);
1322 }
1323
1324 /*
1325 * Attach a new knote to a file descriptor
1326 */
1327 static void
1328 knote_attach(struct knote *kn, struct filedesc *fdp)
1329 {
1330 struct klist *list;
1331 int size;
1332
1333 if (! kn->kn_fop->f_isfd) {
1334 /* if knote is not on an fd, store on internal hash table */
1335 if (fdp->fd_knhashmask == 0)
1336 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1337 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1338 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1339 goto done;
1340 }
1341
1342 /*
1343 * otherwise, knote is on an fd.
1344 * knotes are stored in fd_knlist indexed by kn->kn_id.
1345 */
1346 if (fdp->fd_knlistsize <= kn->kn_id) {
1347 /* expand list, it's too small */
1348 size = fdp->fd_knlistsize;
1349 while (size <= kn->kn_id) {
1350 /* grow in KQ_EXTENT chunks */
1351 size += KQ_EXTENT;
1352 }
1353 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1354 if (fdp->fd_knlist) {
1355 /* copy existing knlist */
1356 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1357 fdp->fd_knlistsize * sizeof(struct klist *));
1358 }
1359 /*
1360 * Zero new memory. Stylistically, SLIST_INIT() should be
1361 * used here, but that does same thing as the memset() anyway.
1362 */
1363 memset(&list[fdp->fd_knlistsize], 0,
1364 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1365
1366 /* switch to new knlist */
1367 if (fdp->fd_knlist != NULL)
1368 free(fdp->fd_knlist, M_KEVENT);
1369 fdp->fd_knlistsize = size;
1370 fdp->fd_knlist = list;
1371 }
1372
1373 /* get list head for this fd */
1374 list = &fdp->fd_knlist[kn->kn_id];
1375 done:
1376 /* add new knote */
1377 SLIST_INSERT_HEAD(list, kn, kn_link);
1378 kn->kn_status = 0;
1379 }
1380
1381 /*
1382 * Drop knote.
1383 * Should be called at spl == 0, since we don't want to hold spl
1384 * while calling FILE_UNUSE and free.
1385 */
1386 static void
1387 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp)
1388 {
1389 struct klist *list;
1390
1391 if (kn->kn_fop->f_isfd)
1392 list = &fdp->fd_knlist[kn->kn_id];
1393 else
1394 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1395
1396 SLIST_REMOVE(list, kn, knote, kn_link);
1397 if (kn->kn_status & KN_QUEUED)
1398 knote_dequeue(kn);
1399 if (kn->kn_fop->f_isfd)
1400 FILE_UNUSE(kn->kn_fp, l);
1401 pool_put(&knote_pool, kn);
1402 }
1403
1404
1405 /*
1406 * Queue new event for knote.
1407 */
1408 static void
1409 knote_enqueue(struct knote *kn)
1410 {
1411 struct kqueue *kq;
1412 int s;
1413
1414 kq = kn->kn_kq;
1415 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1416
1417 s = splsched();
1418 simple_lock(&kq->kq_lock);
1419 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1420 kn->kn_status |= KN_QUEUED;
1421 kq->kq_count++;
1422 simple_unlock(&kq->kq_lock);
1423 splx(s);
1424 kqueue_wakeup(kq);
1425 }
1426
1427 /*
1428 * Dequeue event for knote.
1429 */
1430 static void
1431 knote_dequeue(struct knote *kn)
1432 {
1433 struct kqueue *kq;
1434 int s;
1435
1436 KASSERT(kn->kn_status & KN_QUEUED);
1437 kq = kn->kn_kq;
1438
1439 s = splsched();
1440 simple_lock(&kq->kq_lock);
1441 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1442 kn->kn_status &= ~KN_QUEUED;
1443 kq->kq_count--;
1444 simple_unlock(&kq->kq_lock);
1445 splx(s);
1446 }
1447