kern_event.c revision 1.30 1 /* $NetBSD: kern_event.c,v 1.30 2006/07/23 22:06:11 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.30 2006/07/23 22:06:11 ad Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/malloc.h>
39 #include <sys/unistd.h>
40 #include <sys/file.h>
41 #include <sys/fcntl.h>
42 #include <sys/select.h>
43 #include <sys/queue.h>
44 #include <sys/event.h>
45 #include <sys/eventvar.h>
46 #include <sys/poll.h>
47 #include <sys/pool.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/stat.h>
52 #include <sys/uio.h>
53 #include <sys/mount.h>
54 #include <sys/filedesc.h>
55 #include <sys/sa.h>
56 #include <sys/syscallargs.h>
57 #include <sys/kauth.h>
58
59 static void kqueue_wakeup(struct kqueue *kq);
60
61 static int kqueue_scan(struct file *, size_t, struct kevent *,
62 const struct timespec *, struct lwp *, register_t *,
63 const struct kevent_ops *);
64 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
65 kauth_cred_t cred, int flags);
66 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
67 kauth_cred_t cred, int flags);
68 static int kqueue_ioctl(struct file *fp, u_long com, void *data,
69 struct lwp *l);
70 static int kqueue_fcntl(struct file *fp, u_int com, void *data,
71 struct lwp *l);
72 static int kqueue_poll(struct file *fp, int events, struct lwp *l);
73 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
74 static int kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l);
75 static int kqueue_close(struct file *fp, struct lwp *l);
76
77 static const struct fileops kqueueops = {
78 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
79 kqueue_stat, kqueue_close, kqueue_kqfilter
80 };
81
82 static void knote_attach(struct knote *kn, struct filedesc *fdp);
83 static void knote_drop(struct knote *kn, struct lwp *l,
84 struct filedesc *fdp);
85 static void knote_enqueue(struct knote *kn);
86 static void knote_dequeue(struct knote *kn);
87
88 static void filt_kqdetach(struct knote *kn);
89 static int filt_kqueue(struct knote *kn, long hint);
90 static int filt_procattach(struct knote *kn);
91 static void filt_procdetach(struct knote *kn);
92 static int filt_proc(struct knote *kn, long hint);
93 static int filt_fileattach(struct knote *kn);
94 static void filt_timerexpire(void *knx);
95 static int filt_timerattach(struct knote *kn);
96 static void filt_timerdetach(struct knote *kn);
97 static int filt_timer(struct knote *kn, long hint);
98
99 static const struct filterops kqread_filtops =
100 { 1, NULL, filt_kqdetach, filt_kqueue };
101 static const struct filterops proc_filtops =
102 { 0, filt_procattach, filt_procdetach, filt_proc };
103 static const struct filterops file_filtops =
104 { 1, filt_fileattach, NULL, NULL };
105 static const struct filterops timer_filtops =
106 { 0, filt_timerattach, filt_timerdetach, filt_timer };
107
108 static POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL);
109 static POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL);
110 static int kq_ncallouts = 0;
111 static int kq_calloutmax = (4 * 1024);
112
113 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
114
115 #define KNOTE_ACTIVATE(kn) \
116 do { \
117 kn->kn_status |= KN_ACTIVE; \
118 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
119 knote_enqueue(kn); \
120 } while(0)
121
122 #define KN_HASHSIZE 64 /* XXX should be tunable */
123 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
124
125 extern const struct filterops sig_filtops;
126
127 /*
128 * Table for for all system-defined filters.
129 * These should be listed in the numeric order of the EVFILT_* defines.
130 * If filtops is NULL, the filter isn't implemented in NetBSD.
131 * End of list is when name is NULL.
132 */
133 struct kfilter {
134 const char *name; /* name of filter */
135 uint32_t filter; /* id of filter */
136 const struct filterops *filtops;/* operations for filter */
137 };
138
139 /* System defined filters */
140 static const struct kfilter sys_kfilters[] = {
141 { "EVFILT_READ", EVFILT_READ, &file_filtops },
142 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
143 { "EVFILT_AIO", EVFILT_AIO, NULL },
144 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
145 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
146 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
147 { "EVFILT_TIMER", EVFILT_TIMER, &timer_filtops },
148 { NULL, 0, NULL }, /* end of list */
149 };
150
151 /* User defined kfilters */
152 static struct kfilter *user_kfilters; /* array */
153 static int user_kfilterc; /* current offset */
154 static int user_kfiltermaxc; /* max size so far */
155
156 /*
157 * Find kfilter entry by name, or NULL if not found.
158 */
159 static const struct kfilter *
160 kfilter_byname_sys(const char *name)
161 {
162 int i;
163
164 for (i = 0; sys_kfilters[i].name != NULL; i++) {
165 if (strcmp(name, sys_kfilters[i].name) == 0)
166 return (&sys_kfilters[i]);
167 }
168 return (NULL);
169 }
170
171 static struct kfilter *
172 kfilter_byname_user(const char *name)
173 {
174 int i;
175
176 /* user_kfilters[] could be NULL if no filters were registered */
177 if (!user_kfilters)
178 return (NULL);
179
180 for (i = 0; user_kfilters[i].name != NULL; i++) {
181 if (user_kfilters[i].name != '\0' &&
182 strcmp(name, user_kfilters[i].name) == 0)
183 return (&user_kfilters[i]);
184 }
185 return (NULL);
186 }
187
188 static const struct kfilter *
189 kfilter_byname(const char *name)
190 {
191 const struct kfilter *kfilter;
192
193 if ((kfilter = kfilter_byname_sys(name)) != NULL)
194 return (kfilter);
195
196 return (kfilter_byname_user(name));
197 }
198
199 /*
200 * Find kfilter entry by filter id, or NULL if not found.
201 * Assumes entries are indexed in filter id order, for speed.
202 */
203 static const struct kfilter *
204 kfilter_byfilter(uint32_t filter)
205 {
206 const struct kfilter *kfilter;
207
208 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
209 kfilter = &sys_kfilters[filter];
210 else if (user_kfilters != NULL &&
211 filter < EVFILT_SYSCOUNT + user_kfilterc)
212 /* it's a user filter */
213 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
214 else
215 return (NULL); /* out of range */
216 KASSERT(kfilter->filter == filter); /* sanity check! */
217 return (kfilter);
218 }
219
220 /*
221 * Register a new kfilter. Stores the entry in user_kfilters.
222 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
223 * If retfilter != NULL, the new filterid is returned in it.
224 */
225 int
226 kfilter_register(const char *name, const struct filterops *filtops,
227 int *retfilter)
228 {
229 struct kfilter *kfilter;
230 void *space;
231 int len;
232
233 if (name == NULL || name[0] == '\0' || filtops == NULL)
234 return (EINVAL); /* invalid args */
235 if (kfilter_byname(name) != NULL)
236 return (EEXIST); /* already exists */
237 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
238 return (EINVAL); /* too many */
239
240 /* check if need to grow user_kfilters */
241 if (user_kfilterc + 1 > user_kfiltermaxc) {
242 /*
243 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
244 * want to traverse user_kfilters as an array.
245 */
246 user_kfiltermaxc += KFILTER_EXTENT;
247 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
248 M_KEVENT, M_WAITOK);
249
250 /* copy existing user_kfilters */
251 if (user_kfilters != NULL)
252 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
253 user_kfilterc * sizeof(struct kfilter *));
254 /* zero new sections */
255 memset((caddr_t)kfilter +
256 user_kfilterc * sizeof(struct kfilter *), 0,
257 (user_kfiltermaxc - user_kfilterc) *
258 sizeof(struct kfilter *));
259 /* switch to new kfilter */
260 if (user_kfilters != NULL)
261 free(user_kfilters, M_KEVENT);
262 user_kfilters = kfilter;
263 }
264 len = strlen(name) + 1; /* copy name */
265 space = malloc(len, M_KEVENT, M_WAITOK);
266 memcpy(space, name, len);
267 user_kfilters[user_kfilterc].name = space;
268
269 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
270
271 len = sizeof(struct filterops); /* copy filtops */
272 space = malloc(len, M_KEVENT, M_WAITOK);
273 memcpy(space, filtops, len);
274 user_kfilters[user_kfilterc].filtops = space;
275
276 if (retfilter != NULL)
277 *retfilter = user_kfilters[user_kfilterc].filter;
278 user_kfilterc++; /* finally, increment count */
279 return (0);
280 }
281
282 /*
283 * Unregister a kfilter previously registered with kfilter_register.
284 * This retains the filter id, but clears the name and frees filtops (filter
285 * operations), so that the number isn't reused during a boot.
286 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
287 */
288 int
289 kfilter_unregister(const char *name)
290 {
291 struct kfilter *kfilter;
292
293 if (name == NULL || name[0] == '\0')
294 return (EINVAL); /* invalid name */
295
296 if (kfilter_byname_sys(name) != NULL)
297 return (EINVAL); /* can't detach system filters */
298
299 kfilter = kfilter_byname_user(name);
300 if (kfilter == NULL) /* not found */
301 return (ENOENT);
302
303 if (kfilter->name[0] != '\0') {
304 /* XXXUNCONST Cast away const (but we know it's safe. */
305 free(__UNCONST(kfilter->name), M_KEVENT);
306 kfilter->name = ""; /* mark as `not implemented' */
307 }
308 if (kfilter->filtops != NULL) {
309 /* XXXUNCONST Cast away const (but we know it's safe. */
310 free(__UNCONST(kfilter->filtops), M_KEVENT);
311 kfilter->filtops = NULL; /* mark as `not implemented' */
312 }
313 return (0);
314 }
315
316
317 /*
318 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
319 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
320 */
321 static int
322 filt_fileattach(struct knote *kn)
323 {
324 struct file *fp;
325
326 fp = kn->kn_fp;
327 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
328 }
329
330 /*
331 * Filter detach method for EVFILT_READ on kqueue descriptor.
332 */
333 static void
334 filt_kqdetach(struct knote *kn)
335 {
336 struct kqueue *kq;
337
338 kq = (struct kqueue *)kn->kn_fp->f_data;
339 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
340 }
341
342 /*
343 * Filter event method for EVFILT_READ on kqueue descriptor.
344 */
345 /*ARGSUSED*/
346 static int
347 filt_kqueue(struct knote *kn, long hint)
348 {
349 struct kqueue *kq;
350
351 kq = (struct kqueue *)kn->kn_fp->f_data;
352 kn->kn_data = kq->kq_count;
353 return (kn->kn_data > 0);
354 }
355
356 /*
357 * Filter attach method for EVFILT_PROC.
358 */
359 static int
360 filt_procattach(struct knote *kn)
361 {
362 struct proc *p, *curp;
363 struct lwp *curl;
364
365 curl = curlwp;
366 curp = curl->l_proc;
367
368 p = pfind(kn->kn_id);
369 if (p == NULL)
370 return (ESRCH);
371
372 /*
373 * Fail if it's not owned by you, or the last exec gave us
374 * setuid/setgid privs (unless you're root).
375 */
376 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(curl->l_cred) ||
377 (p->p_flag & P_SUGID)) && kauth_authorize_generic(curl->l_cred,
378 KAUTH_GENERIC_ISSUSER, &curl->l_acflag) != 0)
379 return (EACCES);
380
381 kn->kn_ptr.p_proc = p;
382 kn->kn_flags |= EV_CLEAR; /* automatically set */
383
384 /*
385 * internal flag indicating registration done by kernel
386 */
387 if (kn->kn_flags & EV_FLAG1) {
388 kn->kn_data = kn->kn_sdata; /* ppid */
389 kn->kn_fflags = NOTE_CHILD;
390 kn->kn_flags &= ~EV_FLAG1;
391 }
392
393 /* XXXSMP lock the process? */
394 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
395
396 return (0);
397 }
398
399 /*
400 * Filter detach method for EVFILT_PROC.
401 *
402 * The knote may be attached to a different process, which may exit,
403 * leaving nothing for the knote to be attached to. So when the process
404 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
405 * it will be deleted when read out. However, as part of the knote deletion,
406 * this routine is called, so a check is needed to avoid actually performing
407 * a detach, because the original process might not exist any more.
408 */
409 static void
410 filt_procdetach(struct knote *kn)
411 {
412 struct proc *p;
413
414 if (kn->kn_status & KN_DETACHED)
415 return;
416
417 p = kn->kn_ptr.p_proc;
418 KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p);
419
420 /* XXXSMP lock the process? */
421 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
422 }
423
424 /*
425 * Filter event method for EVFILT_PROC.
426 */
427 static int
428 filt_proc(struct knote *kn, long hint)
429 {
430 u_int event;
431
432 /*
433 * mask off extra data
434 */
435 event = (u_int)hint & NOTE_PCTRLMASK;
436
437 /*
438 * if the user is interested in this event, record it.
439 */
440 if (kn->kn_sfflags & event)
441 kn->kn_fflags |= event;
442
443 /*
444 * process is gone, so flag the event as finished.
445 */
446 if (event == NOTE_EXIT) {
447 /*
448 * Detach the knote from watched process and mark
449 * it as such. We can't leave this to kqueue_scan(),
450 * since the process might not exist by then. And we
451 * have to do this now, since psignal KNOTE() is called
452 * also for zombies and we might end up reading freed
453 * memory if the kevent would already be picked up
454 * and knote g/c'ed.
455 */
456 kn->kn_fop->f_detach(kn);
457 kn->kn_status |= KN_DETACHED;
458
459 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
460 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
461 return (1);
462 }
463
464 /*
465 * process forked, and user wants to track the new process,
466 * so attach a new knote to it, and immediately report an
467 * event with the parent's pid.
468 */
469 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
470 struct kevent kev;
471 int error;
472
473 /*
474 * register knote with new process.
475 */
476 kev.ident = hint & NOTE_PDATAMASK; /* pid */
477 kev.filter = kn->kn_filter;
478 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
479 kev.fflags = kn->kn_sfflags;
480 kev.data = kn->kn_id; /* parent */
481 kev.udata = kn->kn_kevent.udata; /* preserve udata */
482 error = kqueue_register(kn->kn_kq, &kev, NULL);
483 if (error)
484 kn->kn_fflags |= NOTE_TRACKERR;
485 }
486
487 return (kn->kn_fflags != 0);
488 }
489
490 static void
491 filt_timerexpire(void *knx)
492 {
493 struct knote *kn = knx;
494 int tticks;
495
496 kn->kn_data++;
497 KNOTE_ACTIVATE(kn);
498
499 if ((kn->kn_flags & EV_ONESHOT) == 0) {
500 tticks = mstohz(kn->kn_sdata);
501 callout_schedule((struct callout *)kn->kn_hook, tticks);
502 }
503 }
504
505 /*
506 * data contains amount of time to sleep, in milliseconds
507 */
508 static int
509 filt_timerattach(struct knote *kn)
510 {
511 struct callout *calloutp;
512 int tticks;
513
514 if (kq_ncallouts >= kq_calloutmax)
515 return (ENOMEM);
516 kq_ncallouts++;
517
518 tticks = mstohz(kn->kn_sdata);
519
520 /* if the supplied value is under our resolution, use 1 tick */
521 if (tticks == 0) {
522 if (kn->kn_sdata == 0)
523 return (EINVAL);
524 tticks = 1;
525 }
526
527 kn->kn_flags |= EV_CLEAR; /* automatically set */
528 MALLOC(calloutp, struct callout *, sizeof(*calloutp),
529 M_KEVENT, 0);
530 callout_init(calloutp);
531 callout_reset(calloutp, tticks, filt_timerexpire, kn);
532 kn->kn_hook = calloutp;
533
534 return (0);
535 }
536
537 static void
538 filt_timerdetach(struct knote *kn)
539 {
540 struct callout *calloutp;
541
542 calloutp = (struct callout *)kn->kn_hook;
543 callout_stop(calloutp);
544 FREE(calloutp, M_KEVENT);
545 kq_ncallouts--;
546 }
547
548 static int
549 filt_timer(struct knote *kn, long hint)
550 {
551 return (kn->kn_data != 0);
552 }
553
554 /*
555 * filt_seltrue:
556 *
557 * This filter "event" routine simulates seltrue().
558 */
559 int
560 filt_seltrue(struct knote *kn, long hint)
561 {
562
563 /*
564 * We don't know how much data can be read/written,
565 * but we know that it *can* be. This is about as
566 * good as select/poll does as well.
567 */
568 kn->kn_data = 0;
569 return (1);
570 }
571
572 /*
573 * This provides full kqfilter entry for device switch tables, which
574 * has same effect as filter using filt_seltrue() as filter method.
575 */
576 static void
577 filt_seltruedetach(struct knote *kn)
578 {
579 /* Nothing to do */
580 }
581
582 static const struct filterops seltrue_filtops =
583 { 1, NULL, filt_seltruedetach, filt_seltrue };
584
585 int
586 seltrue_kqfilter(dev_t dev, struct knote *kn)
587 {
588 switch (kn->kn_filter) {
589 case EVFILT_READ:
590 case EVFILT_WRITE:
591 kn->kn_fop = &seltrue_filtops;
592 break;
593 default:
594 return (1);
595 }
596
597 /* Nothing more to do */
598 return (0);
599 }
600
601 /*
602 * kqueue(2) system call.
603 */
604 int
605 sys_kqueue(struct lwp *l, void *v, register_t *retval)
606 {
607 struct filedesc *fdp;
608 struct kqueue *kq;
609 struct file *fp;
610 int fd, error;
611
612 fdp = l->l_proc->p_fd;
613 error = falloc(l, &fp, &fd); /* setup a new file descriptor */
614 if (error)
615 return (error);
616 fp->f_flag = FREAD | FWRITE;
617 fp->f_type = DTYPE_KQUEUE;
618 fp->f_ops = &kqueueops;
619 kq = pool_get(&kqueue_pool, PR_WAITOK);
620 memset((char *)kq, 0, sizeof(struct kqueue));
621 simple_lock_init(&kq->kq_lock);
622 TAILQ_INIT(&kq->kq_head);
623 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
624 *retval = fd;
625 if (fdp->fd_knlistsize < 0)
626 fdp->fd_knlistsize = 0; /* this process has a kq */
627 kq->kq_fdp = fdp;
628 FILE_SET_MATURE(fp);
629 FILE_UNUSE(fp, l); /* falloc() does FILE_USE() */
630 return (error);
631 }
632
633 /*
634 * kevent(2) system call.
635 */
636 static int
637 kevent_fetch_changes(void *private, const struct kevent *changelist,
638 struct kevent *changes, size_t index, int n)
639 {
640 return copyin(changelist + index, changes, n * sizeof(*changes));
641 }
642
643 static int
644 kevent_put_events(void *private, struct kevent *events,
645 struct kevent *eventlist, size_t index, int n)
646 {
647 return copyout(events, eventlist + index, n * sizeof(*events));
648 }
649
650 static const struct kevent_ops kevent_native_ops = {
651 keo_private: NULL,
652 keo_fetch_timeout: copyin,
653 keo_fetch_changes: kevent_fetch_changes,
654 keo_put_events: kevent_put_events,
655 };
656
657 int
658 sys_kevent(struct lwp *l, void *v, register_t *retval)
659 {
660 struct sys_kevent_args /* {
661 syscallarg(int) fd;
662 syscallarg(const struct kevent *) changelist;
663 syscallarg(size_t) nchanges;
664 syscallarg(struct kevent *) eventlist;
665 syscallarg(size_t) nevents;
666 syscallarg(const struct timespec *) timeout;
667 } */ *uap = v;
668
669 return kevent1(l, retval, SCARG(uap, fd), SCARG(uap, changelist),
670 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
671 SCARG(uap, timeout), &kevent_native_ops);
672 }
673
674 int
675 kevent1(struct lwp *l, register_t *retval, int fd,
676 const struct kevent *changelist, size_t nchanges, struct kevent *eventlist,
677 size_t nevents, const struct timespec *timeout,
678 const struct kevent_ops *keops)
679 {
680 struct kevent *kevp;
681 struct kqueue *kq;
682 struct file *fp;
683 struct timespec ts;
684 struct proc *p;
685 size_t i, n, ichange;
686 int nerrors, error;
687
688 p = l->l_proc;
689 /* check that we're dealing with a kq */
690 fp = fd_getfile(p->p_fd, fd);
691 if (fp == NULL)
692 return (EBADF);
693
694 if (fp->f_type != DTYPE_KQUEUE) {
695 simple_unlock(&fp->f_slock);
696 return (EBADF);
697 }
698
699 FILE_USE(fp);
700
701 if (timeout != NULL) {
702 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
703 if (error)
704 goto done;
705 timeout = &ts;
706 }
707
708 kq = (struct kqueue *)fp->f_data;
709 nerrors = 0;
710 ichange = 0;
711
712 /* traverse list of events to register */
713 while (nchanges > 0) {
714 /* copyin a maximum of KQ_EVENTS at each pass */
715 n = MIN(nchanges, KQ_NEVENTS);
716 error = (*keops->keo_fetch_changes)(keops->keo_private,
717 changelist, kq->kq_kev, ichange, n);
718 if (error)
719 goto done;
720 for (i = 0; i < n; i++) {
721 kevp = &kq->kq_kev[i];
722 kevp->flags &= ~EV_SYSFLAGS;
723 /* register each knote */
724 error = kqueue_register(kq, kevp, l);
725 if (error) {
726 if (nevents != 0) {
727 kevp->flags = EV_ERROR;
728 kevp->data = error;
729 error = (*keops->keo_put_events)
730 (keops->keo_private, kevp,
731 eventlist, nerrors, 1);
732 if (error)
733 goto done;
734 nevents--;
735 nerrors++;
736 } else {
737 goto done;
738 }
739 }
740 }
741 nchanges -= n; /* update the results */
742 ichange += n;
743 }
744 if (nerrors) {
745 *retval = nerrors;
746 error = 0;
747 goto done;
748 }
749
750 /* actually scan through the events */
751 error = kqueue_scan(fp, nevents, eventlist, timeout, l, retval, keops);
752 done:
753 FILE_UNUSE(fp, l);
754 return (error);
755 }
756
757 /*
758 * Register a given kevent kev onto the kqueue
759 */
760 int
761 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l)
762 {
763 const struct kfilter *kfilter;
764 struct filedesc *fdp;
765 struct file *fp;
766 struct knote *kn;
767 int s, error;
768
769 fdp = kq->kq_fdp;
770 fp = NULL;
771 kn = NULL;
772 error = 0;
773 kfilter = kfilter_byfilter(kev->filter);
774 if (kfilter == NULL || kfilter->filtops == NULL) {
775 /* filter not found nor implemented */
776 return (EINVAL);
777 }
778
779 /* search if knote already exists */
780 if (kfilter->filtops->f_isfd) {
781 /* monitoring a file descriptor */
782 if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
783 return (EBADF); /* validate descriptor */
784 FILE_USE(fp);
785
786 if (kev->ident < fdp->fd_knlistsize) {
787 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
788 if (kq == kn->kn_kq &&
789 kev->filter == kn->kn_filter)
790 break;
791 }
792 } else {
793 /*
794 * not monitoring a file descriptor, so
795 * lookup knotes in internal hash table
796 */
797 if (fdp->fd_knhashmask != 0) {
798 struct klist *list;
799
800 list = &fdp->fd_knhash[
801 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
802 SLIST_FOREACH(kn, list, kn_link)
803 if (kev->ident == kn->kn_id &&
804 kq == kn->kn_kq &&
805 kev->filter == kn->kn_filter)
806 break;
807 }
808 }
809
810 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
811 error = ENOENT; /* filter not found */
812 goto done;
813 }
814
815 /*
816 * kn now contains the matching knote, or NULL if no match
817 */
818 if (kev->flags & EV_ADD) {
819 /* add knote */
820
821 if (kn == NULL) {
822 /* create new knote */
823 kn = pool_get(&knote_pool, PR_WAITOK);
824 if (kn == NULL) {
825 error = ENOMEM;
826 goto done;
827 }
828 kn->kn_fp = fp;
829 kn->kn_kq = kq;
830 kn->kn_fop = kfilter->filtops;
831
832 /*
833 * apply reference count to knote structure, and
834 * do not release it at the end of this routine.
835 */
836 fp = NULL;
837
838 kn->kn_sfflags = kev->fflags;
839 kn->kn_sdata = kev->data;
840 kev->fflags = 0;
841 kev->data = 0;
842 kn->kn_kevent = *kev;
843
844 knote_attach(kn, fdp);
845 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
846 knote_drop(kn, l, fdp);
847 goto done;
848 }
849 } else {
850 /* modify existing knote */
851
852 /*
853 * The user may change some filter values after the
854 * initial EV_ADD, but doing so will not reset any
855 * filter which have already been triggered.
856 */
857 kn->kn_sfflags = kev->fflags;
858 kn->kn_sdata = kev->data;
859 kn->kn_kevent.udata = kev->udata;
860 }
861
862 s = splsched();
863 if (kn->kn_fop->f_event(kn, 0))
864 KNOTE_ACTIVATE(kn);
865 splx(s);
866
867 } else if (kev->flags & EV_DELETE) { /* delete knote */
868 kn->kn_fop->f_detach(kn);
869 knote_drop(kn, l, fdp);
870 goto done;
871 }
872
873 /* disable knote */
874 if ((kev->flags & EV_DISABLE) &&
875 ((kn->kn_status & KN_DISABLED) == 0)) {
876 s = splsched();
877 kn->kn_status |= KN_DISABLED;
878 splx(s);
879 }
880
881 /* enable knote */
882 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
883 s = splsched();
884 kn->kn_status &= ~KN_DISABLED;
885 if ((kn->kn_status & KN_ACTIVE) &&
886 ((kn->kn_status & KN_QUEUED) == 0))
887 knote_enqueue(kn);
888 splx(s);
889 }
890
891 done:
892 if (fp != NULL)
893 FILE_UNUSE(fp, l);
894 return (error);
895 }
896
897 /*
898 * Scan through the list of events on fp (for a maximum of maxevents),
899 * returning the results in to ulistp. Timeout is determined by tsp; if
900 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
901 * as appropriate.
902 */
903 static int
904 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
905 const struct timespec *tsp, struct lwp *l, register_t *retval,
906 const struct kevent_ops *keops)
907 {
908 struct proc *p = l->l_proc;
909 struct kqueue *kq;
910 struct kevent *kevp;
911 struct timeval atv, sleeptv;
912 struct knote *kn, *marker=NULL;
913 size_t count, nkev, nevents;
914 int s, timeout, error;
915
916 kq = (struct kqueue *)fp->f_data;
917 count = maxevents;
918 nkev = nevents = error = 0;
919 if (count == 0)
920 goto done;
921
922 if (tsp) { /* timeout supplied */
923 TIMESPEC_TO_TIMEVAL(&atv, tsp);
924 if (inittimeleft(&atv, &sleeptv) == -1) {
925 error = EINVAL;
926 goto done;
927 }
928 timeout = tvtohz(&atv);
929 if (timeout <= 0)
930 timeout = -1; /* do poll */
931 } else {
932 /* no timeout, wait forever */
933 timeout = 0;
934 }
935
936 MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK);
937 memset(marker, 0, sizeof(*marker));
938
939 goto start;
940
941 retry:
942 if (tsp && (timeout = gettimeleft(&atv, &sleeptv)) <= 0) {
943 goto done;
944 }
945
946 start:
947 kevp = kq->kq_kev;
948 s = splsched();
949 simple_lock(&kq->kq_lock);
950 if (kq->kq_count == 0) {
951 if (timeout < 0) {
952 error = EWOULDBLOCK;
953 simple_unlock(&kq->kq_lock);
954 } else {
955 kq->kq_state |= KQ_SLEEP;
956 error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
957 "kqread", timeout, &kq->kq_lock);
958 }
959 splx(s);
960 if (error == 0)
961 goto retry;
962 /* don't restart after signals... */
963 if (error == ERESTART)
964 error = EINTR;
965 else if (error == EWOULDBLOCK)
966 error = 0;
967 goto done;
968 }
969
970 /* mark end of knote list */
971 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
972 simple_unlock(&kq->kq_lock);
973
974 while (count) { /* while user wants data ... */
975 simple_lock(&kq->kq_lock);
976 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
977 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
978 if (kn == marker) { /* if it's our marker, stop */
979 /* What if it's some else's marker? */
980 simple_unlock(&kq->kq_lock);
981 splx(s);
982 if (count == maxevents)
983 goto retry;
984 goto done;
985 }
986 kq->kq_count--;
987 simple_unlock(&kq->kq_lock);
988
989 if (kn->kn_status & KN_DISABLED) {
990 /* don't want disabled events */
991 kn->kn_status &= ~KN_QUEUED;
992 continue;
993 }
994 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
995 kn->kn_fop->f_event(kn, 0) == 0) {
996 /*
997 * non-ONESHOT event that hasn't
998 * triggered again, so de-queue.
999 */
1000 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1001 continue;
1002 }
1003 *kevp = kn->kn_kevent;
1004 kevp++;
1005 nkev++;
1006 if (kn->kn_flags & EV_ONESHOT) {
1007 /* delete ONESHOT events after retrieval */
1008 kn->kn_status &= ~KN_QUEUED;
1009 splx(s);
1010 kn->kn_fop->f_detach(kn);
1011 knote_drop(kn, l, p->p_fd);
1012 s = splsched();
1013 } else if (kn->kn_flags & EV_CLEAR) {
1014 /* clear state after retrieval */
1015 kn->kn_data = 0;
1016 kn->kn_fflags = 0;
1017 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1018 } else {
1019 /* add event back on list */
1020 simple_lock(&kq->kq_lock);
1021 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1022 kq->kq_count++;
1023 simple_unlock(&kq->kq_lock);
1024 }
1025 count--;
1026 if (nkev == KQ_NEVENTS) {
1027 /* do copyouts in KQ_NEVENTS chunks */
1028 splx(s);
1029 error = (*keops->keo_put_events)(keops->keo_private,
1030 &kq->kq_kev[0], ulistp, nevents, nkev);
1031 nevents += nkev;
1032 nkev = 0;
1033 kevp = kq->kq_kev;
1034 s = splsched();
1035 if (error)
1036 break;
1037 }
1038 }
1039
1040 /* remove marker */
1041 simple_lock(&kq->kq_lock);
1042 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1043 simple_unlock(&kq->kq_lock);
1044 splx(s);
1045 done:
1046 if (marker)
1047 FREE(marker, M_KEVENT);
1048
1049 if (nkev != 0)
1050 /* copyout remaining events */
1051 error = (*keops->keo_put_events)(keops->keo_private,
1052 &kq->kq_kev[0], ulistp, nevents, nkev);
1053 *retval = maxevents - count;
1054
1055 return (error);
1056 }
1057
1058 /*
1059 * struct fileops read method for a kqueue descriptor.
1060 * Not implemented.
1061 * XXX: This could be expanded to call kqueue_scan, if desired.
1062 */
1063 /*ARGSUSED*/
1064 static int
1065 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
1066 kauth_cred_t cred, int flags)
1067 {
1068
1069 return (ENXIO);
1070 }
1071
1072 /*
1073 * struct fileops write method for a kqueue descriptor.
1074 * Not implemented.
1075 */
1076 /*ARGSUSED*/
1077 static int
1078 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
1079 kauth_cred_t cred, int flags)
1080 {
1081
1082 return (ENXIO);
1083 }
1084
1085 /*
1086 * struct fileops ioctl method for a kqueue descriptor.
1087 *
1088 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1089 * KFILTER_BYNAME find name for filter, and return result in
1090 * name, which is of size len.
1091 * KFILTER_BYFILTER find filter for name. len is ignored.
1092 */
1093 /*ARGSUSED*/
1094 static int
1095 kqueue_ioctl(struct file *fp, u_long com, void *data, struct lwp *l)
1096 {
1097 struct kfilter_mapping *km;
1098 const struct kfilter *kfilter;
1099 char *name;
1100 int error;
1101
1102 km = (struct kfilter_mapping *)data;
1103 error = 0;
1104
1105 switch (com) {
1106 case KFILTER_BYFILTER: /* convert filter -> name */
1107 kfilter = kfilter_byfilter(km->filter);
1108 if (kfilter != NULL)
1109 error = copyoutstr(kfilter->name, km->name, km->len,
1110 NULL);
1111 else
1112 error = ENOENT;
1113 break;
1114
1115 case KFILTER_BYNAME: /* convert name -> filter */
1116 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
1117 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1118 if (error) {
1119 FREE(name, M_KEVENT);
1120 break;
1121 }
1122 kfilter = kfilter_byname(name);
1123 if (kfilter != NULL)
1124 km->filter = kfilter->filter;
1125 else
1126 error = ENOENT;
1127 FREE(name, M_KEVENT);
1128 break;
1129
1130 default:
1131 error = ENOTTY;
1132
1133 }
1134 return (error);
1135 }
1136
1137 /*
1138 * struct fileops fcntl method for a kqueue descriptor.
1139 * Not implemented.
1140 */
1141 /*ARGSUSED*/
1142 static int
1143 kqueue_fcntl(struct file *fp, u_int com, void *data, struct lwp *l)
1144 {
1145
1146 return (ENOTTY);
1147 }
1148
1149 /*
1150 * struct fileops poll method for a kqueue descriptor.
1151 * Determine if kqueue has events pending.
1152 */
1153 static int
1154 kqueue_poll(struct file *fp, int events, struct lwp *l)
1155 {
1156 struct kqueue *kq;
1157 int revents;
1158
1159 kq = (struct kqueue *)fp->f_data;
1160 revents = 0;
1161 if (events & (POLLIN | POLLRDNORM)) {
1162 if (kq->kq_count) {
1163 revents |= events & (POLLIN | POLLRDNORM);
1164 } else {
1165 selrecord(l, &kq->kq_sel);
1166 }
1167 }
1168 return (revents);
1169 }
1170
1171 /*
1172 * struct fileops stat method for a kqueue descriptor.
1173 * Returns dummy info, with st_size being number of events pending.
1174 */
1175 static int
1176 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l)
1177 {
1178 struct kqueue *kq;
1179
1180 kq = (struct kqueue *)fp->f_data;
1181 memset((void *)st, 0, sizeof(*st));
1182 st->st_size = kq->kq_count;
1183 st->st_blksize = sizeof(struct kevent);
1184 st->st_mode = S_IFIFO;
1185 return (0);
1186 }
1187
1188 /*
1189 * struct fileops close method for a kqueue descriptor.
1190 * Cleans up kqueue.
1191 */
1192 static int
1193 kqueue_close(struct file *fp, struct lwp *l)
1194 {
1195 struct proc *p = l->l_proc;
1196 struct kqueue *kq;
1197 struct filedesc *fdp;
1198 struct knote **knp, *kn, *kn0;
1199 int i;
1200
1201 kq = (struct kqueue *)fp->f_data;
1202 fdp = p->p_fd;
1203 for (i = 0; i < fdp->fd_knlistsize; i++) {
1204 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1205 kn = *knp;
1206 while (kn != NULL) {
1207 kn0 = SLIST_NEXT(kn, kn_link);
1208 if (kq == kn->kn_kq) {
1209 kn->kn_fop->f_detach(kn);
1210 FILE_UNUSE(kn->kn_fp, l);
1211 pool_put(&knote_pool, kn);
1212 *knp = kn0;
1213 } else {
1214 knp = &SLIST_NEXT(kn, kn_link);
1215 }
1216 kn = kn0;
1217 }
1218 }
1219 if (fdp->fd_knhashmask != 0) {
1220 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1221 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1222 kn = *knp;
1223 while (kn != NULL) {
1224 kn0 = SLIST_NEXT(kn, kn_link);
1225 if (kq == kn->kn_kq) {
1226 kn->kn_fop->f_detach(kn);
1227 /* XXX non-fd release of kn->kn_ptr */
1228 pool_put(&knote_pool, kn);
1229 *knp = kn0;
1230 } else {
1231 knp = &SLIST_NEXT(kn, kn_link);
1232 }
1233 kn = kn0;
1234 }
1235 }
1236 }
1237 pool_put(&kqueue_pool, kq);
1238 fp->f_data = NULL;
1239
1240 return (0);
1241 }
1242
1243 /*
1244 * wakeup a kqueue
1245 */
1246 static void
1247 kqueue_wakeup(struct kqueue *kq)
1248 {
1249 int s;
1250
1251 s = splsched();
1252 simple_lock(&kq->kq_lock);
1253 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1254 kq->kq_state &= ~KQ_SLEEP;
1255 wakeup(kq); /* ... wakeup */
1256 }
1257
1258 /* Notify select/poll and kevent. */
1259 selnotify(&kq->kq_sel, 0);
1260 simple_unlock(&kq->kq_lock);
1261 splx(s);
1262 }
1263
1264 /*
1265 * struct fileops kqfilter method for a kqueue descriptor.
1266 * Event triggered when monitored kqueue changes.
1267 */
1268 /*ARGSUSED*/
1269 static int
1270 kqueue_kqfilter(struct file *fp, struct knote *kn)
1271 {
1272 struct kqueue *kq;
1273
1274 KASSERT(fp == kn->kn_fp);
1275 kq = (struct kqueue *)kn->kn_fp->f_data;
1276 if (kn->kn_filter != EVFILT_READ)
1277 return (1);
1278 kn->kn_fop = &kqread_filtops;
1279 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1280 return (0);
1281 }
1282
1283
1284 /*
1285 * Walk down a list of knotes, activating them if their event has triggered.
1286 */
1287 void
1288 knote(struct klist *list, long hint)
1289 {
1290 struct knote *kn;
1291
1292 SLIST_FOREACH(kn, list, kn_selnext)
1293 if (kn->kn_fop->f_event(kn, hint))
1294 KNOTE_ACTIVATE(kn);
1295 }
1296
1297 /*
1298 * Remove all knotes from a specified klist
1299 */
1300 void
1301 knote_remove(struct lwp *l, struct klist *list)
1302 {
1303 struct knote *kn;
1304
1305 while ((kn = SLIST_FIRST(list)) != NULL) {
1306 kn->kn_fop->f_detach(kn);
1307 knote_drop(kn, l, l->l_proc->p_fd);
1308 }
1309 }
1310
1311 /*
1312 * Remove all knotes referencing a specified fd
1313 */
1314 void
1315 knote_fdclose(struct lwp *l, int fd)
1316 {
1317 struct filedesc *fdp;
1318 struct klist *list;
1319
1320 fdp = l->l_proc->p_fd;
1321 list = &fdp->fd_knlist[fd];
1322 knote_remove(l, list);
1323 }
1324
1325 /*
1326 * Attach a new knote to a file descriptor
1327 */
1328 static void
1329 knote_attach(struct knote *kn, struct filedesc *fdp)
1330 {
1331 struct klist *list;
1332 int size;
1333
1334 if (! kn->kn_fop->f_isfd) {
1335 /* if knote is not on an fd, store on internal hash table */
1336 if (fdp->fd_knhashmask == 0)
1337 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1338 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1339 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1340 goto done;
1341 }
1342
1343 /*
1344 * otherwise, knote is on an fd.
1345 * knotes are stored in fd_knlist indexed by kn->kn_id.
1346 */
1347 if (fdp->fd_knlistsize <= kn->kn_id) {
1348 /* expand list, it's too small */
1349 size = fdp->fd_knlistsize;
1350 while (size <= kn->kn_id) {
1351 /* grow in KQ_EXTENT chunks */
1352 size += KQ_EXTENT;
1353 }
1354 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1355 if (fdp->fd_knlist) {
1356 /* copy existing knlist */
1357 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1358 fdp->fd_knlistsize * sizeof(struct klist *));
1359 }
1360 /*
1361 * Zero new memory. Stylistically, SLIST_INIT() should be
1362 * used here, but that does same thing as the memset() anyway.
1363 */
1364 memset(&list[fdp->fd_knlistsize], 0,
1365 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1366
1367 /* switch to new knlist */
1368 if (fdp->fd_knlist != NULL)
1369 free(fdp->fd_knlist, M_KEVENT);
1370 fdp->fd_knlistsize = size;
1371 fdp->fd_knlist = list;
1372 }
1373
1374 /* get list head for this fd */
1375 list = &fdp->fd_knlist[kn->kn_id];
1376 done:
1377 /* add new knote */
1378 SLIST_INSERT_HEAD(list, kn, kn_link);
1379 kn->kn_status = 0;
1380 }
1381
1382 /*
1383 * Drop knote.
1384 * Should be called at spl == 0, since we don't want to hold spl
1385 * while calling FILE_UNUSE and free.
1386 */
1387 static void
1388 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp)
1389 {
1390 struct klist *list;
1391
1392 if (kn->kn_fop->f_isfd)
1393 list = &fdp->fd_knlist[kn->kn_id];
1394 else
1395 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1396
1397 SLIST_REMOVE(list, kn, knote, kn_link);
1398 if (kn->kn_status & KN_QUEUED)
1399 knote_dequeue(kn);
1400 if (kn->kn_fop->f_isfd)
1401 FILE_UNUSE(kn->kn_fp, l);
1402 pool_put(&knote_pool, kn);
1403 }
1404
1405
1406 /*
1407 * Queue new event for knote.
1408 */
1409 static void
1410 knote_enqueue(struct knote *kn)
1411 {
1412 struct kqueue *kq;
1413 int s;
1414
1415 kq = kn->kn_kq;
1416 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1417
1418 s = splsched();
1419 simple_lock(&kq->kq_lock);
1420 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1421 kn->kn_status |= KN_QUEUED;
1422 kq->kq_count++;
1423 simple_unlock(&kq->kq_lock);
1424 splx(s);
1425 kqueue_wakeup(kq);
1426 }
1427
1428 /*
1429 * Dequeue event for knote.
1430 */
1431 static void
1432 knote_dequeue(struct knote *kn)
1433 {
1434 struct kqueue *kq;
1435 int s;
1436
1437 KASSERT(kn->kn_status & KN_QUEUED);
1438 kq = kn->kn_kq;
1439
1440 s = splsched();
1441 simple_lock(&kq->kq_lock);
1442 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1443 kn->kn_status &= ~KN_QUEUED;
1444 kq->kq_count--;
1445 simple_unlock(&kq->kq_lock);
1446 splx(s);
1447 }
1448