kern_event.c revision 1.4 1 /* $NetBSD: kern_event.c,v 1.4 2002/11/08 20:26:50 jdolecek Exp $ */
2 /*-
3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/fcntl.h>
38 #include <sys/select.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/poll.h>
43 #include <sys/pool.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/stat.h>
48 #include <sys/uio.h>
49 #include <sys/mount.h>
50 #include <sys/filedesc.h>
51 #include <sys/syscallargs.h>
52
53 static int kqueue_scan(struct file *fp, size_t maxevents,
54 struct kevent *ulistp, const struct timespec *timeout,
55 struct proc *p, register_t *retval);
56 static void kqueue_wakeup(struct kqueue *kq);
57
58 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
59 struct ucred *cred, int flags);
60 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
61 struct ucred *cred, int flags);
62 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
63 struct proc *p);
64 static int kqueue_fcntl(struct file *fp, u_int com, caddr_t data,
65 struct proc *p);
66 static int kqueue_poll(struct file *fp, int events, struct proc *p);
67 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
68 static int kqueue_stat(struct file *fp, struct stat *sp, struct proc *p);
69 static int kqueue_close(struct file *fp, struct proc *p);
70
71 static struct fileops kqueueops = {
72 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
73 kqueue_stat, kqueue_close, kqueue_kqfilter
74 };
75
76 static void knote_attach(struct knote *kn, struct filedesc *fdp);
77 static void knote_drop(struct knote *kn, struct proc *p,
78 struct filedesc *fdp);
79 static void knote_enqueue(struct knote *kn);
80 static void knote_dequeue(struct knote *kn);
81
82 static void filt_kqdetach(struct knote *kn);
83 static int filt_kqueue(struct knote *kn, long hint);
84 static int filt_procattach(struct knote *kn);
85 static void filt_procdetach(struct knote *kn);
86 static int filt_proc(struct knote *kn, long hint);
87 static int filt_fileattach(struct knote *kn);
88
89 static const struct filterops kqread_filtops =
90 { 1, NULL, filt_kqdetach, filt_kqueue };
91 static const struct filterops proc_filtops =
92 { 0, filt_procattach, filt_procdetach, filt_proc };
93 static const struct filterops file_filtops =
94 { 1, filt_fileattach, NULL, NULL };
95
96 struct pool kqueue_pool;
97 struct pool knote_pool;
98
99 #define KNOTE_ACTIVATE(kn) \
100 do { \
101 kn->kn_status |= KN_ACTIVE; \
102 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
103 knote_enqueue(kn); \
104 } while(0)
105
106 #define KN_HASHSIZE 64 /* XXX should be tunable */
107 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
108
109 extern const struct filterops sig_filtops;
110
111 /*
112 * Table for for all system-defined filters.
113 * These should be listed in the numeric order of the EVFILT_* defines.
114 * If filtops is NULL, the filter isn't implemented in NetBSD.
115 * End of list is when name is NULL.
116 */
117 struct kfilter {
118 const char *name; /* name of filter */
119 uint32_t filter; /* id of filter */
120 const struct filterops *filtops;/* operations for filter */
121 };
122
123 /* System defined filters */
124 static const struct kfilter sys_kfilters[] = {
125 { "EVFILT_READ", EVFILT_READ, &file_filtops },
126 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
127 { "EVFILT_AIO", EVFILT_AIO, NULL },
128 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
129 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
130 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
131 { NULL, 0, NULL }, /* end of list */
132 };
133
134 /* User defined kfilters */
135 static struct kfilter *user_kfilters; /* array */
136 static int user_kfilterc; /* current offset */
137 static int user_kfiltermaxc; /* max size so far */
138
139 /*
140 * kqueue_init:
141 *
142 * Initialize the kqueue/knote facility.
143 */
144 void
145 kqueue_init(void)
146 {
147
148 pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
149 NULL);
150 pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
151 NULL);
152 }
153
154 /*
155 * Find kfilter entry by name, or NULL if not found.
156 */
157 static const struct kfilter *
158 kfilter_byname_sys(const char *name)
159 {
160 int i;
161
162 for (i = 0; sys_kfilters[i].name != NULL; i++) {
163 if (strcmp(name, sys_kfilters[i].name) == 0)
164 return (&sys_kfilters[i]);
165 }
166 return (NULL);
167 }
168
169 static struct kfilter *
170 kfilter_byname_user(const char *name)
171 {
172 int i;
173
174 /* user_kfilters[] could be NULL if no filters were registered */
175 if (!user_kfilters)
176 return (NULL);
177
178 for (i = 0; user_kfilters[i].name != NULL; i++) {
179 if (user_kfilters[i].name != '\0' &&
180 strcmp(name, user_kfilters[i].name) == 0)
181 return (&user_kfilters[i]);
182 }
183 return (NULL);
184 }
185
186 static const struct kfilter *
187 kfilter_byname(const char *name)
188 {
189 const struct kfilter *kfilter;
190
191 if ((kfilter = kfilter_byname_sys(name)) != NULL)
192 return (kfilter);
193
194 return (kfilter_byname_user(name));
195 }
196
197 /*
198 * Find kfilter entry by filter id, or NULL if not found.
199 * Assumes entries are indexed in filter id order, for speed.
200 */
201 static const struct kfilter *
202 kfilter_byfilter(uint32_t filter)
203 {
204 const struct kfilter *kfilter;
205
206 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
207 kfilter = &sys_kfilters[filter];
208 else if (user_kfilters != NULL &&
209 filter < EVFILT_SYSCOUNT + user_kfilterc)
210 /* it's a user filter */
211 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
212 else
213 return (NULL); /* out of range */
214 KASSERT(kfilter->filter == filter); /* sanity check! */
215 return (kfilter);
216 }
217
218 /*
219 * Register a new kfilter. Stores the entry in user_kfilters.
220 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
221 * If retfilter != NULL, the new filterid is returned in it.
222 */
223 int
224 kfilter_register(const char *name, const struct filterops *filtops,
225 int *retfilter)
226 {
227 struct kfilter *kfilter;
228 void *space;
229 int len;
230
231 if (name == NULL || name[0] == '\0' || filtops == NULL)
232 return (EINVAL); /* invalid args */
233 if (kfilter_byname(name) != NULL)
234 return (EEXIST); /* already exists */
235 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
236 return (EINVAL); /* too many */
237
238 /* check if need to grow user_kfilters */
239 if (user_kfilterc + 1 > user_kfiltermaxc) {
240 /*
241 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
242 * want to traverse user_kfilters as an array.
243 */
244 user_kfiltermaxc += KFILTER_EXTENT;
245 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
246 M_KEVENT, M_WAITOK);
247
248 /* copy existing user_kfilters */
249 if (user_kfilters != NULL)
250 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
251 user_kfilterc * sizeof(struct kfilter *));
252 /* zero new sections */
253 memset((caddr_t)kfilter +
254 user_kfilterc * sizeof(struct kfilter *), 0,
255 (user_kfiltermaxc - user_kfilterc) *
256 sizeof(struct kfilter *));
257 /* switch to new kfilter */
258 if (user_kfilters != NULL)
259 free(user_kfilters, M_KEVENT);
260 user_kfilters = kfilter;
261 }
262 len = strlen(name) + 1; /* copy name */
263 space = malloc(len, M_KEVENT, M_WAITOK);
264 memcpy(space, name, len);
265 user_kfilters[user_kfilterc].name = space;
266
267 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
268
269 len = sizeof(struct filterops); /* copy filtops */
270 space = malloc(len, M_KEVENT, M_WAITOK);
271 memcpy(space, filtops, len);
272 user_kfilters[user_kfilterc].filtops = space;
273
274 if (retfilter != NULL)
275 *retfilter = user_kfilters[user_kfilterc].filter;
276 user_kfilterc++; /* finally, increment count */
277 return (0);
278 }
279
280 /*
281 * Unregister a kfilter previously registered with kfilter_register.
282 * This retains the filter id, but clears the name and frees filtops (filter
283 * operations), so that the number isn't reused during a boot.
284 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
285 */
286 int
287 kfilter_unregister(const char *name)
288 {
289 struct kfilter *kfilter;
290
291 if (name == NULL || name[0] == '\0')
292 return (EINVAL); /* invalid name */
293
294 if (kfilter_byname_sys(name) != NULL)
295 return (EINVAL); /* can't detach system filters */
296
297 kfilter = kfilter_byname_user(name);
298 if (kfilter == NULL) /* not found */
299 return (ENOENT);
300
301 if (kfilter->name[0] != '\0') {
302 /* XXX Cast away const (but we know it's safe. */
303 free((void *) kfilter->name, M_KEVENT);
304 kfilter->name = ""; /* mark as `not implemented' */
305 }
306 if (kfilter->filtops != NULL) {
307 /* XXX Cast away const (but we know it's safe. */
308 free((void *) kfilter->filtops, M_KEVENT);
309 kfilter->filtops = NULL; /* mark as `not implemented' */
310 }
311 return (0);
312 }
313
314
315 /*
316 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
317 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
318 */
319 static int
320 filt_fileattach(struct knote *kn)
321 {
322 struct file *fp;
323
324 fp = kn->kn_fp;
325 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
326 }
327
328 /*
329 * Filter detach method for EVFILT_READ on kqueue descriptor.
330 */
331 static void
332 filt_kqdetach(struct knote *kn)
333 {
334 struct kqueue *kq;
335
336 kq = (struct kqueue *)kn->kn_fp->f_data;
337 SLIST_REMOVE(&kq->kq_sel.si_klist, kn, knote, kn_selnext);
338 }
339
340 /*
341 * Filter event method for EVFILT_READ on kqueue descriptor.
342 */
343 /*ARGSUSED*/
344 static int
345 filt_kqueue(struct knote *kn, long hint)
346 {
347 struct kqueue *kq;
348
349 kq = (struct kqueue *)kn->kn_fp->f_data;
350 kn->kn_data = kq->kq_count;
351 return (kn->kn_data > 0);
352 }
353
354 /*
355 * Filter attach method for EVFILT_PROC.
356 */
357 static int
358 filt_procattach(struct knote *kn)
359 {
360 struct proc *p;
361
362 p = pfind(kn->kn_id);
363 if (p == NULL)
364 return (ESRCH);
365
366 /*
367 * Fail if it's not owned by you, or the last exec gave us
368 * setuid/setgid privs (unless you're root).
369 */
370 if ((p->p_cred->p_ruid != curproc->p_cred->p_ruid ||
371 (p->p_flag & P_SUGID))
372 && suser(curproc->p_ucred, &curproc->p_acflag) != 0)
373 return (EACCES);
374
375 kn->kn_ptr.p_proc = p;
376 kn->kn_flags |= EV_CLEAR; /* automatically set */
377
378 /*
379 * internal flag indicating registration done by kernel
380 */
381 if (kn->kn_flags & EV_FLAG1) {
382 kn->kn_data = kn->kn_sdata; /* ppid */
383 kn->kn_fflags = NOTE_CHILD;
384 kn->kn_flags &= ~EV_FLAG1;
385 }
386
387 /* XXXSMP lock the process? */
388 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
389
390 return (0);
391 }
392
393 /*
394 * Filter detach method for EVFILT_PROC.
395 *
396 * The knote may be attached to a different process, which may exit,
397 * leaving nothing for the knote to be attached to. So when the process
398 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
399 * it will be deleted when read out. However, as part of the knote deletion,
400 * this routine is called, so a check is needed to avoid actually performing
401 * a detach, because the original process might not exist any more.
402 */
403 static void
404 filt_procdetach(struct knote *kn)
405 {
406 struct proc *p;
407
408 if (kn->kn_status & KN_DETACHED)
409 return;
410
411 p = kn->kn_ptr.p_proc;
412 KASSERT(p->p_stat == SDEAD || pfind(kn->kn_id) == p);
413
414 /* XXXSMP lock the process? */
415 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
416 }
417
418 /*
419 * Filter event method for EVFILT_PROC.
420 */
421 static int
422 filt_proc(struct knote *kn, long hint)
423 {
424 u_int event;
425
426 /*
427 * mask off extra data
428 */
429 event = (u_int)hint & NOTE_PCTRLMASK;
430
431 /*
432 * if the user is interested in this event, record it.
433 */
434 if (kn->kn_sfflags & event)
435 kn->kn_fflags |= event;
436
437 /*
438 * process is gone, so flag the event as finished.
439 */
440 if (event == NOTE_EXIT) {
441 /*
442 * Detach the knote from watched process and mark
443 * it as such. We can't leave this to kqueue_scan(),
444 * since the process might not exist by then. And we
445 * have to do this now, since psignal KNOTE() is called
446 * also for zombies and we might end up reading freed
447 * memory if the kevent would already be picked up
448 * and knote g/c'ed.
449 */
450 kn->kn_fop->f_detach(kn);
451 kn->kn_status |= KN_DETACHED;
452
453 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
454 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
455 return (1);
456 }
457
458 /*
459 * process forked, and user wants to track the new process,
460 * so attach a new knote to it, and immediately report an
461 * event with the parent's pid.
462 */
463 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
464 struct kevent kev;
465 int error;
466
467 /*
468 * register knote with new process.
469 */
470 kev.ident = hint & NOTE_PDATAMASK; /* pid */
471 kev.filter = kn->kn_filter;
472 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
473 kev.fflags = kn->kn_sfflags;
474 kev.data = kn->kn_id; /* parent */
475 kev.udata = kn->kn_kevent.udata; /* preserve udata */
476 error = kqueue_register(kn->kn_kq, &kev, NULL);
477 if (error)
478 kn->kn_fflags |= NOTE_TRACKERR;
479 }
480
481 return (kn->kn_fflags != 0);
482 }
483
484 /*
485 * filt_seltrue:
486 *
487 * This filter "event" routine simulates seltrue().
488 */
489 int
490 filt_seltrue(struct knote *kn, long hint)
491 {
492
493 /*
494 * We don't know how much data can be read/written,
495 * but we know that it *can* be. This is about as
496 * good as select/poll does as well.
497 */
498 kn->kn_data = 0;
499 return (1);
500 }
501
502 /*
503 * This provides full kqfilter entry for device switch tables, which
504 * has same effect as filter using filt_seltrue() as filter method.
505 */
506 static void
507 filt_seltruedetach(struct knote *kn)
508 {
509 /* Nothing to do */
510 }
511
512 static const struct filterops seltrue_filtops =
513 { 1, NULL, filt_seltruedetach, filt_seltrue };
514
515 int
516 seltrue_kqfilter(dev_t dev, struct knote *kn)
517 {
518 switch (kn->kn_filter) {
519 case EVFILT_READ:
520 case EVFILT_WRITE:
521 kn->kn_fop = &seltrue_filtops;
522 break;
523 default:
524 return (1);
525 }
526
527 /* Nothing more to do */
528 return (0);
529 }
530
531 /*
532 * kqueue(2) system call.
533 */
534 int
535 sys_kqueue(struct proc *p, void *v, register_t *retval)
536 {
537 struct filedesc *fdp;
538 struct kqueue *kq;
539 struct file *fp;
540 int fd, error;
541
542 fdp = p->p_fd;
543 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
544 if (error)
545 return (error);
546 fp->f_flag = FREAD | FWRITE;
547 fp->f_type = DTYPE_KQUEUE;
548 fp->f_ops = &kqueueops;
549 kq = pool_get(&kqueue_pool, PR_WAITOK);
550 memset((char *)kq, 0, sizeof(struct kqueue));
551 TAILQ_INIT(&kq->kq_head);
552 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
553 *retval = fd;
554 if (fdp->fd_knlistsize < 0)
555 fdp->fd_knlistsize = 0; /* this process has a kq */
556 kq->kq_fdp = fdp;
557 FILE_SET_MATURE(fp);
558 FILE_UNUSE(fp, p); /* falloc() does FILE_USE() */
559 return (error);
560 }
561
562 /*
563 * kevent(2) system call.
564 */
565 int
566 sys_kevent(struct proc *p, void *v, register_t *retval)
567 {
568 struct sys_kevent_args /* {
569 syscallarg(int) fd;
570 syscallarg(const struct kevent *) changelist;
571 syscallarg(size_t) nchanges;
572 syscallarg(struct kevent *) eventlist;
573 syscallarg(size_t) nevents;
574 syscallarg(const struct timespec *) timeout;
575 } */ *uap = v;
576 struct kevent *kevp;
577 struct kqueue *kq;
578 struct file *fp;
579 struct timespec ts;
580 size_t i, n;
581 int nerrors, error;
582
583 /* check that we're dealing with a kq */
584 fp = fd_getfile(p->p_fd, SCARG(uap, fd));
585 if (!fp || fp->f_type != DTYPE_KQUEUE)
586 return (EBADF);
587
588 FILE_USE(fp);
589
590 if (SCARG(uap, timeout) != NULL) {
591 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
592 if (error)
593 goto done;
594 SCARG(uap, timeout) = &ts;
595 }
596
597 kq = (struct kqueue *)fp->f_data;
598 nerrors = 0;
599
600 /* traverse list of events to register */
601 while (SCARG(uap, nchanges) > 0) {
602 /* copyin a maximum of KQ_EVENTS at each pass */
603 n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
604 error = copyin(SCARG(uap, changelist), kq->kq_kev,
605 n * sizeof(struct kevent));
606 if (error)
607 goto done;
608 for (i = 0; i < n; i++) {
609 kevp = &kq->kq_kev[i];
610 kevp->flags &= ~EV_SYSFLAGS;
611 /* register each knote */
612 error = kqueue_register(kq, kevp, p);
613 if (error) {
614 if (SCARG(uap, nevents) != 0) {
615 kevp->flags = EV_ERROR;
616 kevp->data = error;
617 error = copyout((caddr_t)kevp,
618 (caddr_t)SCARG(uap, eventlist),
619 sizeof(*kevp));
620 if (error)
621 goto done;
622 SCARG(uap, eventlist)++;
623 SCARG(uap, nevents)--;
624 nerrors++;
625 } else {
626 goto done;
627 }
628 }
629 }
630 SCARG(uap, nchanges) -= n; /* update the results */
631 SCARG(uap, changelist) += n;
632 }
633 if (nerrors) {
634 *retval = nerrors;
635 error = 0;
636 goto done;
637 }
638
639 /* actually scan through the events */
640 error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
641 SCARG(uap, timeout), p, retval);
642 done:
643 FILE_UNUSE(fp, p);
644 return (error);
645 }
646
647 /*
648 * Register a given kevent kev onto the kqueue
649 */
650 int
651 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
652 {
653 const struct kfilter *kfilter;
654 struct filedesc *fdp;
655 struct file *fp;
656 struct knote *kn;
657 int s, error;
658
659 fdp = kq->kq_fdp;
660 fp = NULL;
661 kn = NULL;
662 error = 0;
663 kfilter = kfilter_byfilter(kev->filter);
664 if (kfilter == NULL || kfilter->filtops == NULL) {
665 /* filter not found nor implemented */
666 return (EINVAL);
667 }
668
669 /* search if knote already exists */
670 if (kfilter->filtops->f_isfd) {
671 /* monitoring a file descriptor */
672 if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
673 return (EBADF); /* validate descriptor */
674 FILE_USE(fp);
675
676 if (kev->ident < fdp->fd_knlistsize) {
677 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
678 if (kq == kn->kn_kq &&
679 kev->filter == kn->kn_filter)
680 break;
681 }
682 } else {
683 /*
684 * not monitoring a file descriptor, so
685 * lookup knotes in internal hash table
686 */
687 if (fdp->fd_knhashmask != 0) {
688 struct klist *list;
689
690 list = &fdp->fd_knhash[
691 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
692 SLIST_FOREACH(kn, list, kn_link)
693 if (kev->ident == kn->kn_id &&
694 kq == kn->kn_kq &&
695 kev->filter == kn->kn_filter)
696 break;
697 }
698 }
699
700 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
701 error = ENOENT; /* filter not found */
702 goto done;
703 }
704
705 /*
706 * kn now contains the matching knote, or NULL if no match
707 */
708 if (kev->flags & EV_ADD) {
709 /* add knote */
710
711 if (kn == NULL) {
712 /* create new knote */
713 kn = pool_get(&knote_pool, PR_WAITOK);
714 if (kn == NULL) {
715 error = ENOMEM;
716 goto done;
717 }
718 kn->kn_fp = fp;
719 kn->kn_kq = kq;
720 kn->kn_fop = kfilter->filtops;
721
722 /*
723 * apply reference count to knote structure, and
724 * do not release it at the end of this routine.
725 */
726 fp = NULL;
727
728 kn->kn_sfflags = kev->fflags;
729 kn->kn_sdata = kev->data;
730 kev->fflags = 0;
731 kev->data = 0;
732 kn->kn_kevent = *kev;
733
734 knote_attach(kn, fdp);
735 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
736 knote_drop(kn, p, fdp);
737 goto done;
738 }
739 } else {
740 /* modify existing knote */
741
742 /*
743 * The user may change some filter values after the
744 * initial EV_ADD, but doing so will not reset any
745 * filter which have already been triggered.
746 */
747 kn->kn_sfflags = kev->fflags;
748 kn->kn_sdata = kev->data;
749 kn->kn_kevent.udata = kev->udata;
750 }
751
752 s = splhigh();
753 if (kn->kn_fop->f_event(kn, 0))
754 KNOTE_ACTIVATE(kn);
755 splx(s);
756
757 } else if (kev->flags & EV_DELETE) { /* delete knote */
758 kn->kn_fop->f_detach(kn);
759 knote_drop(kn, p, fdp);
760 goto done;
761 }
762
763 /* disable knote */
764 if ((kev->flags & EV_DISABLE) &&
765 ((kn->kn_status & KN_DISABLED) == 0)) {
766 s = splhigh();
767 kn->kn_status |= KN_DISABLED;
768 splx(s);
769 }
770
771 /* enable knote */
772 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
773 s = splhigh();
774 kn->kn_status &= ~KN_DISABLED;
775 if ((kn->kn_status & KN_ACTIVE) &&
776 ((kn->kn_status & KN_QUEUED) == 0))
777 knote_enqueue(kn);
778 splx(s);
779 }
780
781 done:
782 if (fp != NULL)
783 FILE_UNUSE(fp, p);
784 return (error);
785 }
786
787 /*
788 * Scan through the list of events on fp (for a maximum of maxevents),
789 * returning the results in to ulistp. Timeout is determined by tsp; if
790 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
791 * as appropriate.
792 */
793 static int
794 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
795 const struct timespec *tsp, struct proc *p, register_t *retval)
796 {
797 struct kqueue *kq;
798 struct kevent *kevp;
799 struct timeval atv;
800 struct knote *kn, marker;
801 size_t count, nkev;
802 int s, timeout, error;
803
804 kq = (struct kqueue *)fp->f_data;
805 count = maxevents;
806 nkev = error = 0;
807 if (count == 0)
808 goto done;
809
810 if (tsp != NULL) { /* timeout supplied */
811 TIMESPEC_TO_TIMEVAL(&atv, tsp);
812 if (itimerfix(&atv)) {
813 error = EINVAL;
814 goto done;
815 }
816 s = splclock();
817 timeradd(&atv, &time, &atv); /* calc. time to wait until */
818 splx(s);
819 if (tsp->tv_sec == 0 && tsp->tv_nsec < 1000 /*<1us*/)
820 timeout = -1; /* perform a poll */
821 else
822 timeout = hzto(&atv); /* calculate hz till timeout */
823 } else {
824 atv.tv_sec = 0; /* no timeout, wait forever */
825 atv.tv_usec = 0;
826 timeout = 0;
827 }
828 goto start;
829
830 retry:
831 if (atv.tv_sec || atv.tv_usec) { /* timeout requested */
832 s = splclock();
833 if (timercmp(&time, &atv, >=)) {
834 splx(s);
835 goto done; /* timeout reached */
836 }
837 splx(s);
838 timeout = hzto(&atv); /* recalc. timeout remaining */
839 }
840
841 start:
842 kevp = kq->kq_kev;
843 s = splhigh();
844 if (kq->kq_count == 0) {
845 if (timeout < 0) {
846 error = EWOULDBLOCK;
847 } else {
848 kq->kq_state |= KQ_SLEEP;
849 error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
850 }
851 splx(s);
852 if (error == 0)
853 goto retry;
854 /* don't restart after signals... */
855 if (error == ERESTART)
856 error = EINTR;
857 else if (error == EWOULDBLOCK)
858 error = 0;
859 goto done;
860 }
861
862 /* mark end of knote list */
863 TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
864
865 while (count) { /* while user wants data ... */
866 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
867 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
868 if (kn == &marker) { /* if it's our marker, stop */
869 splx(s);
870 if (count == maxevents)
871 goto retry;
872 goto done;
873 }
874 if (kn->kn_status & KN_DISABLED) {
875 /* don't want disabled events */
876 kn->kn_status &= ~KN_QUEUED;
877 kq->kq_count--;
878 continue;
879 }
880 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
881 kn->kn_fop->f_event(kn, 0) == 0) {
882 /*
883 * non-ONESHOT event that hasn't
884 * triggered again, so de-queue.
885 */
886 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
887 kq->kq_count--;
888 continue;
889 }
890 *kevp = kn->kn_kevent;
891 kevp++;
892 nkev++;
893 if (kn->kn_flags & EV_ONESHOT) {
894 /* delete ONESHOT events after retrieval */
895 kn->kn_status &= ~KN_QUEUED;
896 kq->kq_count--;
897 splx(s);
898 kn->kn_fop->f_detach(kn);
899 knote_drop(kn, p, p->p_fd);
900 s = splhigh();
901 } else if (kn->kn_flags & EV_CLEAR) {
902 /* clear state after retrieval */
903 kn->kn_data = 0;
904 kn->kn_fflags = 0;
905 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
906 kq->kq_count--;
907 } else {
908 /* add event back on list */
909 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
910 }
911 count--;
912 if (nkev == KQ_NEVENTS) {
913 /* do copyouts in KQ_NEVENTS chunks */
914 splx(s);
915 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
916 sizeof(struct kevent) * nkev);
917 ulistp += nkev;
918 nkev = 0;
919 kevp = kq->kq_kev;
920 s = splhigh();
921 if (error)
922 break;
923 }
924 }
925
926 /* remove marker */
927 TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
928 splx(s);
929 done:
930 if (nkev != 0) {
931 /* copyout remaining events */
932 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
933 sizeof(struct kevent) * nkev);
934 }
935 *retval = maxevents - count;
936
937 return (error);
938 }
939
940 /*
941 * struct fileops read method for a kqueue descriptor.
942 * Not implemented.
943 * XXX: This could be expanded to call kqueue_scan, if desired.
944 */
945 /*ARGSUSED*/
946 static int
947 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
948 struct ucred *cred, int flags)
949 {
950
951 return (ENXIO);
952 }
953
954 /*
955 * struct fileops write method for a kqueue descriptor.
956 * Not implemented.
957 */
958 /*ARGSUSED*/
959 static int
960 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
961 struct ucred *cred, int flags)
962 {
963
964 return (ENXIO);
965 }
966
967 /*
968 * struct fileops ioctl method for a kqueue descriptor.
969 *
970 * Two ioctls are currently supported. They both use struct kfilter_mapping:
971 * KFILTER_BYNAME find name for filter, and return result in
972 * name, which is of size len.
973 * KFILTER_BYFILTER find filter for name. len is ignored.
974 */
975 /*ARGSUSED*/
976 static int
977 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
978 {
979 struct kfilter_mapping *km;
980 const struct kfilter *kfilter;
981 char *name;
982 int error;
983
984 km = (struct kfilter_mapping *)data;
985 error = 0;
986
987 switch (com) {
988 case KFILTER_BYFILTER: /* convert filter -> name */
989 kfilter = kfilter_byfilter(km->filter);
990 if (kfilter != NULL)
991 error = copyoutstr(kfilter->name, km->name, km->len,
992 NULL);
993 else
994 error = ENOENT;
995 break;
996
997 case KFILTER_BYNAME: /* convert name -> filter */
998 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
999 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1000 if (error) {
1001 FREE(name, M_KEVENT);
1002 break;
1003 }
1004 kfilter = kfilter_byname(name);
1005 if (kfilter != NULL)
1006 km->filter = kfilter->filter;
1007 else
1008 error = ENOENT;
1009 FREE(name, M_KEVENT);
1010 break;
1011
1012 default:
1013 error = ENOTTY;
1014
1015 }
1016 return (error);
1017 }
1018
1019 /*
1020 * struct fileops fcntl method for a kqueue descriptor.
1021 * Not implemented.
1022 */
1023 /*ARGSUSED*/
1024 static int
1025 kqueue_fcntl(struct file *fp, u_int com, caddr_t data, struct proc *p)
1026 {
1027
1028 return (ENOTTY);
1029 }
1030
1031 /*
1032 * struct fileops poll method for a kqueue descriptor.
1033 * Determine if kqueue has events pending.
1034 */
1035 static int
1036 kqueue_poll(struct file *fp, int events, struct proc *p)
1037 {
1038 struct kqueue *kq;
1039 int revents;
1040
1041 kq = (struct kqueue *)fp->f_data;
1042 revents = 0;
1043 if (events & (POLLIN | POLLRDNORM)) {
1044 if (kq->kq_count) {
1045 revents |= events & (POLLIN | POLLRDNORM);
1046 } else {
1047 selrecord(p, &kq->kq_sel);
1048 }
1049 }
1050 return (revents);
1051 }
1052
1053 /*
1054 * struct fileops stat method for a kqueue descriptor.
1055 * Returns dummy info, with st_size being number of events pending.
1056 */
1057 static int
1058 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
1059 {
1060 struct kqueue *kq;
1061
1062 kq = (struct kqueue *)fp->f_data;
1063 memset((void *)st, 0, sizeof(*st));
1064 st->st_size = kq->kq_count;
1065 st->st_blksize = sizeof(struct kevent);
1066 st->st_mode = S_IFIFO;
1067 return (0);
1068 }
1069
1070 /*
1071 * struct fileops close method for a kqueue descriptor.
1072 * Cleans up kqueue.
1073 */
1074 static int
1075 kqueue_close(struct file *fp, struct proc *p)
1076 {
1077 struct kqueue *kq;
1078 struct filedesc *fdp;
1079 struct knote **knp, *kn, *kn0;
1080 int i;
1081
1082 kq = (struct kqueue *)fp->f_data;
1083 fdp = p->p_fd;
1084 for (i = 0; i < fdp->fd_knlistsize; i++) {
1085 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1086 kn = *knp;
1087 while (kn != NULL) {
1088 kn0 = SLIST_NEXT(kn, kn_link);
1089 if (kq == kn->kn_kq) {
1090 kn->kn_fop->f_detach(kn);
1091 FILE_UNUSE(kn->kn_fp, p);
1092 pool_put(&knote_pool, kn);
1093 *knp = kn0;
1094 } else {
1095 knp = &SLIST_NEXT(kn, kn_link);
1096 }
1097 kn = kn0;
1098 }
1099 }
1100 if (fdp->fd_knhashmask != 0) {
1101 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1102 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1103 kn = *knp;
1104 while (kn != NULL) {
1105 kn0 = SLIST_NEXT(kn, kn_link);
1106 if (kq == kn->kn_kq) {
1107 kn->kn_fop->f_detach(kn);
1108 /* XXX non-fd release of kn->kn_ptr */
1109 pool_put(&knote_pool, kn);
1110 *knp = kn0;
1111 } else {
1112 knp = &SLIST_NEXT(kn, kn_link);
1113 }
1114 kn = kn0;
1115 }
1116 }
1117 }
1118 pool_put(&kqueue_pool, kq);
1119 fp->f_data = NULL;
1120
1121 return (0);
1122 }
1123
1124 /*
1125 * wakeup a kqueue
1126 */
1127 static void
1128 kqueue_wakeup(struct kqueue *kq)
1129 {
1130
1131 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1132 kq->kq_state &= ~KQ_SLEEP;
1133 wakeup(kq); /* ... wakeup */
1134 }
1135
1136 /* Notify select/poll and kevent. */
1137 selnotify(&kq->kq_sel, 0);
1138 }
1139
1140 /*
1141 * struct fileops kqfilter method for a kqueue descriptor.
1142 * Event triggered when monitored kqueue changes.
1143 */
1144 /*ARGSUSED*/
1145 static int
1146 kqueue_kqfilter(struct file *fp, struct knote *kn)
1147 {
1148 struct kqueue *kq;
1149
1150 KASSERT(fp == kn->kn_fp);
1151 kq = (struct kqueue *)kn->kn_fp->f_data;
1152 if (kn->kn_filter != EVFILT_READ)
1153 return (1);
1154 kn->kn_fop = &kqread_filtops;
1155 SLIST_INSERT_HEAD(&kq->kq_sel.si_klist, kn, kn_selnext);
1156 return (0);
1157 }
1158
1159
1160 /*
1161 * Walk down a list of knotes, activating them if their event has triggered.
1162 */
1163 void
1164 knote(struct klist *list, long hint)
1165 {
1166 struct knote *kn;
1167
1168 SLIST_FOREACH(kn, list, kn_selnext)
1169 if (kn->kn_fop->f_event(kn, hint))
1170 KNOTE_ACTIVATE(kn);
1171 }
1172
1173 /*
1174 * Remove all knotes from a specified klist
1175 */
1176 void
1177 knote_remove(struct proc *p, struct klist *list)
1178 {
1179 struct knote *kn;
1180
1181 while ((kn = SLIST_FIRST(list)) != NULL) {
1182 kn->kn_fop->f_detach(kn);
1183 knote_drop(kn, p, p->p_fd);
1184 }
1185 }
1186
1187 /*
1188 * Remove all knotes referencing a specified fd
1189 */
1190 void
1191 knote_fdclose(struct proc *p, int fd)
1192 {
1193 struct filedesc *fdp;
1194 struct klist *list;
1195
1196 fdp = p->p_fd;
1197 list = &fdp->fd_knlist[fd];
1198 knote_remove(p, list);
1199 }
1200
1201 /*
1202 * Attach a new knote to a file descriptor
1203 */
1204 static void
1205 knote_attach(struct knote *kn, struct filedesc *fdp)
1206 {
1207 struct klist *list;
1208 int size;
1209
1210 if (! kn->kn_fop->f_isfd) {
1211 /* if knote is not on an fd, store on internal hash table */
1212 if (fdp->fd_knhashmask == 0)
1213 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1214 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1215 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1216 goto done;
1217 }
1218
1219 /*
1220 * otherwise, knote is on an fd.
1221 * knotes are stored in fd_knlist indexed by kn->kn_id.
1222 */
1223 if (fdp->fd_knlistsize <= kn->kn_id) {
1224 /* expand list, it's too small */
1225 size = fdp->fd_knlistsize;
1226 while (size <= kn->kn_id) {
1227 /* grow in KQ_EXTENT chunks */
1228 size += KQ_EXTENT;
1229 }
1230 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1231 if (fdp->fd_knlist) {
1232 /* copy existing knlist */
1233 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1234 fdp->fd_knlistsize * sizeof(struct klist *));
1235 }
1236 /*
1237 * Zero new memory. Stylistically, SLIST_INIT() should be
1238 * used here, but that does same thing as the memset() anyway.
1239 */
1240 memset(&list[fdp->fd_knlistsize], 0,
1241 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1242
1243 /* switch to new knlist */
1244 if (fdp->fd_knlist != NULL)
1245 free(fdp->fd_knlist, M_KEVENT);
1246 fdp->fd_knlistsize = size;
1247 fdp->fd_knlist = list;
1248 }
1249
1250 /* get list head for this fd */
1251 list = &fdp->fd_knlist[kn->kn_id];
1252 done:
1253 /* add new knote */
1254 SLIST_INSERT_HEAD(list, kn, kn_link);
1255 kn->kn_status = 0;
1256 }
1257
1258 /*
1259 * Drop knote.
1260 * Should be called at spl == 0, since we don't want to hold spl
1261 * while calling FILE_UNUSE and free.
1262 */
1263 static void
1264 knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp)
1265 {
1266 struct klist *list;
1267
1268 if (kn->kn_fop->f_isfd)
1269 list = &fdp->fd_knlist[kn->kn_id];
1270 else
1271 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1272
1273 SLIST_REMOVE(list, kn, knote, kn_link);
1274 if (kn->kn_status & KN_QUEUED)
1275 knote_dequeue(kn);
1276 if (kn->kn_fop->f_isfd)
1277 FILE_UNUSE(kn->kn_fp, p);
1278 pool_put(&knote_pool, kn);
1279 }
1280
1281
1282 /*
1283 * Queue new event for knote.
1284 */
1285 static void
1286 knote_enqueue(struct knote *kn)
1287 {
1288 struct kqueue *kq;
1289 int s;
1290
1291 kq = kn->kn_kq;
1292 s = splhigh();
1293 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1294
1295 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1296 kn->kn_status |= KN_QUEUED;
1297 kq->kq_count++;
1298 splx(s);
1299 kqueue_wakeup(kq);
1300 }
1301
1302 /*
1303 * Dequeue event for knote.
1304 */
1305 static void
1306 knote_dequeue(struct knote *kn)
1307 {
1308 struct kqueue *kq;
1309 int s;
1310
1311 kq = kn->kn_kq;
1312 s = splhigh();
1313 KASSERT(kn->kn_status & KN_QUEUED);
1314
1315 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1316 kn->kn_status &= ~KN_QUEUED;
1317 kq->kq_count--;
1318 splx(s);
1319 }
1320