Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.53
      1 /*	$NetBSD: kern_event.c,v 1.53 2008/03/26 13:32:32 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*-
     37  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     38  * All rights reserved.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.53 2008/03/26 13:32:32 ad Exp $");
     66 
     67 #include <sys/param.h>
     68 #include <sys/systm.h>
     69 #include <sys/kernel.h>
     70 #include <sys/proc.h>
     71 #include <sys/file.h>
     72 #include <sys/select.h>
     73 #include <sys/queue.h>
     74 #include <sys/event.h>
     75 #include <sys/eventvar.h>
     76 #include <sys/poll.h>
     77 #include <sys/malloc.h>		/* for hashinit */
     78 #include <sys/kmem.h>
     79 #include <sys/stat.h>
     80 #include <sys/filedesc.h>
     81 #include <sys/syscallargs.h>
     82 #include <sys/kauth.h>
     83 #include <sys/conf.h>
     84 #include <sys/atomic.h>
     85 
     86 static int	kqueue_scan(file_t *, size_t, struct kevent *,
     87 			    const struct timespec *, register_t *,
     88 			    const struct kevent_ops *, struct kevent *,
     89 			    size_t);
     90 static int	kqueue_ioctl(file_t *, u_long, void *);
     91 static int	kqueue_fcntl(file_t *, u_int, void *);
     92 static int	kqueue_poll(file_t *, int);
     93 static int	kqueue_kqfilter(file_t *, struct knote *);
     94 static int	kqueue_stat(file_t *, struct stat *);
     95 static int	kqueue_close(file_t *);
     96 static int	kqueue_register(struct kqueue *, struct kevent *);
     97 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
     98 
     99 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
    100 static void	knote_enqueue(struct knote *);
    101 static void	knote_activate(struct knote *);
    102 
    103 static void	filt_kqdetach(struct knote *);
    104 static int	filt_kqueue(struct knote *, long hint);
    105 static int	filt_procattach(struct knote *);
    106 static void	filt_procdetach(struct knote *);
    107 static int	filt_proc(struct knote *, long hint);
    108 static int	filt_fileattach(struct knote *);
    109 static void	filt_timerexpire(void *x);
    110 static int	filt_timerattach(struct knote *);
    111 static void	filt_timerdetach(struct knote *);
    112 static int	filt_timer(struct knote *, long hint);
    113 
    114 static const struct fileops kqueueops = {
    115 	(void *)enxio, (void *)enxio, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
    116 	kqueue_stat, kqueue_close, kqueue_kqfilter
    117 };
    118 
    119 static const struct filterops kqread_filtops =
    120 	{ 1, NULL, filt_kqdetach, filt_kqueue };
    121 static const struct filterops proc_filtops =
    122 	{ 0, filt_procattach, filt_procdetach, filt_proc };
    123 static const struct filterops file_filtops =
    124 	{ 1, filt_fileattach, NULL, NULL };
    125 static const struct filterops timer_filtops =
    126 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
    127 
    128 static u_int	kq_ncallouts = 0;
    129 static int	kq_calloutmax = (4 * 1024);
    130 
    131 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");	/* for hashinit */
    132 
    133 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    134 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    135 
    136 extern const struct filterops sig_filtops;
    137 
    138 /*
    139  * Table for for all system-defined filters.
    140  * These should be listed in the numeric order of the EVFILT_* defines.
    141  * If filtops is NULL, the filter isn't implemented in NetBSD.
    142  * End of list is when name is NULL.
    143  *
    144  * Note that 'refcnt' is meaningless for built-in filters.
    145  */
    146 struct kfilter {
    147 	const char	*name;		/* name of filter */
    148 	uint32_t	filter;		/* id of filter */
    149 	unsigned	refcnt;		/* reference count */
    150 	const struct filterops *filtops;/* operations for filter */
    151 	size_t		namelen;	/* length of name string */
    152 };
    153 
    154 /* System defined filters */
    155 static struct kfilter sys_kfilters[] = {
    156 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    157 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    158 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    159 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    160 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    161 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    162 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    163 	{ NULL,			0,		0, NULL, 0 },
    164 };
    165 
    166 /* User defined kfilters */
    167 static struct kfilter	*user_kfilters;		/* array */
    168 static int		user_kfilterc;		/* current offset */
    169 static int		user_kfiltermaxc;	/* max size so far */
    170 static size_t		user_kfiltersz;		/* size of allocated memory */
    171 
    172 /* Locks */
    173 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    174 static kmutex_t		kqueue_misc_lock;	/* miscellaneous */
    175 
    176 /*
    177  * Initialize the kqueue subsystem.
    178  */
    179 void
    180 kqueue_init(void)
    181 {
    182 
    183 	rw_init(&kqueue_filter_lock);
    184 	mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    185 }
    186 
    187 /*
    188  * Find kfilter entry by name, or NULL if not found.
    189  */
    190 static struct kfilter *
    191 kfilter_byname_sys(const char *name)
    192 {
    193 	int i;
    194 
    195 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    196 
    197 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    198 		if (strcmp(name, sys_kfilters[i].name) == 0)
    199 			return &sys_kfilters[i];
    200 	}
    201 	return NULL;
    202 }
    203 
    204 static struct kfilter *
    205 kfilter_byname_user(const char *name)
    206 {
    207 	int i;
    208 
    209 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    210 
    211 	/* user filter slots have a NULL name if previously deregistered */
    212 	for (i = 0; i < user_kfilterc ; i++) {
    213 		if (user_kfilters[i].name != NULL &&
    214 		    strcmp(name, user_kfilters[i].name) == 0)
    215 			return &user_kfilters[i];
    216 	}
    217 	return NULL;
    218 }
    219 
    220 static struct kfilter *
    221 kfilter_byname(const char *name)
    222 {
    223 	struct kfilter *kfilter;
    224 
    225 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    226 
    227 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    228 		return kfilter;
    229 
    230 	return kfilter_byname_user(name);
    231 }
    232 
    233 /*
    234  * Find kfilter entry by filter id, or NULL if not found.
    235  * Assumes entries are indexed in filter id order, for speed.
    236  */
    237 static struct kfilter *
    238 kfilter_byfilter(uint32_t filter)
    239 {
    240 	struct kfilter *kfilter;
    241 
    242 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    243 
    244 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    245 		kfilter = &sys_kfilters[filter];
    246 	else if (user_kfilters != NULL &&
    247 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    248 					/* it's a user filter */
    249 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    250 	else
    251 		return (NULL);		/* out of range */
    252 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    253 	return (kfilter);
    254 }
    255 
    256 /*
    257  * Register a new kfilter. Stores the entry in user_kfilters.
    258  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    259  * If retfilter != NULL, the new filterid is returned in it.
    260  */
    261 int
    262 kfilter_register(const char *name, const struct filterops *filtops,
    263 		 int *retfilter)
    264 {
    265 	struct kfilter *kfilter;
    266 	size_t len;
    267 	int i;
    268 
    269 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    270 		return (EINVAL);	/* invalid args */
    271 
    272 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    273 	if (kfilter_byname(name) != NULL) {
    274 		rw_exit(&kqueue_filter_lock);
    275 		return (EEXIST);	/* already exists */
    276 	}
    277 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    278 		rw_exit(&kqueue_filter_lock);
    279 		return (EINVAL);	/* too many */
    280 	}
    281 
    282 	for (i = 0; i < user_kfilterc; i++) {
    283 		kfilter = &user_kfilters[i];
    284 		if (kfilter->name == NULL) {
    285 			/* Previously deregistered slot.  Reuse. */
    286 			goto reuse;
    287 		}
    288 	}
    289 
    290 	/* check if need to grow user_kfilters */
    291 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    292 		/* Grow in KFILTER_EXTENT chunks. */
    293 		user_kfiltermaxc += KFILTER_EXTENT;
    294 		len = user_kfiltermaxc * sizeof(struct filter *);
    295 		kfilter = kmem_alloc(len, KM_SLEEP);
    296 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    297 		if (user_kfilters != NULL) {
    298 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    299 			kmem_free(user_kfilters, user_kfiltersz);
    300 		}
    301 		user_kfiltersz = len;
    302 		user_kfilters = kfilter;
    303 	}
    304 	/* Adding new slot */
    305 	kfilter = &user_kfilters[user_kfilterc++];
    306 reuse:
    307 	kfilter->namelen = strlen(name) + 1;
    308 	kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
    309 	memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
    310 
    311 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    312 
    313 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    314 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    315 
    316 	if (retfilter != NULL)
    317 		*retfilter = kfilter->filter;
    318 	rw_exit(&kqueue_filter_lock);
    319 
    320 	return (0);
    321 }
    322 
    323 /*
    324  * Unregister a kfilter previously registered with kfilter_register.
    325  * This retains the filter id, but clears the name and frees filtops (filter
    326  * operations), so that the number isn't reused during a boot.
    327  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    328  */
    329 int
    330 kfilter_unregister(const char *name)
    331 {
    332 	struct kfilter *kfilter;
    333 
    334 	if (name == NULL || name[0] == '\0')
    335 		return (EINVAL);	/* invalid name */
    336 
    337 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    338 	if (kfilter_byname_sys(name) != NULL) {
    339 		rw_exit(&kqueue_filter_lock);
    340 		return (EINVAL);	/* can't detach system filters */
    341 	}
    342 
    343 	kfilter = kfilter_byname_user(name);
    344 	if (kfilter == NULL) {
    345 		rw_exit(&kqueue_filter_lock);
    346 		return (ENOENT);
    347 	}
    348 	if (kfilter->refcnt != 0) {
    349 		rw_exit(&kqueue_filter_lock);
    350 		return (EBUSY);
    351 	}
    352 
    353 	/* Cast away const (but we know it's safe. */
    354 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    355 	kfilter->name = NULL;	/* mark as `not implemented' */
    356 
    357 	if (kfilter->filtops != NULL) {
    358 		/* Cast away const (but we know it's safe. */
    359 		kmem_free(__UNCONST(kfilter->filtops),
    360 		    sizeof(*kfilter->filtops));
    361 		kfilter->filtops = NULL; /* mark as `not implemented' */
    362 	}
    363 	rw_exit(&kqueue_filter_lock);
    364 
    365 	return (0);
    366 }
    367 
    368 
    369 /*
    370  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    371  * descriptors. Calls fileops kqfilter method for given file descriptor.
    372  */
    373 static int
    374 filt_fileattach(struct knote *kn)
    375 {
    376 	file_t *fp;
    377 
    378 	fp = kn->kn_obj;
    379 
    380 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    381 }
    382 
    383 /*
    384  * Filter detach method for EVFILT_READ on kqueue descriptor.
    385  */
    386 static void
    387 filt_kqdetach(struct knote *kn)
    388 {
    389 	struct kqueue *kq;
    390 
    391 	kq = ((file_t *)kn->kn_obj)->f_data;
    392 
    393 	mutex_spin_enter(&kq->kq_lock);
    394 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
    395 	mutex_spin_exit(&kq->kq_lock);
    396 }
    397 
    398 /*
    399  * Filter event method for EVFILT_READ on kqueue descriptor.
    400  */
    401 /*ARGSUSED*/
    402 static int
    403 filt_kqueue(struct knote *kn, long hint)
    404 {
    405 	struct kqueue *kq;
    406 	int rv;
    407 
    408 	kq = ((file_t *)kn->kn_obj)->f_data;
    409 
    410 	if (hint != NOTE_SUBMIT)
    411 		mutex_spin_enter(&kq->kq_lock);
    412 	kn->kn_data = kq->kq_count;
    413 	rv = (kn->kn_data > 0);
    414 	if (hint != NOTE_SUBMIT)
    415 		mutex_spin_exit(&kq->kq_lock);
    416 
    417 	return rv;
    418 }
    419 
    420 /*
    421  * Filter attach method for EVFILT_PROC.
    422  */
    423 static int
    424 filt_procattach(struct knote *kn)
    425 {
    426 	struct proc *p, *curp;
    427 	struct lwp *curl;
    428 
    429 	curl = curlwp;
    430 	curp = curl->l_proc;
    431 
    432 	mutex_enter(&proclist_lock);
    433 	p = p_find(kn->kn_id, PFIND_LOCKED);
    434 	if (p == NULL) {
    435 		mutex_exit(&proclist_lock);
    436 		return ESRCH;
    437 	}
    438 
    439 	/*
    440 	 * Fail if it's not owned by you, or the last exec gave us
    441 	 * setuid/setgid privs (unless you're root).
    442 	 */
    443 	mutex_enter(&p->p_mutex);
    444 	mutex_exit(&proclist_lock);
    445 	if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
    446 	    p, NULL, NULL, NULL) != 0) {
    447 	    	mutex_exit(&p->p_mutex);
    448 		return EACCES;
    449 	}
    450 
    451 	kn->kn_obj = p;
    452 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    453 
    454 	/*
    455 	 * internal flag indicating registration done by kernel
    456 	 */
    457 	if (kn->kn_flags & EV_FLAG1) {
    458 		kn->kn_data = kn->kn_sdata;	/* ppid */
    459 		kn->kn_fflags = NOTE_CHILD;
    460 		kn->kn_flags &= ~EV_FLAG1;
    461 	}
    462 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    463     	mutex_exit(&p->p_mutex);
    464 
    465 	return 0;
    466 }
    467 
    468 /*
    469  * Filter detach method for EVFILT_PROC.
    470  *
    471  * The knote may be attached to a different process, which may exit,
    472  * leaving nothing for the knote to be attached to.  So when the process
    473  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    474  * it will be deleted when read out.  However, as part of the knote deletion,
    475  * this routine is called, so a check is needed to avoid actually performing
    476  * a detach, because the original process might not exist any more.
    477  */
    478 static void
    479 filt_procdetach(struct knote *kn)
    480 {
    481 	struct proc *p;
    482 
    483 	if (kn->kn_status & KN_DETACHED)
    484 		return;
    485 
    486 	p = kn->kn_obj;
    487 
    488 	mutex_enter(&p->p_mutex);
    489 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    490 	mutex_exit(&p->p_mutex);
    491 }
    492 
    493 /*
    494  * Filter event method for EVFILT_PROC.
    495  */
    496 static int
    497 filt_proc(struct knote *kn, long hint)
    498 {
    499 	u_int event, fflag;
    500 	struct kevent kev;
    501 	struct kqueue *kq;
    502 	int error;
    503 
    504 	event = (u_int)hint & NOTE_PCTRLMASK;
    505 	kq = kn->kn_kq;
    506 	fflag = 0;
    507 
    508 	/* If the user is interested in this event, record it. */
    509 	if (kn->kn_sfflags & event)
    510 		fflag |= event;
    511 
    512 	if (event == NOTE_EXIT) {
    513 		/*
    514 		 * Process is gone, so flag the event as finished.
    515 		 *
    516 		 * Detach the knote from watched process and mark
    517 		 * it as such. We can't leave this to kqueue_scan(),
    518 		 * since the process might not exist by then. And we
    519 		 * have to do this now, since psignal KNOTE() is called
    520 		 * also for zombies and we might end up reading freed
    521 		 * memory if the kevent would already be picked up
    522 		 * and knote g/c'ed.
    523 		 */
    524 		filt_procdetach(kn);
    525 
    526 		mutex_spin_enter(&kq->kq_lock);
    527 		kn->kn_status |= KN_DETACHED;
    528 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
    529 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
    530 		kn->kn_fflags |= fflag;
    531 		mutex_spin_exit(&kq->kq_lock);
    532 
    533 		return 1;
    534 	}
    535 
    536 	mutex_spin_enter(&kq->kq_lock);
    537 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
    538 		/*
    539 		 * Process forked, and user wants to track the new process,
    540 		 * so attach a new knote to it, and immediately report an
    541 		 * event with the parent's pid.  Register knote with new
    542 		 * process.
    543 		 */
    544 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
    545 		kev.filter = kn->kn_filter;
    546 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
    547 		kev.fflags = kn->kn_sfflags;
    548 		kev.data = kn->kn_id;			/* parent */
    549 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
    550 		mutex_spin_exit(&kq->kq_lock);
    551 		error = kqueue_register(kq, &kev);
    552 		mutex_spin_enter(&kq->kq_lock);
    553 		if (error != 0)
    554 			kn->kn_fflags |= NOTE_TRACKERR;
    555 	}
    556 	kn->kn_fflags |= fflag;
    557 	fflag = kn->kn_fflags;
    558 	mutex_spin_exit(&kq->kq_lock);
    559 
    560 	return fflag != 0;
    561 }
    562 
    563 static void
    564 filt_timerexpire(void *knx)
    565 {
    566 	struct knote *kn = knx;
    567 	int tticks;
    568 
    569 	mutex_enter(&kqueue_misc_lock);
    570 	kn->kn_data++;
    571 	knote_activate(kn);
    572 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
    573 		tticks = mstohz(kn->kn_sdata);
    574 		callout_schedule((callout_t *)kn->kn_hook, tticks);
    575 	}
    576 	mutex_exit(&kqueue_misc_lock);
    577 }
    578 
    579 /*
    580  * data contains amount of time to sleep, in milliseconds
    581  */
    582 static int
    583 filt_timerattach(struct knote *kn)
    584 {
    585 	callout_t *calloutp;
    586 	struct kqueue *kq;
    587 	int tticks;
    588 
    589 	tticks = mstohz(kn->kn_sdata);
    590 
    591 	/* if the supplied value is under our resolution, use 1 tick */
    592 	if (tticks == 0) {
    593 		if (kn->kn_sdata == 0)
    594 			return EINVAL;
    595 		tticks = 1;
    596 	}
    597 
    598 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
    599 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
    600 		atomic_dec_uint(&kq_ncallouts);
    601 		return ENOMEM;
    602 	}
    603 	callout_init(calloutp, 0);
    604 
    605 	kq = kn->kn_kq;
    606 	mutex_spin_enter(&kq->kq_lock);
    607 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
    608 	kn->kn_hook = calloutp;
    609 	mutex_spin_exit(&kq->kq_lock);
    610 
    611 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
    612 
    613 	return (0);
    614 }
    615 
    616 static void
    617 filt_timerdetach(struct knote *kn)
    618 {
    619 	callout_t *calloutp;
    620 
    621 	calloutp = (callout_t *)kn->kn_hook;
    622 	callout_stop(calloutp);
    623 	callout_destroy(calloutp);
    624 	kmem_free(calloutp, sizeof(*calloutp));
    625 	atomic_dec_uint(&kq_ncallouts);
    626 }
    627 
    628 static int
    629 filt_timer(struct knote *kn, long hint)
    630 {
    631 	int rv;
    632 
    633 	mutex_enter(&kqueue_misc_lock);
    634 	rv = (kn->kn_data != 0);
    635 	mutex_exit(&kqueue_misc_lock);
    636 
    637 	return rv;
    638 }
    639 
    640 /*
    641  * filt_seltrue:
    642  *
    643  *	This filter "event" routine simulates seltrue().
    644  */
    645 int
    646 filt_seltrue(struct knote *kn, long hint)
    647 {
    648 
    649 	/*
    650 	 * We don't know how much data can be read/written,
    651 	 * but we know that it *can* be.  This is about as
    652 	 * good as select/poll does as well.
    653 	 */
    654 	kn->kn_data = 0;
    655 	return (1);
    656 }
    657 
    658 /*
    659  * This provides full kqfilter entry for device switch tables, which
    660  * has same effect as filter using filt_seltrue() as filter method.
    661  */
    662 static void
    663 filt_seltruedetach(struct knote *kn)
    664 {
    665 	/* Nothing to do */
    666 }
    667 
    668 const struct filterops seltrue_filtops =
    669 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
    670 
    671 int
    672 seltrue_kqfilter(dev_t dev, struct knote *kn)
    673 {
    674 	switch (kn->kn_filter) {
    675 	case EVFILT_READ:
    676 	case EVFILT_WRITE:
    677 		kn->kn_fop = &seltrue_filtops;
    678 		break;
    679 	default:
    680 		return (EINVAL);
    681 	}
    682 
    683 	/* Nothing more to do */
    684 	return (0);
    685 }
    686 
    687 /*
    688  * kqueue(2) system call.
    689  */
    690 int
    691 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
    692 {
    693 	struct kqueue *kq;
    694 	file_t *fp;
    695 	int fd, error;
    696 
    697 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    698 		return error;
    699 	fp->f_flag = FREAD | FWRITE;
    700 	fp->f_type = DTYPE_KQUEUE;
    701 	fp->f_ops = &kqueueops;
    702 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
    703 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
    704 	cv_init(&kq->kq_cv, "kqueue");
    705 	selinit(&kq->kq_sel);
    706 	TAILQ_INIT(&kq->kq_head);
    707 	fp->f_data = kq;
    708 	*retval = fd;
    709 	kq->kq_fdp = curlwp->l_fd;
    710 	fd_affix(curproc, fp, fd);
    711 	return error;
    712 }
    713 
    714 /*
    715  * kevent(2) system call.
    716  */
    717 static int
    718 kevent_fetch_changes(void *private, const struct kevent *changelist,
    719 		     struct kevent *changes, size_t index, int n)
    720 {
    721 
    722 	return copyin(changelist + index, changes, n * sizeof(*changes));
    723 }
    724 
    725 static int
    726 kevent_put_events(void *private, struct kevent *events,
    727 		  struct kevent *eventlist, size_t index, int n)
    728 {
    729 
    730 	return copyout(events, eventlist + index, n * sizeof(*events));
    731 }
    732 
    733 static const struct kevent_ops kevent_native_ops = {
    734 	keo_private: NULL,
    735 	keo_fetch_timeout: copyin,
    736 	keo_fetch_changes: kevent_fetch_changes,
    737 	keo_put_events: kevent_put_events,
    738 };
    739 
    740 int
    741 sys_kevent(struct lwp *l, const struct sys_kevent_args *uap, register_t *retval)
    742 {
    743 	/* {
    744 		syscallarg(int) fd;
    745 		syscallarg(const struct kevent *) changelist;
    746 		syscallarg(size_t) nchanges;
    747 		syscallarg(struct kevent *) eventlist;
    748 		syscallarg(size_t) nevents;
    749 		syscallarg(const struct timespec *) timeout;
    750 	} */
    751 
    752 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
    753 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
    754 	    SCARG(uap, timeout), &kevent_native_ops);
    755 }
    756 
    757 int
    758 kevent1(register_t *retval, int fd,
    759 	const struct kevent *changelist, size_t nchanges,
    760 	struct kevent *eventlist, size_t nevents,
    761 	const struct timespec *timeout,
    762 	const struct kevent_ops *keops)
    763 {
    764 	struct kevent *kevp;
    765 	struct kqueue *kq;
    766 	struct timespec	ts;
    767 	size_t i, n, ichange;
    768 	int nerrors, error;
    769 	struct kevent kevbuf[8];	/* approx 300 bytes on 64-bit */
    770 	file_t *fp;
    771 
    772 	/* check that we're dealing with a kq */
    773 	fp = fd_getfile(fd);
    774 	if (fp == NULL)
    775 		return (EBADF);
    776 
    777 	if (fp->f_type != DTYPE_KQUEUE) {
    778 		fd_putfile(fd);
    779 		return (EBADF);
    780 	}
    781 
    782 	if (timeout != NULL) {
    783 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
    784 		if (error)
    785 			goto done;
    786 		timeout = &ts;
    787 	}
    788 
    789 	kq = (struct kqueue *)fp->f_data;
    790 	nerrors = 0;
    791 	ichange = 0;
    792 
    793 	/* traverse list of events to register */
    794 	while (nchanges > 0) {
    795 		n = MIN(nchanges, __arraycount(kevbuf));
    796 		error = (*keops->keo_fetch_changes)(keops->keo_private,
    797 		    changelist, kevbuf, ichange, n);
    798 		if (error)
    799 			goto done;
    800 		for (i = 0; i < n; i++) {
    801 			kevp = &kevbuf[i];
    802 			kevp->flags &= ~EV_SYSFLAGS;
    803 			/* register each knote */
    804 			error = kqueue_register(kq, kevp);
    805 			if (error) {
    806 				if (nevents != 0) {
    807 					kevp->flags = EV_ERROR;
    808 					kevp->data = error;
    809 					error = (*keops->keo_put_events)
    810 					    (keops->keo_private, kevp,
    811 					    eventlist, nerrors, 1);
    812 					if (error)
    813 						goto done;
    814 					nevents--;
    815 					nerrors++;
    816 				} else {
    817 					goto done;
    818 				}
    819 			}
    820 		}
    821 		nchanges -= n;	/* update the results */
    822 		ichange += n;
    823 	}
    824 	if (nerrors) {
    825 		*retval = nerrors;
    826 		error = 0;
    827 		goto done;
    828 	}
    829 
    830 	/* actually scan through the events */
    831 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
    832 	    kevbuf, __arraycount(kevbuf));
    833  done:
    834 	fd_putfile(fd);
    835 	return (error);
    836 }
    837 
    838 /*
    839  * Register a given kevent kev onto the kqueue
    840  */
    841 static int
    842 kqueue_register(struct kqueue *kq, struct kevent *kev)
    843 {
    844 	struct kfilter *kfilter;
    845 	filedesc_t *fdp;
    846 	file_t *fp;
    847 	fdfile_t *ff;
    848 	struct knote *kn, *newkn;
    849 	struct klist *list;
    850 	int error, fd, rv;
    851 
    852 	fdp = kq->kq_fdp;
    853 	fp = NULL;
    854 	kn = NULL;
    855 	error = 0;
    856 	fd = 0;
    857 
    858 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
    859 
    860 	rw_enter(&kqueue_filter_lock, RW_READER);
    861 	kfilter = kfilter_byfilter(kev->filter);
    862 	if (kfilter == NULL || kfilter->filtops == NULL) {
    863 		/* filter not found nor implemented */
    864 		rw_exit(&kqueue_filter_lock);
    865 		kmem_free(newkn, sizeof(*newkn));
    866 		return (EINVAL);
    867 	}
    868 
    869  	mutex_enter(&fdp->fd_lock);
    870 
    871 	/* search if knote already exists */
    872 	if (kfilter->filtops->f_isfd) {
    873 		/* monitoring a file descriptor */
    874 		fd = kev->ident;
    875 		if ((fp = fd_getfile(fd)) == NULL) {
    876 		 	mutex_exit(&fdp->fd_lock);
    877 			rw_exit(&kqueue_filter_lock);
    878 			kmem_free(newkn, sizeof(*newkn));
    879 			return EBADF;
    880 		}
    881 		ff = fdp->fd_ofiles[fd];
    882 		if (fd <= fdp->fd_lastkqfile) {
    883 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
    884 				if (kq == kn->kn_kq &&
    885 				    kev->filter == kn->kn_filter)
    886 					break;
    887 			}
    888 		}
    889 	} else {
    890 		/*
    891 		 * not monitoring a file descriptor, so
    892 		 * lookup knotes in internal hash table
    893 		 */
    894 		if (fdp->fd_knhashmask != 0) {
    895 			list = &fdp->fd_knhash[
    896 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
    897 			SLIST_FOREACH(kn, list, kn_link) {
    898 				if (kev->ident == kn->kn_id &&
    899 				    kq == kn->kn_kq &&
    900 				    kev->filter == kn->kn_filter)
    901 					break;
    902 			}
    903 		}
    904 	}
    905 
    906 	/*
    907 	 * kn now contains the matching knote, or NULL if no match
    908 	 */
    909 	if (kev->flags & EV_ADD) {
    910 		if (kn == NULL) {
    911 			/* create new knote */
    912 			kn = newkn;
    913 			newkn = NULL;
    914 			kn->kn_obj = fp;
    915 			kn->kn_kq = kq;
    916 			kn->kn_fop = kfilter->filtops;
    917 			kn->kn_kfilter = kfilter;
    918 			kn->kn_sfflags = kev->fflags;
    919 			kn->kn_sdata = kev->data;
    920 			kev->fflags = 0;
    921 			kev->data = 0;
    922 			kn->kn_kevent = *kev;
    923 
    924 			/*
    925 			 * apply reference count to knote structure, and
    926 			 * do not release it at the end of this routine.
    927 			 */
    928 			fp = NULL;
    929 
    930 			if (!kn->kn_fop->f_isfd) {
    931 				/*
    932 				 * If knote is not on an fd, store on
    933 				 * internal hash table.
    934 				 */
    935 				if (fdp->fd_knhashmask == 0) {
    936 					/* XXXAD can block with fd_lock held */
    937 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
    938 					    HASH_LIST, M_KEVENT, M_WAITOK,
    939 					    &fdp->fd_knhashmask);
    940 				}
    941 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
    942 				    fdp->fd_knhashmask)];
    943 			} else {
    944 				/* Otherwise, knote is on an fd. */
    945 				list = (struct klist *)
    946 				    &fdp->fd_ofiles[kn->kn_id]->ff_knlist;
    947 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
    948 					fdp->fd_lastkqfile = kn->kn_id;
    949 			}
    950 			SLIST_INSERT_HEAD(list, kn, kn_link);
    951 
    952 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
    953 			error = (*kfilter->filtops->f_attach)(kn);
    954 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
    955 			if (error != 0) {
    956 				/* knote_detach() drops fdp->fd_lock */
    957 				knote_detach(kn, fdp, false);
    958 				goto done;
    959 			}
    960 			atomic_inc_uint(&kfilter->refcnt);
    961 		} else {
    962 			/*
    963 			 * The user may change some filter values after the
    964 			 * initial EV_ADD, but doing so will not reset any
    965 			 * filter which have already been triggered.
    966 			 */
    967 			kn->kn_sfflags = kev->fflags;
    968 			kn->kn_sdata = kev->data;
    969 			kn->kn_kevent.udata = kev->udata;
    970 		}
    971 		KERNEL_LOCK(1, NULL);			/* XXXSMP */
    972 		rv = (*kn->kn_fop->f_event)(kn, 0);
    973 		KERNEL_UNLOCK_ONE(NULL);		/* XXXSMP */
    974 		if (rv)
    975 			knote_activate(kn);
    976 	} else {
    977 		if (kn == NULL) {
    978 			error = ENOENT;
    979 		 	mutex_exit(&fdp->fd_lock);
    980 			goto done;
    981 		}
    982 		if (kev->flags & EV_DELETE) {
    983 			/* knote_detach() drops fdp->fd_lock */
    984 			knote_detach(kn, fdp, true);
    985 			goto done;
    986 		}
    987 	}
    988 
    989 	/* disable knote */
    990 	if ((kev->flags & EV_DISABLE)) {
    991 		mutex_spin_enter(&kq->kq_lock);
    992 		if ((kn->kn_status & KN_DISABLED) == 0)
    993 			kn->kn_status |= KN_DISABLED;
    994 		mutex_spin_exit(&kq->kq_lock);
    995 	}
    996 
    997 	/* enable knote */
    998 	if ((kev->flags & EV_ENABLE)) {
    999 		knote_enqueue(kn);
   1000 	}
   1001 	mutex_exit(&fdp->fd_lock);
   1002  done:
   1003 	rw_exit(&kqueue_filter_lock);
   1004 	if (newkn != NULL)
   1005 		kmem_free(newkn, sizeof(*newkn));
   1006 	if (fp != NULL)
   1007 		fd_putfile(fd);
   1008 	return (error);
   1009 }
   1010 
   1011 #if defined(DEBUG)
   1012 static void
   1013 kq_check(struct kqueue *kq)
   1014 {
   1015 	const struct knote *kn;
   1016 	int count;
   1017 	int nmarker;
   1018 
   1019 	KASSERT(mutex_owned(&kq->kq_lock));
   1020 	KASSERT(kq->kq_count >= 0);
   1021 
   1022 	count = 0;
   1023 	nmarker = 0;
   1024 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   1025 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   1026 			panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
   1027 		}
   1028 		if ((kn->kn_status & KN_MARKER) == 0) {
   1029 			if (kn->kn_kq != kq) {
   1030 				panic("%s: kq=%p kn=%p inconsist 2",
   1031 				    __func__, kq, kn);
   1032 			}
   1033 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   1034 				panic("%s: kq=%p kn=%p: not active",
   1035 				    __func__, kq, kn);
   1036 			}
   1037 			count++;
   1038 			if (count > kq->kq_count) {
   1039 				goto bad;
   1040 			}
   1041 		} else {
   1042 			nmarker++;
   1043 #if 0
   1044 			if (nmarker > 10000) {
   1045 				panic("%s: kq=%p too many markers: %d != %d, "
   1046 				    "nmarker=%d",
   1047 				    __func__, kq, kq->kq_count, count, nmarker);
   1048 			}
   1049 #endif
   1050 		}
   1051 	}
   1052 	if (kq->kq_count != count) {
   1053 bad:
   1054 		panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
   1055 		    __func__, kq, kq->kq_count, count, nmarker);
   1056 	}
   1057 }
   1058 #else /* defined(DEBUG) */
   1059 #define	kq_check(a)	/* nothing */
   1060 #endif /* defined(DEBUG) */
   1061 
   1062 /*
   1063  * Scan through the list of events on fp (for a maximum of maxevents),
   1064  * returning the results in to ulistp. Timeout is determined by tsp; if
   1065  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   1066  * as appropriate.
   1067  */
   1068 static int
   1069 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   1070 	    const struct timespec *tsp, register_t *retval,
   1071 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   1072 	    size_t kevcnt)
   1073 {
   1074 	struct kqueue	*kq;
   1075 	struct kevent	*kevp;
   1076 	struct timeval	atv, sleeptv;
   1077 	struct knote	*kn, *marker;
   1078 	size_t		count, nkev, nevents;
   1079 	int		timeout, error, rv;
   1080 	filedesc_t	*fdp;
   1081 
   1082 	fdp = curlwp->l_fd;
   1083 	kq = fp->f_data;
   1084 	count = maxevents;
   1085 	nkev = nevents = error = 0;
   1086 	if (count == 0) {
   1087 		*retval = 0;
   1088 		return 0;
   1089 	}
   1090 
   1091 	if (tsp) {				/* timeout supplied */
   1092 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
   1093 		if (inittimeleft(&atv, &sleeptv) == -1) {
   1094 			*retval = maxevents;
   1095 			return EINVAL;
   1096 		}
   1097 		timeout = tvtohz(&atv);
   1098 		if (timeout <= 0)
   1099 			timeout = -1;           /* do poll */
   1100 	} else {
   1101 		/* no timeout, wait forever */
   1102 		timeout = 0;
   1103 	}
   1104 
   1105 	marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
   1106 	marker->kn_status = KN_MARKER;
   1107 	mutex_spin_enter(&kq->kq_lock);
   1108  retry:
   1109 	kevp = kevbuf;
   1110 	if (kq->kq_count == 0) {
   1111 		if (timeout >= 0) {
   1112 			error = cv_timedwait_sig(&kq->kq_cv,
   1113 			    &kq->kq_lock, timeout);
   1114 			if (error == 0) {
   1115 				 if (tsp == NULL || (timeout =
   1116 				     gettimeleft(&atv, &sleeptv)) > 0)
   1117 					goto retry;
   1118 			} else {
   1119 				/* don't restart after signals... */
   1120 				if (error == ERESTART)
   1121 					error = EINTR;
   1122 				if (error == EWOULDBLOCK)
   1123 					error = 0;
   1124 			}
   1125 		}
   1126 	} else {
   1127 		/* mark end of knote list */
   1128 		TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   1129 
   1130 		while (count != 0) {
   1131 			kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
   1132 			while ((kn->kn_status & KN_MARKER) != 0) {
   1133 				if (kn == marker) {
   1134 					/* it's our marker, stop */
   1135 					TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1136 					if (count < maxevents || (tsp != NULL &&
   1137 					    (timeout = gettimeleft(&atv,
   1138 					    &sleeptv)) <= 0))
   1139 						goto done;
   1140 					goto retry;
   1141 				}
   1142 				/* someone else's marker. */
   1143 				kn = TAILQ_NEXT(kn, kn_tqe);
   1144 			}
   1145 			kq_check(kq);
   1146 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1147 			kq->kq_count--;
   1148 			kn->kn_status &= ~KN_QUEUED;
   1149 			kq_check(kq);
   1150 			if (kn->kn_status & KN_DISABLED) {
   1151 				/* don't want disabled events */
   1152 				continue;
   1153 			}
   1154 			if ((kn->kn_flags & EV_ONESHOT) == 0) {
   1155 				mutex_spin_exit(&kq->kq_lock);
   1156 				KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1157 				rv = (*kn->kn_fop->f_event)(kn, 0);
   1158 				KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1159 				mutex_spin_enter(&kq->kq_lock);
   1160 				/* Re-poll if note was re-enqueued. */
   1161 				if ((kn->kn_status & KN_QUEUED) != 0)
   1162 					continue;
   1163 				if (rv == 0) {
   1164 					/*
   1165 					 * non-ONESHOT event that hasn't
   1166 					 * triggered again, so de-queue.
   1167 					 */
   1168 					kn->kn_status &= ~KN_ACTIVE;
   1169 					continue;
   1170 				}
   1171 			}
   1172 			/* XXXAD should be got from f_event if !oneshot. */
   1173 			*kevp++ = kn->kn_kevent;
   1174 			nkev++;
   1175 			if (kn->kn_flags & EV_ONESHOT) {
   1176 				/* delete ONESHOT events after retrieval */
   1177 				mutex_spin_exit(&kq->kq_lock);
   1178 				mutex_enter(&fdp->fd_lock);
   1179 				knote_detach(kn, fdp, true);
   1180 				mutex_spin_enter(&kq->kq_lock);
   1181 			} else if (kn->kn_flags & EV_CLEAR) {
   1182 				/* clear state after retrieval */
   1183 				kn->kn_data = 0;
   1184 				kn->kn_fflags = 0;
   1185 				kn->kn_status &= ~KN_ACTIVE;
   1186 			} else {
   1187 				/* add event back on list */
   1188 				kq_check(kq);
   1189 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1190 				kq->kq_count++;
   1191 				kn->kn_status |= KN_QUEUED;
   1192 				kq_check(kq);
   1193 			}
   1194 			if (nkev == kevcnt) {
   1195 				/* do copyouts in kevcnt chunks */
   1196 				mutex_spin_exit(&kq->kq_lock);
   1197 				error = (*keops->keo_put_events)
   1198 				    (keops->keo_private,
   1199 				    kevbuf, ulistp, nevents, nkev);
   1200 				mutex_spin_enter(&kq->kq_lock);
   1201 				nevents += nkev;
   1202 				nkev = 0;
   1203 				kevp = kevbuf;
   1204 			}
   1205 			count--;
   1206 			if (error != 0 || count == 0) {
   1207 				/* remove marker */
   1208 				TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   1209 				break;
   1210 			}
   1211 		}
   1212 	}
   1213  done:
   1214  	mutex_spin_exit(&kq->kq_lock);
   1215 	if (marker != NULL)
   1216 		kmem_free(marker, sizeof(*marker));
   1217 	if (nkev != 0) {
   1218 		/* copyout remaining events */
   1219 		error = (*keops->keo_put_events)(keops->keo_private,
   1220 		    kevbuf, ulistp, nevents, nkev);
   1221 	}
   1222 	*retval = maxevents - count;
   1223 
   1224 	return error;
   1225 }
   1226 
   1227 /*
   1228  * fileops ioctl method for a kqueue descriptor.
   1229  *
   1230  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   1231  *	KFILTER_BYNAME		find name for filter, and return result in
   1232  *				name, which is of size len.
   1233  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   1234  */
   1235 /*ARGSUSED*/
   1236 static int
   1237 kqueue_ioctl(file_t *fp, u_long com, void *data)
   1238 {
   1239 	struct kfilter_mapping	*km;
   1240 	const struct kfilter	*kfilter;
   1241 	char			*name;
   1242 	int			error;
   1243 
   1244 	km = data;
   1245 	error = 0;
   1246 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   1247 
   1248 	switch (com) {
   1249 	case KFILTER_BYFILTER:	/* convert filter -> name */
   1250 		rw_enter(&kqueue_filter_lock, RW_READER);
   1251 		kfilter = kfilter_byfilter(km->filter);
   1252 		if (kfilter != NULL) {
   1253 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   1254 			rw_exit(&kqueue_filter_lock);
   1255 			error = copyoutstr(name, km->name, km->len, NULL);
   1256 		} else {
   1257 			rw_exit(&kqueue_filter_lock);
   1258 			error = ENOENT;
   1259 		}
   1260 		break;
   1261 
   1262 	case KFILTER_BYNAME:	/* convert name -> filter */
   1263 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   1264 		if (error) {
   1265 			break;
   1266 		}
   1267 		rw_enter(&kqueue_filter_lock, RW_READER);
   1268 		kfilter = kfilter_byname(name);
   1269 		if (kfilter != NULL)
   1270 			km->filter = kfilter->filter;
   1271 		else
   1272 			error = ENOENT;
   1273 		rw_exit(&kqueue_filter_lock);
   1274 		break;
   1275 
   1276 	default:
   1277 		error = ENOTTY;
   1278 		break;
   1279 
   1280 	}
   1281 	kmem_free(name, KFILTER_MAXNAME);
   1282 	return (error);
   1283 }
   1284 
   1285 /*
   1286  * fileops fcntl method for a kqueue descriptor.
   1287  */
   1288 static int
   1289 kqueue_fcntl(file_t *fp, u_int com, void *data)
   1290 {
   1291 
   1292 	return (ENOTTY);
   1293 }
   1294 
   1295 /*
   1296  * fileops poll method for a kqueue descriptor.
   1297  * Determine if kqueue has events pending.
   1298  */
   1299 static int
   1300 kqueue_poll(file_t *fp, int events)
   1301 {
   1302 	struct kqueue	*kq;
   1303 	int		revents;
   1304 
   1305 	kq = fp->f_data;
   1306 
   1307 	revents = 0;
   1308 	if (events & (POLLIN | POLLRDNORM)) {
   1309 		mutex_spin_enter(&kq->kq_lock);
   1310 		if (kq->kq_count != 0) {
   1311 			revents |= events & (POLLIN | POLLRDNORM);
   1312 		} else {
   1313 			selrecord(curlwp, &kq->kq_sel);
   1314 		}
   1315 		kq_check(kq);
   1316 		mutex_spin_exit(&kq->kq_lock);
   1317 	}
   1318 
   1319 	return revents;
   1320 }
   1321 
   1322 /*
   1323  * fileops stat method for a kqueue descriptor.
   1324  * Returns dummy info, with st_size being number of events pending.
   1325  */
   1326 static int
   1327 kqueue_stat(file_t *fp, struct stat *st)
   1328 {
   1329 	struct kqueue *kq;
   1330 
   1331 	kq = fp->f_data;
   1332 
   1333 	memset(st, 0, sizeof(*st));
   1334 	st->st_size = kq->kq_count;
   1335 	st->st_blksize = sizeof(struct kevent);
   1336 	st->st_mode = S_IFIFO;
   1337 
   1338 	return 0;
   1339 }
   1340 
   1341 static void
   1342 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   1343 {
   1344 	struct knote *kn;
   1345 	filedesc_t *fdp;
   1346 
   1347 	fdp = kq->kq_fdp;
   1348 
   1349 	KASSERT(mutex_owned(&fdp->fd_lock));
   1350 
   1351 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   1352 		if (kq != kn->kn_kq) {
   1353 			kn = SLIST_NEXT(kn, kn_link);
   1354 			continue;
   1355 		}
   1356 		knote_detach(kn, fdp, true);
   1357 		mutex_enter(&fdp->fd_lock);
   1358 		kn = SLIST_FIRST(list);
   1359 	}
   1360 }
   1361 
   1362 
   1363 /*
   1364  * fileops close method for a kqueue descriptor.
   1365  */
   1366 static int
   1367 kqueue_close(file_t *fp)
   1368 {
   1369 	struct kqueue *kq;
   1370 	filedesc_t *fdp;
   1371 	fdfile_t *ff;
   1372 	int i;
   1373 
   1374 	kq = fp->f_data;
   1375 	fdp = curlwp->l_fd;
   1376 
   1377 	mutex_enter(&fdp->fd_lock);
   1378 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   1379 		if ((ff = fdp->fd_ofiles[i]) == NULL)
   1380 			continue;
   1381 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   1382 	}
   1383 	if (fdp->fd_knhashmask != 0) {
   1384 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   1385 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   1386 		}
   1387 	}
   1388 	mutex_exit(&fdp->fd_lock);
   1389 
   1390 	KASSERT(kq->kq_count == 0);
   1391 	mutex_destroy(&kq->kq_lock);
   1392 	cv_destroy(&kq->kq_cv);
   1393 	seldestroy(&kq->kq_sel);
   1394 	kmem_free(kq, sizeof(*kq));
   1395 	fp->f_data = NULL;
   1396 
   1397 	return (0);
   1398 }
   1399 
   1400 /*
   1401  * struct fileops kqfilter method for a kqueue descriptor.
   1402  * Event triggered when monitored kqueue changes.
   1403  */
   1404 static int
   1405 kqueue_kqfilter(file_t *fp, struct knote *kn)
   1406 {
   1407 	struct kqueue *kq;
   1408 	filedesc_t *fdp;
   1409 
   1410 	kq = ((file_t *)kn->kn_obj)->f_data;
   1411 
   1412 	KASSERT(fp == kn->kn_obj);
   1413 
   1414 	if (kn->kn_filter != EVFILT_READ)
   1415 		return 1;
   1416 
   1417 	kn->kn_fop = &kqread_filtops;
   1418 	fdp = curlwp->l_fd;
   1419 	mutex_enter(&kq->kq_lock);
   1420 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
   1421 	mutex_exit(&kq->kq_lock);
   1422 
   1423 	return 0;
   1424 }
   1425 
   1426 
   1427 /*
   1428  * Walk down a list of knotes, activating them if their event has
   1429  * triggered.  The caller's object lock (e.g. device driver lock)
   1430  * must be held.
   1431  */
   1432 void
   1433 knote(struct klist *list, long hint)
   1434 {
   1435 	struct knote *kn;
   1436 
   1437 	SLIST_FOREACH(kn, list, kn_selnext) {
   1438 		if ((*kn->kn_fop->f_event)(kn, hint))
   1439 			knote_activate(kn);
   1440 	}
   1441 }
   1442 
   1443 /*
   1444  * Remove all knotes referencing a specified fd
   1445  */
   1446 void
   1447 knote_fdclose(int fd)
   1448 {
   1449 	struct klist *list;
   1450 	struct knote *kn;
   1451 	filedesc_t *fdp;
   1452 
   1453 	fdp = curlwp->l_fd;
   1454 	list = (struct klist *)&fdp->fd_ofiles[fd]->ff_knlist;
   1455 	mutex_enter(&fdp->fd_lock);
   1456 	while ((kn = SLIST_FIRST(list)) != NULL) {
   1457 		knote_detach(kn, fdp, true);
   1458 		mutex_enter(&fdp->fd_lock);
   1459 	}
   1460 	mutex_exit(&fdp->fd_lock);
   1461 }
   1462 
   1463 /*
   1464  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   1465  * returning.
   1466  */
   1467 static void
   1468 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   1469 {
   1470 	struct klist *list;
   1471 	struct kqueue *kq;
   1472 
   1473 	kq = kn->kn_kq;
   1474 
   1475 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1476 	KASSERT(mutex_owned(&fdp->fd_lock));
   1477 
   1478 	/* Remove from monitored object. */
   1479 	if (dofop) {
   1480 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1481 		(*kn->kn_fop->f_detach)(kn);
   1482 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1483 	}
   1484 
   1485 	/* Remove from descriptor table. */
   1486 	if (kn->kn_fop->f_isfd)
   1487 		list = (struct klist *)&fdp->fd_ofiles[kn->kn_id]->ff_knlist;
   1488 	else
   1489 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1490 
   1491 	SLIST_REMOVE(list, kn, knote, kn_link);
   1492 
   1493 	/* Remove from kqueue. */
   1494 	/* XXXAD should verify not in use by kqueue_scan. */
   1495 	mutex_spin_enter(&kq->kq_lock);
   1496 	if ((kn->kn_status & KN_QUEUED) != 0) {
   1497 		kq_check(kq);
   1498 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1499 		kn->kn_status &= ~KN_QUEUED;
   1500 		kq->kq_count--;
   1501 		kq_check(kq);
   1502 	}
   1503 	mutex_spin_exit(&kq->kq_lock);
   1504 
   1505 	mutex_exit(&fdp->fd_lock);
   1506 	if (kn->kn_fop->f_isfd)
   1507 		fd_putfile(kn->kn_id);
   1508 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   1509 	kmem_free(kn, sizeof(*kn));
   1510 }
   1511 
   1512 /*
   1513  * Queue new event for knote.
   1514  */
   1515 static void
   1516 knote_enqueue(struct knote *kn)
   1517 {
   1518 	struct kqueue *kq;
   1519 
   1520 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1521 
   1522 	kq = kn->kn_kq;
   1523 
   1524 	mutex_spin_enter(&kq->kq_lock);
   1525 	if ((kn->kn_status & KN_DISABLED) != 0) {
   1526 		kn->kn_status &= ~KN_DISABLED;
   1527 	}
   1528 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   1529 		kq_check(kq);
   1530 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1531 		kn->kn_status |= KN_QUEUED;
   1532 		kq->kq_count++;
   1533 		kq_check(kq);
   1534 		cv_broadcast(&kq->kq_cv);
   1535 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1536 	}
   1537 	mutex_spin_exit(&kq->kq_lock);
   1538 }
   1539 /*
   1540  * Queue new event for knote.
   1541  */
   1542 static void
   1543 knote_activate(struct knote *kn)
   1544 {
   1545 	struct kqueue *kq;
   1546 
   1547 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1548 
   1549 	kq = kn->kn_kq;
   1550 
   1551 	mutex_spin_enter(&kq->kq_lock);
   1552 	kn->kn_status |= KN_ACTIVE;
   1553 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   1554 		kq_check(kq);
   1555 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1556 		kn->kn_status |= KN_QUEUED;
   1557 		kq->kq_count++;
   1558 		kq_check(kq);
   1559 		cv_broadcast(&kq->kq_cv);
   1560 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1561 	}
   1562 	mutex_spin_exit(&kq->kq_lock);
   1563 }
   1564