kern_event.c revision 1.58 1 /* $NetBSD: kern_event.c,v 1.58 2008/04/28 20:24:03 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
55 */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.58 2008/04/28 20:24:03 martin Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/proc.h>
64 #include <sys/file.h>
65 #include <sys/select.h>
66 #include <sys/queue.h>
67 #include <sys/event.h>
68 #include <sys/eventvar.h>
69 #include <sys/poll.h>
70 #include <sys/malloc.h> /* for hashinit */
71 #include <sys/kmem.h>
72 #include <sys/stat.h>
73 #include <sys/filedesc.h>
74 #include <sys/syscallargs.h>
75 #include <sys/kauth.h>
76 #include <sys/conf.h>
77 #include <sys/atomic.h>
78
79 static int kqueue_scan(file_t *, size_t, struct kevent *,
80 const struct timespec *, register_t *,
81 const struct kevent_ops *, struct kevent *,
82 size_t);
83 static int kqueue_ioctl(file_t *, u_long, void *);
84 static int kqueue_fcntl(file_t *, u_int, void *);
85 static int kqueue_poll(file_t *, int);
86 static int kqueue_kqfilter(file_t *, struct knote *);
87 static int kqueue_stat(file_t *, struct stat *);
88 static int kqueue_close(file_t *);
89 static int kqueue_register(struct kqueue *, struct kevent *);
90 static void kqueue_doclose(struct kqueue *, struct klist *, int);
91
92 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
93 static void knote_enqueue(struct knote *);
94 static void knote_activate(struct knote *);
95
96 static void filt_kqdetach(struct knote *);
97 static int filt_kqueue(struct knote *, long hint);
98 static int filt_procattach(struct knote *);
99 static void filt_procdetach(struct knote *);
100 static int filt_proc(struct knote *, long hint);
101 static int filt_fileattach(struct knote *);
102 static void filt_timerexpire(void *x);
103 static int filt_timerattach(struct knote *);
104 static void filt_timerdetach(struct knote *);
105 static int filt_timer(struct knote *, long hint);
106
107 static const struct fileops kqueueops = {
108 (void *)enxio, (void *)enxio, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
109 kqueue_stat, kqueue_close, kqueue_kqfilter
110 };
111
112 static const struct filterops kqread_filtops =
113 { 1, NULL, filt_kqdetach, filt_kqueue };
114 static const struct filterops proc_filtops =
115 { 0, filt_procattach, filt_procdetach, filt_proc };
116 static const struct filterops file_filtops =
117 { 1, filt_fileattach, NULL, NULL };
118 static const struct filterops timer_filtops =
119 { 0, filt_timerattach, filt_timerdetach, filt_timer };
120
121 static u_int kq_ncallouts = 0;
122 static int kq_calloutmax = (4 * 1024);
123
124 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes"); /* for hashinit */
125
126 #define KN_HASHSIZE 64 /* XXX should be tunable */
127 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
128
129 extern const struct filterops sig_filtops;
130
131 /*
132 * Table for for all system-defined filters.
133 * These should be listed in the numeric order of the EVFILT_* defines.
134 * If filtops is NULL, the filter isn't implemented in NetBSD.
135 * End of list is when name is NULL.
136 *
137 * Note that 'refcnt' is meaningless for built-in filters.
138 */
139 struct kfilter {
140 const char *name; /* name of filter */
141 uint32_t filter; /* id of filter */
142 unsigned refcnt; /* reference count */
143 const struct filterops *filtops;/* operations for filter */
144 size_t namelen; /* length of name string */
145 };
146
147 /* System defined filters */
148 static struct kfilter sys_kfilters[] = {
149 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
150 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
151 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
152 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
153 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
154 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
155 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
156 { NULL, 0, 0, NULL, 0 },
157 };
158
159 /* User defined kfilters */
160 static struct kfilter *user_kfilters; /* array */
161 static int user_kfilterc; /* current offset */
162 static int user_kfiltermaxc; /* max size so far */
163 static size_t user_kfiltersz; /* size of allocated memory */
164
165 /* Locks */
166 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
167 static kmutex_t kqueue_misc_lock; /* miscellaneous */
168
169 /*
170 * Initialize the kqueue subsystem.
171 */
172 void
173 kqueue_init(void)
174 {
175
176 rw_init(&kqueue_filter_lock);
177 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
178 }
179
180 /*
181 * Find kfilter entry by name, or NULL if not found.
182 */
183 static struct kfilter *
184 kfilter_byname_sys(const char *name)
185 {
186 int i;
187
188 KASSERT(rw_lock_held(&kqueue_filter_lock));
189
190 for (i = 0; sys_kfilters[i].name != NULL; i++) {
191 if (strcmp(name, sys_kfilters[i].name) == 0)
192 return &sys_kfilters[i];
193 }
194 return NULL;
195 }
196
197 static struct kfilter *
198 kfilter_byname_user(const char *name)
199 {
200 int i;
201
202 KASSERT(rw_lock_held(&kqueue_filter_lock));
203
204 /* user filter slots have a NULL name if previously deregistered */
205 for (i = 0; i < user_kfilterc ; i++) {
206 if (user_kfilters[i].name != NULL &&
207 strcmp(name, user_kfilters[i].name) == 0)
208 return &user_kfilters[i];
209 }
210 return NULL;
211 }
212
213 static struct kfilter *
214 kfilter_byname(const char *name)
215 {
216 struct kfilter *kfilter;
217
218 KASSERT(rw_lock_held(&kqueue_filter_lock));
219
220 if ((kfilter = kfilter_byname_sys(name)) != NULL)
221 return kfilter;
222
223 return kfilter_byname_user(name);
224 }
225
226 /*
227 * Find kfilter entry by filter id, or NULL if not found.
228 * Assumes entries are indexed in filter id order, for speed.
229 */
230 static struct kfilter *
231 kfilter_byfilter(uint32_t filter)
232 {
233 struct kfilter *kfilter;
234
235 KASSERT(rw_lock_held(&kqueue_filter_lock));
236
237 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
238 kfilter = &sys_kfilters[filter];
239 else if (user_kfilters != NULL &&
240 filter < EVFILT_SYSCOUNT + user_kfilterc)
241 /* it's a user filter */
242 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
243 else
244 return (NULL); /* out of range */
245 KASSERT(kfilter->filter == filter); /* sanity check! */
246 return (kfilter);
247 }
248
249 /*
250 * Register a new kfilter. Stores the entry in user_kfilters.
251 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
252 * If retfilter != NULL, the new filterid is returned in it.
253 */
254 int
255 kfilter_register(const char *name, const struct filterops *filtops,
256 int *retfilter)
257 {
258 struct kfilter *kfilter;
259 size_t len;
260 int i;
261
262 if (name == NULL || name[0] == '\0' || filtops == NULL)
263 return (EINVAL); /* invalid args */
264
265 rw_enter(&kqueue_filter_lock, RW_WRITER);
266 if (kfilter_byname(name) != NULL) {
267 rw_exit(&kqueue_filter_lock);
268 return (EEXIST); /* already exists */
269 }
270 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
271 rw_exit(&kqueue_filter_lock);
272 return (EINVAL); /* too many */
273 }
274
275 for (i = 0; i < user_kfilterc; i++) {
276 kfilter = &user_kfilters[i];
277 if (kfilter->name == NULL) {
278 /* Previously deregistered slot. Reuse. */
279 goto reuse;
280 }
281 }
282
283 /* check if need to grow user_kfilters */
284 if (user_kfilterc + 1 > user_kfiltermaxc) {
285 /* Grow in KFILTER_EXTENT chunks. */
286 user_kfiltermaxc += KFILTER_EXTENT;
287 len = user_kfiltermaxc * sizeof(struct filter *);
288 kfilter = kmem_alloc(len, KM_SLEEP);
289 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
290 if (user_kfilters != NULL) {
291 memcpy(kfilter, user_kfilters, user_kfiltersz);
292 kmem_free(user_kfilters, user_kfiltersz);
293 }
294 user_kfiltersz = len;
295 user_kfilters = kfilter;
296 }
297 /* Adding new slot */
298 kfilter = &user_kfilters[user_kfilterc++];
299 reuse:
300 kfilter->namelen = strlen(name) + 1;
301 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
302 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
303
304 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
305
306 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
307 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
308
309 if (retfilter != NULL)
310 *retfilter = kfilter->filter;
311 rw_exit(&kqueue_filter_lock);
312
313 return (0);
314 }
315
316 /*
317 * Unregister a kfilter previously registered with kfilter_register.
318 * This retains the filter id, but clears the name and frees filtops (filter
319 * operations), so that the number isn't reused during a boot.
320 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
321 */
322 int
323 kfilter_unregister(const char *name)
324 {
325 struct kfilter *kfilter;
326
327 if (name == NULL || name[0] == '\0')
328 return (EINVAL); /* invalid name */
329
330 rw_enter(&kqueue_filter_lock, RW_WRITER);
331 if (kfilter_byname_sys(name) != NULL) {
332 rw_exit(&kqueue_filter_lock);
333 return (EINVAL); /* can't detach system filters */
334 }
335
336 kfilter = kfilter_byname_user(name);
337 if (kfilter == NULL) {
338 rw_exit(&kqueue_filter_lock);
339 return (ENOENT);
340 }
341 if (kfilter->refcnt != 0) {
342 rw_exit(&kqueue_filter_lock);
343 return (EBUSY);
344 }
345
346 /* Cast away const (but we know it's safe. */
347 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
348 kfilter->name = NULL; /* mark as `not implemented' */
349
350 if (kfilter->filtops != NULL) {
351 /* Cast away const (but we know it's safe. */
352 kmem_free(__UNCONST(kfilter->filtops),
353 sizeof(*kfilter->filtops));
354 kfilter->filtops = NULL; /* mark as `not implemented' */
355 }
356 rw_exit(&kqueue_filter_lock);
357
358 return (0);
359 }
360
361
362 /*
363 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
364 * descriptors. Calls fileops kqfilter method for given file descriptor.
365 */
366 static int
367 filt_fileattach(struct knote *kn)
368 {
369 file_t *fp;
370
371 fp = kn->kn_obj;
372
373 return (*fp->f_ops->fo_kqfilter)(fp, kn);
374 }
375
376 /*
377 * Filter detach method for EVFILT_READ on kqueue descriptor.
378 */
379 static void
380 filt_kqdetach(struct knote *kn)
381 {
382 struct kqueue *kq;
383
384 kq = ((file_t *)kn->kn_obj)->f_data;
385
386 mutex_spin_enter(&kq->kq_lock);
387 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
388 mutex_spin_exit(&kq->kq_lock);
389 }
390
391 /*
392 * Filter event method for EVFILT_READ on kqueue descriptor.
393 */
394 /*ARGSUSED*/
395 static int
396 filt_kqueue(struct knote *kn, long hint)
397 {
398 struct kqueue *kq;
399 int rv;
400
401 kq = ((file_t *)kn->kn_obj)->f_data;
402
403 if (hint != NOTE_SUBMIT)
404 mutex_spin_enter(&kq->kq_lock);
405 kn->kn_data = kq->kq_count;
406 rv = (kn->kn_data > 0);
407 if (hint != NOTE_SUBMIT)
408 mutex_spin_exit(&kq->kq_lock);
409
410 return rv;
411 }
412
413 /*
414 * Filter attach method for EVFILT_PROC.
415 */
416 static int
417 filt_procattach(struct knote *kn)
418 {
419 struct proc *p, *curp;
420 struct lwp *curl;
421
422 curl = curlwp;
423 curp = curl->l_proc;
424
425 mutex_enter(proc_lock);
426 p = p_find(kn->kn_id, PFIND_LOCKED);
427 if (p == NULL) {
428 mutex_exit(proc_lock);
429 return ESRCH;
430 }
431
432 /*
433 * Fail if it's not owned by you, or the last exec gave us
434 * setuid/setgid privs (unless you're root).
435 */
436 mutex_enter(p->p_lock);
437 mutex_exit(proc_lock);
438 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
439 p, NULL, NULL, NULL) != 0) {
440 mutex_exit(p->p_lock);
441 return EACCES;
442 }
443
444 kn->kn_obj = p;
445 kn->kn_flags |= EV_CLEAR; /* automatically set */
446
447 /*
448 * internal flag indicating registration done by kernel
449 */
450 if (kn->kn_flags & EV_FLAG1) {
451 kn->kn_data = kn->kn_sdata; /* ppid */
452 kn->kn_fflags = NOTE_CHILD;
453 kn->kn_flags &= ~EV_FLAG1;
454 }
455 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
456 mutex_exit(p->p_lock);
457
458 return 0;
459 }
460
461 /*
462 * Filter detach method for EVFILT_PROC.
463 *
464 * The knote may be attached to a different process, which may exit,
465 * leaving nothing for the knote to be attached to. So when the process
466 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
467 * it will be deleted when read out. However, as part of the knote deletion,
468 * this routine is called, so a check is needed to avoid actually performing
469 * a detach, because the original process might not exist any more.
470 */
471 static void
472 filt_procdetach(struct knote *kn)
473 {
474 struct proc *p;
475
476 if (kn->kn_status & KN_DETACHED)
477 return;
478
479 p = kn->kn_obj;
480
481 mutex_enter(p->p_lock);
482 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
483 mutex_exit(p->p_lock);
484 }
485
486 /*
487 * Filter event method for EVFILT_PROC.
488 */
489 static int
490 filt_proc(struct knote *kn, long hint)
491 {
492 u_int event, fflag;
493 struct kevent kev;
494 struct kqueue *kq;
495 int error;
496
497 event = (u_int)hint & NOTE_PCTRLMASK;
498 kq = kn->kn_kq;
499 fflag = 0;
500
501 /* If the user is interested in this event, record it. */
502 if (kn->kn_sfflags & event)
503 fflag |= event;
504
505 if (event == NOTE_EXIT) {
506 /*
507 * Process is gone, so flag the event as finished.
508 *
509 * Detach the knote from watched process and mark
510 * it as such. We can't leave this to kqueue_scan(),
511 * since the process might not exist by then. And we
512 * have to do this now, since psignal KNOTE() is called
513 * also for zombies and we might end up reading freed
514 * memory if the kevent would already be picked up
515 * and knote g/c'ed.
516 */
517 filt_procdetach(kn);
518
519 mutex_spin_enter(&kq->kq_lock);
520 kn->kn_status |= KN_DETACHED;
521 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
522 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
523 kn->kn_fflags |= fflag;
524 mutex_spin_exit(&kq->kq_lock);
525
526 return 1;
527 }
528
529 mutex_spin_enter(&kq->kq_lock);
530 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
531 /*
532 * Process forked, and user wants to track the new process,
533 * so attach a new knote to it, and immediately report an
534 * event with the parent's pid. Register knote with new
535 * process.
536 */
537 kev.ident = hint & NOTE_PDATAMASK; /* pid */
538 kev.filter = kn->kn_filter;
539 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
540 kev.fflags = kn->kn_sfflags;
541 kev.data = kn->kn_id; /* parent */
542 kev.udata = kn->kn_kevent.udata; /* preserve udata */
543 mutex_spin_exit(&kq->kq_lock);
544 error = kqueue_register(kq, &kev);
545 mutex_spin_enter(&kq->kq_lock);
546 if (error != 0)
547 kn->kn_fflags |= NOTE_TRACKERR;
548 }
549 kn->kn_fflags |= fflag;
550 fflag = kn->kn_fflags;
551 mutex_spin_exit(&kq->kq_lock);
552
553 return fflag != 0;
554 }
555
556 static void
557 filt_timerexpire(void *knx)
558 {
559 struct knote *kn = knx;
560 int tticks;
561
562 mutex_enter(&kqueue_misc_lock);
563 kn->kn_data++;
564 knote_activate(kn);
565 if ((kn->kn_flags & EV_ONESHOT) == 0) {
566 tticks = mstohz(kn->kn_sdata);
567 callout_schedule((callout_t *)kn->kn_hook, tticks);
568 }
569 mutex_exit(&kqueue_misc_lock);
570 }
571
572 /*
573 * data contains amount of time to sleep, in milliseconds
574 */
575 static int
576 filt_timerattach(struct knote *kn)
577 {
578 callout_t *calloutp;
579 struct kqueue *kq;
580 int tticks;
581
582 tticks = mstohz(kn->kn_sdata);
583
584 /* if the supplied value is under our resolution, use 1 tick */
585 if (tticks == 0) {
586 if (kn->kn_sdata == 0)
587 return EINVAL;
588 tticks = 1;
589 }
590
591 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
592 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
593 atomic_dec_uint(&kq_ncallouts);
594 return ENOMEM;
595 }
596 callout_init(calloutp, CALLOUT_MPSAFE);
597
598 kq = kn->kn_kq;
599 mutex_spin_enter(&kq->kq_lock);
600 kn->kn_flags |= EV_CLEAR; /* automatically set */
601 kn->kn_hook = calloutp;
602 mutex_spin_exit(&kq->kq_lock);
603
604 callout_reset(calloutp, tticks, filt_timerexpire, kn);
605
606 return (0);
607 }
608
609 static void
610 filt_timerdetach(struct knote *kn)
611 {
612 callout_t *calloutp;
613
614 calloutp = (callout_t *)kn->kn_hook;
615 callout_halt(calloutp, NULL);
616 callout_destroy(calloutp);
617 kmem_free(calloutp, sizeof(*calloutp));
618 atomic_dec_uint(&kq_ncallouts);
619 }
620
621 static int
622 filt_timer(struct knote *kn, long hint)
623 {
624 int rv;
625
626 mutex_enter(&kqueue_misc_lock);
627 rv = (kn->kn_data != 0);
628 mutex_exit(&kqueue_misc_lock);
629
630 return rv;
631 }
632
633 /*
634 * filt_seltrue:
635 *
636 * This filter "event" routine simulates seltrue().
637 */
638 int
639 filt_seltrue(struct knote *kn, long hint)
640 {
641
642 /*
643 * We don't know how much data can be read/written,
644 * but we know that it *can* be. This is about as
645 * good as select/poll does as well.
646 */
647 kn->kn_data = 0;
648 return (1);
649 }
650
651 /*
652 * This provides full kqfilter entry for device switch tables, which
653 * has same effect as filter using filt_seltrue() as filter method.
654 */
655 static void
656 filt_seltruedetach(struct knote *kn)
657 {
658 /* Nothing to do */
659 }
660
661 const struct filterops seltrue_filtops =
662 { 1, NULL, filt_seltruedetach, filt_seltrue };
663
664 int
665 seltrue_kqfilter(dev_t dev, struct knote *kn)
666 {
667 switch (kn->kn_filter) {
668 case EVFILT_READ:
669 case EVFILT_WRITE:
670 kn->kn_fop = &seltrue_filtops;
671 break;
672 default:
673 return (EINVAL);
674 }
675
676 /* Nothing more to do */
677 return (0);
678 }
679
680 /*
681 * kqueue(2) system call.
682 */
683 int
684 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
685 {
686 struct kqueue *kq;
687 file_t *fp;
688 int fd, error;
689
690 if ((error = fd_allocfile(&fp, &fd)) != 0)
691 return error;
692 fp->f_flag = FREAD | FWRITE;
693 fp->f_type = DTYPE_KQUEUE;
694 fp->f_ops = &kqueueops;
695 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
696 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
697 cv_init(&kq->kq_cv, "kqueue");
698 selinit(&kq->kq_sel);
699 TAILQ_INIT(&kq->kq_head);
700 fp->f_data = kq;
701 *retval = fd;
702 kq->kq_fdp = curlwp->l_fd;
703 fd_affix(curproc, fp, fd);
704 return error;
705 }
706
707 /*
708 * kevent(2) system call.
709 */
710 static int
711 kevent_fetch_changes(void *private, const struct kevent *changelist,
712 struct kevent *changes, size_t index, int n)
713 {
714
715 return copyin(changelist + index, changes, n * sizeof(*changes));
716 }
717
718 static int
719 kevent_put_events(void *private, struct kevent *events,
720 struct kevent *eventlist, size_t index, int n)
721 {
722
723 return copyout(events, eventlist + index, n * sizeof(*events));
724 }
725
726 static const struct kevent_ops kevent_native_ops = {
727 keo_private: NULL,
728 keo_fetch_timeout: copyin,
729 keo_fetch_changes: kevent_fetch_changes,
730 keo_put_events: kevent_put_events,
731 };
732
733 int
734 sys_kevent(struct lwp *l, const struct sys_kevent_args *uap, register_t *retval)
735 {
736 /* {
737 syscallarg(int) fd;
738 syscallarg(const struct kevent *) changelist;
739 syscallarg(size_t) nchanges;
740 syscallarg(struct kevent *) eventlist;
741 syscallarg(size_t) nevents;
742 syscallarg(const struct timespec *) timeout;
743 } */
744
745 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
746 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
747 SCARG(uap, timeout), &kevent_native_ops);
748 }
749
750 int
751 kevent1(register_t *retval, int fd,
752 const struct kevent *changelist, size_t nchanges,
753 struct kevent *eventlist, size_t nevents,
754 const struct timespec *timeout,
755 const struct kevent_ops *keops)
756 {
757 struct kevent *kevp;
758 struct kqueue *kq;
759 struct timespec ts;
760 size_t i, n, ichange;
761 int nerrors, error;
762 struct kevent kevbuf[8]; /* approx 300 bytes on 64-bit */
763 file_t *fp;
764
765 /* check that we're dealing with a kq */
766 fp = fd_getfile(fd);
767 if (fp == NULL)
768 return (EBADF);
769
770 if (fp->f_type != DTYPE_KQUEUE) {
771 fd_putfile(fd);
772 return (EBADF);
773 }
774
775 if (timeout != NULL) {
776 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
777 if (error)
778 goto done;
779 timeout = &ts;
780 }
781
782 kq = (struct kqueue *)fp->f_data;
783 nerrors = 0;
784 ichange = 0;
785
786 /* traverse list of events to register */
787 while (nchanges > 0) {
788 n = MIN(nchanges, __arraycount(kevbuf));
789 error = (*keops->keo_fetch_changes)(keops->keo_private,
790 changelist, kevbuf, ichange, n);
791 if (error)
792 goto done;
793 for (i = 0; i < n; i++) {
794 kevp = &kevbuf[i];
795 kevp->flags &= ~EV_SYSFLAGS;
796 /* register each knote */
797 error = kqueue_register(kq, kevp);
798 if (error) {
799 if (nevents != 0) {
800 kevp->flags = EV_ERROR;
801 kevp->data = error;
802 error = (*keops->keo_put_events)
803 (keops->keo_private, kevp,
804 eventlist, nerrors, 1);
805 if (error)
806 goto done;
807 nevents--;
808 nerrors++;
809 } else {
810 goto done;
811 }
812 }
813 }
814 nchanges -= n; /* update the results */
815 ichange += n;
816 }
817 if (nerrors) {
818 *retval = nerrors;
819 error = 0;
820 goto done;
821 }
822
823 /* actually scan through the events */
824 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
825 kevbuf, __arraycount(kevbuf));
826 done:
827 fd_putfile(fd);
828 return (error);
829 }
830
831 /*
832 * Register a given kevent kev onto the kqueue
833 */
834 static int
835 kqueue_register(struct kqueue *kq, struct kevent *kev)
836 {
837 struct kfilter *kfilter;
838 filedesc_t *fdp;
839 file_t *fp;
840 fdfile_t *ff;
841 struct knote *kn, *newkn;
842 struct klist *list;
843 int error, fd, rv;
844
845 fdp = kq->kq_fdp;
846 fp = NULL;
847 kn = NULL;
848 error = 0;
849 fd = 0;
850
851 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
852
853 rw_enter(&kqueue_filter_lock, RW_READER);
854 kfilter = kfilter_byfilter(kev->filter);
855 if (kfilter == NULL || kfilter->filtops == NULL) {
856 /* filter not found nor implemented */
857 rw_exit(&kqueue_filter_lock);
858 kmem_free(newkn, sizeof(*newkn));
859 return (EINVAL);
860 }
861
862 mutex_enter(&fdp->fd_lock);
863
864 /* search if knote already exists */
865 if (kfilter->filtops->f_isfd) {
866 /* monitoring a file descriptor */
867 fd = kev->ident;
868 if ((fp = fd_getfile(fd)) == NULL) {
869 mutex_exit(&fdp->fd_lock);
870 rw_exit(&kqueue_filter_lock);
871 kmem_free(newkn, sizeof(*newkn));
872 return EBADF;
873 }
874 ff = fdp->fd_ofiles[fd];
875 if (fd <= fdp->fd_lastkqfile) {
876 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
877 if (kq == kn->kn_kq &&
878 kev->filter == kn->kn_filter)
879 break;
880 }
881 }
882 } else {
883 /*
884 * not monitoring a file descriptor, so
885 * lookup knotes in internal hash table
886 */
887 if (fdp->fd_knhashmask != 0) {
888 list = &fdp->fd_knhash[
889 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
890 SLIST_FOREACH(kn, list, kn_link) {
891 if (kev->ident == kn->kn_id &&
892 kq == kn->kn_kq &&
893 kev->filter == kn->kn_filter)
894 break;
895 }
896 }
897 }
898
899 /*
900 * kn now contains the matching knote, or NULL if no match
901 */
902 if (kev->flags & EV_ADD) {
903 if (kn == NULL) {
904 /* create new knote */
905 kn = newkn;
906 newkn = NULL;
907 kn->kn_obj = fp;
908 kn->kn_kq = kq;
909 kn->kn_fop = kfilter->filtops;
910 kn->kn_kfilter = kfilter;
911 kn->kn_sfflags = kev->fflags;
912 kn->kn_sdata = kev->data;
913 kev->fflags = 0;
914 kev->data = 0;
915 kn->kn_kevent = *kev;
916
917 /*
918 * apply reference count to knote structure, and
919 * do not release it at the end of this routine.
920 */
921 fp = NULL;
922
923 if (!kn->kn_fop->f_isfd) {
924 /*
925 * If knote is not on an fd, store on
926 * internal hash table.
927 */
928 if (fdp->fd_knhashmask == 0) {
929 /* XXXAD can block with fd_lock held */
930 fdp->fd_knhash = hashinit(KN_HASHSIZE,
931 HASH_LIST, M_KEVENT, M_WAITOK,
932 &fdp->fd_knhashmask);
933 }
934 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
935 fdp->fd_knhashmask)];
936 } else {
937 /* Otherwise, knote is on an fd. */
938 list = (struct klist *)
939 &fdp->fd_ofiles[kn->kn_id]->ff_knlist;
940 if ((int)kn->kn_id > fdp->fd_lastkqfile)
941 fdp->fd_lastkqfile = kn->kn_id;
942 }
943 SLIST_INSERT_HEAD(list, kn, kn_link);
944
945 KERNEL_LOCK(1, NULL); /* XXXSMP */
946 error = (*kfilter->filtops->f_attach)(kn);
947 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
948 if (error != 0) {
949 /* knote_detach() drops fdp->fd_lock */
950 knote_detach(kn, fdp, false);
951 goto done;
952 }
953 atomic_inc_uint(&kfilter->refcnt);
954 } else {
955 /*
956 * The user may change some filter values after the
957 * initial EV_ADD, but doing so will not reset any
958 * filter which have already been triggered.
959 */
960 kn->kn_sfflags = kev->fflags;
961 kn->kn_sdata = kev->data;
962 kn->kn_kevent.udata = kev->udata;
963 }
964 KERNEL_LOCK(1, NULL); /* XXXSMP */
965 rv = (*kn->kn_fop->f_event)(kn, 0);
966 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
967 if (rv)
968 knote_activate(kn);
969 } else {
970 if (kn == NULL) {
971 error = ENOENT;
972 mutex_exit(&fdp->fd_lock);
973 goto done;
974 }
975 if (kev->flags & EV_DELETE) {
976 /* knote_detach() drops fdp->fd_lock */
977 knote_detach(kn, fdp, true);
978 goto done;
979 }
980 }
981
982 /* disable knote */
983 if ((kev->flags & EV_DISABLE)) {
984 mutex_spin_enter(&kq->kq_lock);
985 if ((kn->kn_status & KN_DISABLED) == 0)
986 kn->kn_status |= KN_DISABLED;
987 mutex_spin_exit(&kq->kq_lock);
988 }
989
990 /* enable knote */
991 if ((kev->flags & EV_ENABLE)) {
992 knote_enqueue(kn);
993 }
994 mutex_exit(&fdp->fd_lock);
995 done:
996 rw_exit(&kqueue_filter_lock);
997 if (newkn != NULL)
998 kmem_free(newkn, sizeof(*newkn));
999 if (fp != NULL)
1000 fd_putfile(fd);
1001 return (error);
1002 }
1003
1004 #if defined(DEBUG)
1005 static void
1006 kq_check(struct kqueue *kq)
1007 {
1008 const struct knote *kn;
1009 int count;
1010 int nmarker;
1011
1012 KASSERT(mutex_owned(&kq->kq_lock));
1013 KASSERT(kq->kq_count >= 0);
1014
1015 count = 0;
1016 nmarker = 0;
1017 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1018 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1019 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1020 }
1021 if ((kn->kn_status & KN_MARKER) == 0) {
1022 if (kn->kn_kq != kq) {
1023 panic("%s: kq=%p kn=%p inconsist 2",
1024 __func__, kq, kn);
1025 }
1026 if ((kn->kn_status & KN_ACTIVE) == 0) {
1027 panic("%s: kq=%p kn=%p: not active",
1028 __func__, kq, kn);
1029 }
1030 count++;
1031 if (count > kq->kq_count) {
1032 goto bad;
1033 }
1034 } else {
1035 nmarker++;
1036 #if 0
1037 if (nmarker > 10000) {
1038 panic("%s: kq=%p too many markers: %d != %d, "
1039 "nmarker=%d",
1040 __func__, kq, kq->kq_count, count, nmarker);
1041 }
1042 #endif
1043 }
1044 }
1045 if (kq->kq_count != count) {
1046 bad:
1047 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1048 __func__, kq, kq->kq_count, count, nmarker);
1049 }
1050 }
1051 #else /* defined(DEBUG) */
1052 #define kq_check(a) /* nothing */
1053 #endif /* defined(DEBUG) */
1054
1055 /*
1056 * Scan through the list of events on fp (for a maximum of maxevents),
1057 * returning the results in to ulistp. Timeout is determined by tsp; if
1058 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1059 * as appropriate.
1060 */
1061 static int
1062 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1063 const struct timespec *tsp, register_t *retval,
1064 const struct kevent_ops *keops, struct kevent *kevbuf,
1065 size_t kevcnt)
1066 {
1067 struct kqueue *kq;
1068 struct kevent *kevp;
1069 struct timeval atv, sleeptv;
1070 struct knote *kn, *marker;
1071 size_t count, nkev, nevents;
1072 int timeout, error, rv;
1073 filedesc_t *fdp;
1074
1075 fdp = curlwp->l_fd;
1076 kq = fp->f_data;
1077 count = maxevents;
1078 nkev = nevents = error = 0;
1079 if (count == 0) {
1080 *retval = 0;
1081 return 0;
1082 }
1083
1084 if (tsp) { /* timeout supplied */
1085 TIMESPEC_TO_TIMEVAL(&atv, tsp);
1086 if (inittimeleft(&atv, &sleeptv) == -1) {
1087 *retval = maxevents;
1088 return EINVAL;
1089 }
1090 timeout = tvtohz(&atv);
1091 if (timeout <= 0)
1092 timeout = -1; /* do poll */
1093 } else {
1094 /* no timeout, wait forever */
1095 timeout = 0;
1096 }
1097
1098 marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1099 marker->kn_status = KN_MARKER;
1100 mutex_spin_enter(&kq->kq_lock);
1101 retry:
1102 kevp = kevbuf;
1103 if (kq->kq_count == 0) {
1104 if (timeout >= 0) {
1105 error = cv_timedwait_sig(&kq->kq_cv,
1106 &kq->kq_lock, timeout);
1107 if (error == 0) {
1108 if (tsp == NULL || (timeout =
1109 gettimeleft(&atv, &sleeptv)) > 0)
1110 goto retry;
1111 } else {
1112 /* don't restart after signals... */
1113 if (error == ERESTART)
1114 error = EINTR;
1115 if (error == EWOULDBLOCK)
1116 error = 0;
1117 }
1118 }
1119 } else {
1120 /* mark end of knote list */
1121 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1122
1123 while (count != 0) {
1124 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1125 while ((kn->kn_status & KN_MARKER) != 0) {
1126 if (kn == marker) {
1127 /* it's our marker, stop */
1128 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1129 if (count < maxevents || (tsp != NULL &&
1130 (timeout = gettimeleft(&atv,
1131 &sleeptv)) <= 0))
1132 goto done;
1133 goto retry;
1134 }
1135 /* someone else's marker. */
1136 kn = TAILQ_NEXT(kn, kn_tqe);
1137 }
1138 kq_check(kq);
1139 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1140 kq->kq_count--;
1141 kn->kn_status &= ~KN_QUEUED;
1142 kq_check(kq);
1143 if (kn->kn_status & KN_DISABLED) {
1144 /* don't want disabled events */
1145 continue;
1146 }
1147 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1148 mutex_spin_exit(&kq->kq_lock);
1149 KERNEL_LOCK(1, NULL); /* XXXSMP */
1150 rv = (*kn->kn_fop->f_event)(kn, 0);
1151 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1152 mutex_spin_enter(&kq->kq_lock);
1153 /* Re-poll if note was re-enqueued. */
1154 if ((kn->kn_status & KN_QUEUED) != 0)
1155 continue;
1156 if (rv == 0) {
1157 /*
1158 * non-ONESHOT event that hasn't
1159 * triggered again, so de-queue.
1160 */
1161 kn->kn_status &= ~KN_ACTIVE;
1162 continue;
1163 }
1164 }
1165 /* XXXAD should be got from f_event if !oneshot. */
1166 *kevp++ = kn->kn_kevent;
1167 nkev++;
1168 if (kn->kn_flags & EV_ONESHOT) {
1169 /* delete ONESHOT events after retrieval */
1170 mutex_spin_exit(&kq->kq_lock);
1171 mutex_enter(&fdp->fd_lock);
1172 knote_detach(kn, fdp, true);
1173 mutex_spin_enter(&kq->kq_lock);
1174 } else if (kn->kn_flags & EV_CLEAR) {
1175 /* clear state after retrieval */
1176 kn->kn_data = 0;
1177 kn->kn_fflags = 0;
1178 kn->kn_status &= ~KN_ACTIVE;
1179 } else {
1180 /* add event back on list */
1181 kq_check(kq);
1182 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1183 kq->kq_count++;
1184 kn->kn_status |= KN_QUEUED;
1185 kq_check(kq);
1186 }
1187 if (nkev == kevcnt) {
1188 /* do copyouts in kevcnt chunks */
1189 mutex_spin_exit(&kq->kq_lock);
1190 error = (*keops->keo_put_events)
1191 (keops->keo_private,
1192 kevbuf, ulistp, nevents, nkev);
1193 mutex_spin_enter(&kq->kq_lock);
1194 nevents += nkev;
1195 nkev = 0;
1196 kevp = kevbuf;
1197 }
1198 count--;
1199 if (error != 0 || count == 0) {
1200 /* remove marker */
1201 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1202 break;
1203 }
1204 }
1205 }
1206 done:
1207 mutex_spin_exit(&kq->kq_lock);
1208 if (marker != NULL)
1209 kmem_free(marker, sizeof(*marker));
1210 if (nkev != 0) {
1211 /* copyout remaining events */
1212 error = (*keops->keo_put_events)(keops->keo_private,
1213 kevbuf, ulistp, nevents, nkev);
1214 }
1215 *retval = maxevents - count;
1216
1217 return error;
1218 }
1219
1220 /*
1221 * fileops ioctl method for a kqueue descriptor.
1222 *
1223 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1224 * KFILTER_BYNAME find name for filter, and return result in
1225 * name, which is of size len.
1226 * KFILTER_BYFILTER find filter for name. len is ignored.
1227 */
1228 /*ARGSUSED*/
1229 static int
1230 kqueue_ioctl(file_t *fp, u_long com, void *data)
1231 {
1232 struct kfilter_mapping *km;
1233 const struct kfilter *kfilter;
1234 char *name;
1235 int error;
1236
1237 km = data;
1238 error = 0;
1239 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1240
1241 switch (com) {
1242 case KFILTER_BYFILTER: /* convert filter -> name */
1243 rw_enter(&kqueue_filter_lock, RW_READER);
1244 kfilter = kfilter_byfilter(km->filter);
1245 if (kfilter != NULL) {
1246 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1247 rw_exit(&kqueue_filter_lock);
1248 error = copyoutstr(name, km->name, km->len, NULL);
1249 } else {
1250 rw_exit(&kqueue_filter_lock);
1251 error = ENOENT;
1252 }
1253 break;
1254
1255 case KFILTER_BYNAME: /* convert name -> filter */
1256 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1257 if (error) {
1258 break;
1259 }
1260 rw_enter(&kqueue_filter_lock, RW_READER);
1261 kfilter = kfilter_byname(name);
1262 if (kfilter != NULL)
1263 km->filter = kfilter->filter;
1264 else
1265 error = ENOENT;
1266 rw_exit(&kqueue_filter_lock);
1267 break;
1268
1269 default:
1270 error = ENOTTY;
1271 break;
1272
1273 }
1274 kmem_free(name, KFILTER_MAXNAME);
1275 return (error);
1276 }
1277
1278 /*
1279 * fileops fcntl method for a kqueue descriptor.
1280 */
1281 static int
1282 kqueue_fcntl(file_t *fp, u_int com, void *data)
1283 {
1284
1285 return (ENOTTY);
1286 }
1287
1288 /*
1289 * fileops poll method for a kqueue descriptor.
1290 * Determine if kqueue has events pending.
1291 */
1292 static int
1293 kqueue_poll(file_t *fp, int events)
1294 {
1295 struct kqueue *kq;
1296 int revents;
1297
1298 kq = fp->f_data;
1299
1300 revents = 0;
1301 if (events & (POLLIN | POLLRDNORM)) {
1302 mutex_spin_enter(&kq->kq_lock);
1303 if (kq->kq_count != 0) {
1304 revents |= events & (POLLIN | POLLRDNORM);
1305 } else {
1306 selrecord(curlwp, &kq->kq_sel);
1307 }
1308 kq_check(kq);
1309 mutex_spin_exit(&kq->kq_lock);
1310 }
1311
1312 return revents;
1313 }
1314
1315 /*
1316 * fileops stat method for a kqueue descriptor.
1317 * Returns dummy info, with st_size being number of events pending.
1318 */
1319 static int
1320 kqueue_stat(file_t *fp, struct stat *st)
1321 {
1322 struct kqueue *kq;
1323
1324 kq = fp->f_data;
1325
1326 memset(st, 0, sizeof(*st));
1327 st->st_size = kq->kq_count;
1328 st->st_blksize = sizeof(struct kevent);
1329 st->st_mode = S_IFIFO;
1330
1331 return 0;
1332 }
1333
1334 static void
1335 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1336 {
1337 struct knote *kn;
1338 filedesc_t *fdp;
1339
1340 fdp = kq->kq_fdp;
1341
1342 KASSERT(mutex_owned(&fdp->fd_lock));
1343
1344 for (kn = SLIST_FIRST(list); kn != NULL;) {
1345 if (kq != kn->kn_kq) {
1346 kn = SLIST_NEXT(kn, kn_link);
1347 continue;
1348 }
1349 knote_detach(kn, fdp, true);
1350 mutex_enter(&fdp->fd_lock);
1351 kn = SLIST_FIRST(list);
1352 }
1353 }
1354
1355
1356 /*
1357 * fileops close method for a kqueue descriptor.
1358 */
1359 static int
1360 kqueue_close(file_t *fp)
1361 {
1362 struct kqueue *kq;
1363 filedesc_t *fdp;
1364 fdfile_t *ff;
1365 int i;
1366
1367 kq = fp->f_data;
1368 fdp = curlwp->l_fd;
1369
1370 mutex_enter(&fdp->fd_lock);
1371 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1372 if ((ff = fdp->fd_ofiles[i]) == NULL)
1373 continue;
1374 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1375 }
1376 if (fdp->fd_knhashmask != 0) {
1377 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1378 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1379 }
1380 }
1381 mutex_exit(&fdp->fd_lock);
1382
1383 KASSERT(kq->kq_count == 0);
1384 mutex_destroy(&kq->kq_lock);
1385 cv_destroy(&kq->kq_cv);
1386 seldestroy(&kq->kq_sel);
1387 kmem_free(kq, sizeof(*kq));
1388 fp->f_data = NULL;
1389
1390 return (0);
1391 }
1392
1393 /*
1394 * struct fileops kqfilter method for a kqueue descriptor.
1395 * Event triggered when monitored kqueue changes.
1396 */
1397 static int
1398 kqueue_kqfilter(file_t *fp, struct knote *kn)
1399 {
1400 struct kqueue *kq;
1401 filedesc_t *fdp;
1402
1403 kq = ((file_t *)kn->kn_obj)->f_data;
1404
1405 KASSERT(fp == kn->kn_obj);
1406
1407 if (kn->kn_filter != EVFILT_READ)
1408 return 1;
1409
1410 kn->kn_fop = &kqread_filtops;
1411 fdp = curlwp->l_fd;
1412 mutex_enter(&kq->kq_lock);
1413 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1414 mutex_exit(&kq->kq_lock);
1415
1416 return 0;
1417 }
1418
1419
1420 /*
1421 * Walk down a list of knotes, activating them if their event has
1422 * triggered. The caller's object lock (e.g. device driver lock)
1423 * must be held.
1424 */
1425 void
1426 knote(struct klist *list, long hint)
1427 {
1428 struct knote *kn;
1429
1430 SLIST_FOREACH(kn, list, kn_selnext) {
1431 if ((*kn->kn_fop->f_event)(kn, hint))
1432 knote_activate(kn);
1433 }
1434 }
1435
1436 /*
1437 * Remove all knotes referencing a specified fd
1438 */
1439 void
1440 knote_fdclose(int fd)
1441 {
1442 struct klist *list;
1443 struct knote *kn;
1444 filedesc_t *fdp;
1445
1446 fdp = curlwp->l_fd;
1447 list = (struct klist *)&fdp->fd_ofiles[fd]->ff_knlist;
1448 mutex_enter(&fdp->fd_lock);
1449 while ((kn = SLIST_FIRST(list)) != NULL) {
1450 knote_detach(kn, fdp, true);
1451 mutex_enter(&fdp->fd_lock);
1452 }
1453 mutex_exit(&fdp->fd_lock);
1454 }
1455
1456 /*
1457 * Drop knote. Called with fdp->fd_lock held, and will drop before
1458 * returning.
1459 */
1460 static void
1461 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1462 {
1463 struct klist *list;
1464 struct kqueue *kq;
1465
1466 kq = kn->kn_kq;
1467
1468 KASSERT((kn->kn_status & KN_MARKER) == 0);
1469 KASSERT(mutex_owned(&fdp->fd_lock));
1470
1471 /* Remove from monitored object. */
1472 if (dofop) {
1473 KERNEL_LOCK(1, NULL); /* XXXSMP */
1474 (*kn->kn_fop->f_detach)(kn);
1475 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1476 }
1477
1478 /* Remove from descriptor table. */
1479 if (kn->kn_fop->f_isfd)
1480 list = (struct klist *)&fdp->fd_ofiles[kn->kn_id]->ff_knlist;
1481 else
1482 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1483
1484 SLIST_REMOVE(list, kn, knote, kn_link);
1485
1486 /* Remove from kqueue. */
1487 /* XXXAD should verify not in use by kqueue_scan. */
1488 mutex_spin_enter(&kq->kq_lock);
1489 if ((kn->kn_status & KN_QUEUED) != 0) {
1490 kq_check(kq);
1491 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1492 kn->kn_status &= ~KN_QUEUED;
1493 kq->kq_count--;
1494 kq_check(kq);
1495 }
1496 mutex_spin_exit(&kq->kq_lock);
1497
1498 mutex_exit(&fdp->fd_lock);
1499 if (kn->kn_fop->f_isfd)
1500 fd_putfile(kn->kn_id);
1501 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1502 kmem_free(kn, sizeof(*kn));
1503 }
1504
1505 /*
1506 * Queue new event for knote.
1507 */
1508 static void
1509 knote_enqueue(struct knote *kn)
1510 {
1511 struct kqueue *kq;
1512
1513 KASSERT((kn->kn_status & KN_MARKER) == 0);
1514
1515 kq = kn->kn_kq;
1516
1517 mutex_spin_enter(&kq->kq_lock);
1518 if ((kn->kn_status & KN_DISABLED) != 0) {
1519 kn->kn_status &= ~KN_DISABLED;
1520 }
1521 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1522 kq_check(kq);
1523 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1524 kn->kn_status |= KN_QUEUED;
1525 kq->kq_count++;
1526 kq_check(kq);
1527 cv_broadcast(&kq->kq_cv);
1528 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1529 }
1530 mutex_spin_exit(&kq->kq_lock);
1531 }
1532 /*
1533 * Queue new event for knote.
1534 */
1535 static void
1536 knote_activate(struct knote *kn)
1537 {
1538 struct kqueue *kq;
1539
1540 KASSERT((kn->kn_status & KN_MARKER) == 0);
1541
1542 kq = kn->kn_kq;
1543
1544 mutex_spin_enter(&kq->kq_lock);
1545 kn->kn_status |= KN_ACTIVE;
1546 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1547 kq_check(kq);
1548 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1549 kn->kn_status |= KN_QUEUED;
1550 kq->kq_count++;
1551 kq_check(kq);
1552 cv_broadcast(&kq->kq_cv);
1553 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1554 }
1555 mutex_spin_exit(&kq->kq_lock);
1556 }
1557