Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.58
      1 /*	$NetBSD: kern_event.c,v 1.58 2008/04/28 20:24:03 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     31  * All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  *
     42  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     43  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     44  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     45  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     46  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     47  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     48  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     49  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     50  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     51  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     52  * SUCH DAMAGE.
     53  *
     54  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     55  */
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.58 2008/04/28 20:24:03 martin Exp $");
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/kernel.h>
     63 #include <sys/proc.h>
     64 #include <sys/file.h>
     65 #include <sys/select.h>
     66 #include <sys/queue.h>
     67 #include <sys/event.h>
     68 #include <sys/eventvar.h>
     69 #include <sys/poll.h>
     70 #include <sys/malloc.h>		/* for hashinit */
     71 #include <sys/kmem.h>
     72 #include <sys/stat.h>
     73 #include <sys/filedesc.h>
     74 #include <sys/syscallargs.h>
     75 #include <sys/kauth.h>
     76 #include <sys/conf.h>
     77 #include <sys/atomic.h>
     78 
     79 static int	kqueue_scan(file_t *, size_t, struct kevent *,
     80 			    const struct timespec *, register_t *,
     81 			    const struct kevent_ops *, struct kevent *,
     82 			    size_t);
     83 static int	kqueue_ioctl(file_t *, u_long, void *);
     84 static int	kqueue_fcntl(file_t *, u_int, void *);
     85 static int	kqueue_poll(file_t *, int);
     86 static int	kqueue_kqfilter(file_t *, struct knote *);
     87 static int	kqueue_stat(file_t *, struct stat *);
     88 static int	kqueue_close(file_t *);
     89 static int	kqueue_register(struct kqueue *, struct kevent *);
     90 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
     91 
     92 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
     93 static void	knote_enqueue(struct knote *);
     94 static void	knote_activate(struct knote *);
     95 
     96 static void	filt_kqdetach(struct knote *);
     97 static int	filt_kqueue(struct knote *, long hint);
     98 static int	filt_procattach(struct knote *);
     99 static void	filt_procdetach(struct knote *);
    100 static int	filt_proc(struct knote *, long hint);
    101 static int	filt_fileattach(struct knote *);
    102 static void	filt_timerexpire(void *x);
    103 static int	filt_timerattach(struct knote *);
    104 static void	filt_timerdetach(struct knote *);
    105 static int	filt_timer(struct knote *, long hint);
    106 
    107 static const struct fileops kqueueops = {
    108 	(void *)enxio, (void *)enxio, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
    109 	kqueue_stat, kqueue_close, kqueue_kqfilter
    110 };
    111 
    112 static const struct filterops kqread_filtops =
    113 	{ 1, NULL, filt_kqdetach, filt_kqueue };
    114 static const struct filterops proc_filtops =
    115 	{ 0, filt_procattach, filt_procdetach, filt_proc };
    116 static const struct filterops file_filtops =
    117 	{ 1, filt_fileattach, NULL, NULL };
    118 static const struct filterops timer_filtops =
    119 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
    120 
    121 static u_int	kq_ncallouts = 0;
    122 static int	kq_calloutmax = (4 * 1024);
    123 
    124 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");	/* for hashinit */
    125 
    126 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    127 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    128 
    129 extern const struct filterops sig_filtops;
    130 
    131 /*
    132  * Table for for all system-defined filters.
    133  * These should be listed in the numeric order of the EVFILT_* defines.
    134  * If filtops is NULL, the filter isn't implemented in NetBSD.
    135  * End of list is when name is NULL.
    136  *
    137  * Note that 'refcnt' is meaningless for built-in filters.
    138  */
    139 struct kfilter {
    140 	const char	*name;		/* name of filter */
    141 	uint32_t	filter;		/* id of filter */
    142 	unsigned	refcnt;		/* reference count */
    143 	const struct filterops *filtops;/* operations for filter */
    144 	size_t		namelen;	/* length of name string */
    145 };
    146 
    147 /* System defined filters */
    148 static struct kfilter sys_kfilters[] = {
    149 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    150 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    151 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    152 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    153 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    154 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    155 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    156 	{ NULL,			0,		0, NULL, 0 },
    157 };
    158 
    159 /* User defined kfilters */
    160 static struct kfilter	*user_kfilters;		/* array */
    161 static int		user_kfilterc;		/* current offset */
    162 static int		user_kfiltermaxc;	/* max size so far */
    163 static size_t		user_kfiltersz;		/* size of allocated memory */
    164 
    165 /* Locks */
    166 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    167 static kmutex_t		kqueue_misc_lock;	/* miscellaneous */
    168 
    169 /*
    170  * Initialize the kqueue subsystem.
    171  */
    172 void
    173 kqueue_init(void)
    174 {
    175 
    176 	rw_init(&kqueue_filter_lock);
    177 	mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    178 }
    179 
    180 /*
    181  * Find kfilter entry by name, or NULL if not found.
    182  */
    183 static struct kfilter *
    184 kfilter_byname_sys(const char *name)
    185 {
    186 	int i;
    187 
    188 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    189 
    190 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    191 		if (strcmp(name, sys_kfilters[i].name) == 0)
    192 			return &sys_kfilters[i];
    193 	}
    194 	return NULL;
    195 }
    196 
    197 static struct kfilter *
    198 kfilter_byname_user(const char *name)
    199 {
    200 	int i;
    201 
    202 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    203 
    204 	/* user filter slots have a NULL name if previously deregistered */
    205 	for (i = 0; i < user_kfilterc ; i++) {
    206 		if (user_kfilters[i].name != NULL &&
    207 		    strcmp(name, user_kfilters[i].name) == 0)
    208 			return &user_kfilters[i];
    209 	}
    210 	return NULL;
    211 }
    212 
    213 static struct kfilter *
    214 kfilter_byname(const char *name)
    215 {
    216 	struct kfilter *kfilter;
    217 
    218 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    219 
    220 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    221 		return kfilter;
    222 
    223 	return kfilter_byname_user(name);
    224 }
    225 
    226 /*
    227  * Find kfilter entry by filter id, or NULL if not found.
    228  * Assumes entries are indexed in filter id order, for speed.
    229  */
    230 static struct kfilter *
    231 kfilter_byfilter(uint32_t filter)
    232 {
    233 	struct kfilter *kfilter;
    234 
    235 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    236 
    237 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    238 		kfilter = &sys_kfilters[filter];
    239 	else if (user_kfilters != NULL &&
    240 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    241 					/* it's a user filter */
    242 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    243 	else
    244 		return (NULL);		/* out of range */
    245 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    246 	return (kfilter);
    247 }
    248 
    249 /*
    250  * Register a new kfilter. Stores the entry in user_kfilters.
    251  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    252  * If retfilter != NULL, the new filterid is returned in it.
    253  */
    254 int
    255 kfilter_register(const char *name, const struct filterops *filtops,
    256 		 int *retfilter)
    257 {
    258 	struct kfilter *kfilter;
    259 	size_t len;
    260 	int i;
    261 
    262 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    263 		return (EINVAL);	/* invalid args */
    264 
    265 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    266 	if (kfilter_byname(name) != NULL) {
    267 		rw_exit(&kqueue_filter_lock);
    268 		return (EEXIST);	/* already exists */
    269 	}
    270 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    271 		rw_exit(&kqueue_filter_lock);
    272 		return (EINVAL);	/* too many */
    273 	}
    274 
    275 	for (i = 0; i < user_kfilterc; i++) {
    276 		kfilter = &user_kfilters[i];
    277 		if (kfilter->name == NULL) {
    278 			/* Previously deregistered slot.  Reuse. */
    279 			goto reuse;
    280 		}
    281 	}
    282 
    283 	/* check if need to grow user_kfilters */
    284 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    285 		/* Grow in KFILTER_EXTENT chunks. */
    286 		user_kfiltermaxc += KFILTER_EXTENT;
    287 		len = user_kfiltermaxc * sizeof(struct filter *);
    288 		kfilter = kmem_alloc(len, KM_SLEEP);
    289 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    290 		if (user_kfilters != NULL) {
    291 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    292 			kmem_free(user_kfilters, user_kfiltersz);
    293 		}
    294 		user_kfiltersz = len;
    295 		user_kfilters = kfilter;
    296 	}
    297 	/* Adding new slot */
    298 	kfilter = &user_kfilters[user_kfilterc++];
    299 reuse:
    300 	kfilter->namelen = strlen(name) + 1;
    301 	kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
    302 	memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
    303 
    304 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    305 
    306 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    307 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    308 
    309 	if (retfilter != NULL)
    310 		*retfilter = kfilter->filter;
    311 	rw_exit(&kqueue_filter_lock);
    312 
    313 	return (0);
    314 }
    315 
    316 /*
    317  * Unregister a kfilter previously registered with kfilter_register.
    318  * This retains the filter id, but clears the name and frees filtops (filter
    319  * operations), so that the number isn't reused during a boot.
    320  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    321  */
    322 int
    323 kfilter_unregister(const char *name)
    324 {
    325 	struct kfilter *kfilter;
    326 
    327 	if (name == NULL || name[0] == '\0')
    328 		return (EINVAL);	/* invalid name */
    329 
    330 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    331 	if (kfilter_byname_sys(name) != NULL) {
    332 		rw_exit(&kqueue_filter_lock);
    333 		return (EINVAL);	/* can't detach system filters */
    334 	}
    335 
    336 	kfilter = kfilter_byname_user(name);
    337 	if (kfilter == NULL) {
    338 		rw_exit(&kqueue_filter_lock);
    339 		return (ENOENT);
    340 	}
    341 	if (kfilter->refcnt != 0) {
    342 		rw_exit(&kqueue_filter_lock);
    343 		return (EBUSY);
    344 	}
    345 
    346 	/* Cast away const (but we know it's safe. */
    347 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    348 	kfilter->name = NULL;	/* mark as `not implemented' */
    349 
    350 	if (kfilter->filtops != NULL) {
    351 		/* Cast away const (but we know it's safe. */
    352 		kmem_free(__UNCONST(kfilter->filtops),
    353 		    sizeof(*kfilter->filtops));
    354 		kfilter->filtops = NULL; /* mark as `not implemented' */
    355 	}
    356 	rw_exit(&kqueue_filter_lock);
    357 
    358 	return (0);
    359 }
    360 
    361 
    362 /*
    363  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    364  * descriptors. Calls fileops kqfilter method for given file descriptor.
    365  */
    366 static int
    367 filt_fileattach(struct knote *kn)
    368 {
    369 	file_t *fp;
    370 
    371 	fp = kn->kn_obj;
    372 
    373 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    374 }
    375 
    376 /*
    377  * Filter detach method for EVFILT_READ on kqueue descriptor.
    378  */
    379 static void
    380 filt_kqdetach(struct knote *kn)
    381 {
    382 	struct kqueue *kq;
    383 
    384 	kq = ((file_t *)kn->kn_obj)->f_data;
    385 
    386 	mutex_spin_enter(&kq->kq_lock);
    387 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
    388 	mutex_spin_exit(&kq->kq_lock);
    389 }
    390 
    391 /*
    392  * Filter event method for EVFILT_READ on kqueue descriptor.
    393  */
    394 /*ARGSUSED*/
    395 static int
    396 filt_kqueue(struct knote *kn, long hint)
    397 {
    398 	struct kqueue *kq;
    399 	int rv;
    400 
    401 	kq = ((file_t *)kn->kn_obj)->f_data;
    402 
    403 	if (hint != NOTE_SUBMIT)
    404 		mutex_spin_enter(&kq->kq_lock);
    405 	kn->kn_data = kq->kq_count;
    406 	rv = (kn->kn_data > 0);
    407 	if (hint != NOTE_SUBMIT)
    408 		mutex_spin_exit(&kq->kq_lock);
    409 
    410 	return rv;
    411 }
    412 
    413 /*
    414  * Filter attach method for EVFILT_PROC.
    415  */
    416 static int
    417 filt_procattach(struct knote *kn)
    418 {
    419 	struct proc *p, *curp;
    420 	struct lwp *curl;
    421 
    422 	curl = curlwp;
    423 	curp = curl->l_proc;
    424 
    425 	mutex_enter(proc_lock);
    426 	p = p_find(kn->kn_id, PFIND_LOCKED);
    427 	if (p == NULL) {
    428 		mutex_exit(proc_lock);
    429 		return ESRCH;
    430 	}
    431 
    432 	/*
    433 	 * Fail if it's not owned by you, or the last exec gave us
    434 	 * setuid/setgid privs (unless you're root).
    435 	 */
    436 	mutex_enter(p->p_lock);
    437 	mutex_exit(proc_lock);
    438 	if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
    439 	    p, NULL, NULL, NULL) != 0) {
    440 	    	mutex_exit(p->p_lock);
    441 		return EACCES;
    442 	}
    443 
    444 	kn->kn_obj = p;
    445 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    446 
    447 	/*
    448 	 * internal flag indicating registration done by kernel
    449 	 */
    450 	if (kn->kn_flags & EV_FLAG1) {
    451 		kn->kn_data = kn->kn_sdata;	/* ppid */
    452 		kn->kn_fflags = NOTE_CHILD;
    453 		kn->kn_flags &= ~EV_FLAG1;
    454 	}
    455 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    456     	mutex_exit(p->p_lock);
    457 
    458 	return 0;
    459 }
    460 
    461 /*
    462  * Filter detach method for EVFILT_PROC.
    463  *
    464  * The knote may be attached to a different process, which may exit,
    465  * leaving nothing for the knote to be attached to.  So when the process
    466  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    467  * it will be deleted when read out.  However, as part of the knote deletion,
    468  * this routine is called, so a check is needed to avoid actually performing
    469  * a detach, because the original process might not exist any more.
    470  */
    471 static void
    472 filt_procdetach(struct knote *kn)
    473 {
    474 	struct proc *p;
    475 
    476 	if (kn->kn_status & KN_DETACHED)
    477 		return;
    478 
    479 	p = kn->kn_obj;
    480 
    481 	mutex_enter(p->p_lock);
    482 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    483 	mutex_exit(p->p_lock);
    484 }
    485 
    486 /*
    487  * Filter event method for EVFILT_PROC.
    488  */
    489 static int
    490 filt_proc(struct knote *kn, long hint)
    491 {
    492 	u_int event, fflag;
    493 	struct kevent kev;
    494 	struct kqueue *kq;
    495 	int error;
    496 
    497 	event = (u_int)hint & NOTE_PCTRLMASK;
    498 	kq = kn->kn_kq;
    499 	fflag = 0;
    500 
    501 	/* If the user is interested in this event, record it. */
    502 	if (kn->kn_sfflags & event)
    503 		fflag |= event;
    504 
    505 	if (event == NOTE_EXIT) {
    506 		/*
    507 		 * Process is gone, so flag the event as finished.
    508 		 *
    509 		 * Detach the knote from watched process and mark
    510 		 * it as such. We can't leave this to kqueue_scan(),
    511 		 * since the process might not exist by then. And we
    512 		 * have to do this now, since psignal KNOTE() is called
    513 		 * also for zombies and we might end up reading freed
    514 		 * memory if the kevent would already be picked up
    515 		 * and knote g/c'ed.
    516 		 */
    517 		filt_procdetach(kn);
    518 
    519 		mutex_spin_enter(&kq->kq_lock);
    520 		kn->kn_status |= KN_DETACHED;
    521 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
    522 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
    523 		kn->kn_fflags |= fflag;
    524 		mutex_spin_exit(&kq->kq_lock);
    525 
    526 		return 1;
    527 	}
    528 
    529 	mutex_spin_enter(&kq->kq_lock);
    530 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
    531 		/*
    532 		 * Process forked, and user wants to track the new process,
    533 		 * so attach a new knote to it, and immediately report an
    534 		 * event with the parent's pid.  Register knote with new
    535 		 * process.
    536 		 */
    537 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
    538 		kev.filter = kn->kn_filter;
    539 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
    540 		kev.fflags = kn->kn_sfflags;
    541 		kev.data = kn->kn_id;			/* parent */
    542 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
    543 		mutex_spin_exit(&kq->kq_lock);
    544 		error = kqueue_register(kq, &kev);
    545 		mutex_spin_enter(&kq->kq_lock);
    546 		if (error != 0)
    547 			kn->kn_fflags |= NOTE_TRACKERR;
    548 	}
    549 	kn->kn_fflags |= fflag;
    550 	fflag = kn->kn_fflags;
    551 	mutex_spin_exit(&kq->kq_lock);
    552 
    553 	return fflag != 0;
    554 }
    555 
    556 static void
    557 filt_timerexpire(void *knx)
    558 {
    559 	struct knote *kn = knx;
    560 	int tticks;
    561 
    562 	mutex_enter(&kqueue_misc_lock);
    563 	kn->kn_data++;
    564 	knote_activate(kn);
    565 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
    566 		tticks = mstohz(kn->kn_sdata);
    567 		callout_schedule((callout_t *)kn->kn_hook, tticks);
    568 	}
    569 	mutex_exit(&kqueue_misc_lock);
    570 }
    571 
    572 /*
    573  * data contains amount of time to sleep, in milliseconds
    574  */
    575 static int
    576 filt_timerattach(struct knote *kn)
    577 {
    578 	callout_t *calloutp;
    579 	struct kqueue *kq;
    580 	int tticks;
    581 
    582 	tticks = mstohz(kn->kn_sdata);
    583 
    584 	/* if the supplied value is under our resolution, use 1 tick */
    585 	if (tticks == 0) {
    586 		if (kn->kn_sdata == 0)
    587 			return EINVAL;
    588 		tticks = 1;
    589 	}
    590 
    591 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
    592 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
    593 		atomic_dec_uint(&kq_ncallouts);
    594 		return ENOMEM;
    595 	}
    596 	callout_init(calloutp, CALLOUT_MPSAFE);
    597 
    598 	kq = kn->kn_kq;
    599 	mutex_spin_enter(&kq->kq_lock);
    600 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
    601 	kn->kn_hook = calloutp;
    602 	mutex_spin_exit(&kq->kq_lock);
    603 
    604 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
    605 
    606 	return (0);
    607 }
    608 
    609 static void
    610 filt_timerdetach(struct knote *kn)
    611 {
    612 	callout_t *calloutp;
    613 
    614 	calloutp = (callout_t *)kn->kn_hook;
    615 	callout_halt(calloutp, NULL);
    616 	callout_destroy(calloutp);
    617 	kmem_free(calloutp, sizeof(*calloutp));
    618 	atomic_dec_uint(&kq_ncallouts);
    619 }
    620 
    621 static int
    622 filt_timer(struct knote *kn, long hint)
    623 {
    624 	int rv;
    625 
    626 	mutex_enter(&kqueue_misc_lock);
    627 	rv = (kn->kn_data != 0);
    628 	mutex_exit(&kqueue_misc_lock);
    629 
    630 	return rv;
    631 }
    632 
    633 /*
    634  * filt_seltrue:
    635  *
    636  *	This filter "event" routine simulates seltrue().
    637  */
    638 int
    639 filt_seltrue(struct knote *kn, long hint)
    640 {
    641 
    642 	/*
    643 	 * We don't know how much data can be read/written,
    644 	 * but we know that it *can* be.  This is about as
    645 	 * good as select/poll does as well.
    646 	 */
    647 	kn->kn_data = 0;
    648 	return (1);
    649 }
    650 
    651 /*
    652  * This provides full kqfilter entry for device switch tables, which
    653  * has same effect as filter using filt_seltrue() as filter method.
    654  */
    655 static void
    656 filt_seltruedetach(struct knote *kn)
    657 {
    658 	/* Nothing to do */
    659 }
    660 
    661 const struct filterops seltrue_filtops =
    662 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
    663 
    664 int
    665 seltrue_kqfilter(dev_t dev, struct knote *kn)
    666 {
    667 	switch (kn->kn_filter) {
    668 	case EVFILT_READ:
    669 	case EVFILT_WRITE:
    670 		kn->kn_fop = &seltrue_filtops;
    671 		break;
    672 	default:
    673 		return (EINVAL);
    674 	}
    675 
    676 	/* Nothing more to do */
    677 	return (0);
    678 }
    679 
    680 /*
    681  * kqueue(2) system call.
    682  */
    683 int
    684 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
    685 {
    686 	struct kqueue *kq;
    687 	file_t *fp;
    688 	int fd, error;
    689 
    690 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    691 		return error;
    692 	fp->f_flag = FREAD | FWRITE;
    693 	fp->f_type = DTYPE_KQUEUE;
    694 	fp->f_ops = &kqueueops;
    695 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
    696 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
    697 	cv_init(&kq->kq_cv, "kqueue");
    698 	selinit(&kq->kq_sel);
    699 	TAILQ_INIT(&kq->kq_head);
    700 	fp->f_data = kq;
    701 	*retval = fd;
    702 	kq->kq_fdp = curlwp->l_fd;
    703 	fd_affix(curproc, fp, fd);
    704 	return error;
    705 }
    706 
    707 /*
    708  * kevent(2) system call.
    709  */
    710 static int
    711 kevent_fetch_changes(void *private, const struct kevent *changelist,
    712 		     struct kevent *changes, size_t index, int n)
    713 {
    714 
    715 	return copyin(changelist + index, changes, n * sizeof(*changes));
    716 }
    717 
    718 static int
    719 kevent_put_events(void *private, struct kevent *events,
    720 		  struct kevent *eventlist, size_t index, int n)
    721 {
    722 
    723 	return copyout(events, eventlist + index, n * sizeof(*events));
    724 }
    725 
    726 static const struct kevent_ops kevent_native_ops = {
    727 	keo_private: NULL,
    728 	keo_fetch_timeout: copyin,
    729 	keo_fetch_changes: kevent_fetch_changes,
    730 	keo_put_events: kevent_put_events,
    731 };
    732 
    733 int
    734 sys_kevent(struct lwp *l, const struct sys_kevent_args *uap, register_t *retval)
    735 {
    736 	/* {
    737 		syscallarg(int) fd;
    738 		syscallarg(const struct kevent *) changelist;
    739 		syscallarg(size_t) nchanges;
    740 		syscallarg(struct kevent *) eventlist;
    741 		syscallarg(size_t) nevents;
    742 		syscallarg(const struct timespec *) timeout;
    743 	} */
    744 
    745 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
    746 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
    747 	    SCARG(uap, timeout), &kevent_native_ops);
    748 }
    749 
    750 int
    751 kevent1(register_t *retval, int fd,
    752 	const struct kevent *changelist, size_t nchanges,
    753 	struct kevent *eventlist, size_t nevents,
    754 	const struct timespec *timeout,
    755 	const struct kevent_ops *keops)
    756 {
    757 	struct kevent *kevp;
    758 	struct kqueue *kq;
    759 	struct timespec	ts;
    760 	size_t i, n, ichange;
    761 	int nerrors, error;
    762 	struct kevent kevbuf[8];	/* approx 300 bytes on 64-bit */
    763 	file_t *fp;
    764 
    765 	/* check that we're dealing with a kq */
    766 	fp = fd_getfile(fd);
    767 	if (fp == NULL)
    768 		return (EBADF);
    769 
    770 	if (fp->f_type != DTYPE_KQUEUE) {
    771 		fd_putfile(fd);
    772 		return (EBADF);
    773 	}
    774 
    775 	if (timeout != NULL) {
    776 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
    777 		if (error)
    778 			goto done;
    779 		timeout = &ts;
    780 	}
    781 
    782 	kq = (struct kqueue *)fp->f_data;
    783 	nerrors = 0;
    784 	ichange = 0;
    785 
    786 	/* traverse list of events to register */
    787 	while (nchanges > 0) {
    788 		n = MIN(nchanges, __arraycount(kevbuf));
    789 		error = (*keops->keo_fetch_changes)(keops->keo_private,
    790 		    changelist, kevbuf, ichange, n);
    791 		if (error)
    792 			goto done;
    793 		for (i = 0; i < n; i++) {
    794 			kevp = &kevbuf[i];
    795 			kevp->flags &= ~EV_SYSFLAGS;
    796 			/* register each knote */
    797 			error = kqueue_register(kq, kevp);
    798 			if (error) {
    799 				if (nevents != 0) {
    800 					kevp->flags = EV_ERROR;
    801 					kevp->data = error;
    802 					error = (*keops->keo_put_events)
    803 					    (keops->keo_private, kevp,
    804 					    eventlist, nerrors, 1);
    805 					if (error)
    806 						goto done;
    807 					nevents--;
    808 					nerrors++;
    809 				} else {
    810 					goto done;
    811 				}
    812 			}
    813 		}
    814 		nchanges -= n;	/* update the results */
    815 		ichange += n;
    816 	}
    817 	if (nerrors) {
    818 		*retval = nerrors;
    819 		error = 0;
    820 		goto done;
    821 	}
    822 
    823 	/* actually scan through the events */
    824 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
    825 	    kevbuf, __arraycount(kevbuf));
    826  done:
    827 	fd_putfile(fd);
    828 	return (error);
    829 }
    830 
    831 /*
    832  * Register a given kevent kev onto the kqueue
    833  */
    834 static int
    835 kqueue_register(struct kqueue *kq, struct kevent *kev)
    836 {
    837 	struct kfilter *kfilter;
    838 	filedesc_t *fdp;
    839 	file_t *fp;
    840 	fdfile_t *ff;
    841 	struct knote *kn, *newkn;
    842 	struct klist *list;
    843 	int error, fd, rv;
    844 
    845 	fdp = kq->kq_fdp;
    846 	fp = NULL;
    847 	kn = NULL;
    848 	error = 0;
    849 	fd = 0;
    850 
    851 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
    852 
    853 	rw_enter(&kqueue_filter_lock, RW_READER);
    854 	kfilter = kfilter_byfilter(kev->filter);
    855 	if (kfilter == NULL || kfilter->filtops == NULL) {
    856 		/* filter not found nor implemented */
    857 		rw_exit(&kqueue_filter_lock);
    858 		kmem_free(newkn, sizeof(*newkn));
    859 		return (EINVAL);
    860 	}
    861 
    862  	mutex_enter(&fdp->fd_lock);
    863 
    864 	/* search if knote already exists */
    865 	if (kfilter->filtops->f_isfd) {
    866 		/* monitoring a file descriptor */
    867 		fd = kev->ident;
    868 		if ((fp = fd_getfile(fd)) == NULL) {
    869 		 	mutex_exit(&fdp->fd_lock);
    870 			rw_exit(&kqueue_filter_lock);
    871 			kmem_free(newkn, sizeof(*newkn));
    872 			return EBADF;
    873 		}
    874 		ff = fdp->fd_ofiles[fd];
    875 		if (fd <= fdp->fd_lastkqfile) {
    876 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
    877 				if (kq == kn->kn_kq &&
    878 				    kev->filter == kn->kn_filter)
    879 					break;
    880 			}
    881 		}
    882 	} else {
    883 		/*
    884 		 * not monitoring a file descriptor, so
    885 		 * lookup knotes in internal hash table
    886 		 */
    887 		if (fdp->fd_knhashmask != 0) {
    888 			list = &fdp->fd_knhash[
    889 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
    890 			SLIST_FOREACH(kn, list, kn_link) {
    891 				if (kev->ident == kn->kn_id &&
    892 				    kq == kn->kn_kq &&
    893 				    kev->filter == kn->kn_filter)
    894 					break;
    895 			}
    896 		}
    897 	}
    898 
    899 	/*
    900 	 * kn now contains the matching knote, or NULL if no match
    901 	 */
    902 	if (kev->flags & EV_ADD) {
    903 		if (kn == NULL) {
    904 			/* create new knote */
    905 			kn = newkn;
    906 			newkn = NULL;
    907 			kn->kn_obj = fp;
    908 			kn->kn_kq = kq;
    909 			kn->kn_fop = kfilter->filtops;
    910 			kn->kn_kfilter = kfilter;
    911 			kn->kn_sfflags = kev->fflags;
    912 			kn->kn_sdata = kev->data;
    913 			kev->fflags = 0;
    914 			kev->data = 0;
    915 			kn->kn_kevent = *kev;
    916 
    917 			/*
    918 			 * apply reference count to knote structure, and
    919 			 * do not release it at the end of this routine.
    920 			 */
    921 			fp = NULL;
    922 
    923 			if (!kn->kn_fop->f_isfd) {
    924 				/*
    925 				 * If knote is not on an fd, store on
    926 				 * internal hash table.
    927 				 */
    928 				if (fdp->fd_knhashmask == 0) {
    929 					/* XXXAD can block with fd_lock held */
    930 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
    931 					    HASH_LIST, M_KEVENT, M_WAITOK,
    932 					    &fdp->fd_knhashmask);
    933 				}
    934 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
    935 				    fdp->fd_knhashmask)];
    936 			} else {
    937 				/* Otherwise, knote is on an fd. */
    938 				list = (struct klist *)
    939 				    &fdp->fd_ofiles[kn->kn_id]->ff_knlist;
    940 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
    941 					fdp->fd_lastkqfile = kn->kn_id;
    942 			}
    943 			SLIST_INSERT_HEAD(list, kn, kn_link);
    944 
    945 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
    946 			error = (*kfilter->filtops->f_attach)(kn);
    947 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
    948 			if (error != 0) {
    949 				/* knote_detach() drops fdp->fd_lock */
    950 				knote_detach(kn, fdp, false);
    951 				goto done;
    952 			}
    953 			atomic_inc_uint(&kfilter->refcnt);
    954 		} else {
    955 			/*
    956 			 * The user may change some filter values after the
    957 			 * initial EV_ADD, but doing so will not reset any
    958 			 * filter which have already been triggered.
    959 			 */
    960 			kn->kn_sfflags = kev->fflags;
    961 			kn->kn_sdata = kev->data;
    962 			kn->kn_kevent.udata = kev->udata;
    963 		}
    964 		KERNEL_LOCK(1, NULL);			/* XXXSMP */
    965 		rv = (*kn->kn_fop->f_event)(kn, 0);
    966 		KERNEL_UNLOCK_ONE(NULL);		/* XXXSMP */
    967 		if (rv)
    968 			knote_activate(kn);
    969 	} else {
    970 		if (kn == NULL) {
    971 			error = ENOENT;
    972 		 	mutex_exit(&fdp->fd_lock);
    973 			goto done;
    974 		}
    975 		if (kev->flags & EV_DELETE) {
    976 			/* knote_detach() drops fdp->fd_lock */
    977 			knote_detach(kn, fdp, true);
    978 			goto done;
    979 		}
    980 	}
    981 
    982 	/* disable knote */
    983 	if ((kev->flags & EV_DISABLE)) {
    984 		mutex_spin_enter(&kq->kq_lock);
    985 		if ((kn->kn_status & KN_DISABLED) == 0)
    986 			kn->kn_status |= KN_DISABLED;
    987 		mutex_spin_exit(&kq->kq_lock);
    988 	}
    989 
    990 	/* enable knote */
    991 	if ((kev->flags & EV_ENABLE)) {
    992 		knote_enqueue(kn);
    993 	}
    994 	mutex_exit(&fdp->fd_lock);
    995  done:
    996 	rw_exit(&kqueue_filter_lock);
    997 	if (newkn != NULL)
    998 		kmem_free(newkn, sizeof(*newkn));
    999 	if (fp != NULL)
   1000 		fd_putfile(fd);
   1001 	return (error);
   1002 }
   1003 
   1004 #if defined(DEBUG)
   1005 static void
   1006 kq_check(struct kqueue *kq)
   1007 {
   1008 	const struct knote *kn;
   1009 	int count;
   1010 	int nmarker;
   1011 
   1012 	KASSERT(mutex_owned(&kq->kq_lock));
   1013 	KASSERT(kq->kq_count >= 0);
   1014 
   1015 	count = 0;
   1016 	nmarker = 0;
   1017 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   1018 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   1019 			panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
   1020 		}
   1021 		if ((kn->kn_status & KN_MARKER) == 0) {
   1022 			if (kn->kn_kq != kq) {
   1023 				panic("%s: kq=%p kn=%p inconsist 2",
   1024 				    __func__, kq, kn);
   1025 			}
   1026 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   1027 				panic("%s: kq=%p kn=%p: not active",
   1028 				    __func__, kq, kn);
   1029 			}
   1030 			count++;
   1031 			if (count > kq->kq_count) {
   1032 				goto bad;
   1033 			}
   1034 		} else {
   1035 			nmarker++;
   1036 #if 0
   1037 			if (nmarker > 10000) {
   1038 				panic("%s: kq=%p too many markers: %d != %d, "
   1039 				    "nmarker=%d",
   1040 				    __func__, kq, kq->kq_count, count, nmarker);
   1041 			}
   1042 #endif
   1043 		}
   1044 	}
   1045 	if (kq->kq_count != count) {
   1046 bad:
   1047 		panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
   1048 		    __func__, kq, kq->kq_count, count, nmarker);
   1049 	}
   1050 }
   1051 #else /* defined(DEBUG) */
   1052 #define	kq_check(a)	/* nothing */
   1053 #endif /* defined(DEBUG) */
   1054 
   1055 /*
   1056  * Scan through the list of events on fp (for a maximum of maxevents),
   1057  * returning the results in to ulistp. Timeout is determined by tsp; if
   1058  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   1059  * as appropriate.
   1060  */
   1061 static int
   1062 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   1063 	    const struct timespec *tsp, register_t *retval,
   1064 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   1065 	    size_t kevcnt)
   1066 {
   1067 	struct kqueue	*kq;
   1068 	struct kevent	*kevp;
   1069 	struct timeval	atv, sleeptv;
   1070 	struct knote	*kn, *marker;
   1071 	size_t		count, nkev, nevents;
   1072 	int		timeout, error, rv;
   1073 	filedesc_t	*fdp;
   1074 
   1075 	fdp = curlwp->l_fd;
   1076 	kq = fp->f_data;
   1077 	count = maxevents;
   1078 	nkev = nevents = error = 0;
   1079 	if (count == 0) {
   1080 		*retval = 0;
   1081 		return 0;
   1082 	}
   1083 
   1084 	if (tsp) {				/* timeout supplied */
   1085 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
   1086 		if (inittimeleft(&atv, &sleeptv) == -1) {
   1087 			*retval = maxevents;
   1088 			return EINVAL;
   1089 		}
   1090 		timeout = tvtohz(&atv);
   1091 		if (timeout <= 0)
   1092 			timeout = -1;           /* do poll */
   1093 	} else {
   1094 		/* no timeout, wait forever */
   1095 		timeout = 0;
   1096 	}
   1097 
   1098 	marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
   1099 	marker->kn_status = KN_MARKER;
   1100 	mutex_spin_enter(&kq->kq_lock);
   1101  retry:
   1102 	kevp = kevbuf;
   1103 	if (kq->kq_count == 0) {
   1104 		if (timeout >= 0) {
   1105 			error = cv_timedwait_sig(&kq->kq_cv,
   1106 			    &kq->kq_lock, timeout);
   1107 			if (error == 0) {
   1108 				 if (tsp == NULL || (timeout =
   1109 				     gettimeleft(&atv, &sleeptv)) > 0)
   1110 					goto retry;
   1111 			} else {
   1112 				/* don't restart after signals... */
   1113 				if (error == ERESTART)
   1114 					error = EINTR;
   1115 				if (error == EWOULDBLOCK)
   1116 					error = 0;
   1117 			}
   1118 		}
   1119 	} else {
   1120 		/* mark end of knote list */
   1121 		TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   1122 
   1123 		while (count != 0) {
   1124 			kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
   1125 			while ((kn->kn_status & KN_MARKER) != 0) {
   1126 				if (kn == marker) {
   1127 					/* it's our marker, stop */
   1128 					TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1129 					if (count < maxevents || (tsp != NULL &&
   1130 					    (timeout = gettimeleft(&atv,
   1131 					    &sleeptv)) <= 0))
   1132 						goto done;
   1133 					goto retry;
   1134 				}
   1135 				/* someone else's marker. */
   1136 				kn = TAILQ_NEXT(kn, kn_tqe);
   1137 			}
   1138 			kq_check(kq);
   1139 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1140 			kq->kq_count--;
   1141 			kn->kn_status &= ~KN_QUEUED;
   1142 			kq_check(kq);
   1143 			if (kn->kn_status & KN_DISABLED) {
   1144 				/* don't want disabled events */
   1145 				continue;
   1146 			}
   1147 			if ((kn->kn_flags & EV_ONESHOT) == 0) {
   1148 				mutex_spin_exit(&kq->kq_lock);
   1149 				KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1150 				rv = (*kn->kn_fop->f_event)(kn, 0);
   1151 				KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1152 				mutex_spin_enter(&kq->kq_lock);
   1153 				/* Re-poll if note was re-enqueued. */
   1154 				if ((kn->kn_status & KN_QUEUED) != 0)
   1155 					continue;
   1156 				if (rv == 0) {
   1157 					/*
   1158 					 * non-ONESHOT event that hasn't
   1159 					 * triggered again, so de-queue.
   1160 					 */
   1161 					kn->kn_status &= ~KN_ACTIVE;
   1162 					continue;
   1163 				}
   1164 			}
   1165 			/* XXXAD should be got from f_event if !oneshot. */
   1166 			*kevp++ = kn->kn_kevent;
   1167 			nkev++;
   1168 			if (kn->kn_flags & EV_ONESHOT) {
   1169 				/* delete ONESHOT events after retrieval */
   1170 				mutex_spin_exit(&kq->kq_lock);
   1171 				mutex_enter(&fdp->fd_lock);
   1172 				knote_detach(kn, fdp, true);
   1173 				mutex_spin_enter(&kq->kq_lock);
   1174 			} else if (kn->kn_flags & EV_CLEAR) {
   1175 				/* clear state after retrieval */
   1176 				kn->kn_data = 0;
   1177 				kn->kn_fflags = 0;
   1178 				kn->kn_status &= ~KN_ACTIVE;
   1179 			} else {
   1180 				/* add event back on list */
   1181 				kq_check(kq);
   1182 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1183 				kq->kq_count++;
   1184 				kn->kn_status |= KN_QUEUED;
   1185 				kq_check(kq);
   1186 			}
   1187 			if (nkev == kevcnt) {
   1188 				/* do copyouts in kevcnt chunks */
   1189 				mutex_spin_exit(&kq->kq_lock);
   1190 				error = (*keops->keo_put_events)
   1191 				    (keops->keo_private,
   1192 				    kevbuf, ulistp, nevents, nkev);
   1193 				mutex_spin_enter(&kq->kq_lock);
   1194 				nevents += nkev;
   1195 				nkev = 0;
   1196 				kevp = kevbuf;
   1197 			}
   1198 			count--;
   1199 			if (error != 0 || count == 0) {
   1200 				/* remove marker */
   1201 				TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   1202 				break;
   1203 			}
   1204 		}
   1205 	}
   1206  done:
   1207  	mutex_spin_exit(&kq->kq_lock);
   1208 	if (marker != NULL)
   1209 		kmem_free(marker, sizeof(*marker));
   1210 	if (nkev != 0) {
   1211 		/* copyout remaining events */
   1212 		error = (*keops->keo_put_events)(keops->keo_private,
   1213 		    kevbuf, ulistp, nevents, nkev);
   1214 	}
   1215 	*retval = maxevents - count;
   1216 
   1217 	return error;
   1218 }
   1219 
   1220 /*
   1221  * fileops ioctl method for a kqueue descriptor.
   1222  *
   1223  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   1224  *	KFILTER_BYNAME		find name for filter, and return result in
   1225  *				name, which is of size len.
   1226  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   1227  */
   1228 /*ARGSUSED*/
   1229 static int
   1230 kqueue_ioctl(file_t *fp, u_long com, void *data)
   1231 {
   1232 	struct kfilter_mapping	*km;
   1233 	const struct kfilter	*kfilter;
   1234 	char			*name;
   1235 	int			error;
   1236 
   1237 	km = data;
   1238 	error = 0;
   1239 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   1240 
   1241 	switch (com) {
   1242 	case KFILTER_BYFILTER:	/* convert filter -> name */
   1243 		rw_enter(&kqueue_filter_lock, RW_READER);
   1244 		kfilter = kfilter_byfilter(km->filter);
   1245 		if (kfilter != NULL) {
   1246 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   1247 			rw_exit(&kqueue_filter_lock);
   1248 			error = copyoutstr(name, km->name, km->len, NULL);
   1249 		} else {
   1250 			rw_exit(&kqueue_filter_lock);
   1251 			error = ENOENT;
   1252 		}
   1253 		break;
   1254 
   1255 	case KFILTER_BYNAME:	/* convert name -> filter */
   1256 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   1257 		if (error) {
   1258 			break;
   1259 		}
   1260 		rw_enter(&kqueue_filter_lock, RW_READER);
   1261 		kfilter = kfilter_byname(name);
   1262 		if (kfilter != NULL)
   1263 			km->filter = kfilter->filter;
   1264 		else
   1265 			error = ENOENT;
   1266 		rw_exit(&kqueue_filter_lock);
   1267 		break;
   1268 
   1269 	default:
   1270 		error = ENOTTY;
   1271 		break;
   1272 
   1273 	}
   1274 	kmem_free(name, KFILTER_MAXNAME);
   1275 	return (error);
   1276 }
   1277 
   1278 /*
   1279  * fileops fcntl method for a kqueue descriptor.
   1280  */
   1281 static int
   1282 kqueue_fcntl(file_t *fp, u_int com, void *data)
   1283 {
   1284 
   1285 	return (ENOTTY);
   1286 }
   1287 
   1288 /*
   1289  * fileops poll method for a kqueue descriptor.
   1290  * Determine if kqueue has events pending.
   1291  */
   1292 static int
   1293 kqueue_poll(file_t *fp, int events)
   1294 {
   1295 	struct kqueue	*kq;
   1296 	int		revents;
   1297 
   1298 	kq = fp->f_data;
   1299 
   1300 	revents = 0;
   1301 	if (events & (POLLIN | POLLRDNORM)) {
   1302 		mutex_spin_enter(&kq->kq_lock);
   1303 		if (kq->kq_count != 0) {
   1304 			revents |= events & (POLLIN | POLLRDNORM);
   1305 		} else {
   1306 			selrecord(curlwp, &kq->kq_sel);
   1307 		}
   1308 		kq_check(kq);
   1309 		mutex_spin_exit(&kq->kq_lock);
   1310 	}
   1311 
   1312 	return revents;
   1313 }
   1314 
   1315 /*
   1316  * fileops stat method for a kqueue descriptor.
   1317  * Returns dummy info, with st_size being number of events pending.
   1318  */
   1319 static int
   1320 kqueue_stat(file_t *fp, struct stat *st)
   1321 {
   1322 	struct kqueue *kq;
   1323 
   1324 	kq = fp->f_data;
   1325 
   1326 	memset(st, 0, sizeof(*st));
   1327 	st->st_size = kq->kq_count;
   1328 	st->st_blksize = sizeof(struct kevent);
   1329 	st->st_mode = S_IFIFO;
   1330 
   1331 	return 0;
   1332 }
   1333 
   1334 static void
   1335 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   1336 {
   1337 	struct knote *kn;
   1338 	filedesc_t *fdp;
   1339 
   1340 	fdp = kq->kq_fdp;
   1341 
   1342 	KASSERT(mutex_owned(&fdp->fd_lock));
   1343 
   1344 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   1345 		if (kq != kn->kn_kq) {
   1346 			kn = SLIST_NEXT(kn, kn_link);
   1347 			continue;
   1348 		}
   1349 		knote_detach(kn, fdp, true);
   1350 		mutex_enter(&fdp->fd_lock);
   1351 		kn = SLIST_FIRST(list);
   1352 	}
   1353 }
   1354 
   1355 
   1356 /*
   1357  * fileops close method for a kqueue descriptor.
   1358  */
   1359 static int
   1360 kqueue_close(file_t *fp)
   1361 {
   1362 	struct kqueue *kq;
   1363 	filedesc_t *fdp;
   1364 	fdfile_t *ff;
   1365 	int i;
   1366 
   1367 	kq = fp->f_data;
   1368 	fdp = curlwp->l_fd;
   1369 
   1370 	mutex_enter(&fdp->fd_lock);
   1371 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   1372 		if ((ff = fdp->fd_ofiles[i]) == NULL)
   1373 			continue;
   1374 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   1375 	}
   1376 	if (fdp->fd_knhashmask != 0) {
   1377 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   1378 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   1379 		}
   1380 	}
   1381 	mutex_exit(&fdp->fd_lock);
   1382 
   1383 	KASSERT(kq->kq_count == 0);
   1384 	mutex_destroy(&kq->kq_lock);
   1385 	cv_destroy(&kq->kq_cv);
   1386 	seldestroy(&kq->kq_sel);
   1387 	kmem_free(kq, sizeof(*kq));
   1388 	fp->f_data = NULL;
   1389 
   1390 	return (0);
   1391 }
   1392 
   1393 /*
   1394  * struct fileops kqfilter method for a kqueue descriptor.
   1395  * Event triggered when monitored kqueue changes.
   1396  */
   1397 static int
   1398 kqueue_kqfilter(file_t *fp, struct knote *kn)
   1399 {
   1400 	struct kqueue *kq;
   1401 	filedesc_t *fdp;
   1402 
   1403 	kq = ((file_t *)kn->kn_obj)->f_data;
   1404 
   1405 	KASSERT(fp == kn->kn_obj);
   1406 
   1407 	if (kn->kn_filter != EVFILT_READ)
   1408 		return 1;
   1409 
   1410 	kn->kn_fop = &kqread_filtops;
   1411 	fdp = curlwp->l_fd;
   1412 	mutex_enter(&kq->kq_lock);
   1413 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
   1414 	mutex_exit(&kq->kq_lock);
   1415 
   1416 	return 0;
   1417 }
   1418 
   1419 
   1420 /*
   1421  * Walk down a list of knotes, activating them if their event has
   1422  * triggered.  The caller's object lock (e.g. device driver lock)
   1423  * must be held.
   1424  */
   1425 void
   1426 knote(struct klist *list, long hint)
   1427 {
   1428 	struct knote *kn;
   1429 
   1430 	SLIST_FOREACH(kn, list, kn_selnext) {
   1431 		if ((*kn->kn_fop->f_event)(kn, hint))
   1432 			knote_activate(kn);
   1433 	}
   1434 }
   1435 
   1436 /*
   1437  * Remove all knotes referencing a specified fd
   1438  */
   1439 void
   1440 knote_fdclose(int fd)
   1441 {
   1442 	struct klist *list;
   1443 	struct knote *kn;
   1444 	filedesc_t *fdp;
   1445 
   1446 	fdp = curlwp->l_fd;
   1447 	list = (struct klist *)&fdp->fd_ofiles[fd]->ff_knlist;
   1448 	mutex_enter(&fdp->fd_lock);
   1449 	while ((kn = SLIST_FIRST(list)) != NULL) {
   1450 		knote_detach(kn, fdp, true);
   1451 		mutex_enter(&fdp->fd_lock);
   1452 	}
   1453 	mutex_exit(&fdp->fd_lock);
   1454 }
   1455 
   1456 /*
   1457  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   1458  * returning.
   1459  */
   1460 static void
   1461 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   1462 {
   1463 	struct klist *list;
   1464 	struct kqueue *kq;
   1465 
   1466 	kq = kn->kn_kq;
   1467 
   1468 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1469 	KASSERT(mutex_owned(&fdp->fd_lock));
   1470 
   1471 	/* Remove from monitored object. */
   1472 	if (dofop) {
   1473 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1474 		(*kn->kn_fop->f_detach)(kn);
   1475 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1476 	}
   1477 
   1478 	/* Remove from descriptor table. */
   1479 	if (kn->kn_fop->f_isfd)
   1480 		list = (struct klist *)&fdp->fd_ofiles[kn->kn_id]->ff_knlist;
   1481 	else
   1482 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1483 
   1484 	SLIST_REMOVE(list, kn, knote, kn_link);
   1485 
   1486 	/* Remove from kqueue. */
   1487 	/* XXXAD should verify not in use by kqueue_scan. */
   1488 	mutex_spin_enter(&kq->kq_lock);
   1489 	if ((kn->kn_status & KN_QUEUED) != 0) {
   1490 		kq_check(kq);
   1491 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1492 		kn->kn_status &= ~KN_QUEUED;
   1493 		kq->kq_count--;
   1494 		kq_check(kq);
   1495 	}
   1496 	mutex_spin_exit(&kq->kq_lock);
   1497 
   1498 	mutex_exit(&fdp->fd_lock);
   1499 	if (kn->kn_fop->f_isfd)
   1500 		fd_putfile(kn->kn_id);
   1501 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   1502 	kmem_free(kn, sizeof(*kn));
   1503 }
   1504 
   1505 /*
   1506  * Queue new event for knote.
   1507  */
   1508 static void
   1509 knote_enqueue(struct knote *kn)
   1510 {
   1511 	struct kqueue *kq;
   1512 
   1513 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1514 
   1515 	kq = kn->kn_kq;
   1516 
   1517 	mutex_spin_enter(&kq->kq_lock);
   1518 	if ((kn->kn_status & KN_DISABLED) != 0) {
   1519 		kn->kn_status &= ~KN_DISABLED;
   1520 	}
   1521 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   1522 		kq_check(kq);
   1523 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1524 		kn->kn_status |= KN_QUEUED;
   1525 		kq->kq_count++;
   1526 		kq_check(kq);
   1527 		cv_broadcast(&kq->kq_cv);
   1528 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1529 	}
   1530 	mutex_spin_exit(&kq->kq_lock);
   1531 }
   1532 /*
   1533  * Queue new event for knote.
   1534  */
   1535 static void
   1536 knote_activate(struct knote *kn)
   1537 {
   1538 	struct kqueue *kq;
   1539 
   1540 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1541 
   1542 	kq = kn->kn_kq;
   1543 
   1544 	mutex_spin_enter(&kq->kq_lock);
   1545 	kn->kn_status |= KN_ACTIVE;
   1546 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   1547 		kq_check(kq);
   1548 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1549 		kn->kn_status |= KN_QUEUED;
   1550 		kq->kq_count++;
   1551 		kq_check(kq);
   1552 		cv_broadcast(&kq->kq_cv);
   1553 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1554 	}
   1555 	mutex_spin_exit(&kq->kq_lock);
   1556 }
   1557