kern_event.c revision 1.6 1 /* $NetBSD: kern_event.c,v 1.6 2003/01/18 10:06:25 thorpej Exp $ */
2 /*-
3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/fcntl.h>
38 #include <sys/select.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/poll.h>
43 #include <sys/pool.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/stat.h>
48 #include <sys/uio.h>
49 #include <sys/mount.h>
50 #include <sys/filedesc.h>
51 #include <sys/sa.h>
52 #include <sys/syscallargs.h>
53
54 static int kqueue_scan(struct file *fp, size_t maxevents,
55 struct kevent *ulistp, const struct timespec *timeout,
56 struct proc *p, register_t *retval);
57 static void kqueue_wakeup(struct kqueue *kq);
58
59 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
60 struct ucred *cred, int flags);
61 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
62 struct ucred *cred, int flags);
63 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
64 struct proc *p);
65 static int kqueue_fcntl(struct file *fp, u_int com, caddr_t data,
66 struct proc *p);
67 static int kqueue_poll(struct file *fp, int events, struct proc *p);
68 static int kqueue_kqfilter(struct file *fp, struct knote *kn);
69 static int kqueue_stat(struct file *fp, struct stat *sp, struct proc *p);
70 static int kqueue_close(struct file *fp, struct proc *p);
71
72 static struct fileops kqueueops = {
73 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
74 kqueue_stat, kqueue_close, kqueue_kqfilter
75 };
76
77 static void knote_attach(struct knote *kn, struct filedesc *fdp);
78 static void knote_drop(struct knote *kn, struct proc *p,
79 struct filedesc *fdp);
80 static void knote_enqueue(struct knote *kn);
81 static void knote_dequeue(struct knote *kn);
82
83 static void filt_kqdetach(struct knote *kn);
84 static int filt_kqueue(struct knote *kn, long hint);
85 static int filt_procattach(struct knote *kn);
86 static void filt_procdetach(struct knote *kn);
87 static int filt_proc(struct knote *kn, long hint);
88 static int filt_fileattach(struct knote *kn);
89
90 static const struct filterops kqread_filtops =
91 { 1, NULL, filt_kqdetach, filt_kqueue };
92 static const struct filterops proc_filtops =
93 { 0, filt_procattach, filt_procdetach, filt_proc };
94 static const struct filterops file_filtops =
95 { 1, filt_fileattach, NULL, NULL };
96
97 struct pool kqueue_pool;
98 struct pool knote_pool;
99
100 #define KNOTE_ACTIVATE(kn) \
101 do { \
102 kn->kn_status |= KN_ACTIVE; \
103 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \
104 knote_enqueue(kn); \
105 } while(0)
106
107 #define KN_HASHSIZE 64 /* XXX should be tunable */
108 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
109
110 extern const struct filterops sig_filtops;
111
112 /*
113 * Table for for all system-defined filters.
114 * These should be listed in the numeric order of the EVFILT_* defines.
115 * If filtops is NULL, the filter isn't implemented in NetBSD.
116 * End of list is when name is NULL.
117 */
118 struct kfilter {
119 const char *name; /* name of filter */
120 uint32_t filter; /* id of filter */
121 const struct filterops *filtops;/* operations for filter */
122 };
123
124 /* System defined filters */
125 static const struct kfilter sys_kfilters[] = {
126 { "EVFILT_READ", EVFILT_READ, &file_filtops },
127 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops },
128 { "EVFILT_AIO", EVFILT_AIO, NULL },
129 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops },
130 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops },
131 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops },
132 { NULL, 0, NULL }, /* end of list */
133 };
134
135 /* User defined kfilters */
136 static struct kfilter *user_kfilters; /* array */
137 static int user_kfilterc; /* current offset */
138 static int user_kfiltermaxc; /* max size so far */
139
140 /*
141 * kqueue_init:
142 *
143 * Initialize the kqueue/knote facility.
144 */
145 void
146 kqueue_init(void)
147 {
148
149 pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
150 NULL);
151 pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
152 NULL);
153 }
154
155 /*
156 * Find kfilter entry by name, or NULL if not found.
157 */
158 static const struct kfilter *
159 kfilter_byname_sys(const char *name)
160 {
161 int i;
162
163 for (i = 0; sys_kfilters[i].name != NULL; i++) {
164 if (strcmp(name, sys_kfilters[i].name) == 0)
165 return (&sys_kfilters[i]);
166 }
167 return (NULL);
168 }
169
170 static struct kfilter *
171 kfilter_byname_user(const char *name)
172 {
173 int i;
174
175 /* user_kfilters[] could be NULL if no filters were registered */
176 if (!user_kfilters)
177 return (NULL);
178
179 for (i = 0; user_kfilters[i].name != NULL; i++) {
180 if (user_kfilters[i].name != '\0' &&
181 strcmp(name, user_kfilters[i].name) == 0)
182 return (&user_kfilters[i]);
183 }
184 return (NULL);
185 }
186
187 static const struct kfilter *
188 kfilter_byname(const char *name)
189 {
190 const struct kfilter *kfilter;
191
192 if ((kfilter = kfilter_byname_sys(name)) != NULL)
193 return (kfilter);
194
195 return (kfilter_byname_user(name));
196 }
197
198 /*
199 * Find kfilter entry by filter id, or NULL if not found.
200 * Assumes entries are indexed in filter id order, for speed.
201 */
202 static const struct kfilter *
203 kfilter_byfilter(uint32_t filter)
204 {
205 const struct kfilter *kfilter;
206
207 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
208 kfilter = &sys_kfilters[filter];
209 else if (user_kfilters != NULL &&
210 filter < EVFILT_SYSCOUNT + user_kfilterc)
211 /* it's a user filter */
212 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
213 else
214 return (NULL); /* out of range */
215 KASSERT(kfilter->filter == filter); /* sanity check! */
216 return (kfilter);
217 }
218
219 /*
220 * Register a new kfilter. Stores the entry in user_kfilters.
221 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
222 * If retfilter != NULL, the new filterid is returned in it.
223 */
224 int
225 kfilter_register(const char *name, const struct filterops *filtops,
226 int *retfilter)
227 {
228 struct kfilter *kfilter;
229 void *space;
230 int len;
231
232 if (name == NULL || name[0] == '\0' || filtops == NULL)
233 return (EINVAL); /* invalid args */
234 if (kfilter_byname(name) != NULL)
235 return (EEXIST); /* already exists */
236 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
237 return (EINVAL); /* too many */
238
239 /* check if need to grow user_kfilters */
240 if (user_kfilterc + 1 > user_kfiltermaxc) {
241 /*
242 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
243 * want to traverse user_kfilters as an array.
244 */
245 user_kfiltermaxc += KFILTER_EXTENT;
246 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
247 M_KEVENT, M_WAITOK);
248
249 /* copy existing user_kfilters */
250 if (user_kfilters != NULL)
251 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
252 user_kfilterc * sizeof(struct kfilter *));
253 /* zero new sections */
254 memset((caddr_t)kfilter +
255 user_kfilterc * sizeof(struct kfilter *), 0,
256 (user_kfiltermaxc - user_kfilterc) *
257 sizeof(struct kfilter *));
258 /* switch to new kfilter */
259 if (user_kfilters != NULL)
260 free(user_kfilters, M_KEVENT);
261 user_kfilters = kfilter;
262 }
263 len = strlen(name) + 1; /* copy name */
264 space = malloc(len, M_KEVENT, M_WAITOK);
265 memcpy(space, name, len);
266 user_kfilters[user_kfilterc].name = space;
267
268 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
269
270 len = sizeof(struct filterops); /* copy filtops */
271 space = malloc(len, M_KEVENT, M_WAITOK);
272 memcpy(space, filtops, len);
273 user_kfilters[user_kfilterc].filtops = space;
274
275 if (retfilter != NULL)
276 *retfilter = user_kfilters[user_kfilterc].filter;
277 user_kfilterc++; /* finally, increment count */
278 return (0);
279 }
280
281 /*
282 * Unregister a kfilter previously registered with kfilter_register.
283 * This retains the filter id, but clears the name and frees filtops (filter
284 * operations), so that the number isn't reused during a boot.
285 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286 */
287 int
288 kfilter_unregister(const char *name)
289 {
290 struct kfilter *kfilter;
291
292 if (name == NULL || name[0] == '\0')
293 return (EINVAL); /* invalid name */
294
295 if (kfilter_byname_sys(name) != NULL)
296 return (EINVAL); /* can't detach system filters */
297
298 kfilter = kfilter_byname_user(name);
299 if (kfilter == NULL) /* not found */
300 return (ENOENT);
301
302 if (kfilter->name[0] != '\0') {
303 /* XXX Cast away const (but we know it's safe. */
304 free((void *) kfilter->name, M_KEVENT);
305 kfilter->name = ""; /* mark as `not implemented' */
306 }
307 if (kfilter->filtops != NULL) {
308 /* XXX Cast away const (but we know it's safe. */
309 free((void *) kfilter->filtops, M_KEVENT);
310 kfilter->filtops = NULL; /* mark as `not implemented' */
311 }
312 return (0);
313 }
314
315
316 /*
317 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
318 * descriptors. Calls struct fileops kqfilter method for given file descriptor.
319 */
320 static int
321 filt_fileattach(struct knote *kn)
322 {
323 struct file *fp;
324
325 fp = kn->kn_fp;
326 return ((*fp->f_ops->fo_kqfilter)(fp, kn));
327 }
328
329 /*
330 * Filter detach method for EVFILT_READ on kqueue descriptor.
331 */
332 static void
333 filt_kqdetach(struct knote *kn)
334 {
335 struct kqueue *kq;
336
337 kq = (struct kqueue *)kn->kn_fp->f_data;
338 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
339 }
340
341 /*
342 * Filter event method for EVFILT_READ on kqueue descriptor.
343 */
344 /*ARGSUSED*/
345 static int
346 filt_kqueue(struct knote *kn, long hint)
347 {
348 struct kqueue *kq;
349
350 kq = (struct kqueue *)kn->kn_fp->f_data;
351 kn->kn_data = kq->kq_count;
352 return (kn->kn_data > 0);
353 }
354
355 /*
356 * Filter attach method for EVFILT_PROC.
357 */
358 static int
359 filt_procattach(struct knote *kn)
360 {
361 struct proc *p;
362
363 p = pfind(kn->kn_id);
364 if (p == NULL)
365 return (ESRCH);
366
367 /*
368 * Fail if it's not owned by you, or the last exec gave us
369 * setuid/setgid privs (unless you're root).
370 */
371 if ((p->p_cred->p_ruid != curproc->p_cred->p_ruid ||
372 (p->p_flag & P_SUGID))
373 && suser(curproc->p_ucred, &curproc->p_acflag) != 0)
374 return (EACCES);
375
376 kn->kn_ptr.p_proc = p;
377 kn->kn_flags |= EV_CLEAR; /* automatically set */
378
379 /*
380 * internal flag indicating registration done by kernel
381 */
382 if (kn->kn_flags & EV_FLAG1) {
383 kn->kn_data = kn->kn_sdata; /* ppid */
384 kn->kn_fflags = NOTE_CHILD;
385 kn->kn_flags &= ~EV_FLAG1;
386 }
387
388 /* XXXSMP lock the process? */
389 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
390
391 return (0);
392 }
393
394 /*
395 * Filter detach method for EVFILT_PROC.
396 *
397 * The knote may be attached to a different process, which may exit,
398 * leaving nothing for the knote to be attached to. So when the process
399 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
400 * it will be deleted when read out. However, as part of the knote deletion,
401 * this routine is called, so a check is needed to avoid actually performing
402 * a detach, because the original process might not exist any more.
403 */
404 static void
405 filt_procdetach(struct knote *kn)
406 {
407 struct proc *p;
408
409 if (kn->kn_status & KN_DETACHED)
410 return;
411
412 p = kn->kn_ptr.p_proc;
413 KASSERT(p->p_stat == SDEAD || pfind(kn->kn_id) == p);
414
415 /* XXXSMP lock the process? */
416 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
417 }
418
419 /*
420 * Filter event method for EVFILT_PROC.
421 */
422 static int
423 filt_proc(struct knote *kn, long hint)
424 {
425 u_int event;
426
427 /*
428 * mask off extra data
429 */
430 event = (u_int)hint & NOTE_PCTRLMASK;
431
432 /*
433 * if the user is interested in this event, record it.
434 */
435 if (kn->kn_sfflags & event)
436 kn->kn_fflags |= event;
437
438 /*
439 * process is gone, so flag the event as finished.
440 */
441 if (event == NOTE_EXIT) {
442 /*
443 * Detach the knote from watched process and mark
444 * it as such. We can't leave this to kqueue_scan(),
445 * since the process might not exist by then. And we
446 * have to do this now, since psignal KNOTE() is called
447 * also for zombies and we might end up reading freed
448 * memory if the kevent would already be picked up
449 * and knote g/c'ed.
450 */
451 kn->kn_fop->f_detach(kn);
452 kn->kn_status |= KN_DETACHED;
453
454 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
455 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
456 return (1);
457 }
458
459 /*
460 * process forked, and user wants to track the new process,
461 * so attach a new knote to it, and immediately report an
462 * event with the parent's pid.
463 */
464 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
465 struct kevent kev;
466 int error;
467
468 /*
469 * register knote with new process.
470 */
471 kev.ident = hint & NOTE_PDATAMASK; /* pid */
472 kev.filter = kn->kn_filter;
473 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
474 kev.fflags = kn->kn_sfflags;
475 kev.data = kn->kn_id; /* parent */
476 kev.udata = kn->kn_kevent.udata; /* preserve udata */
477 error = kqueue_register(kn->kn_kq, &kev, NULL);
478 if (error)
479 kn->kn_fflags |= NOTE_TRACKERR;
480 }
481
482 return (kn->kn_fflags != 0);
483 }
484
485 /*
486 * filt_seltrue:
487 *
488 * This filter "event" routine simulates seltrue().
489 */
490 int
491 filt_seltrue(struct knote *kn, long hint)
492 {
493
494 /*
495 * We don't know how much data can be read/written,
496 * but we know that it *can* be. This is about as
497 * good as select/poll does as well.
498 */
499 kn->kn_data = 0;
500 return (1);
501 }
502
503 /*
504 * This provides full kqfilter entry for device switch tables, which
505 * has same effect as filter using filt_seltrue() as filter method.
506 */
507 static void
508 filt_seltruedetach(struct knote *kn)
509 {
510 /* Nothing to do */
511 }
512
513 static const struct filterops seltrue_filtops =
514 { 1, NULL, filt_seltruedetach, filt_seltrue };
515
516 int
517 seltrue_kqfilter(dev_t dev, struct knote *kn)
518 {
519 switch (kn->kn_filter) {
520 case EVFILT_READ:
521 case EVFILT_WRITE:
522 kn->kn_fop = &seltrue_filtops;
523 break;
524 default:
525 return (1);
526 }
527
528 /* Nothing more to do */
529 return (0);
530 }
531
532 /*
533 * kqueue(2) system call.
534 */
535 int
536 sys_kqueue(struct lwp *l, void *v, register_t *retval)
537 {
538 struct filedesc *fdp;
539 struct kqueue *kq;
540 struct file *fp;
541 struct proc *p;
542 int fd, error;
543
544 p = l->l_proc;
545 fdp = p->p_fd;
546 error = falloc(p, &fp, &fd); /* setup a new file descriptor */
547 if (error)
548 return (error);
549 fp->f_flag = FREAD | FWRITE;
550 fp->f_type = DTYPE_KQUEUE;
551 fp->f_ops = &kqueueops;
552 kq = pool_get(&kqueue_pool, PR_WAITOK);
553 memset((char *)kq, 0, sizeof(struct kqueue));
554 TAILQ_INIT(&kq->kq_head);
555 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */
556 *retval = fd;
557 if (fdp->fd_knlistsize < 0)
558 fdp->fd_knlistsize = 0; /* this process has a kq */
559 kq->kq_fdp = fdp;
560 FILE_SET_MATURE(fp);
561 FILE_UNUSE(fp, p); /* falloc() does FILE_USE() */
562 return (error);
563 }
564
565 /*
566 * kevent(2) system call.
567 */
568 int
569 sys_kevent(struct lwp *l, void *v, register_t *retval)
570 {
571 struct sys_kevent_args /* {
572 syscallarg(int) fd;
573 syscallarg(const struct kevent *) changelist;
574 syscallarg(size_t) nchanges;
575 syscallarg(struct kevent *) eventlist;
576 syscallarg(size_t) nevents;
577 syscallarg(const struct timespec *) timeout;
578 } */ *uap = v;
579 struct kevent *kevp;
580 struct kqueue *kq;
581 struct file *fp;
582 struct timespec ts;
583 struct proc *p;
584 size_t i, n;
585 int nerrors, error;
586
587 p = l->l_proc;
588 /* check that we're dealing with a kq */
589 fp = fd_getfile(p->p_fd, SCARG(uap, fd));
590 if (!fp || fp->f_type != DTYPE_KQUEUE)
591 return (EBADF);
592
593 FILE_USE(fp);
594
595 if (SCARG(uap, timeout) != NULL) {
596 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
597 if (error)
598 goto done;
599 SCARG(uap, timeout) = &ts;
600 }
601
602 kq = (struct kqueue *)fp->f_data;
603 nerrors = 0;
604
605 /* traverse list of events to register */
606 while (SCARG(uap, nchanges) > 0) {
607 /* copyin a maximum of KQ_EVENTS at each pass */
608 n = MIN(SCARG(uap, nchanges), KQ_NEVENTS);
609 error = copyin(SCARG(uap, changelist), kq->kq_kev,
610 n * sizeof(struct kevent));
611 if (error)
612 goto done;
613 for (i = 0; i < n; i++) {
614 kevp = &kq->kq_kev[i];
615 kevp->flags &= ~EV_SYSFLAGS;
616 /* register each knote */
617 error = kqueue_register(kq, kevp, p);
618 if (error) {
619 if (SCARG(uap, nevents) != 0) {
620 kevp->flags = EV_ERROR;
621 kevp->data = error;
622 error = copyout((caddr_t)kevp,
623 (caddr_t)SCARG(uap, eventlist),
624 sizeof(*kevp));
625 if (error)
626 goto done;
627 SCARG(uap, eventlist)++;
628 SCARG(uap, nevents)--;
629 nerrors++;
630 } else {
631 goto done;
632 }
633 }
634 }
635 SCARG(uap, nchanges) -= n; /* update the results */
636 SCARG(uap, changelist) += n;
637 }
638 if (nerrors) {
639 *retval = nerrors;
640 error = 0;
641 goto done;
642 }
643
644 /* actually scan through the events */
645 error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist),
646 SCARG(uap, timeout), p, retval);
647 done:
648 FILE_UNUSE(fp, p);
649 return (error);
650 }
651
652 /*
653 * Register a given kevent kev onto the kqueue
654 */
655 int
656 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
657 {
658 const struct kfilter *kfilter;
659 struct filedesc *fdp;
660 struct file *fp;
661 struct knote *kn;
662 int s, error;
663
664 fdp = kq->kq_fdp;
665 fp = NULL;
666 kn = NULL;
667 error = 0;
668 kfilter = kfilter_byfilter(kev->filter);
669 if (kfilter == NULL || kfilter->filtops == NULL) {
670 /* filter not found nor implemented */
671 return (EINVAL);
672 }
673
674 /* search if knote already exists */
675 if (kfilter->filtops->f_isfd) {
676 /* monitoring a file descriptor */
677 if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
678 return (EBADF); /* validate descriptor */
679 FILE_USE(fp);
680
681 if (kev->ident < fdp->fd_knlistsize) {
682 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
683 if (kq == kn->kn_kq &&
684 kev->filter == kn->kn_filter)
685 break;
686 }
687 } else {
688 /*
689 * not monitoring a file descriptor, so
690 * lookup knotes in internal hash table
691 */
692 if (fdp->fd_knhashmask != 0) {
693 struct klist *list;
694
695 list = &fdp->fd_knhash[
696 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
697 SLIST_FOREACH(kn, list, kn_link)
698 if (kev->ident == kn->kn_id &&
699 kq == kn->kn_kq &&
700 kev->filter == kn->kn_filter)
701 break;
702 }
703 }
704
705 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
706 error = ENOENT; /* filter not found */
707 goto done;
708 }
709
710 /*
711 * kn now contains the matching knote, or NULL if no match
712 */
713 if (kev->flags & EV_ADD) {
714 /* add knote */
715
716 if (kn == NULL) {
717 /* create new knote */
718 kn = pool_get(&knote_pool, PR_WAITOK);
719 if (kn == NULL) {
720 error = ENOMEM;
721 goto done;
722 }
723 kn->kn_fp = fp;
724 kn->kn_kq = kq;
725 kn->kn_fop = kfilter->filtops;
726
727 /*
728 * apply reference count to knote structure, and
729 * do not release it at the end of this routine.
730 */
731 fp = NULL;
732
733 kn->kn_sfflags = kev->fflags;
734 kn->kn_sdata = kev->data;
735 kev->fflags = 0;
736 kev->data = 0;
737 kn->kn_kevent = *kev;
738
739 knote_attach(kn, fdp);
740 if ((error = kfilter->filtops->f_attach(kn)) != 0) {
741 knote_drop(kn, p, fdp);
742 goto done;
743 }
744 } else {
745 /* modify existing knote */
746
747 /*
748 * The user may change some filter values after the
749 * initial EV_ADD, but doing so will not reset any
750 * filter which have already been triggered.
751 */
752 kn->kn_sfflags = kev->fflags;
753 kn->kn_sdata = kev->data;
754 kn->kn_kevent.udata = kev->udata;
755 }
756
757 s = splhigh();
758 if (kn->kn_fop->f_event(kn, 0))
759 KNOTE_ACTIVATE(kn);
760 splx(s);
761
762 } else if (kev->flags & EV_DELETE) { /* delete knote */
763 kn->kn_fop->f_detach(kn);
764 knote_drop(kn, p, fdp);
765 goto done;
766 }
767
768 /* disable knote */
769 if ((kev->flags & EV_DISABLE) &&
770 ((kn->kn_status & KN_DISABLED) == 0)) {
771 s = splhigh();
772 kn->kn_status |= KN_DISABLED;
773 splx(s);
774 }
775
776 /* enable knote */
777 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
778 s = splhigh();
779 kn->kn_status &= ~KN_DISABLED;
780 if ((kn->kn_status & KN_ACTIVE) &&
781 ((kn->kn_status & KN_QUEUED) == 0))
782 knote_enqueue(kn);
783 splx(s);
784 }
785
786 done:
787 if (fp != NULL)
788 FILE_UNUSE(fp, p);
789 return (error);
790 }
791
792 /*
793 * Scan through the list of events on fp (for a maximum of maxevents),
794 * returning the results in to ulistp. Timeout is determined by tsp; if
795 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
796 * as appropriate.
797 */
798 static int
799 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
800 const struct timespec *tsp, struct proc *p, register_t *retval)
801 {
802 struct kqueue *kq;
803 struct kevent *kevp;
804 struct timeval atv;
805 struct knote *kn, marker;
806 size_t count, nkev;
807 int s, timeout, error;
808
809 kq = (struct kqueue *)fp->f_data;
810 count = maxevents;
811 nkev = error = 0;
812 if (count == 0)
813 goto done;
814
815 if (tsp != NULL) { /* timeout supplied */
816 TIMESPEC_TO_TIMEVAL(&atv, tsp);
817 if (itimerfix(&atv)) {
818 error = EINVAL;
819 goto done;
820 }
821 s = splclock();
822 timeradd(&atv, &time, &atv); /* calc. time to wait until */
823 splx(s);
824 if (tsp->tv_sec == 0 && tsp->tv_nsec < 1000 /*<1us*/)
825 timeout = -1; /* perform a poll */
826 else
827 timeout = hzto(&atv); /* calculate hz till timeout */
828 } else {
829 atv.tv_sec = 0; /* no timeout, wait forever */
830 atv.tv_usec = 0;
831 timeout = 0;
832 }
833 goto start;
834
835 retry:
836 if (atv.tv_sec || atv.tv_usec) { /* timeout requested */
837 s = splclock();
838 if (timercmp(&time, &atv, >=)) {
839 splx(s);
840 goto done; /* timeout reached */
841 }
842 splx(s);
843 timeout = hzto(&atv); /* recalc. timeout remaining */
844 }
845
846 start:
847 kevp = kq->kq_kev;
848 s = splhigh();
849 if (kq->kq_count == 0) {
850 if (timeout < 0) {
851 error = EWOULDBLOCK;
852 } else {
853 kq->kq_state |= KQ_SLEEP;
854 error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
855 }
856 splx(s);
857 if (error == 0)
858 goto retry;
859 /* don't restart after signals... */
860 if (error == ERESTART)
861 error = EINTR;
862 else if (error == EWOULDBLOCK)
863 error = 0;
864 goto done;
865 }
866
867 /* mark end of knote list */
868 TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
869
870 while (count) { /* while user wants data ... */
871 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
872 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
873 if (kn == &marker) { /* if it's our marker, stop */
874 splx(s);
875 if (count == maxevents)
876 goto retry;
877 goto done;
878 }
879 if (kn->kn_status & KN_DISABLED) {
880 /* don't want disabled events */
881 kn->kn_status &= ~KN_QUEUED;
882 kq->kq_count--;
883 continue;
884 }
885 if ((kn->kn_flags & EV_ONESHOT) == 0 &&
886 kn->kn_fop->f_event(kn, 0) == 0) {
887 /*
888 * non-ONESHOT event that hasn't
889 * triggered again, so de-queue.
890 */
891 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
892 kq->kq_count--;
893 continue;
894 }
895 *kevp = kn->kn_kevent;
896 kevp++;
897 nkev++;
898 if (kn->kn_flags & EV_ONESHOT) {
899 /* delete ONESHOT events after retrieval */
900 kn->kn_status &= ~KN_QUEUED;
901 kq->kq_count--;
902 splx(s);
903 kn->kn_fop->f_detach(kn);
904 knote_drop(kn, p, p->p_fd);
905 s = splhigh();
906 } else if (kn->kn_flags & EV_CLEAR) {
907 /* clear state after retrieval */
908 kn->kn_data = 0;
909 kn->kn_fflags = 0;
910 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
911 kq->kq_count--;
912 } else {
913 /* add event back on list */
914 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
915 }
916 count--;
917 if (nkev == KQ_NEVENTS) {
918 /* do copyouts in KQ_NEVENTS chunks */
919 splx(s);
920 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
921 sizeof(struct kevent) * nkev);
922 ulistp += nkev;
923 nkev = 0;
924 kevp = kq->kq_kev;
925 s = splhigh();
926 if (error)
927 break;
928 }
929 }
930
931 /* remove marker */
932 TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
933 splx(s);
934 done:
935 if (nkev != 0) {
936 /* copyout remaining events */
937 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
938 sizeof(struct kevent) * nkev);
939 }
940 *retval = maxevents - count;
941
942 return (error);
943 }
944
945 /*
946 * struct fileops read method for a kqueue descriptor.
947 * Not implemented.
948 * XXX: This could be expanded to call kqueue_scan, if desired.
949 */
950 /*ARGSUSED*/
951 static int
952 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
953 struct ucred *cred, int flags)
954 {
955
956 return (ENXIO);
957 }
958
959 /*
960 * struct fileops write method for a kqueue descriptor.
961 * Not implemented.
962 */
963 /*ARGSUSED*/
964 static int
965 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
966 struct ucred *cred, int flags)
967 {
968
969 return (ENXIO);
970 }
971
972 /*
973 * struct fileops ioctl method for a kqueue descriptor.
974 *
975 * Two ioctls are currently supported. They both use struct kfilter_mapping:
976 * KFILTER_BYNAME find name for filter, and return result in
977 * name, which is of size len.
978 * KFILTER_BYFILTER find filter for name. len is ignored.
979 */
980 /*ARGSUSED*/
981 static int
982 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
983 {
984 struct kfilter_mapping *km;
985 const struct kfilter *kfilter;
986 char *name;
987 int error;
988
989 km = (struct kfilter_mapping *)data;
990 error = 0;
991
992 switch (com) {
993 case KFILTER_BYFILTER: /* convert filter -> name */
994 kfilter = kfilter_byfilter(km->filter);
995 if (kfilter != NULL)
996 error = copyoutstr(kfilter->name, km->name, km->len,
997 NULL);
998 else
999 error = ENOENT;
1000 break;
1001
1002 case KFILTER_BYNAME: /* convert name -> filter */
1003 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
1004 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1005 if (error) {
1006 FREE(name, M_KEVENT);
1007 break;
1008 }
1009 kfilter = kfilter_byname(name);
1010 if (kfilter != NULL)
1011 km->filter = kfilter->filter;
1012 else
1013 error = ENOENT;
1014 FREE(name, M_KEVENT);
1015 break;
1016
1017 default:
1018 error = ENOTTY;
1019
1020 }
1021 return (error);
1022 }
1023
1024 /*
1025 * struct fileops fcntl method for a kqueue descriptor.
1026 * Not implemented.
1027 */
1028 /*ARGSUSED*/
1029 static int
1030 kqueue_fcntl(struct file *fp, u_int com, caddr_t data, struct proc *p)
1031 {
1032
1033 return (ENOTTY);
1034 }
1035
1036 /*
1037 * struct fileops poll method for a kqueue descriptor.
1038 * Determine if kqueue has events pending.
1039 */
1040 static int
1041 kqueue_poll(struct file *fp, int events, struct proc *p)
1042 {
1043 struct kqueue *kq;
1044 int revents;
1045
1046 kq = (struct kqueue *)fp->f_data;
1047 revents = 0;
1048 if (events & (POLLIN | POLLRDNORM)) {
1049 if (kq->kq_count) {
1050 revents |= events & (POLLIN | POLLRDNORM);
1051 } else {
1052 selrecord(p, &kq->kq_sel);
1053 }
1054 }
1055 return (revents);
1056 }
1057
1058 /*
1059 * struct fileops stat method for a kqueue descriptor.
1060 * Returns dummy info, with st_size being number of events pending.
1061 */
1062 static int
1063 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
1064 {
1065 struct kqueue *kq;
1066
1067 kq = (struct kqueue *)fp->f_data;
1068 memset((void *)st, 0, sizeof(*st));
1069 st->st_size = kq->kq_count;
1070 st->st_blksize = sizeof(struct kevent);
1071 st->st_mode = S_IFIFO;
1072 return (0);
1073 }
1074
1075 /*
1076 * struct fileops close method for a kqueue descriptor.
1077 * Cleans up kqueue.
1078 */
1079 static int
1080 kqueue_close(struct file *fp, struct proc *p)
1081 {
1082 struct kqueue *kq;
1083 struct filedesc *fdp;
1084 struct knote **knp, *kn, *kn0;
1085 int i;
1086
1087 kq = (struct kqueue *)fp->f_data;
1088 fdp = p->p_fd;
1089 for (i = 0; i < fdp->fd_knlistsize; i++) {
1090 knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1091 kn = *knp;
1092 while (kn != NULL) {
1093 kn0 = SLIST_NEXT(kn, kn_link);
1094 if (kq == kn->kn_kq) {
1095 kn->kn_fop->f_detach(kn);
1096 FILE_UNUSE(kn->kn_fp, p);
1097 pool_put(&knote_pool, kn);
1098 *knp = kn0;
1099 } else {
1100 knp = &SLIST_NEXT(kn, kn_link);
1101 }
1102 kn = kn0;
1103 }
1104 }
1105 if (fdp->fd_knhashmask != 0) {
1106 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1107 knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1108 kn = *knp;
1109 while (kn != NULL) {
1110 kn0 = SLIST_NEXT(kn, kn_link);
1111 if (kq == kn->kn_kq) {
1112 kn->kn_fop->f_detach(kn);
1113 /* XXX non-fd release of kn->kn_ptr */
1114 pool_put(&knote_pool, kn);
1115 *knp = kn0;
1116 } else {
1117 knp = &SLIST_NEXT(kn, kn_link);
1118 }
1119 kn = kn0;
1120 }
1121 }
1122 }
1123 pool_put(&kqueue_pool, kq);
1124 fp->f_data = NULL;
1125
1126 return (0);
1127 }
1128
1129 /*
1130 * wakeup a kqueue
1131 */
1132 static void
1133 kqueue_wakeup(struct kqueue *kq)
1134 {
1135
1136 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */
1137 kq->kq_state &= ~KQ_SLEEP;
1138 wakeup(kq); /* ... wakeup */
1139 }
1140
1141 /* Notify select/poll and kevent. */
1142 selnotify(&kq->kq_sel, 0);
1143 }
1144
1145 /*
1146 * struct fileops kqfilter method for a kqueue descriptor.
1147 * Event triggered when monitored kqueue changes.
1148 */
1149 /*ARGSUSED*/
1150 static int
1151 kqueue_kqfilter(struct file *fp, struct knote *kn)
1152 {
1153 struct kqueue *kq;
1154
1155 KASSERT(fp == kn->kn_fp);
1156 kq = (struct kqueue *)kn->kn_fp->f_data;
1157 if (kn->kn_filter != EVFILT_READ)
1158 return (1);
1159 kn->kn_fop = &kqread_filtops;
1160 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1161 return (0);
1162 }
1163
1164
1165 /*
1166 * Walk down a list of knotes, activating them if their event has triggered.
1167 */
1168 void
1169 knote(struct klist *list, long hint)
1170 {
1171 struct knote *kn;
1172
1173 SLIST_FOREACH(kn, list, kn_selnext)
1174 if (kn->kn_fop->f_event(kn, hint))
1175 KNOTE_ACTIVATE(kn);
1176 }
1177
1178 /*
1179 * Remove all knotes from a specified klist
1180 */
1181 void
1182 knote_remove(struct proc *p, struct klist *list)
1183 {
1184 struct knote *kn;
1185
1186 while ((kn = SLIST_FIRST(list)) != NULL) {
1187 kn->kn_fop->f_detach(kn);
1188 knote_drop(kn, p, p->p_fd);
1189 }
1190 }
1191
1192 /*
1193 * Remove all knotes referencing a specified fd
1194 */
1195 void
1196 knote_fdclose(struct proc *p, int fd)
1197 {
1198 struct filedesc *fdp;
1199 struct klist *list;
1200
1201 fdp = p->p_fd;
1202 list = &fdp->fd_knlist[fd];
1203 knote_remove(p, list);
1204 }
1205
1206 /*
1207 * Attach a new knote to a file descriptor
1208 */
1209 static void
1210 knote_attach(struct knote *kn, struct filedesc *fdp)
1211 {
1212 struct klist *list;
1213 int size;
1214
1215 if (! kn->kn_fop->f_isfd) {
1216 /* if knote is not on an fd, store on internal hash table */
1217 if (fdp->fd_knhashmask == 0)
1218 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1219 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1220 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1221 goto done;
1222 }
1223
1224 /*
1225 * otherwise, knote is on an fd.
1226 * knotes are stored in fd_knlist indexed by kn->kn_id.
1227 */
1228 if (fdp->fd_knlistsize <= kn->kn_id) {
1229 /* expand list, it's too small */
1230 size = fdp->fd_knlistsize;
1231 while (size <= kn->kn_id) {
1232 /* grow in KQ_EXTENT chunks */
1233 size += KQ_EXTENT;
1234 }
1235 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1236 if (fdp->fd_knlist) {
1237 /* copy existing knlist */
1238 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1239 fdp->fd_knlistsize * sizeof(struct klist *));
1240 }
1241 /*
1242 * Zero new memory. Stylistically, SLIST_INIT() should be
1243 * used here, but that does same thing as the memset() anyway.
1244 */
1245 memset(&list[fdp->fd_knlistsize], 0,
1246 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1247
1248 /* switch to new knlist */
1249 if (fdp->fd_knlist != NULL)
1250 free(fdp->fd_knlist, M_KEVENT);
1251 fdp->fd_knlistsize = size;
1252 fdp->fd_knlist = list;
1253 }
1254
1255 /* get list head for this fd */
1256 list = &fdp->fd_knlist[kn->kn_id];
1257 done:
1258 /* add new knote */
1259 SLIST_INSERT_HEAD(list, kn, kn_link);
1260 kn->kn_status = 0;
1261 }
1262
1263 /*
1264 * Drop knote.
1265 * Should be called at spl == 0, since we don't want to hold spl
1266 * while calling FILE_UNUSE and free.
1267 */
1268 static void
1269 knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp)
1270 {
1271 struct klist *list;
1272
1273 if (kn->kn_fop->f_isfd)
1274 list = &fdp->fd_knlist[kn->kn_id];
1275 else
1276 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1277
1278 SLIST_REMOVE(list, kn, knote, kn_link);
1279 if (kn->kn_status & KN_QUEUED)
1280 knote_dequeue(kn);
1281 if (kn->kn_fop->f_isfd)
1282 FILE_UNUSE(kn->kn_fp, p);
1283 pool_put(&knote_pool, kn);
1284 }
1285
1286
1287 /*
1288 * Queue new event for knote.
1289 */
1290 static void
1291 knote_enqueue(struct knote *kn)
1292 {
1293 struct kqueue *kq;
1294 int s;
1295
1296 kq = kn->kn_kq;
1297 s = splhigh();
1298 KASSERT((kn->kn_status & KN_QUEUED) == 0);
1299
1300 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1301 kn->kn_status |= KN_QUEUED;
1302 kq->kq_count++;
1303 splx(s);
1304 kqueue_wakeup(kq);
1305 }
1306
1307 /*
1308 * Dequeue event for knote.
1309 */
1310 static void
1311 knote_dequeue(struct knote *kn)
1312 {
1313 struct kqueue *kq;
1314 int s;
1315
1316 kq = kn->kn_kq;
1317 s = splhigh();
1318 KASSERT(kn->kn_status & KN_QUEUED);
1319
1320 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1321 kn->kn_status &= ~KN_QUEUED;
1322 kq->kq_count--;
1323 splx(s);
1324 }
1325