Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.60
      1 /*	$NetBSD: kern_event.c,v 1.60 2008/06/24 10:27:35 gmcgarry Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     31  * All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  *
     42  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     43  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     44  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     45  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     46  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     47  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     48  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     49  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     50  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     51  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     52  * SUCH DAMAGE.
     53  *
     54  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     55  */
     56 
     57 #include <sys/cdefs.h>
     58 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.60 2008/06/24 10:27:35 gmcgarry Exp $");
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/kernel.h>
     63 #include <sys/proc.h>
     64 #include <sys/file.h>
     65 #include <sys/select.h>
     66 #include <sys/queue.h>
     67 #include <sys/event.h>
     68 #include <sys/eventvar.h>
     69 #include <sys/poll.h>
     70 #include <sys/kmem.h>
     71 #include <sys/stat.h>
     72 #include <sys/filedesc.h>
     73 #include <sys/syscallargs.h>
     74 #include <sys/kauth.h>
     75 #include <sys/conf.h>
     76 #include <sys/atomic.h>
     77 
     78 static int	kqueue_scan(file_t *, size_t, struct kevent *,
     79 			    const struct timespec *, register_t *,
     80 			    const struct kevent_ops *, struct kevent *,
     81 			    size_t);
     82 static int	kqueue_ioctl(file_t *, u_long, void *);
     83 static int	kqueue_fcntl(file_t *, u_int, void *);
     84 static int	kqueue_poll(file_t *, int);
     85 static int	kqueue_kqfilter(file_t *, struct knote *);
     86 static int	kqueue_stat(file_t *, struct stat *);
     87 static int	kqueue_close(file_t *);
     88 static int	kqueue_register(struct kqueue *, struct kevent *);
     89 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
     90 
     91 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
     92 static void	knote_enqueue(struct knote *);
     93 static void	knote_activate(struct knote *);
     94 
     95 static void	filt_kqdetach(struct knote *);
     96 static int	filt_kqueue(struct knote *, long hint);
     97 static int	filt_procattach(struct knote *);
     98 static void	filt_procdetach(struct knote *);
     99 static int	filt_proc(struct knote *, long hint);
    100 static int	filt_fileattach(struct knote *);
    101 static void	filt_timerexpire(void *x);
    102 static int	filt_timerattach(struct knote *);
    103 static void	filt_timerdetach(struct knote *);
    104 static int	filt_timer(struct knote *, long hint);
    105 
    106 static const struct fileops kqueueops = {
    107 	(void *)enxio, (void *)enxio, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
    108 	kqueue_stat, kqueue_close, kqueue_kqfilter
    109 };
    110 
    111 static const struct filterops kqread_filtops =
    112 	{ 1, NULL, filt_kqdetach, filt_kqueue };
    113 static const struct filterops proc_filtops =
    114 	{ 0, filt_procattach, filt_procdetach, filt_proc };
    115 static const struct filterops file_filtops =
    116 	{ 1, filt_fileattach, NULL, NULL };
    117 static const struct filterops timer_filtops =
    118 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
    119 
    120 static u_int	kq_ncallouts = 0;
    121 static int	kq_calloutmax = (4 * 1024);
    122 
    123 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    124 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    125 
    126 extern const struct filterops sig_filtops;
    127 
    128 /*
    129  * Table for for all system-defined filters.
    130  * These should be listed in the numeric order of the EVFILT_* defines.
    131  * If filtops is NULL, the filter isn't implemented in NetBSD.
    132  * End of list is when name is NULL.
    133  *
    134  * Note that 'refcnt' is meaningless for built-in filters.
    135  */
    136 struct kfilter {
    137 	const char	*name;		/* name of filter */
    138 	uint32_t	filter;		/* id of filter */
    139 	unsigned	refcnt;		/* reference count */
    140 	const struct filterops *filtops;/* operations for filter */
    141 	size_t		namelen;	/* length of name string */
    142 };
    143 
    144 /* System defined filters */
    145 static struct kfilter sys_kfilters[] = {
    146 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    147 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    148 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    149 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    150 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    151 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    152 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    153 	{ NULL,			0,		0, NULL, 0 },
    154 };
    155 
    156 /* User defined kfilters */
    157 static struct kfilter	*user_kfilters;		/* array */
    158 static int		user_kfilterc;		/* current offset */
    159 static int		user_kfiltermaxc;	/* max size so far */
    160 static size_t		user_kfiltersz;		/* size of allocated memory */
    161 
    162 /* Locks */
    163 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    164 static kmutex_t		kqueue_misc_lock;	/* miscellaneous */
    165 
    166 /*
    167  * Initialize the kqueue subsystem.
    168  */
    169 void
    170 kqueue_init(void)
    171 {
    172 
    173 	rw_init(&kqueue_filter_lock);
    174 	mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    175 }
    176 
    177 /*
    178  * Find kfilter entry by name, or NULL if not found.
    179  */
    180 static struct kfilter *
    181 kfilter_byname_sys(const char *name)
    182 {
    183 	int i;
    184 
    185 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    186 
    187 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    188 		if (strcmp(name, sys_kfilters[i].name) == 0)
    189 			return &sys_kfilters[i];
    190 	}
    191 	return NULL;
    192 }
    193 
    194 static struct kfilter *
    195 kfilter_byname_user(const char *name)
    196 {
    197 	int i;
    198 
    199 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    200 
    201 	/* user filter slots have a NULL name if previously deregistered */
    202 	for (i = 0; i < user_kfilterc ; i++) {
    203 		if (user_kfilters[i].name != NULL &&
    204 		    strcmp(name, user_kfilters[i].name) == 0)
    205 			return &user_kfilters[i];
    206 	}
    207 	return NULL;
    208 }
    209 
    210 static struct kfilter *
    211 kfilter_byname(const char *name)
    212 {
    213 	struct kfilter *kfilter;
    214 
    215 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    216 
    217 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    218 		return kfilter;
    219 
    220 	return kfilter_byname_user(name);
    221 }
    222 
    223 /*
    224  * Find kfilter entry by filter id, or NULL if not found.
    225  * Assumes entries are indexed in filter id order, for speed.
    226  */
    227 static struct kfilter *
    228 kfilter_byfilter(uint32_t filter)
    229 {
    230 	struct kfilter *kfilter;
    231 
    232 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    233 
    234 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    235 		kfilter = &sys_kfilters[filter];
    236 	else if (user_kfilters != NULL &&
    237 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    238 					/* it's a user filter */
    239 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    240 	else
    241 		return (NULL);		/* out of range */
    242 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    243 	return (kfilter);
    244 }
    245 
    246 /*
    247  * Register a new kfilter. Stores the entry in user_kfilters.
    248  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    249  * If retfilter != NULL, the new filterid is returned in it.
    250  */
    251 int
    252 kfilter_register(const char *name, const struct filterops *filtops,
    253 		 int *retfilter)
    254 {
    255 	struct kfilter *kfilter;
    256 	size_t len;
    257 	int i;
    258 
    259 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    260 		return (EINVAL);	/* invalid args */
    261 
    262 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    263 	if (kfilter_byname(name) != NULL) {
    264 		rw_exit(&kqueue_filter_lock);
    265 		return (EEXIST);	/* already exists */
    266 	}
    267 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    268 		rw_exit(&kqueue_filter_lock);
    269 		return (EINVAL);	/* too many */
    270 	}
    271 
    272 	for (i = 0; i < user_kfilterc; i++) {
    273 		kfilter = &user_kfilters[i];
    274 		if (kfilter->name == NULL) {
    275 			/* Previously deregistered slot.  Reuse. */
    276 			goto reuse;
    277 		}
    278 	}
    279 
    280 	/* check if need to grow user_kfilters */
    281 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    282 		/* Grow in KFILTER_EXTENT chunks. */
    283 		user_kfiltermaxc += KFILTER_EXTENT;
    284 		len = user_kfiltermaxc * sizeof(struct filter *);
    285 		kfilter = kmem_alloc(len, KM_SLEEP);
    286 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    287 		if (user_kfilters != NULL) {
    288 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    289 			kmem_free(user_kfilters, user_kfiltersz);
    290 		}
    291 		user_kfiltersz = len;
    292 		user_kfilters = kfilter;
    293 	}
    294 	/* Adding new slot */
    295 	kfilter = &user_kfilters[user_kfilterc++];
    296 reuse:
    297 	kfilter->namelen = strlen(name) + 1;
    298 	kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
    299 	memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
    300 
    301 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    302 
    303 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    304 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    305 
    306 	if (retfilter != NULL)
    307 		*retfilter = kfilter->filter;
    308 	rw_exit(&kqueue_filter_lock);
    309 
    310 	return (0);
    311 }
    312 
    313 /*
    314  * Unregister a kfilter previously registered with kfilter_register.
    315  * This retains the filter id, but clears the name and frees filtops (filter
    316  * operations), so that the number isn't reused during a boot.
    317  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    318  */
    319 int
    320 kfilter_unregister(const char *name)
    321 {
    322 	struct kfilter *kfilter;
    323 
    324 	if (name == NULL || name[0] == '\0')
    325 		return (EINVAL);	/* invalid name */
    326 
    327 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    328 	if (kfilter_byname_sys(name) != NULL) {
    329 		rw_exit(&kqueue_filter_lock);
    330 		return (EINVAL);	/* can't detach system filters */
    331 	}
    332 
    333 	kfilter = kfilter_byname_user(name);
    334 	if (kfilter == NULL) {
    335 		rw_exit(&kqueue_filter_lock);
    336 		return (ENOENT);
    337 	}
    338 	if (kfilter->refcnt != 0) {
    339 		rw_exit(&kqueue_filter_lock);
    340 		return (EBUSY);
    341 	}
    342 
    343 	/* Cast away const (but we know it's safe. */
    344 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    345 	kfilter->name = NULL;	/* mark as `not implemented' */
    346 
    347 	if (kfilter->filtops != NULL) {
    348 		/* Cast away const (but we know it's safe. */
    349 		kmem_free(__UNCONST(kfilter->filtops),
    350 		    sizeof(*kfilter->filtops));
    351 		kfilter->filtops = NULL; /* mark as `not implemented' */
    352 	}
    353 	rw_exit(&kqueue_filter_lock);
    354 
    355 	return (0);
    356 }
    357 
    358 
    359 /*
    360  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    361  * descriptors. Calls fileops kqfilter method for given file descriptor.
    362  */
    363 static int
    364 filt_fileattach(struct knote *kn)
    365 {
    366 	file_t *fp;
    367 
    368 	fp = kn->kn_obj;
    369 
    370 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    371 }
    372 
    373 /*
    374  * Filter detach method for EVFILT_READ on kqueue descriptor.
    375  */
    376 static void
    377 filt_kqdetach(struct knote *kn)
    378 {
    379 	struct kqueue *kq;
    380 
    381 	kq = ((file_t *)kn->kn_obj)->f_data;
    382 
    383 	mutex_spin_enter(&kq->kq_lock);
    384 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
    385 	mutex_spin_exit(&kq->kq_lock);
    386 }
    387 
    388 /*
    389  * Filter event method for EVFILT_READ on kqueue descriptor.
    390  */
    391 /*ARGSUSED*/
    392 static int
    393 filt_kqueue(struct knote *kn, long hint)
    394 {
    395 	struct kqueue *kq;
    396 	int rv;
    397 
    398 	kq = ((file_t *)kn->kn_obj)->f_data;
    399 
    400 	if (hint != NOTE_SUBMIT)
    401 		mutex_spin_enter(&kq->kq_lock);
    402 	kn->kn_data = kq->kq_count;
    403 	rv = (kn->kn_data > 0);
    404 	if (hint != NOTE_SUBMIT)
    405 		mutex_spin_exit(&kq->kq_lock);
    406 
    407 	return rv;
    408 }
    409 
    410 /*
    411  * Filter attach method for EVFILT_PROC.
    412  */
    413 static int
    414 filt_procattach(struct knote *kn)
    415 {
    416 	struct proc *p, *curp;
    417 	struct lwp *curl;
    418 
    419 	curl = curlwp;
    420 	curp = curl->l_proc;
    421 
    422 	mutex_enter(proc_lock);
    423 	p = p_find(kn->kn_id, PFIND_LOCKED);
    424 	if (p == NULL) {
    425 		mutex_exit(proc_lock);
    426 		return ESRCH;
    427 	}
    428 
    429 	/*
    430 	 * Fail if it's not owned by you, or the last exec gave us
    431 	 * setuid/setgid privs (unless you're root).
    432 	 */
    433 	mutex_enter(p->p_lock);
    434 	mutex_exit(proc_lock);
    435 	if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
    436 	    p, NULL, NULL, NULL) != 0) {
    437 	    	mutex_exit(p->p_lock);
    438 		return EACCES;
    439 	}
    440 
    441 	kn->kn_obj = p;
    442 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    443 
    444 	/*
    445 	 * internal flag indicating registration done by kernel
    446 	 */
    447 	if (kn->kn_flags & EV_FLAG1) {
    448 		kn->kn_data = kn->kn_sdata;	/* ppid */
    449 		kn->kn_fflags = NOTE_CHILD;
    450 		kn->kn_flags &= ~EV_FLAG1;
    451 	}
    452 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    453     	mutex_exit(p->p_lock);
    454 
    455 	return 0;
    456 }
    457 
    458 /*
    459  * Filter detach method for EVFILT_PROC.
    460  *
    461  * The knote may be attached to a different process, which may exit,
    462  * leaving nothing for the knote to be attached to.  So when the process
    463  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    464  * it will be deleted when read out.  However, as part of the knote deletion,
    465  * this routine is called, so a check is needed to avoid actually performing
    466  * a detach, because the original process might not exist any more.
    467  */
    468 static void
    469 filt_procdetach(struct knote *kn)
    470 {
    471 	struct proc *p;
    472 
    473 	if (kn->kn_status & KN_DETACHED)
    474 		return;
    475 
    476 	p = kn->kn_obj;
    477 
    478 	mutex_enter(p->p_lock);
    479 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    480 	mutex_exit(p->p_lock);
    481 }
    482 
    483 /*
    484  * Filter event method for EVFILT_PROC.
    485  */
    486 static int
    487 filt_proc(struct knote *kn, long hint)
    488 {
    489 	u_int event, fflag;
    490 	struct kevent kev;
    491 	struct kqueue *kq;
    492 	int error;
    493 
    494 	event = (u_int)hint & NOTE_PCTRLMASK;
    495 	kq = kn->kn_kq;
    496 	fflag = 0;
    497 
    498 	/* If the user is interested in this event, record it. */
    499 	if (kn->kn_sfflags & event)
    500 		fflag |= event;
    501 
    502 	if (event == NOTE_EXIT) {
    503 		/*
    504 		 * Process is gone, so flag the event as finished.
    505 		 *
    506 		 * Detach the knote from watched process and mark
    507 		 * it as such. We can't leave this to kqueue_scan(),
    508 		 * since the process might not exist by then. And we
    509 		 * have to do this now, since psignal KNOTE() is called
    510 		 * also for zombies and we might end up reading freed
    511 		 * memory if the kevent would already be picked up
    512 		 * and knote g/c'ed.
    513 		 */
    514 		filt_procdetach(kn);
    515 
    516 		mutex_spin_enter(&kq->kq_lock);
    517 		kn->kn_status |= KN_DETACHED;
    518 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
    519 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
    520 		kn->kn_fflags |= fflag;
    521 		mutex_spin_exit(&kq->kq_lock);
    522 
    523 		return 1;
    524 	}
    525 
    526 	mutex_spin_enter(&kq->kq_lock);
    527 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
    528 		/*
    529 		 * Process forked, and user wants to track the new process,
    530 		 * so attach a new knote to it, and immediately report an
    531 		 * event with the parent's pid.  Register knote with new
    532 		 * process.
    533 		 */
    534 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
    535 		kev.filter = kn->kn_filter;
    536 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
    537 		kev.fflags = kn->kn_sfflags;
    538 		kev.data = kn->kn_id;			/* parent */
    539 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
    540 		mutex_spin_exit(&kq->kq_lock);
    541 		error = kqueue_register(kq, &kev);
    542 		mutex_spin_enter(&kq->kq_lock);
    543 		if (error != 0)
    544 			kn->kn_fflags |= NOTE_TRACKERR;
    545 	}
    546 	kn->kn_fflags |= fflag;
    547 	fflag = kn->kn_fflags;
    548 	mutex_spin_exit(&kq->kq_lock);
    549 
    550 	return fflag != 0;
    551 }
    552 
    553 static void
    554 filt_timerexpire(void *knx)
    555 {
    556 	struct knote *kn = knx;
    557 	int tticks;
    558 
    559 	mutex_enter(&kqueue_misc_lock);
    560 	kn->kn_data++;
    561 	knote_activate(kn);
    562 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
    563 		tticks = mstohz(kn->kn_sdata);
    564 		callout_schedule((callout_t *)kn->kn_hook, tticks);
    565 	}
    566 	mutex_exit(&kqueue_misc_lock);
    567 }
    568 
    569 /*
    570  * data contains amount of time to sleep, in milliseconds
    571  */
    572 static int
    573 filt_timerattach(struct knote *kn)
    574 {
    575 	callout_t *calloutp;
    576 	struct kqueue *kq;
    577 	int tticks;
    578 
    579 	tticks = mstohz(kn->kn_sdata);
    580 
    581 	/* if the supplied value is under our resolution, use 1 tick */
    582 	if (tticks == 0) {
    583 		if (kn->kn_sdata == 0)
    584 			return EINVAL;
    585 		tticks = 1;
    586 	}
    587 
    588 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
    589 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
    590 		atomic_dec_uint(&kq_ncallouts);
    591 		return ENOMEM;
    592 	}
    593 	callout_init(calloutp, CALLOUT_MPSAFE);
    594 
    595 	kq = kn->kn_kq;
    596 	mutex_spin_enter(&kq->kq_lock);
    597 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
    598 	kn->kn_hook = calloutp;
    599 	mutex_spin_exit(&kq->kq_lock);
    600 
    601 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
    602 
    603 	return (0);
    604 }
    605 
    606 static void
    607 filt_timerdetach(struct knote *kn)
    608 {
    609 	callout_t *calloutp;
    610 
    611 	calloutp = (callout_t *)kn->kn_hook;
    612 	callout_halt(calloutp, NULL);
    613 	callout_destroy(calloutp);
    614 	kmem_free(calloutp, sizeof(*calloutp));
    615 	atomic_dec_uint(&kq_ncallouts);
    616 }
    617 
    618 static int
    619 filt_timer(struct knote *kn, long hint)
    620 {
    621 	int rv;
    622 
    623 	mutex_enter(&kqueue_misc_lock);
    624 	rv = (kn->kn_data != 0);
    625 	mutex_exit(&kqueue_misc_lock);
    626 
    627 	return rv;
    628 }
    629 
    630 /*
    631  * filt_seltrue:
    632  *
    633  *	This filter "event" routine simulates seltrue().
    634  */
    635 int
    636 filt_seltrue(struct knote *kn, long hint)
    637 {
    638 
    639 	/*
    640 	 * We don't know how much data can be read/written,
    641 	 * but we know that it *can* be.  This is about as
    642 	 * good as select/poll does as well.
    643 	 */
    644 	kn->kn_data = 0;
    645 	return (1);
    646 }
    647 
    648 /*
    649  * This provides full kqfilter entry for device switch tables, which
    650  * has same effect as filter using filt_seltrue() as filter method.
    651  */
    652 static void
    653 filt_seltruedetach(struct knote *kn)
    654 {
    655 	/* Nothing to do */
    656 }
    657 
    658 const struct filterops seltrue_filtops =
    659 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
    660 
    661 int
    662 seltrue_kqfilter(dev_t dev, struct knote *kn)
    663 {
    664 	switch (kn->kn_filter) {
    665 	case EVFILT_READ:
    666 	case EVFILT_WRITE:
    667 		kn->kn_fop = &seltrue_filtops;
    668 		break;
    669 	default:
    670 		return (EINVAL);
    671 	}
    672 
    673 	/* Nothing more to do */
    674 	return (0);
    675 }
    676 
    677 /*
    678  * kqueue(2) system call.
    679  */
    680 int
    681 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
    682 {
    683 	struct kqueue *kq;
    684 	file_t *fp;
    685 	int fd, error;
    686 
    687 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    688 		return error;
    689 	fp->f_flag = FREAD | FWRITE;
    690 	fp->f_type = DTYPE_KQUEUE;
    691 	fp->f_ops = &kqueueops;
    692 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
    693 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
    694 	cv_init(&kq->kq_cv, "kqueue");
    695 	selinit(&kq->kq_sel);
    696 	TAILQ_INIT(&kq->kq_head);
    697 	fp->f_data = kq;
    698 	*retval = fd;
    699 	kq->kq_fdp = curlwp->l_fd;
    700 	fd_affix(curproc, fp, fd);
    701 	return error;
    702 }
    703 
    704 /*
    705  * kevent(2) system call.
    706  */
    707 static int
    708 kevent_fetch_changes(void *private, const struct kevent *changelist,
    709 		     struct kevent *changes, size_t index, int n)
    710 {
    711 
    712 	return copyin(changelist + index, changes, n * sizeof(*changes));
    713 }
    714 
    715 static int
    716 kevent_put_events(void *private, struct kevent *events,
    717 		  struct kevent *eventlist, size_t index, int n)
    718 {
    719 
    720 	return copyout(events, eventlist + index, n * sizeof(*events));
    721 }
    722 
    723 static const struct kevent_ops kevent_native_ops = {
    724 	.keo_private = NULL,
    725 	.keo_fetch_timeout = copyin,
    726 	.keo_fetch_changes = kevent_fetch_changes,
    727 	.keo_put_events = kevent_put_events,
    728 };
    729 
    730 int
    731 sys_kevent(struct lwp *l, const struct sys_kevent_args *uap, register_t *retval)
    732 {
    733 	/* {
    734 		syscallarg(int) fd;
    735 		syscallarg(const struct kevent *) changelist;
    736 		syscallarg(size_t) nchanges;
    737 		syscallarg(struct kevent *) eventlist;
    738 		syscallarg(size_t) nevents;
    739 		syscallarg(const struct timespec *) timeout;
    740 	} */
    741 
    742 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
    743 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
    744 	    SCARG(uap, timeout), &kevent_native_ops);
    745 }
    746 
    747 int
    748 kevent1(register_t *retval, int fd,
    749 	const struct kevent *changelist, size_t nchanges,
    750 	struct kevent *eventlist, size_t nevents,
    751 	const struct timespec *timeout,
    752 	const struct kevent_ops *keops)
    753 {
    754 	struct kevent *kevp;
    755 	struct kqueue *kq;
    756 	struct timespec	ts;
    757 	size_t i, n, ichange;
    758 	int nerrors, error;
    759 	struct kevent kevbuf[8];	/* approx 300 bytes on 64-bit */
    760 	file_t *fp;
    761 
    762 	/* check that we're dealing with a kq */
    763 	fp = fd_getfile(fd);
    764 	if (fp == NULL)
    765 		return (EBADF);
    766 
    767 	if (fp->f_type != DTYPE_KQUEUE) {
    768 		fd_putfile(fd);
    769 		return (EBADF);
    770 	}
    771 
    772 	if (timeout != NULL) {
    773 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
    774 		if (error)
    775 			goto done;
    776 		timeout = &ts;
    777 	}
    778 
    779 	kq = (struct kqueue *)fp->f_data;
    780 	nerrors = 0;
    781 	ichange = 0;
    782 
    783 	/* traverse list of events to register */
    784 	while (nchanges > 0) {
    785 		n = MIN(nchanges, __arraycount(kevbuf));
    786 		error = (*keops->keo_fetch_changes)(keops->keo_private,
    787 		    changelist, kevbuf, ichange, n);
    788 		if (error)
    789 			goto done;
    790 		for (i = 0; i < n; i++) {
    791 			kevp = &kevbuf[i];
    792 			kevp->flags &= ~EV_SYSFLAGS;
    793 			/* register each knote */
    794 			error = kqueue_register(kq, kevp);
    795 			if (error) {
    796 				if (nevents != 0) {
    797 					kevp->flags = EV_ERROR;
    798 					kevp->data = error;
    799 					error = (*keops->keo_put_events)
    800 					    (keops->keo_private, kevp,
    801 					    eventlist, nerrors, 1);
    802 					if (error)
    803 						goto done;
    804 					nevents--;
    805 					nerrors++;
    806 				} else {
    807 					goto done;
    808 				}
    809 			}
    810 		}
    811 		nchanges -= n;	/* update the results */
    812 		ichange += n;
    813 	}
    814 	if (nerrors) {
    815 		*retval = nerrors;
    816 		error = 0;
    817 		goto done;
    818 	}
    819 
    820 	/* actually scan through the events */
    821 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
    822 	    kevbuf, __arraycount(kevbuf));
    823  done:
    824 	fd_putfile(fd);
    825 	return (error);
    826 }
    827 
    828 /*
    829  * Register a given kevent kev onto the kqueue
    830  */
    831 static int
    832 kqueue_register(struct kqueue *kq, struct kevent *kev)
    833 {
    834 	struct kfilter *kfilter;
    835 	filedesc_t *fdp;
    836 	file_t *fp;
    837 	fdfile_t *ff;
    838 	struct knote *kn, *newkn;
    839 	struct klist *list;
    840 	int error, fd, rv;
    841 
    842 	fdp = kq->kq_fdp;
    843 	fp = NULL;
    844 	kn = NULL;
    845 	error = 0;
    846 	fd = 0;
    847 
    848 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
    849 
    850 	rw_enter(&kqueue_filter_lock, RW_READER);
    851 	kfilter = kfilter_byfilter(kev->filter);
    852 	if (kfilter == NULL || kfilter->filtops == NULL) {
    853 		/* filter not found nor implemented */
    854 		rw_exit(&kqueue_filter_lock);
    855 		kmem_free(newkn, sizeof(*newkn));
    856 		return (EINVAL);
    857 	}
    858 
    859  	mutex_enter(&fdp->fd_lock);
    860 
    861 	/* search if knote already exists */
    862 	if (kfilter->filtops->f_isfd) {
    863 		/* monitoring a file descriptor */
    864 		fd = kev->ident;
    865 		if ((fp = fd_getfile(fd)) == NULL) {
    866 		 	mutex_exit(&fdp->fd_lock);
    867 			rw_exit(&kqueue_filter_lock);
    868 			kmem_free(newkn, sizeof(*newkn));
    869 			return EBADF;
    870 		}
    871 		ff = fdp->fd_ofiles[fd];
    872 		if (fd <= fdp->fd_lastkqfile) {
    873 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
    874 				if (kq == kn->kn_kq &&
    875 				    kev->filter == kn->kn_filter)
    876 					break;
    877 			}
    878 		}
    879 	} else {
    880 		/*
    881 		 * not monitoring a file descriptor, so
    882 		 * lookup knotes in internal hash table
    883 		 */
    884 		if (fdp->fd_knhashmask != 0) {
    885 			list = &fdp->fd_knhash[
    886 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
    887 			SLIST_FOREACH(kn, list, kn_link) {
    888 				if (kev->ident == kn->kn_id &&
    889 				    kq == kn->kn_kq &&
    890 				    kev->filter == kn->kn_filter)
    891 					break;
    892 			}
    893 		}
    894 	}
    895 
    896 	/*
    897 	 * kn now contains the matching knote, or NULL if no match
    898 	 */
    899 	if (kev->flags & EV_ADD) {
    900 		if (kn == NULL) {
    901 			/* create new knote */
    902 			kn = newkn;
    903 			newkn = NULL;
    904 			kn->kn_obj = fp;
    905 			kn->kn_kq = kq;
    906 			kn->kn_fop = kfilter->filtops;
    907 			kn->kn_kfilter = kfilter;
    908 			kn->kn_sfflags = kev->fflags;
    909 			kn->kn_sdata = kev->data;
    910 			kev->fflags = 0;
    911 			kev->data = 0;
    912 			kn->kn_kevent = *kev;
    913 
    914 			/*
    915 			 * apply reference count to knote structure, and
    916 			 * do not release it at the end of this routine.
    917 			 */
    918 			fp = NULL;
    919 
    920 			if (!kn->kn_fop->f_isfd) {
    921 				/*
    922 				 * If knote is not on an fd, store on
    923 				 * internal hash table.
    924 				 */
    925 				if (fdp->fd_knhashmask == 0) {
    926 					/* XXXAD can block with fd_lock held */
    927 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
    928 					    HASH_LIST, true,
    929 					    &fdp->fd_knhashmask);
    930 				}
    931 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
    932 				    fdp->fd_knhashmask)];
    933 			} else {
    934 				/* Otherwise, knote is on an fd. */
    935 				list = (struct klist *)
    936 				    &fdp->fd_ofiles[kn->kn_id]->ff_knlist;
    937 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
    938 					fdp->fd_lastkqfile = kn->kn_id;
    939 			}
    940 			SLIST_INSERT_HEAD(list, kn, kn_link);
    941 
    942 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
    943 			error = (*kfilter->filtops->f_attach)(kn);
    944 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
    945 			if (error != 0) {
    946 				/* knote_detach() drops fdp->fd_lock */
    947 				knote_detach(kn, fdp, false);
    948 				goto done;
    949 			}
    950 			atomic_inc_uint(&kfilter->refcnt);
    951 		} else {
    952 			/*
    953 			 * The user may change some filter values after the
    954 			 * initial EV_ADD, but doing so will not reset any
    955 			 * filter which have already been triggered.
    956 			 */
    957 			kn->kn_sfflags = kev->fflags;
    958 			kn->kn_sdata = kev->data;
    959 			kn->kn_kevent.udata = kev->udata;
    960 		}
    961 		KERNEL_LOCK(1, NULL);			/* XXXSMP */
    962 		rv = (*kn->kn_fop->f_event)(kn, 0);
    963 		KERNEL_UNLOCK_ONE(NULL);		/* XXXSMP */
    964 		if (rv)
    965 			knote_activate(kn);
    966 	} else {
    967 		if (kn == NULL) {
    968 			error = ENOENT;
    969 		 	mutex_exit(&fdp->fd_lock);
    970 			goto done;
    971 		}
    972 		if (kev->flags & EV_DELETE) {
    973 			/* knote_detach() drops fdp->fd_lock */
    974 			knote_detach(kn, fdp, true);
    975 			goto done;
    976 		}
    977 	}
    978 
    979 	/* disable knote */
    980 	if ((kev->flags & EV_DISABLE)) {
    981 		mutex_spin_enter(&kq->kq_lock);
    982 		if ((kn->kn_status & KN_DISABLED) == 0)
    983 			kn->kn_status |= KN_DISABLED;
    984 		mutex_spin_exit(&kq->kq_lock);
    985 	}
    986 
    987 	/* enable knote */
    988 	if ((kev->flags & EV_ENABLE)) {
    989 		knote_enqueue(kn);
    990 	}
    991 	mutex_exit(&fdp->fd_lock);
    992  done:
    993 	rw_exit(&kqueue_filter_lock);
    994 	if (newkn != NULL)
    995 		kmem_free(newkn, sizeof(*newkn));
    996 	if (fp != NULL)
    997 		fd_putfile(fd);
    998 	return (error);
    999 }
   1000 
   1001 #if defined(DEBUG)
   1002 static void
   1003 kq_check(struct kqueue *kq)
   1004 {
   1005 	const struct knote *kn;
   1006 	int count;
   1007 	int nmarker;
   1008 
   1009 	KASSERT(mutex_owned(&kq->kq_lock));
   1010 	KASSERT(kq->kq_count >= 0);
   1011 
   1012 	count = 0;
   1013 	nmarker = 0;
   1014 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   1015 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   1016 			panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
   1017 		}
   1018 		if ((kn->kn_status & KN_MARKER) == 0) {
   1019 			if (kn->kn_kq != kq) {
   1020 				panic("%s: kq=%p kn=%p inconsist 2",
   1021 				    __func__, kq, kn);
   1022 			}
   1023 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   1024 				panic("%s: kq=%p kn=%p: not active",
   1025 				    __func__, kq, kn);
   1026 			}
   1027 			count++;
   1028 			if (count > kq->kq_count) {
   1029 				goto bad;
   1030 			}
   1031 		} else {
   1032 			nmarker++;
   1033 #if 0
   1034 			if (nmarker > 10000) {
   1035 				panic("%s: kq=%p too many markers: %d != %d, "
   1036 				    "nmarker=%d",
   1037 				    __func__, kq, kq->kq_count, count, nmarker);
   1038 			}
   1039 #endif
   1040 		}
   1041 	}
   1042 	if (kq->kq_count != count) {
   1043 bad:
   1044 		panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
   1045 		    __func__, kq, kq->kq_count, count, nmarker);
   1046 	}
   1047 }
   1048 #else /* defined(DEBUG) */
   1049 #define	kq_check(a)	/* nothing */
   1050 #endif /* defined(DEBUG) */
   1051 
   1052 /*
   1053  * Scan through the list of events on fp (for a maximum of maxevents),
   1054  * returning the results in to ulistp. Timeout is determined by tsp; if
   1055  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   1056  * as appropriate.
   1057  */
   1058 static int
   1059 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   1060 	    const struct timespec *tsp, register_t *retval,
   1061 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   1062 	    size_t kevcnt)
   1063 {
   1064 	struct kqueue	*kq;
   1065 	struct kevent	*kevp;
   1066 	struct timeval	atv, sleeptv;
   1067 	struct knote	*kn, *marker;
   1068 	size_t		count, nkev, nevents;
   1069 	int		timeout, error, rv;
   1070 	filedesc_t	*fdp;
   1071 
   1072 	fdp = curlwp->l_fd;
   1073 	kq = fp->f_data;
   1074 	count = maxevents;
   1075 	nkev = nevents = error = 0;
   1076 	if (count == 0) {
   1077 		*retval = 0;
   1078 		return 0;
   1079 	}
   1080 
   1081 	if (tsp) {				/* timeout supplied */
   1082 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
   1083 		if (inittimeleft(&atv, &sleeptv) == -1) {
   1084 			*retval = maxevents;
   1085 			return EINVAL;
   1086 		}
   1087 		timeout = tvtohz(&atv);
   1088 		if (timeout <= 0)
   1089 			timeout = -1;           /* do poll */
   1090 	} else {
   1091 		/* no timeout, wait forever */
   1092 		timeout = 0;
   1093 	}
   1094 
   1095 	marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
   1096 	marker->kn_status = KN_MARKER;
   1097 	mutex_spin_enter(&kq->kq_lock);
   1098  retry:
   1099 	kevp = kevbuf;
   1100 	if (kq->kq_count == 0) {
   1101 		if (timeout >= 0) {
   1102 			error = cv_timedwait_sig(&kq->kq_cv,
   1103 			    &kq->kq_lock, timeout);
   1104 			if (error == 0) {
   1105 				 if (tsp == NULL || (timeout =
   1106 				     gettimeleft(&atv, &sleeptv)) > 0)
   1107 					goto retry;
   1108 			} else {
   1109 				/* don't restart after signals... */
   1110 				if (error == ERESTART)
   1111 					error = EINTR;
   1112 				if (error == EWOULDBLOCK)
   1113 					error = 0;
   1114 			}
   1115 		}
   1116 	} else {
   1117 		/* mark end of knote list */
   1118 		TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   1119 
   1120 		while (count != 0) {
   1121 			kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
   1122 			while ((kn->kn_status & KN_MARKER) != 0) {
   1123 				if (kn == marker) {
   1124 					/* it's our marker, stop */
   1125 					TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1126 					if (count < maxevents || (tsp != NULL &&
   1127 					    (timeout = gettimeleft(&atv,
   1128 					    &sleeptv)) <= 0))
   1129 						goto done;
   1130 					goto retry;
   1131 				}
   1132 				/* someone else's marker. */
   1133 				kn = TAILQ_NEXT(kn, kn_tqe);
   1134 			}
   1135 			kq_check(kq);
   1136 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1137 			kq->kq_count--;
   1138 			kn->kn_status &= ~KN_QUEUED;
   1139 			kq_check(kq);
   1140 			if (kn->kn_status & KN_DISABLED) {
   1141 				/* don't want disabled events */
   1142 				continue;
   1143 			}
   1144 			if ((kn->kn_flags & EV_ONESHOT) == 0) {
   1145 				mutex_spin_exit(&kq->kq_lock);
   1146 				KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1147 				rv = (*kn->kn_fop->f_event)(kn, 0);
   1148 				KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1149 				mutex_spin_enter(&kq->kq_lock);
   1150 				/* Re-poll if note was re-enqueued. */
   1151 				if ((kn->kn_status & KN_QUEUED) != 0)
   1152 					continue;
   1153 				if (rv == 0) {
   1154 					/*
   1155 					 * non-ONESHOT event that hasn't
   1156 					 * triggered again, so de-queue.
   1157 					 */
   1158 					kn->kn_status &= ~KN_ACTIVE;
   1159 					continue;
   1160 				}
   1161 			}
   1162 			/* XXXAD should be got from f_event if !oneshot. */
   1163 			*kevp++ = kn->kn_kevent;
   1164 			nkev++;
   1165 			if (kn->kn_flags & EV_ONESHOT) {
   1166 				/* delete ONESHOT events after retrieval */
   1167 				mutex_spin_exit(&kq->kq_lock);
   1168 				mutex_enter(&fdp->fd_lock);
   1169 				knote_detach(kn, fdp, true);
   1170 				mutex_spin_enter(&kq->kq_lock);
   1171 			} else if (kn->kn_flags & EV_CLEAR) {
   1172 				/* clear state after retrieval */
   1173 				kn->kn_data = 0;
   1174 				kn->kn_fflags = 0;
   1175 				kn->kn_status &= ~KN_ACTIVE;
   1176 			} else {
   1177 				/* add event back on list */
   1178 				kq_check(kq);
   1179 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1180 				kq->kq_count++;
   1181 				kn->kn_status |= KN_QUEUED;
   1182 				kq_check(kq);
   1183 			}
   1184 			if (nkev == kevcnt) {
   1185 				/* do copyouts in kevcnt chunks */
   1186 				mutex_spin_exit(&kq->kq_lock);
   1187 				error = (*keops->keo_put_events)
   1188 				    (keops->keo_private,
   1189 				    kevbuf, ulistp, nevents, nkev);
   1190 				mutex_spin_enter(&kq->kq_lock);
   1191 				nevents += nkev;
   1192 				nkev = 0;
   1193 				kevp = kevbuf;
   1194 			}
   1195 			count--;
   1196 			if (error != 0 || count == 0) {
   1197 				/* remove marker */
   1198 				TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   1199 				break;
   1200 			}
   1201 		}
   1202 	}
   1203  done:
   1204  	mutex_spin_exit(&kq->kq_lock);
   1205 	if (marker != NULL)
   1206 		kmem_free(marker, sizeof(*marker));
   1207 	if (nkev != 0) {
   1208 		/* copyout remaining events */
   1209 		error = (*keops->keo_put_events)(keops->keo_private,
   1210 		    kevbuf, ulistp, nevents, nkev);
   1211 	}
   1212 	*retval = maxevents - count;
   1213 
   1214 	return error;
   1215 }
   1216 
   1217 /*
   1218  * fileops ioctl method for a kqueue descriptor.
   1219  *
   1220  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   1221  *	KFILTER_BYNAME		find name for filter, and return result in
   1222  *				name, which is of size len.
   1223  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   1224  */
   1225 /*ARGSUSED*/
   1226 static int
   1227 kqueue_ioctl(file_t *fp, u_long com, void *data)
   1228 {
   1229 	struct kfilter_mapping	*km;
   1230 	const struct kfilter	*kfilter;
   1231 	char			*name;
   1232 	int			error;
   1233 
   1234 	km = data;
   1235 	error = 0;
   1236 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   1237 
   1238 	switch (com) {
   1239 	case KFILTER_BYFILTER:	/* convert filter -> name */
   1240 		rw_enter(&kqueue_filter_lock, RW_READER);
   1241 		kfilter = kfilter_byfilter(km->filter);
   1242 		if (kfilter != NULL) {
   1243 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   1244 			rw_exit(&kqueue_filter_lock);
   1245 			error = copyoutstr(name, km->name, km->len, NULL);
   1246 		} else {
   1247 			rw_exit(&kqueue_filter_lock);
   1248 			error = ENOENT;
   1249 		}
   1250 		break;
   1251 
   1252 	case KFILTER_BYNAME:	/* convert name -> filter */
   1253 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   1254 		if (error) {
   1255 			break;
   1256 		}
   1257 		rw_enter(&kqueue_filter_lock, RW_READER);
   1258 		kfilter = kfilter_byname(name);
   1259 		if (kfilter != NULL)
   1260 			km->filter = kfilter->filter;
   1261 		else
   1262 			error = ENOENT;
   1263 		rw_exit(&kqueue_filter_lock);
   1264 		break;
   1265 
   1266 	default:
   1267 		error = ENOTTY;
   1268 		break;
   1269 
   1270 	}
   1271 	kmem_free(name, KFILTER_MAXNAME);
   1272 	return (error);
   1273 }
   1274 
   1275 /*
   1276  * fileops fcntl method for a kqueue descriptor.
   1277  */
   1278 static int
   1279 kqueue_fcntl(file_t *fp, u_int com, void *data)
   1280 {
   1281 
   1282 	return (ENOTTY);
   1283 }
   1284 
   1285 /*
   1286  * fileops poll method for a kqueue descriptor.
   1287  * Determine if kqueue has events pending.
   1288  */
   1289 static int
   1290 kqueue_poll(file_t *fp, int events)
   1291 {
   1292 	struct kqueue	*kq;
   1293 	int		revents;
   1294 
   1295 	kq = fp->f_data;
   1296 
   1297 	revents = 0;
   1298 	if (events & (POLLIN | POLLRDNORM)) {
   1299 		mutex_spin_enter(&kq->kq_lock);
   1300 		if (kq->kq_count != 0) {
   1301 			revents |= events & (POLLIN | POLLRDNORM);
   1302 		} else {
   1303 			selrecord(curlwp, &kq->kq_sel);
   1304 		}
   1305 		kq_check(kq);
   1306 		mutex_spin_exit(&kq->kq_lock);
   1307 	}
   1308 
   1309 	return revents;
   1310 }
   1311 
   1312 /*
   1313  * fileops stat method for a kqueue descriptor.
   1314  * Returns dummy info, with st_size being number of events pending.
   1315  */
   1316 static int
   1317 kqueue_stat(file_t *fp, struct stat *st)
   1318 {
   1319 	struct kqueue *kq;
   1320 
   1321 	kq = fp->f_data;
   1322 
   1323 	memset(st, 0, sizeof(*st));
   1324 	st->st_size = kq->kq_count;
   1325 	st->st_blksize = sizeof(struct kevent);
   1326 	st->st_mode = S_IFIFO;
   1327 
   1328 	return 0;
   1329 }
   1330 
   1331 static void
   1332 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   1333 {
   1334 	struct knote *kn;
   1335 	filedesc_t *fdp;
   1336 
   1337 	fdp = kq->kq_fdp;
   1338 
   1339 	KASSERT(mutex_owned(&fdp->fd_lock));
   1340 
   1341 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   1342 		if (kq != kn->kn_kq) {
   1343 			kn = SLIST_NEXT(kn, kn_link);
   1344 			continue;
   1345 		}
   1346 		knote_detach(kn, fdp, true);
   1347 		mutex_enter(&fdp->fd_lock);
   1348 		kn = SLIST_FIRST(list);
   1349 	}
   1350 }
   1351 
   1352 
   1353 /*
   1354  * fileops close method for a kqueue descriptor.
   1355  */
   1356 static int
   1357 kqueue_close(file_t *fp)
   1358 {
   1359 	struct kqueue *kq;
   1360 	filedesc_t *fdp;
   1361 	fdfile_t *ff;
   1362 	int i;
   1363 
   1364 	kq = fp->f_data;
   1365 	fdp = curlwp->l_fd;
   1366 
   1367 	mutex_enter(&fdp->fd_lock);
   1368 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   1369 		if ((ff = fdp->fd_ofiles[i]) == NULL)
   1370 			continue;
   1371 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   1372 	}
   1373 	if (fdp->fd_knhashmask != 0) {
   1374 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   1375 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   1376 		}
   1377 	}
   1378 	mutex_exit(&fdp->fd_lock);
   1379 
   1380 	KASSERT(kq->kq_count == 0);
   1381 	mutex_destroy(&kq->kq_lock);
   1382 	cv_destroy(&kq->kq_cv);
   1383 	seldestroy(&kq->kq_sel);
   1384 	kmem_free(kq, sizeof(*kq));
   1385 	fp->f_data = NULL;
   1386 
   1387 	return (0);
   1388 }
   1389 
   1390 /*
   1391  * struct fileops kqfilter method for a kqueue descriptor.
   1392  * Event triggered when monitored kqueue changes.
   1393  */
   1394 static int
   1395 kqueue_kqfilter(file_t *fp, struct knote *kn)
   1396 {
   1397 	struct kqueue *kq;
   1398 	filedesc_t *fdp;
   1399 
   1400 	kq = ((file_t *)kn->kn_obj)->f_data;
   1401 
   1402 	KASSERT(fp == kn->kn_obj);
   1403 
   1404 	if (kn->kn_filter != EVFILT_READ)
   1405 		return 1;
   1406 
   1407 	kn->kn_fop = &kqread_filtops;
   1408 	fdp = curlwp->l_fd;
   1409 	mutex_enter(&kq->kq_lock);
   1410 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
   1411 	mutex_exit(&kq->kq_lock);
   1412 
   1413 	return 0;
   1414 }
   1415 
   1416 
   1417 /*
   1418  * Walk down a list of knotes, activating them if their event has
   1419  * triggered.  The caller's object lock (e.g. device driver lock)
   1420  * must be held.
   1421  */
   1422 void
   1423 knote(struct klist *list, long hint)
   1424 {
   1425 	struct knote *kn;
   1426 
   1427 	SLIST_FOREACH(kn, list, kn_selnext) {
   1428 		if ((*kn->kn_fop->f_event)(kn, hint))
   1429 			knote_activate(kn);
   1430 	}
   1431 }
   1432 
   1433 /*
   1434  * Remove all knotes referencing a specified fd
   1435  */
   1436 void
   1437 knote_fdclose(int fd)
   1438 {
   1439 	struct klist *list;
   1440 	struct knote *kn;
   1441 	filedesc_t *fdp;
   1442 
   1443 	fdp = curlwp->l_fd;
   1444 	list = (struct klist *)&fdp->fd_ofiles[fd]->ff_knlist;
   1445 	mutex_enter(&fdp->fd_lock);
   1446 	while ((kn = SLIST_FIRST(list)) != NULL) {
   1447 		knote_detach(kn, fdp, true);
   1448 		mutex_enter(&fdp->fd_lock);
   1449 	}
   1450 	mutex_exit(&fdp->fd_lock);
   1451 }
   1452 
   1453 /*
   1454  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   1455  * returning.
   1456  */
   1457 static void
   1458 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   1459 {
   1460 	struct klist *list;
   1461 	struct kqueue *kq;
   1462 
   1463 	kq = kn->kn_kq;
   1464 
   1465 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1466 	KASSERT(mutex_owned(&fdp->fd_lock));
   1467 
   1468 	/* Remove from monitored object. */
   1469 	if (dofop) {
   1470 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1471 		(*kn->kn_fop->f_detach)(kn);
   1472 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1473 	}
   1474 
   1475 	/* Remove from descriptor table. */
   1476 	if (kn->kn_fop->f_isfd)
   1477 		list = (struct klist *)&fdp->fd_ofiles[kn->kn_id]->ff_knlist;
   1478 	else
   1479 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1480 
   1481 	SLIST_REMOVE(list, kn, knote, kn_link);
   1482 
   1483 	/* Remove from kqueue. */
   1484 	/* XXXAD should verify not in use by kqueue_scan. */
   1485 	mutex_spin_enter(&kq->kq_lock);
   1486 	if ((kn->kn_status & KN_QUEUED) != 0) {
   1487 		kq_check(kq);
   1488 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1489 		kn->kn_status &= ~KN_QUEUED;
   1490 		kq->kq_count--;
   1491 		kq_check(kq);
   1492 	}
   1493 	mutex_spin_exit(&kq->kq_lock);
   1494 
   1495 	mutex_exit(&fdp->fd_lock);
   1496 	if (kn->kn_fop->f_isfd)
   1497 		fd_putfile(kn->kn_id);
   1498 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   1499 	kmem_free(kn, sizeof(*kn));
   1500 }
   1501 
   1502 /*
   1503  * Queue new event for knote.
   1504  */
   1505 static void
   1506 knote_enqueue(struct knote *kn)
   1507 {
   1508 	struct kqueue *kq;
   1509 
   1510 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1511 
   1512 	kq = kn->kn_kq;
   1513 
   1514 	mutex_spin_enter(&kq->kq_lock);
   1515 	if ((kn->kn_status & KN_DISABLED) != 0) {
   1516 		kn->kn_status &= ~KN_DISABLED;
   1517 	}
   1518 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   1519 		kq_check(kq);
   1520 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1521 		kn->kn_status |= KN_QUEUED;
   1522 		kq->kq_count++;
   1523 		kq_check(kq);
   1524 		cv_broadcast(&kq->kq_cv);
   1525 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1526 	}
   1527 	mutex_spin_exit(&kq->kq_lock);
   1528 }
   1529 /*
   1530  * Queue new event for knote.
   1531  */
   1532 static void
   1533 knote_activate(struct knote *kn)
   1534 {
   1535 	struct kqueue *kq;
   1536 
   1537 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1538 
   1539 	kq = kn->kn_kq;
   1540 
   1541 	mutex_spin_enter(&kq->kq_lock);
   1542 	kn->kn_status |= KN_ACTIVE;
   1543 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   1544 		kq_check(kq);
   1545 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1546 		kn->kn_status |= KN_QUEUED;
   1547 		kq->kq_count++;
   1548 		kq_check(kq);
   1549 		cv_broadcast(&kq->kq_cv);
   1550 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1551 	}
   1552 	mutex_spin_exit(&kq->kq_lock);
   1553 }
   1554