kern_event.c revision 1.60 1 /* $NetBSD: kern_event.c,v 1.60 2008/06/24 10:27:35 gmcgarry Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
55 */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.60 2008/06/24 10:27:35 gmcgarry Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/proc.h>
64 #include <sys/file.h>
65 #include <sys/select.h>
66 #include <sys/queue.h>
67 #include <sys/event.h>
68 #include <sys/eventvar.h>
69 #include <sys/poll.h>
70 #include <sys/kmem.h>
71 #include <sys/stat.h>
72 #include <sys/filedesc.h>
73 #include <sys/syscallargs.h>
74 #include <sys/kauth.h>
75 #include <sys/conf.h>
76 #include <sys/atomic.h>
77
78 static int kqueue_scan(file_t *, size_t, struct kevent *,
79 const struct timespec *, register_t *,
80 const struct kevent_ops *, struct kevent *,
81 size_t);
82 static int kqueue_ioctl(file_t *, u_long, void *);
83 static int kqueue_fcntl(file_t *, u_int, void *);
84 static int kqueue_poll(file_t *, int);
85 static int kqueue_kqfilter(file_t *, struct knote *);
86 static int kqueue_stat(file_t *, struct stat *);
87 static int kqueue_close(file_t *);
88 static int kqueue_register(struct kqueue *, struct kevent *);
89 static void kqueue_doclose(struct kqueue *, struct klist *, int);
90
91 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
92 static void knote_enqueue(struct knote *);
93 static void knote_activate(struct knote *);
94
95 static void filt_kqdetach(struct knote *);
96 static int filt_kqueue(struct knote *, long hint);
97 static int filt_procattach(struct knote *);
98 static void filt_procdetach(struct knote *);
99 static int filt_proc(struct knote *, long hint);
100 static int filt_fileattach(struct knote *);
101 static void filt_timerexpire(void *x);
102 static int filt_timerattach(struct knote *);
103 static void filt_timerdetach(struct knote *);
104 static int filt_timer(struct knote *, long hint);
105
106 static const struct fileops kqueueops = {
107 (void *)enxio, (void *)enxio, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
108 kqueue_stat, kqueue_close, kqueue_kqfilter
109 };
110
111 static const struct filterops kqread_filtops =
112 { 1, NULL, filt_kqdetach, filt_kqueue };
113 static const struct filterops proc_filtops =
114 { 0, filt_procattach, filt_procdetach, filt_proc };
115 static const struct filterops file_filtops =
116 { 1, filt_fileattach, NULL, NULL };
117 static const struct filterops timer_filtops =
118 { 0, filt_timerattach, filt_timerdetach, filt_timer };
119
120 static u_int kq_ncallouts = 0;
121 static int kq_calloutmax = (4 * 1024);
122
123 #define KN_HASHSIZE 64 /* XXX should be tunable */
124 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
125
126 extern const struct filterops sig_filtops;
127
128 /*
129 * Table for for all system-defined filters.
130 * These should be listed in the numeric order of the EVFILT_* defines.
131 * If filtops is NULL, the filter isn't implemented in NetBSD.
132 * End of list is when name is NULL.
133 *
134 * Note that 'refcnt' is meaningless for built-in filters.
135 */
136 struct kfilter {
137 const char *name; /* name of filter */
138 uint32_t filter; /* id of filter */
139 unsigned refcnt; /* reference count */
140 const struct filterops *filtops;/* operations for filter */
141 size_t namelen; /* length of name string */
142 };
143
144 /* System defined filters */
145 static struct kfilter sys_kfilters[] = {
146 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
147 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
148 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
149 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
150 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
151 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
152 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
153 { NULL, 0, 0, NULL, 0 },
154 };
155
156 /* User defined kfilters */
157 static struct kfilter *user_kfilters; /* array */
158 static int user_kfilterc; /* current offset */
159 static int user_kfiltermaxc; /* max size so far */
160 static size_t user_kfiltersz; /* size of allocated memory */
161
162 /* Locks */
163 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
164 static kmutex_t kqueue_misc_lock; /* miscellaneous */
165
166 /*
167 * Initialize the kqueue subsystem.
168 */
169 void
170 kqueue_init(void)
171 {
172
173 rw_init(&kqueue_filter_lock);
174 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
175 }
176
177 /*
178 * Find kfilter entry by name, or NULL if not found.
179 */
180 static struct kfilter *
181 kfilter_byname_sys(const char *name)
182 {
183 int i;
184
185 KASSERT(rw_lock_held(&kqueue_filter_lock));
186
187 for (i = 0; sys_kfilters[i].name != NULL; i++) {
188 if (strcmp(name, sys_kfilters[i].name) == 0)
189 return &sys_kfilters[i];
190 }
191 return NULL;
192 }
193
194 static struct kfilter *
195 kfilter_byname_user(const char *name)
196 {
197 int i;
198
199 KASSERT(rw_lock_held(&kqueue_filter_lock));
200
201 /* user filter slots have a NULL name if previously deregistered */
202 for (i = 0; i < user_kfilterc ; i++) {
203 if (user_kfilters[i].name != NULL &&
204 strcmp(name, user_kfilters[i].name) == 0)
205 return &user_kfilters[i];
206 }
207 return NULL;
208 }
209
210 static struct kfilter *
211 kfilter_byname(const char *name)
212 {
213 struct kfilter *kfilter;
214
215 KASSERT(rw_lock_held(&kqueue_filter_lock));
216
217 if ((kfilter = kfilter_byname_sys(name)) != NULL)
218 return kfilter;
219
220 return kfilter_byname_user(name);
221 }
222
223 /*
224 * Find kfilter entry by filter id, or NULL if not found.
225 * Assumes entries are indexed in filter id order, for speed.
226 */
227 static struct kfilter *
228 kfilter_byfilter(uint32_t filter)
229 {
230 struct kfilter *kfilter;
231
232 KASSERT(rw_lock_held(&kqueue_filter_lock));
233
234 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
235 kfilter = &sys_kfilters[filter];
236 else if (user_kfilters != NULL &&
237 filter < EVFILT_SYSCOUNT + user_kfilterc)
238 /* it's a user filter */
239 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
240 else
241 return (NULL); /* out of range */
242 KASSERT(kfilter->filter == filter); /* sanity check! */
243 return (kfilter);
244 }
245
246 /*
247 * Register a new kfilter. Stores the entry in user_kfilters.
248 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
249 * If retfilter != NULL, the new filterid is returned in it.
250 */
251 int
252 kfilter_register(const char *name, const struct filterops *filtops,
253 int *retfilter)
254 {
255 struct kfilter *kfilter;
256 size_t len;
257 int i;
258
259 if (name == NULL || name[0] == '\0' || filtops == NULL)
260 return (EINVAL); /* invalid args */
261
262 rw_enter(&kqueue_filter_lock, RW_WRITER);
263 if (kfilter_byname(name) != NULL) {
264 rw_exit(&kqueue_filter_lock);
265 return (EEXIST); /* already exists */
266 }
267 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
268 rw_exit(&kqueue_filter_lock);
269 return (EINVAL); /* too many */
270 }
271
272 for (i = 0; i < user_kfilterc; i++) {
273 kfilter = &user_kfilters[i];
274 if (kfilter->name == NULL) {
275 /* Previously deregistered slot. Reuse. */
276 goto reuse;
277 }
278 }
279
280 /* check if need to grow user_kfilters */
281 if (user_kfilterc + 1 > user_kfiltermaxc) {
282 /* Grow in KFILTER_EXTENT chunks. */
283 user_kfiltermaxc += KFILTER_EXTENT;
284 len = user_kfiltermaxc * sizeof(struct filter *);
285 kfilter = kmem_alloc(len, KM_SLEEP);
286 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
287 if (user_kfilters != NULL) {
288 memcpy(kfilter, user_kfilters, user_kfiltersz);
289 kmem_free(user_kfilters, user_kfiltersz);
290 }
291 user_kfiltersz = len;
292 user_kfilters = kfilter;
293 }
294 /* Adding new slot */
295 kfilter = &user_kfilters[user_kfilterc++];
296 reuse:
297 kfilter->namelen = strlen(name) + 1;
298 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
299 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
300
301 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
302
303 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
304 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
305
306 if (retfilter != NULL)
307 *retfilter = kfilter->filter;
308 rw_exit(&kqueue_filter_lock);
309
310 return (0);
311 }
312
313 /*
314 * Unregister a kfilter previously registered with kfilter_register.
315 * This retains the filter id, but clears the name and frees filtops (filter
316 * operations), so that the number isn't reused during a boot.
317 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
318 */
319 int
320 kfilter_unregister(const char *name)
321 {
322 struct kfilter *kfilter;
323
324 if (name == NULL || name[0] == '\0')
325 return (EINVAL); /* invalid name */
326
327 rw_enter(&kqueue_filter_lock, RW_WRITER);
328 if (kfilter_byname_sys(name) != NULL) {
329 rw_exit(&kqueue_filter_lock);
330 return (EINVAL); /* can't detach system filters */
331 }
332
333 kfilter = kfilter_byname_user(name);
334 if (kfilter == NULL) {
335 rw_exit(&kqueue_filter_lock);
336 return (ENOENT);
337 }
338 if (kfilter->refcnt != 0) {
339 rw_exit(&kqueue_filter_lock);
340 return (EBUSY);
341 }
342
343 /* Cast away const (but we know it's safe. */
344 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
345 kfilter->name = NULL; /* mark as `not implemented' */
346
347 if (kfilter->filtops != NULL) {
348 /* Cast away const (but we know it's safe. */
349 kmem_free(__UNCONST(kfilter->filtops),
350 sizeof(*kfilter->filtops));
351 kfilter->filtops = NULL; /* mark as `not implemented' */
352 }
353 rw_exit(&kqueue_filter_lock);
354
355 return (0);
356 }
357
358
359 /*
360 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
361 * descriptors. Calls fileops kqfilter method for given file descriptor.
362 */
363 static int
364 filt_fileattach(struct knote *kn)
365 {
366 file_t *fp;
367
368 fp = kn->kn_obj;
369
370 return (*fp->f_ops->fo_kqfilter)(fp, kn);
371 }
372
373 /*
374 * Filter detach method for EVFILT_READ on kqueue descriptor.
375 */
376 static void
377 filt_kqdetach(struct knote *kn)
378 {
379 struct kqueue *kq;
380
381 kq = ((file_t *)kn->kn_obj)->f_data;
382
383 mutex_spin_enter(&kq->kq_lock);
384 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
385 mutex_spin_exit(&kq->kq_lock);
386 }
387
388 /*
389 * Filter event method for EVFILT_READ on kqueue descriptor.
390 */
391 /*ARGSUSED*/
392 static int
393 filt_kqueue(struct knote *kn, long hint)
394 {
395 struct kqueue *kq;
396 int rv;
397
398 kq = ((file_t *)kn->kn_obj)->f_data;
399
400 if (hint != NOTE_SUBMIT)
401 mutex_spin_enter(&kq->kq_lock);
402 kn->kn_data = kq->kq_count;
403 rv = (kn->kn_data > 0);
404 if (hint != NOTE_SUBMIT)
405 mutex_spin_exit(&kq->kq_lock);
406
407 return rv;
408 }
409
410 /*
411 * Filter attach method for EVFILT_PROC.
412 */
413 static int
414 filt_procattach(struct knote *kn)
415 {
416 struct proc *p, *curp;
417 struct lwp *curl;
418
419 curl = curlwp;
420 curp = curl->l_proc;
421
422 mutex_enter(proc_lock);
423 p = p_find(kn->kn_id, PFIND_LOCKED);
424 if (p == NULL) {
425 mutex_exit(proc_lock);
426 return ESRCH;
427 }
428
429 /*
430 * Fail if it's not owned by you, or the last exec gave us
431 * setuid/setgid privs (unless you're root).
432 */
433 mutex_enter(p->p_lock);
434 mutex_exit(proc_lock);
435 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
436 p, NULL, NULL, NULL) != 0) {
437 mutex_exit(p->p_lock);
438 return EACCES;
439 }
440
441 kn->kn_obj = p;
442 kn->kn_flags |= EV_CLEAR; /* automatically set */
443
444 /*
445 * internal flag indicating registration done by kernel
446 */
447 if (kn->kn_flags & EV_FLAG1) {
448 kn->kn_data = kn->kn_sdata; /* ppid */
449 kn->kn_fflags = NOTE_CHILD;
450 kn->kn_flags &= ~EV_FLAG1;
451 }
452 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
453 mutex_exit(p->p_lock);
454
455 return 0;
456 }
457
458 /*
459 * Filter detach method for EVFILT_PROC.
460 *
461 * The knote may be attached to a different process, which may exit,
462 * leaving nothing for the knote to be attached to. So when the process
463 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
464 * it will be deleted when read out. However, as part of the knote deletion,
465 * this routine is called, so a check is needed to avoid actually performing
466 * a detach, because the original process might not exist any more.
467 */
468 static void
469 filt_procdetach(struct knote *kn)
470 {
471 struct proc *p;
472
473 if (kn->kn_status & KN_DETACHED)
474 return;
475
476 p = kn->kn_obj;
477
478 mutex_enter(p->p_lock);
479 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
480 mutex_exit(p->p_lock);
481 }
482
483 /*
484 * Filter event method for EVFILT_PROC.
485 */
486 static int
487 filt_proc(struct knote *kn, long hint)
488 {
489 u_int event, fflag;
490 struct kevent kev;
491 struct kqueue *kq;
492 int error;
493
494 event = (u_int)hint & NOTE_PCTRLMASK;
495 kq = kn->kn_kq;
496 fflag = 0;
497
498 /* If the user is interested in this event, record it. */
499 if (kn->kn_sfflags & event)
500 fflag |= event;
501
502 if (event == NOTE_EXIT) {
503 /*
504 * Process is gone, so flag the event as finished.
505 *
506 * Detach the knote from watched process and mark
507 * it as such. We can't leave this to kqueue_scan(),
508 * since the process might not exist by then. And we
509 * have to do this now, since psignal KNOTE() is called
510 * also for zombies and we might end up reading freed
511 * memory if the kevent would already be picked up
512 * and knote g/c'ed.
513 */
514 filt_procdetach(kn);
515
516 mutex_spin_enter(&kq->kq_lock);
517 kn->kn_status |= KN_DETACHED;
518 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
519 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
520 kn->kn_fflags |= fflag;
521 mutex_spin_exit(&kq->kq_lock);
522
523 return 1;
524 }
525
526 mutex_spin_enter(&kq->kq_lock);
527 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
528 /*
529 * Process forked, and user wants to track the new process,
530 * so attach a new knote to it, and immediately report an
531 * event with the parent's pid. Register knote with new
532 * process.
533 */
534 kev.ident = hint & NOTE_PDATAMASK; /* pid */
535 kev.filter = kn->kn_filter;
536 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
537 kev.fflags = kn->kn_sfflags;
538 kev.data = kn->kn_id; /* parent */
539 kev.udata = kn->kn_kevent.udata; /* preserve udata */
540 mutex_spin_exit(&kq->kq_lock);
541 error = kqueue_register(kq, &kev);
542 mutex_spin_enter(&kq->kq_lock);
543 if (error != 0)
544 kn->kn_fflags |= NOTE_TRACKERR;
545 }
546 kn->kn_fflags |= fflag;
547 fflag = kn->kn_fflags;
548 mutex_spin_exit(&kq->kq_lock);
549
550 return fflag != 0;
551 }
552
553 static void
554 filt_timerexpire(void *knx)
555 {
556 struct knote *kn = knx;
557 int tticks;
558
559 mutex_enter(&kqueue_misc_lock);
560 kn->kn_data++;
561 knote_activate(kn);
562 if ((kn->kn_flags & EV_ONESHOT) == 0) {
563 tticks = mstohz(kn->kn_sdata);
564 callout_schedule((callout_t *)kn->kn_hook, tticks);
565 }
566 mutex_exit(&kqueue_misc_lock);
567 }
568
569 /*
570 * data contains amount of time to sleep, in milliseconds
571 */
572 static int
573 filt_timerattach(struct knote *kn)
574 {
575 callout_t *calloutp;
576 struct kqueue *kq;
577 int tticks;
578
579 tticks = mstohz(kn->kn_sdata);
580
581 /* if the supplied value is under our resolution, use 1 tick */
582 if (tticks == 0) {
583 if (kn->kn_sdata == 0)
584 return EINVAL;
585 tticks = 1;
586 }
587
588 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
589 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
590 atomic_dec_uint(&kq_ncallouts);
591 return ENOMEM;
592 }
593 callout_init(calloutp, CALLOUT_MPSAFE);
594
595 kq = kn->kn_kq;
596 mutex_spin_enter(&kq->kq_lock);
597 kn->kn_flags |= EV_CLEAR; /* automatically set */
598 kn->kn_hook = calloutp;
599 mutex_spin_exit(&kq->kq_lock);
600
601 callout_reset(calloutp, tticks, filt_timerexpire, kn);
602
603 return (0);
604 }
605
606 static void
607 filt_timerdetach(struct knote *kn)
608 {
609 callout_t *calloutp;
610
611 calloutp = (callout_t *)kn->kn_hook;
612 callout_halt(calloutp, NULL);
613 callout_destroy(calloutp);
614 kmem_free(calloutp, sizeof(*calloutp));
615 atomic_dec_uint(&kq_ncallouts);
616 }
617
618 static int
619 filt_timer(struct knote *kn, long hint)
620 {
621 int rv;
622
623 mutex_enter(&kqueue_misc_lock);
624 rv = (kn->kn_data != 0);
625 mutex_exit(&kqueue_misc_lock);
626
627 return rv;
628 }
629
630 /*
631 * filt_seltrue:
632 *
633 * This filter "event" routine simulates seltrue().
634 */
635 int
636 filt_seltrue(struct knote *kn, long hint)
637 {
638
639 /*
640 * We don't know how much data can be read/written,
641 * but we know that it *can* be. This is about as
642 * good as select/poll does as well.
643 */
644 kn->kn_data = 0;
645 return (1);
646 }
647
648 /*
649 * This provides full kqfilter entry for device switch tables, which
650 * has same effect as filter using filt_seltrue() as filter method.
651 */
652 static void
653 filt_seltruedetach(struct knote *kn)
654 {
655 /* Nothing to do */
656 }
657
658 const struct filterops seltrue_filtops =
659 { 1, NULL, filt_seltruedetach, filt_seltrue };
660
661 int
662 seltrue_kqfilter(dev_t dev, struct knote *kn)
663 {
664 switch (kn->kn_filter) {
665 case EVFILT_READ:
666 case EVFILT_WRITE:
667 kn->kn_fop = &seltrue_filtops;
668 break;
669 default:
670 return (EINVAL);
671 }
672
673 /* Nothing more to do */
674 return (0);
675 }
676
677 /*
678 * kqueue(2) system call.
679 */
680 int
681 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
682 {
683 struct kqueue *kq;
684 file_t *fp;
685 int fd, error;
686
687 if ((error = fd_allocfile(&fp, &fd)) != 0)
688 return error;
689 fp->f_flag = FREAD | FWRITE;
690 fp->f_type = DTYPE_KQUEUE;
691 fp->f_ops = &kqueueops;
692 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
693 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
694 cv_init(&kq->kq_cv, "kqueue");
695 selinit(&kq->kq_sel);
696 TAILQ_INIT(&kq->kq_head);
697 fp->f_data = kq;
698 *retval = fd;
699 kq->kq_fdp = curlwp->l_fd;
700 fd_affix(curproc, fp, fd);
701 return error;
702 }
703
704 /*
705 * kevent(2) system call.
706 */
707 static int
708 kevent_fetch_changes(void *private, const struct kevent *changelist,
709 struct kevent *changes, size_t index, int n)
710 {
711
712 return copyin(changelist + index, changes, n * sizeof(*changes));
713 }
714
715 static int
716 kevent_put_events(void *private, struct kevent *events,
717 struct kevent *eventlist, size_t index, int n)
718 {
719
720 return copyout(events, eventlist + index, n * sizeof(*events));
721 }
722
723 static const struct kevent_ops kevent_native_ops = {
724 .keo_private = NULL,
725 .keo_fetch_timeout = copyin,
726 .keo_fetch_changes = kevent_fetch_changes,
727 .keo_put_events = kevent_put_events,
728 };
729
730 int
731 sys_kevent(struct lwp *l, const struct sys_kevent_args *uap, register_t *retval)
732 {
733 /* {
734 syscallarg(int) fd;
735 syscallarg(const struct kevent *) changelist;
736 syscallarg(size_t) nchanges;
737 syscallarg(struct kevent *) eventlist;
738 syscallarg(size_t) nevents;
739 syscallarg(const struct timespec *) timeout;
740 } */
741
742 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
743 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
744 SCARG(uap, timeout), &kevent_native_ops);
745 }
746
747 int
748 kevent1(register_t *retval, int fd,
749 const struct kevent *changelist, size_t nchanges,
750 struct kevent *eventlist, size_t nevents,
751 const struct timespec *timeout,
752 const struct kevent_ops *keops)
753 {
754 struct kevent *kevp;
755 struct kqueue *kq;
756 struct timespec ts;
757 size_t i, n, ichange;
758 int nerrors, error;
759 struct kevent kevbuf[8]; /* approx 300 bytes on 64-bit */
760 file_t *fp;
761
762 /* check that we're dealing with a kq */
763 fp = fd_getfile(fd);
764 if (fp == NULL)
765 return (EBADF);
766
767 if (fp->f_type != DTYPE_KQUEUE) {
768 fd_putfile(fd);
769 return (EBADF);
770 }
771
772 if (timeout != NULL) {
773 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
774 if (error)
775 goto done;
776 timeout = &ts;
777 }
778
779 kq = (struct kqueue *)fp->f_data;
780 nerrors = 0;
781 ichange = 0;
782
783 /* traverse list of events to register */
784 while (nchanges > 0) {
785 n = MIN(nchanges, __arraycount(kevbuf));
786 error = (*keops->keo_fetch_changes)(keops->keo_private,
787 changelist, kevbuf, ichange, n);
788 if (error)
789 goto done;
790 for (i = 0; i < n; i++) {
791 kevp = &kevbuf[i];
792 kevp->flags &= ~EV_SYSFLAGS;
793 /* register each knote */
794 error = kqueue_register(kq, kevp);
795 if (error) {
796 if (nevents != 0) {
797 kevp->flags = EV_ERROR;
798 kevp->data = error;
799 error = (*keops->keo_put_events)
800 (keops->keo_private, kevp,
801 eventlist, nerrors, 1);
802 if (error)
803 goto done;
804 nevents--;
805 nerrors++;
806 } else {
807 goto done;
808 }
809 }
810 }
811 nchanges -= n; /* update the results */
812 ichange += n;
813 }
814 if (nerrors) {
815 *retval = nerrors;
816 error = 0;
817 goto done;
818 }
819
820 /* actually scan through the events */
821 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
822 kevbuf, __arraycount(kevbuf));
823 done:
824 fd_putfile(fd);
825 return (error);
826 }
827
828 /*
829 * Register a given kevent kev onto the kqueue
830 */
831 static int
832 kqueue_register(struct kqueue *kq, struct kevent *kev)
833 {
834 struct kfilter *kfilter;
835 filedesc_t *fdp;
836 file_t *fp;
837 fdfile_t *ff;
838 struct knote *kn, *newkn;
839 struct klist *list;
840 int error, fd, rv;
841
842 fdp = kq->kq_fdp;
843 fp = NULL;
844 kn = NULL;
845 error = 0;
846 fd = 0;
847
848 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
849
850 rw_enter(&kqueue_filter_lock, RW_READER);
851 kfilter = kfilter_byfilter(kev->filter);
852 if (kfilter == NULL || kfilter->filtops == NULL) {
853 /* filter not found nor implemented */
854 rw_exit(&kqueue_filter_lock);
855 kmem_free(newkn, sizeof(*newkn));
856 return (EINVAL);
857 }
858
859 mutex_enter(&fdp->fd_lock);
860
861 /* search if knote already exists */
862 if (kfilter->filtops->f_isfd) {
863 /* monitoring a file descriptor */
864 fd = kev->ident;
865 if ((fp = fd_getfile(fd)) == NULL) {
866 mutex_exit(&fdp->fd_lock);
867 rw_exit(&kqueue_filter_lock);
868 kmem_free(newkn, sizeof(*newkn));
869 return EBADF;
870 }
871 ff = fdp->fd_ofiles[fd];
872 if (fd <= fdp->fd_lastkqfile) {
873 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
874 if (kq == kn->kn_kq &&
875 kev->filter == kn->kn_filter)
876 break;
877 }
878 }
879 } else {
880 /*
881 * not monitoring a file descriptor, so
882 * lookup knotes in internal hash table
883 */
884 if (fdp->fd_knhashmask != 0) {
885 list = &fdp->fd_knhash[
886 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
887 SLIST_FOREACH(kn, list, kn_link) {
888 if (kev->ident == kn->kn_id &&
889 kq == kn->kn_kq &&
890 kev->filter == kn->kn_filter)
891 break;
892 }
893 }
894 }
895
896 /*
897 * kn now contains the matching knote, or NULL if no match
898 */
899 if (kev->flags & EV_ADD) {
900 if (kn == NULL) {
901 /* create new knote */
902 kn = newkn;
903 newkn = NULL;
904 kn->kn_obj = fp;
905 kn->kn_kq = kq;
906 kn->kn_fop = kfilter->filtops;
907 kn->kn_kfilter = kfilter;
908 kn->kn_sfflags = kev->fflags;
909 kn->kn_sdata = kev->data;
910 kev->fflags = 0;
911 kev->data = 0;
912 kn->kn_kevent = *kev;
913
914 /*
915 * apply reference count to knote structure, and
916 * do not release it at the end of this routine.
917 */
918 fp = NULL;
919
920 if (!kn->kn_fop->f_isfd) {
921 /*
922 * If knote is not on an fd, store on
923 * internal hash table.
924 */
925 if (fdp->fd_knhashmask == 0) {
926 /* XXXAD can block with fd_lock held */
927 fdp->fd_knhash = hashinit(KN_HASHSIZE,
928 HASH_LIST, true,
929 &fdp->fd_knhashmask);
930 }
931 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
932 fdp->fd_knhashmask)];
933 } else {
934 /* Otherwise, knote is on an fd. */
935 list = (struct klist *)
936 &fdp->fd_ofiles[kn->kn_id]->ff_knlist;
937 if ((int)kn->kn_id > fdp->fd_lastkqfile)
938 fdp->fd_lastkqfile = kn->kn_id;
939 }
940 SLIST_INSERT_HEAD(list, kn, kn_link);
941
942 KERNEL_LOCK(1, NULL); /* XXXSMP */
943 error = (*kfilter->filtops->f_attach)(kn);
944 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
945 if (error != 0) {
946 /* knote_detach() drops fdp->fd_lock */
947 knote_detach(kn, fdp, false);
948 goto done;
949 }
950 atomic_inc_uint(&kfilter->refcnt);
951 } else {
952 /*
953 * The user may change some filter values after the
954 * initial EV_ADD, but doing so will not reset any
955 * filter which have already been triggered.
956 */
957 kn->kn_sfflags = kev->fflags;
958 kn->kn_sdata = kev->data;
959 kn->kn_kevent.udata = kev->udata;
960 }
961 KERNEL_LOCK(1, NULL); /* XXXSMP */
962 rv = (*kn->kn_fop->f_event)(kn, 0);
963 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
964 if (rv)
965 knote_activate(kn);
966 } else {
967 if (kn == NULL) {
968 error = ENOENT;
969 mutex_exit(&fdp->fd_lock);
970 goto done;
971 }
972 if (kev->flags & EV_DELETE) {
973 /* knote_detach() drops fdp->fd_lock */
974 knote_detach(kn, fdp, true);
975 goto done;
976 }
977 }
978
979 /* disable knote */
980 if ((kev->flags & EV_DISABLE)) {
981 mutex_spin_enter(&kq->kq_lock);
982 if ((kn->kn_status & KN_DISABLED) == 0)
983 kn->kn_status |= KN_DISABLED;
984 mutex_spin_exit(&kq->kq_lock);
985 }
986
987 /* enable knote */
988 if ((kev->flags & EV_ENABLE)) {
989 knote_enqueue(kn);
990 }
991 mutex_exit(&fdp->fd_lock);
992 done:
993 rw_exit(&kqueue_filter_lock);
994 if (newkn != NULL)
995 kmem_free(newkn, sizeof(*newkn));
996 if (fp != NULL)
997 fd_putfile(fd);
998 return (error);
999 }
1000
1001 #if defined(DEBUG)
1002 static void
1003 kq_check(struct kqueue *kq)
1004 {
1005 const struct knote *kn;
1006 int count;
1007 int nmarker;
1008
1009 KASSERT(mutex_owned(&kq->kq_lock));
1010 KASSERT(kq->kq_count >= 0);
1011
1012 count = 0;
1013 nmarker = 0;
1014 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1015 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1016 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1017 }
1018 if ((kn->kn_status & KN_MARKER) == 0) {
1019 if (kn->kn_kq != kq) {
1020 panic("%s: kq=%p kn=%p inconsist 2",
1021 __func__, kq, kn);
1022 }
1023 if ((kn->kn_status & KN_ACTIVE) == 0) {
1024 panic("%s: kq=%p kn=%p: not active",
1025 __func__, kq, kn);
1026 }
1027 count++;
1028 if (count > kq->kq_count) {
1029 goto bad;
1030 }
1031 } else {
1032 nmarker++;
1033 #if 0
1034 if (nmarker > 10000) {
1035 panic("%s: kq=%p too many markers: %d != %d, "
1036 "nmarker=%d",
1037 __func__, kq, kq->kq_count, count, nmarker);
1038 }
1039 #endif
1040 }
1041 }
1042 if (kq->kq_count != count) {
1043 bad:
1044 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1045 __func__, kq, kq->kq_count, count, nmarker);
1046 }
1047 }
1048 #else /* defined(DEBUG) */
1049 #define kq_check(a) /* nothing */
1050 #endif /* defined(DEBUG) */
1051
1052 /*
1053 * Scan through the list of events on fp (for a maximum of maxevents),
1054 * returning the results in to ulistp. Timeout is determined by tsp; if
1055 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1056 * as appropriate.
1057 */
1058 static int
1059 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1060 const struct timespec *tsp, register_t *retval,
1061 const struct kevent_ops *keops, struct kevent *kevbuf,
1062 size_t kevcnt)
1063 {
1064 struct kqueue *kq;
1065 struct kevent *kevp;
1066 struct timeval atv, sleeptv;
1067 struct knote *kn, *marker;
1068 size_t count, nkev, nevents;
1069 int timeout, error, rv;
1070 filedesc_t *fdp;
1071
1072 fdp = curlwp->l_fd;
1073 kq = fp->f_data;
1074 count = maxevents;
1075 nkev = nevents = error = 0;
1076 if (count == 0) {
1077 *retval = 0;
1078 return 0;
1079 }
1080
1081 if (tsp) { /* timeout supplied */
1082 TIMESPEC_TO_TIMEVAL(&atv, tsp);
1083 if (inittimeleft(&atv, &sleeptv) == -1) {
1084 *retval = maxevents;
1085 return EINVAL;
1086 }
1087 timeout = tvtohz(&atv);
1088 if (timeout <= 0)
1089 timeout = -1; /* do poll */
1090 } else {
1091 /* no timeout, wait forever */
1092 timeout = 0;
1093 }
1094
1095 marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1096 marker->kn_status = KN_MARKER;
1097 mutex_spin_enter(&kq->kq_lock);
1098 retry:
1099 kevp = kevbuf;
1100 if (kq->kq_count == 0) {
1101 if (timeout >= 0) {
1102 error = cv_timedwait_sig(&kq->kq_cv,
1103 &kq->kq_lock, timeout);
1104 if (error == 0) {
1105 if (tsp == NULL || (timeout =
1106 gettimeleft(&atv, &sleeptv)) > 0)
1107 goto retry;
1108 } else {
1109 /* don't restart after signals... */
1110 if (error == ERESTART)
1111 error = EINTR;
1112 if (error == EWOULDBLOCK)
1113 error = 0;
1114 }
1115 }
1116 } else {
1117 /* mark end of knote list */
1118 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1119
1120 while (count != 0) {
1121 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1122 while ((kn->kn_status & KN_MARKER) != 0) {
1123 if (kn == marker) {
1124 /* it's our marker, stop */
1125 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1126 if (count < maxevents || (tsp != NULL &&
1127 (timeout = gettimeleft(&atv,
1128 &sleeptv)) <= 0))
1129 goto done;
1130 goto retry;
1131 }
1132 /* someone else's marker. */
1133 kn = TAILQ_NEXT(kn, kn_tqe);
1134 }
1135 kq_check(kq);
1136 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1137 kq->kq_count--;
1138 kn->kn_status &= ~KN_QUEUED;
1139 kq_check(kq);
1140 if (kn->kn_status & KN_DISABLED) {
1141 /* don't want disabled events */
1142 continue;
1143 }
1144 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1145 mutex_spin_exit(&kq->kq_lock);
1146 KERNEL_LOCK(1, NULL); /* XXXSMP */
1147 rv = (*kn->kn_fop->f_event)(kn, 0);
1148 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1149 mutex_spin_enter(&kq->kq_lock);
1150 /* Re-poll if note was re-enqueued. */
1151 if ((kn->kn_status & KN_QUEUED) != 0)
1152 continue;
1153 if (rv == 0) {
1154 /*
1155 * non-ONESHOT event that hasn't
1156 * triggered again, so de-queue.
1157 */
1158 kn->kn_status &= ~KN_ACTIVE;
1159 continue;
1160 }
1161 }
1162 /* XXXAD should be got from f_event if !oneshot. */
1163 *kevp++ = kn->kn_kevent;
1164 nkev++;
1165 if (kn->kn_flags & EV_ONESHOT) {
1166 /* delete ONESHOT events after retrieval */
1167 mutex_spin_exit(&kq->kq_lock);
1168 mutex_enter(&fdp->fd_lock);
1169 knote_detach(kn, fdp, true);
1170 mutex_spin_enter(&kq->kq_lock);
1171 } else if (kn->kn_flags & EV_CLEAR) {
1172 /* clear state after retrieval */
1173 kn->kn_data = 0;
1174 kn->kn_fflags = 0;
1175 kn->kn_status &= ~KN_ACTIVE;
1176 } else {
1177 /* add event back on list */
1178 kq_check(kq);
1179 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1180 kq->kq_count++;
1181 kn->kn_status |= KN_QUEUED;
1182 kq_check(kq);
1183 }
1184 if (nkev == kevcnt) {
1185 /* do copyouts in kevcnt chunks */
1186 mutex_spin_exit(&kq->kq_lock);
1187 error = (*keops->keo_put_events)
1188 (keops->keo_private,
1189 kevbuf, ulistp, nevents, nkev);
1190 mutex_spin_enter(&kq->kq_lock);
1191 nevents += nkev;
1192 nkev = 0;
1193 kevp = kevbuf;
1194 }
1195 count--;
1196 if (error != 0 || count == 0) {
1197 /* remove marker */
1198 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1199 break;
1200 }
1201 }
1202 }
1203 done:
1204 mutex_spin_exit(&kq->kq_lock);
1205 if (marker != NULL)
1206 kmem_free(marker, sizeof(*marker));
1207 if (nkev != 0) {
1208 /* copyout remaining events */
1209 error = (*keops->keo_put_events)(keops->keo_private,
1210 kevbuf, ulistp, nevents, nkev);
1211 }
1212 *retval = maxevents - count;
1213
1214 return error;
1215 }
1216
1217 /*
1218 * fileops ioctl method for a kqueue descriptor.
1219 *
1220 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1221 * KFILTER_BYNAME find name for filter, and return result in
1222 * name, which is of size len.
1223 * KFILTER_BYFILTER find filter for name. len is ignored.
1224 */
1225 /*ARGSUSED*/
1226 static int
1227 kqueue_ioctl(file_t *fp, u_long com, void *data)
1228 {
1229 struct kfilter_mapping *km;
1230 const struct kfilter *kfilter;
1231 char *name;
1232 int error;
1233
1234 km = data;
1235 error = 0;
1236 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1237
1238 switch (com) {
1239 case KFILTER_BYFILTER: /* convert filter -> name */
1240 rw_enter(&kqueue_filter_lock, RW_READER);
1241 kfilter = kfilter_byfilter(km->filter);
1242 if (kfilter != NULL) {
1243 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1244 rw_exit(&kqueue_filter_lock);
1245 error = copyoutstr(name, km->name, km->len, NULL);
1246 } else {
1247 rw_exit(&kqueue_filter_lock);
1248 error = ENOENT;
1249 }
1250 break;
1251
1252 case KFILTER_BYNAME: /* convert name -> filter */
1253 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1254 if (error) {
1255 break;
1256 }
1257 rw_enter(&kqueue_filter_lock, RW_READER);
1258 kfilter = kfilter_byname(name);
1259 if (kfilter != NULL)
1260 km->filter = kfilter->filter;
1261 else
1262 error = ENOENT;
1263 rw_exit(&kqueue_filter_lock);
1264 break;
1265
1266 default:
1267 error = ENOTTY;
1268 break;
1269
1270 }
1271 kmem_free(name, KFILTER_MAXNAME);
1272 return (error);
1273 }
1274
1275 /*
1276 * fileops fcntl method for a kqueue descriptor.
1277 */
1278 static int
1279 kqueue_fcntl(file_t *fp, u_int com, void *data)
1280 {
1281
1282 return (ENOTTY);
1283 }
1284
1285 /*
1286 * fileops poll method for a kqueue descriptor.
1287 * Determine if kqueue has events pending.
1288 */
1289 static int
1290 kqueue_poll(file_t *fp, int events)
1291 {
1292 struct kqueue *kq;
1293 int revents;
1294
1295 kq = fp->f_data;
1296
1297 revents = 0;
1298 if (events & (POLLIN | POLLRDNORM)) {
1299 mutex_spin_enter(&kq->kq_lock);
1300 if (kq->kq_count != 0) {
1301 revents |= events & (POLLIN | POLLRDNORM);
1302 } else {
1303 selrecord(curlwp, &kq->kq_sel);
1304 }
1305 kq_check(kq);
1306 mutex_spin_exit(&kq->kq_lock);
1307 }
1308
1309 return revents;
1310 }
1311
1312 /*
1313 * fileops stat method for a kqueue descriptor.
1314 * Returns dummy info, with st_size being number of events pending.
1315 */
1316 static int
1317 kqueue_stat(file_t *fp, struct stat *st)
1318 {
1319 struct kqueue *kq;
1320
1321 kq = fp->f_data;
1322
1323 memset(st, 0, sizeof(*st));
1324 st->st_size = kq->kq_count;
1325 st->st_blksize = sizeof(struct kevent);
1326 st->st_mode = S_IFIFO;
1327
1328 return 0;
1329 }
1330
1331 static void
1332 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1333 {
1334 struct knote *kn;
1335 filedesc_t *fdp;
1336
1337 fdp = kq->kq_fdp;
1338
1339 KASSERT(mutex_owned(&fdp->fd_lock));
1340
1341 for (kn = SLIST_FIRST(list); kn != NULL;) {
1342 if (kq != kn->kn_kq) {
1343 kn = SLIST_NEXT(kn, kn_link);
1344 continue;
1345 }
1346 knote_detach(kn, fdp, true);
1347 mutex_enter(&fdp->fd_lock);
1348 kn = SLIST_FIRST(list);
1349 }
1350 }
1351
1352
1353 /*
1354 * fileops close method for a kqueue descriptor.
1355 */
1356 static int
1357 kqueue_close(file_t *fp)
1358 {
1359 struct kqueue *kq;
1360 filedesc_t *fdp;
1361 fdfile_t *ff;
1362 int i;
1363
1364 kq = fp->f_data;
1365 fdp = curlwp->l_fd;
1366
1367 mutex_enter(&fdp->fd_lock);
1368 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1369 if ((ff = fdp->fd_ofiles[i]) == NULL)
1370 continue;
1371 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1372 }
1373 if (fdp->fd_knhashmask != 0) {
1374 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1375 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1376 }
1377 }
1378 mutex_exit(&fdp->fd_lock);
1379
1380 KASSERT(kq->kq_count == 0);
1381 mutex_destroy(&kq->kq_lock);
1382 cv_destroy(&kq->kq_cv);
1383 seldestroy(&kq->kq_sel);
1384 kmem_free(kq, sizeof(*kq));
1385 fp->f_data = NULL;
1386
1387 return (0);
1388 }
1389
1390 /*
1391 * struct fileops kqfilter method for a kqueue descriptor.
1392 * Event triggered when monitored kqueue changes.
1393 */
1394 static int
1395 kqueue_kqfilter(file_t *fp, struct knote *kn)
1396 {
1397 struct kqueue *kq;
1398 filedesc_t *fdp;
1399
1400 kq = ((file_t *)kn->kn_obj)->f_data;
1401
1402 KASSERT(fp == kn->kn_obj);
1403
1404 if (kn->kn_filter != EVFILT_READ)
1405 return 1;
1406
1407 kn->kn_fop = &kqread_filtops;
1408 fdp = curlwp->l_fd;
1409 mutex_enter(&kq->kq_lock);
1410 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1411 mutex_exit(&kq->kq_lock);
1412
1413 return 0;
1414 }
1415
1416
1417 /*
1418 * Walk down a list of knotes, activating them if their event has
1419 * triggered. The caller's object lock (e.g. device driver lock)
1420 * must be held.
1421 */
1422 void
1423 knote(struct klist *list, long hint)
1424 {
1425 struct knote *kn;
1426
1427 SLIST_FOREACH(kn, list, kn_selnext) {
1428 if ((*kn->kn_fop->f_event)(kn, hint))
1429 knote_activate(kn);
1430 }
1431 }
1432
1433 /*
1434 * Remove all knotes referencing a specified fd
1435 */
1436 void
1437 knote_fdclose(int fd)
1438 {
1439 struct klist *list;
1440 struct knote *kn;
1441 filedesc_t *fdp;
1442
1443 fdp = curlwp->l_fd;
1444 list = (struct klist *)&fdp->fd_ofiles[fd]->ff_knlist;
1445 mutex_enter(&fdp->fd_lock);
1446 while ((kn = SLIST_FIRST(list)) != NULL) {
1447 knote_detach(kn, fdp, true);
1448 mutex_enter(&fdp->fd_lock);
1449 }
1450 mutex_exit(&fdp->fd_lock);
1451 }
1452
1453 /*
1454 * Drop knote. Called with fdp->fd_lock held, and will drop before
1455 * returning.
1456 */
1457 static void
1458 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1459 {
1460 struct klist *list;
1461 struct kqueue *kq;
1462
1463 kq = kn->kn_kq;
1464
1465 KASSERT((kn->kn_status & KN_MARKER) == 0);
1466 KASSERT(mutex_owned(&fdp->fd_lock));
1467
1468 /* Remove from monitored object. */
1469 if (dofop) {
1470 KERNEL_LOCK(1, NULL); /* XXXSMP */
1471 (*kn->kn_fop->f_detach)(kn);
1472 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1473 }
1474
1475 /* Remove from descriptor table. */
1476 if (kn->kn_fop->f_isfd)
1477 list = (struct klist *)&fdp->fd_ofiles[kn->kn_id]->ff_knlist;
1478 else
1479 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1480
1481 SLIST_REMOVE(list, kn, knote, kn_link);
1482
1483 /* Remove from kqueue. */
1484 /* XXXAD should verify not in use by kqueue_scan. */
1485 mutex_spin_enter(&kq->kq_lock);
1486 if ((kn->kn_status & KN_QUEUED) != 0) {
1487 kq_check(kq);
1488 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1489 kn->kn_status &= ~KN_QUEUED;
1490 kq->kq_count--;
1491 kq_check(kq);
1492 }
1493 mutex_spin_exit(&kq->kq_lock);
1494
1495 mutex_exit(&fdp->fd_lock);
1496 if (kn->kn_fop->f_isfd)
1497 fd_putfile(kn->kn_id);
1498 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1499 kmem_free(kn, sizeof(*kn));
1500 }
1501
1502 /*
1503 * Queue new event for knote.
1504 */
1505 static void
1506 knote_enqueue(struct knote *kn)
1507 {
1508 struct kqueue *kq;
1509
1510 KASSERT((kn->kn_status & KN_MARKER) == 0);
1511
1512 kq = kn->kn_kq;
1513
1514 mutex_spin_enter(&kq->kq_lock);
1515 if ((kn->kn_status & KN_DISABLED) != 0) {
1516 kn->kn_status &= ~KN_DISABLED;
1517 }
1518 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1519 kq_check(kq);
1520 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1521 kn->kn_status |= KN_QUEUED;
1522 kq->kq_count++;
1523 kq_check(kq);
1524 cv_broadcast(&kq->kq_cv);
1525 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1526 }
1527 mutex_spin_exit(&kq->kq_lock);
1528 }
1529 /*
1530 * Queue new event for knote.
1531 */
1532 static void
1533 knote_activate(struct knote *kn)
1534 {
1535 struct kqueue *kq;
1536
1537 KASSERT((kn->kn_status & KN_MARKER) == 0);
1538
1539 kq = kn->kn_kq;
1540
1541 mutex_spin_enter(&kq->kq_lock);
1542 kn->kn_status |= KN_ACTIVE;
1543 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1544 kq_check(kq);
1545 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1546 kn->kn_status |= KN_QUEUED;
1547 kq->kq_count++;
1548 kq_check(kq);
1549 cv_broadcast(&kq->kq_cv);
1550 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1551 }
1552 mutex_spin_exit(&kq->kq_lock);
1553 }
1554