kern_event.c revision 1.61 1 /* $NetBSD: kern_event.c,v 1.61 2009/01/11 02:45:52 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
55 */
56
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.61 2009/01/11 02:45:52 christos Exp $");
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/proc.h>
64 #include <sys/file.h>
65 #include <sys/select.h>
66 #include <sys/queue.h>
67 #include <sys/event.h>
68 #include <sys/eventvar.h>
69 #include <sys/poll.h>
70 #include <sys/kmem.h>
71 #include <sys/stat.h>
72 #include <sys/filedesc.h>
73 #include <sys/syscallargs.h>
74 #include <sys/kauth.h>
75 #include <sys/conf.h>
76 #include <sys/atomic.h>
77
78 static int kqueue_scan(file_t *, size_t, struct kevent *,
79 const struct timespec *, register_t *,
80 const struct kevent_ops *, struct kevent *,
81 size_t);
82 static int kqueue_ioctl(file_t *, u_long, void *);
83 static int kqueue_fcntl(file_t *, u_int, void *);
84 static int kqueue_poll(file_t *, int);
85 static int kqueue_kqfilter(file_t *, struct knote *);
86 static int kqueue_stat(file_t *, struct stat *);
87 static int kqueue_close(file_t *);
88 static int kqueue_register(struct kqueue *, struct kevent *);
89 static void kqueue_doclose(struct kqueue *, struct klist *, int);
90
91 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
92 static void knote_enqueue(struct knote *);
93 static void knote_activate(struct knote *);
94
95 static void filt_kqdetach(struct knote *);
96 static int filt_kqueue(struct knote *, long hint);
97 static int filt_procattach(struct knote *);
98 static void filt_procdetach(struct knote *);
99 static int filt_proc(struct knote *, long hint);
100 static int filt_fileattach(struct knote *);
101 static void filt_timerexpire(void *x);
102 static int filt_timerattach(struct knote *);
103 static void filt_timerdetach(struct knote *);
104 static int filt_timer(struct knote *, long hint);
105
106 static const struct fileops kqueueops = {
107 (void *)enxio, (void *)enxio, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
108 kqueue_stat, kqueue_close, kqueue_kqfilter
109 };
110
111 static const struct filterops kqread_filtops =
112 { 1, NULL, filt_kqdetach, filt_kqueue };
113 static const struct filterops proc_filtops =
114 { 0, filt_procattach, filt_procdetach, filt_proc };
115 static const struct filterops file_filtops =
116 { 1, filt_fileattach, NULL, NULL };
117 static const struct filterops timer_filtops =
118 { 0, filt_timerattach, filt_timerdetach, filt_timer };
119
120 static u_int kq_ncallouts = 0;
121 static int kq_calloutmax = (4 * 1024);
122
123 #define KN_HASHSIZE 64 /* XXX should be tunable */
124 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
125
126 extern const struct filterops sig_filtops;
127
128 /*
129 * Table for for all system-defined filters.
130 * These should be listed in the numeric order of the EVFILT_* defines.
131 * If filtops is NULL, the filter isn't implemented in NetBSD.
132 * End of list is when name is NULL.
133 *
134 * Note that 'refcnt' is meaningless for built-in filters.
135 */
136 struct kfilter {
137 const char *name; /* name of filter */
138 uint32_t filter; /* id of filter */
139 unsigned refcnt; /* reference count */
140 const struct filterops *filtops;/* operations for filter */
141 size_t namelen; /* length of name string */
142 };
143
144 /* System defined filters */
145 static struct kfilter sys_kfilters[] = {
146 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
147 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
148 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
149 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
150 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
151 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
152 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
153 { NULL, 0, 0, NULL, 0 },
154 };
155
156 /* User defined kfilters */
157 static struct kfilter *user_kfilters; /* array */
158 static int user_kfilterc; /* current offset */
159 static int user_kfiltermaxc; /* max size so far */
160 static size_t user_kfiltersz; /* size of allocated memory */
161
162 /* Locks */
163 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
164 static kmutex_t kqueue_misc_lock; /* miscellaneous */
165
166 /*
167 * Initialize the kqueue subsystem.
168 */
169 void
170 kqueue_init(void)
171 {
172
173 rw_init(&kqueue_filter_lock);
174 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
175 }
176
177 /*
178 * Find kfilter entry by name, or NULL if not found.
179 */
180 static struct kfilter *
181 kfilter_byname_sys(const char *name)
182 {
183 int i;
184
185 KASSERT(rw_lock_held(&kqueue_filter_lock));
186
187 for (i = 0; sys_kfilters[i].name != NULL; i++) {
188 if (strcmp(name, sys_kfilters[i].name) == 0)
189 return &sys_kfilters[i];
190 }
191 return NULL;
192 }
193
194 static struct kfilter *
195 kfilter_byname_user(const char *name)
196 {
197 int i;
198
199 KASSERT(rw_lock_held(&kqueue_filter_lock));
200
201 /* user filter slots have a NULL name if previously deregistered */
202 for (i = 0; i < user_kfilterc ; i++) {
203 if (user_kfilters[i].name != NULL &&
204 strcmp(name, user_kfilters[i].name) == 0)
205 return &user_kfilters[i];
206 }
207 return NULL;
208 }
209
210 static struct kfilter *
211 kfilter_byname(const char *name)
212 {
213 struct kfilter *kfilter;
214
215 KASSERT(rw_lock_held(&kqueue_filter_lock));
216
217 if ((kfilter = kfilter_byname_sys(name)) != NULL)
218 return kfilter;
219
220 return kfilter_byname_user(name);
221 }
222
223 /*
224 * Find kfilter entry by filter id, or NULL if not found.
225 * Assumes entries are indexed in filter id order, for speed.
226 */
227 static struct kfilter *
228 kfilter_byfilter(uint32_t filter)
229 {
230 struct kfilter *kfilter;
231
232 KASSERT(rw_lock_held(&kqueue_filter_lock));
233
234 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
235 kfilter = &sys_kfilters[filter];
236 else if (user_kfilters != NULL &&
237 filter < EVFILT_SYSCOUNT + user_kfilterc)
238 /* it's a user filter */
239 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
240 else
241 return (NULL); /* out of range */
242 KASSERT(kfilter->filter == filter); /* sanity check! */
243 return (kfilter);
244 }
245
246 /*
247 * Register a new kfilter. Stores the entry in user_kfilters.
248 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
249 * If retfilter != NULL, the new filterid is returned in it.
250 */
251 int
252 kfilter_register(const char *name, const struct filterops *filtops,
253 int *retfilter)
254 {
255 struct kfilter *kfilter;
256 size_t len;
257 int i;
258
259 if (name == NULL || name[0] == '\0' || filtops == NULL)
260 return (EINVAL); /* invalid args */
261
262 rw_enter(&kqueue_filter_lock, RW_WRITER);
263 if (kfilter_byname(name) != NULL) {
264 rw_exit(&kqueue_filter_lock);
265 return (EEXIST); /* already exists */
266 }
267 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
268 rw_exit(&kqueue_filter_lock);
269 return (EINVAL); /* too many */
270 }
271
272 for (i = 0; i < user_kfilterc; i++) {
273 kfilter = &user_kfilters[i];
274 if (kfilter->name == NULL) {
275 /* Previously deregistered slot. Reuse. */
276 goto reuse;
277 }
278 }
279
280 /* check if need to grow user_kfilters */
281 if (user_kfilterc + 1 > user_kfiltermaxc) {
282 /* Grow in KFILTER_EXTENT chunks. */
283 user_kfiltermaxc += KFILTER_EXTENT;
284 len = user_kfiltermaxc * sizeof(struct filter *);
285 kfilter = kmem_alloc(len, KM_SLEEP);
286 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
287 if (user_kfilters != NULL) {
288 memcpy(kfilter, user_kfilters, user_kfiltersz);
289 kmem_free(user_kfilters, user_kfiltersz);
290 }
291 user_kfiltersz = len;
292 user_kfilters = kfilter;
293 }
294 /* Adding new slot */
295 kfilter = &user_kfilters[user_kfilterc++];
296 reuse:
297 kfilter->namelen = strlen(name) + 1;
298 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
299 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
300
301 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
302
303 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
304 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
305
306 if (retfilter != NULL)
307 *retfilter = kfilter->filter;
308 rw_exit(&kqueue_filter_lock);
309
310 return (0);
311 }
312
313 /*
314 * Unregister a kfilter previously registered with kfilter_register.
315 * This retains the filter id, but clears the name and frees filtops (filter
316 * operations), so that the number isn't reused during a boot.
317 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
318 */
319 int
320 kfilter_unregister(const char *name)
321 {
322 struct kfilter *kfilter;
323
324 if (name == NULL || name[0] == '\0')
325 return (EINVAL); /* invalid name */
326
327 rw_enter(&kqueue_filter_lock, RW_WRITER);
328 if (kfilter_byname_sys(name) != NULL) {
329 rw_exit(&kqueue_filter_lock);
330 return (EINVAL); /* can't detach system filters */
331 }
332
333 kfilter = kfilter_byname_user(name);
334 if (kfilter == NULL) {
335 rw_exit(&kqueue_filter_lock);
336 return (ENOENT);
337 }
338 if (kfilter->refcnt != 0) {
339 rw_exit(&kqueue_filter_lock);
340 return (EBUSY);
341 }
342
343 /* Cast away const (but we know it's safe. */
344 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
345 kfilter->name = NULL; /* mark as `not implemented' */
346
347 if (kfilter->filtops != NULL) {
348 /* Cast away const (but we know it's safe. */
349 kmem_free(__UNCONST(kfilter->filtops),
350 sizeof(*kfilter->filtops));
351 kfilter->filtops = NULL; /* mark as `not implemented' */
352 }
353 rw_exit(&kqueue_filter_lock);
354
355 return (0);
356 }
357
358
359 /*
360 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
361 * descriptors. Calls fileops kqfilter method for given file descriptor.
362 */
363 static int
364 filt_fileattach(struct knote *kn)
365 {
366 file_t *fp;
367
368 fp = kn->kn_obj;
369
370 return (*fp->f_ops->fo_kqfilter)(fp, kn);
371 }
372
373 /*
374 * Filter detach method for EVFILT_READ on kqueue descriptor.
375 */
376 static void
377 filt_kqdetach(struct knote *kn)
378 {
379 struct kqueue *kq;
380
381 kq = ((file_t *)kn->kn_obj)->f_data;
382
383 mutex_spin_enter(&kq->kq_lock);
384 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
385 mutex_spin_exit(&kq->kq_lock);
386 }
387
388 /*
389 * Filter event method for EVFILT_READ on kqueue descriptor.
390 */
391 /*ARGSUSED*/
392 static int
393 filt_kqueue(struct knote *kn, long hint)
394 {
395 struct kqueue *kq;
396 int rv;
397
398 kq = ((file_t *)kn->kn_obj)->f_data;
399
400 if (hint != NOTE_SUBMIT)
401 mutex_spin_enter(&kq->kq_lock);
402 kn->kn_data = kq->kq_count;
403 rv = (kn->kn_data > 0);
404 if (hint != NOTE_SUBMIT)
405 mutex_spin_exit(&kq->kq_lock);
406
407 return rv;
408 }
409
410 /*
411 * Filter attach method for EVFILT_PROC.
412 */
413 static int
414 filt_procattach(struct knote *kn)
415 {
416 struct proc *p, *curp;
417 struct lwp *curl;
418
419 curl = curlwp;
420 curp = curl->l_proc;
421
422 mutex_enter(proc_lock);
423 p = p_find(kn->kn_id, PFIND_LOCKED);
424 if (p == NULL) {
425 mutex_exit(proc_lock);
426 return ESRCH;
427 }
428
429 /*
430 * Fail if it's not owned by you, or the last exec gave us
431 * setuid/setgid privs (unless you're root).
432 */
433 mutex_enter(p->p_lock);
434 mutex_exit(proc_lock);
435 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
436 p, NULL, NULL, NULL) != 0) {
437 mutex_exit(p->p_lock);
438 return EACCES;
439 }
440
441 kn->kn_obj = p;
442 kn->kn_flags |= EV_CLEAR; /* automatically set */
443
444 /*
445 * internal flag indicating registration done by kernel
446 */
447 if (kn->kn_flags & EV_FLAG1) {
448 kn->kn_data = kn->kn_sdata; /* ppid */
449 kn->kn_fflags = NOTE_CHILD;
450 kn->kn_flags &= ~EV_FLAG1;
451 }
452 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
453 mutex_exit(p->p_lock);
454
455 return 0;
456 }
457
458 /*
459 * Filter detach method for EVFILT_PROC.
460 *
461 * The knote may be attached to a different process, which may exit,
462 * leaving nothing for the knote to be attached to. So when the process
463 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
464 * it will be deleted when read out. However, as part of the knote deletion,
465 * this routine is called, so a check is needed to avoid actually performing
466 * a detach, because the original process might not exist any more.
467 */
468 static void
469 filt_procdetach(struct knote *kn)
470 {
471 struct proc *p;
472
473 if (kn->kn_status & KN_DETACHED)
474 return;
475
476 p = kn->kn_obj;
477
478 mutex_enter(p->p_lock);
479 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
480 mutex_exit(p->p_lock);
481 }
482
483 /*
484 * Filter event method for EVFILT_PROC.
485 */
486 static int
487 filt_proc(struct knote *kn, long hint)
488 {
489 u_int event, fflag;
490 struct kevent kev;
491 struct kqueue *kq;
492 int error;
493
494 event = (u_int)hint & NOTE_PCTRLMASK;
495 kq = kn->kn_kq;
496 fflag = 0;
497
498 /* If the user is interested in this event, record it. */
499 if (kn->kn_sfflags & event)
500 fflag |= event;
501
502 if (event == NOTE_EXIT) {
503 /*
504 * Process is gone, so flag the event as finished.
505 *
506 * Detach the knote from watched process and mark
507 * it as such. We can't leave this to kqueue_scan(),
508 * since the process might not exist by then. And we
509 * have to do this now, since psignal KNOTE() is called
510 * also for zombies and we might end up reading freed
511 * memory if the kevent would already be picked up
512 * and knote g/c'ed.
513 */
514 filt_procdetach(kn);
515
516 mutex_spin_enter(&kq->kq_lock);
517 kn->kn_status |= KN_DETACHED;
518 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
519 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
520 kn->kn_fflags |= fflag;
521 mutex_spin_exit(&kq->kq_lock);
522
523 return 1;
524 }
525
526 mutex_spin_enter(&kq->kq_lock);
527 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
528 /*
529 * Process forked, and user wants to track the new process,
530 * so attach a new knote to it, and immediately report an
531 * event with the parent's pid. Register knote with new
532 * process.
533 */
534 kev.ident = hint & NOTE_PDATAMASK; /* pid */
535 kev.filter = kn->kn_filter;
536 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
537 kev.fflags = kn->kn_sfflags;
538 kev.data = kn->kn_id; /* parent */
539 kev.udata = kn->kn_kevent.udata; /* preserve udata */
540 mutex_spin_exit(&kq->kq_lock);
541 error = kqueue_register(kq, &kev);
542 mutex_spin_enter(&kq->kq_lock);
543 if (error != 0)
544 kn->kn_fflags |= NOTE_TRACKERR;
545 }
546 kn->kn_fflags |= fflag;
547 fflag = kn->kn_fflags;
548 mutex_spin_exit(&kq->kq_lock);
549
550 return fflag != 0;
551 }
552
553 static void
554 filt_timerexpire(void *knx)
555 {
556 struct knote *kn = knx;
557 int tticks;
558
559 mutex_enter(&kqueue_misc_lock);
560 kn->kn_data++;
561 knote_activate(kn);
562 if ((kn->kn_flags & EV_ONESHOT) == 0) {
563 tticks = mstohz(kn->kn_sdata);
564 callout_schedule((callout_t *)kn->kn_hook, tticks);
565 }
566 mutex_exit(&kqueue_misc_lock);
567 }
568
569 /*
570 * data contains amount of time to sleep, in milliseconds
571 */
572 static int
573 filt_timerattach(struct knote *kn)
574 {
575 callout_t *calloutp;
576 struct kqueue *kq;
577 int tticks;
578
579 tticks = mstohz(kn->kn_sdata);
580
581 /* if the supplied value is under our resolution, use 1 tick */
582 if (tticks == 0) {
583 if (kn->kn_sdata == 0)
584 return EINVAL;
585 tticks = 1;
586 }
587
588 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
589 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
590 atomic_dec_uint(&kq_ncallouts);
591 return ENOMEM;
592 }
593 callout_init(calloutp, CALLOUT_MPSAFE);
594
595 kq = kn->kn_kq;
596 mutex_spin_enter(&kq->kq_lock);
597 kn->kn_flags |= EV_CLEAR; /* automatically set */
598 kn->kn_hook = calloutp;
599 mutex_spin_exit(&kq->kq_lock);
600
601 callout_reset(calloutp, tticks, filt_timerexpire, kn);
602
603 return (0);
604 }
605
606 static void
607 filt_timerdetach(struct knote *kn)
608 {
609 callout_t *calloutp;
610
611 calloutp = (callout_t *)kn->kn_hook;
612 callout_halt(calloutp, NULL);
613 callout_destroy(calloutp);
614 kmem_free(calloutp, sizeof(*calloutp));
615 atomic_dec_uint(&kq_ncallouts);
616 }
617
618 static int
619 filt_timer(struct knote *kn, long hint)
620 {
621 int rv;
622
623 mutex_enter(&kqueue_misc_lock);
624 rv = (kn->kn_data != 0);
625 mutex_exit(&kqueue_misc_lock);
626
627 return rv;
628 }
629
630 /*
631 * filt_seltrue:
632 *
633 * This filter "event" routine simulates seltrue().
634 */
635 int
636 filt_seltrue(struct knote *kn, long hint)
637 {
638
639 /*
640 * We don't know how much data can be read/written,
641 * but we know that it *can* be. This is about as
642 * good as select/poll does as well.
643 */
644 kn->kn_data = 0;
645 return (1);
646 }
647
648 /*
649 * This provides full kqfilter entry for device switch tables, which
650 * has same effect as filter using filt_seltrue() as filter method.
651 */
652 static void
653 filt_seltruedetach(struct knote *kn)
654 {
655 /* Nothing to do */
656 }
657
658 const struct filterops seltrue_filtops =
659 { 1, NULL, filt_seltruedetach, filt_seltrue };
660
661 int
662 seltrue_kqfilter(dev_t dev, struct knote *kn)
663 {
664 switch (kn->kn_filter) {
665 case EVFILT_READ:
666 case EVFILT_WRITE:
667 kn->kn_fop = &seltrue_filtops;
668 break;
669 default:
670 return (EINVAL);
671 }
672
673 /* Nothing more to do */
674 return (0);
675 }
676
677 /*
678 * kqueue(2) system call.
679 */
680 int
681 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
682 {
683 struct kqueue *kq;
684 file_t *fp;
685 int fd, error;
686
687 if ((error = fd_allocfile(&fp, &fd)) != 0)
688 return error;
689 fp->f_flag = FREAD | FWRITE;
690 fp->f_type = DTYPE_KQUEUE;
691 fp->f_ops = &kqueueops;
692 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
693 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
694 cv_init(&kq->kq_cv, "kqueue");
695 selinit(&kq->kq_sel);
696 TAILQ_INIT(&kq->kq_head);
697 fp->f_data = kq;
698 *retval = fd;
699 kq->kq_fdp = curlwp->l_fd;
700 fd_affix(curproc, fp, fd);
701 return error;
702 }
703
704 /*
705 * kevent(2) system call.
706 */
707 int
708 kevent_fetch_changes(void *private, const struct kevent *changelist,
709 struct kevent *changes, size_t index, int n)
710 {
711
712 return copyin(changelist + index, changes, n * sizeof(*changes));
713 }
714
715 int
716 kevent_put_events(void *private, struct kevent *events,
717 struct kevent *eventlist, size_t index, int n)
718 {
719
720 return copyout(events, eventlist + index, n * sizeof(*events));
721 }
722
723 static const struct kevent_ops kevent_native_ops = {
724 .keo_private = NULL,
725 .keo_fetch_timeout = copyin,
726 .keo_fetch_changes = kevent_fetch_changes,
727 .keo_put_events = kevent_put_events,
728 };
729
730 int
731 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
732 register_t *retval)
733 {
734 /* {
735 syscallarg(int) fd;
736 syscallarg(const struct kevent *) changelist;
737 syscallarg(size_t) nchanges;
738 syscallarg(struct kevent *) eventlist;
739 syscallarg(size_t) nevents;
740 syscallarg(const struct timespec *) timeout;
741 } */
742
743 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
744 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
745 SCARG(uap, timeout), &kevent_native_ops);
746 }
747
748 int
749 kevent1(register_t *retval, int fd,
750 const struct kevent *changelist, size_t nchanges,
751 struct kevent *eventlist, size_t nevents,
752 const struct timespec *timeout,
753 const struct kevent_ops *keops)
754 {
755 struct kevent *kevp;
756 struct kqueue *kq;
757 struct timespec ts;
758 size_t i, n, ichange;
759 int nerrors, error;
760 struct kevent kevbuf[8]; /* approx 300 bytes on 64-bit */
761 file_t *fp;
762
763 /* check that we're dealing with a kq */
764 fp = fd_getfile(fd);
765 if (fp == NULL)
766 return (EBADF);
767
768 if (fp->f_type != DTYPE_KQUEUE) {
769 fd_putfile(fd);
770 return (EBADF);
771 }
772
773 if (timeout != NULL) {
774 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
775 if (error)
776 goto done;
777 timeout = &ts;
778 }
779
780 kq = (struct kqueue *)fp->f_data;
781 nerrors = 0;
782 ichange = 0;
783
784 /* traverse list of events to register */
785 while (nchanges > 0) {
786 n = MIN(nchanges, __arraycount(kevbuf));
787 error = (*keops->keo_fetch_changes)(keops->keo_private,
788 changelist, kevbuf, ichange, n);
789 if (error)
790 goto done;
791 for (i = 0; i < n; i++) {
792 kevp = &kevbuf[i];
793 kevp->flags &= ~EV_SYSFLAGS;
794 /* register each knote */
795 error = kqueue_register(kq, kevp);
796 if (error) {
797 if (nevents != 0) {
798 kevp->flags = EV_ERROR;
799 kevp->data = error;
800 error = (*keops->keo_put_events)
801 (keops->keo_private, kevp,
802 eventlist, nerrors, 1);
803 if (error)
804 goto done;
805 nevents--;
806 nerrors++;
807 } else {
808 goto done;
809 }
810 }
811 }
812 nchanges -= n; /* update the results */
813 ichange += n;
814 }
815 if (nerrors) {
816 *retval = nerrors;
817 error = 0;
818 goto done;
819 }
820
821 /* actually scan through the events */
822 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
823 kevbuf, __arraycount(kevbuf));
824 done:
825 fd_putfile(fd);
826 return (error);
827 }
828
829 /*
830 * Register a given kevent kev onto the kqueue
831 */
832 static int
833 kqueue_register(struct kqueue *kq, struct kevent *kev)
834 {
835 struct kfilter *kfilter;
836 filedesc_t *fdp;
837 file_t *fp;
838 fdfile_t *ff;
839 struct knote *kn, *newkn;
840 struct klist *list;
841 int error, fd, rv;
842
843 fdp = kq->kq_fdp;
844 fp = NULL;
845 kn = NULL;
846 error = 0;
847 fd = 0;
848
849 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
850
851 rw_enter(&kqueue_filter_lock, RW_READER);
852 kfilter = kfilter_byfilter(kev->filter);
853 if (kfilter == NULL || kfilter->filtops == NULL) {
854 /* filter not found nor implemented */
855 rw_exit(&kqueue_filter_lock);
856 kmem_free(newkn, sizeof(*newkn));
857 return (EINVAL);
858 }
859
860 mutex_enter(&fdp->fd_lock);
861
862 /* search if knote already exists */
863 if (kfilter->filtops->f_isfd) {
864 /* monitoring a file descriptor */
865 fd = kev->ident;
866 if ((fp = fd_getfile(fd)) == NULL) {
867 mutex_exit(&fdp->fd_lock);
868 rw_exit(&kqueue_filter_lock);
869 kmem_free(newkn, sizeof(*newkn));
870 return EBADF;
871 }
872 ff = fdp->fd_ofiles[fd];
873 if (fd <= fdp->fd_lastkqfile) {
874 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
875 if (kq == kn->kn_kq &&
876 kev->filter == kn->kn_filter)
877 break;
878 }
879 }
880 } else {
881 /*
882 * not monitoring a file descriptor, so
883 * lookup knotes in internal hash table
884 */
885 if (fdp->fd_knhashmask != 0) {
886 list = &fdp->fd_knhash[
887 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
888 SLIST_FOREACH(kn, list, kn_link) {
889 if (kev->ident == kn->kn_id &&
890 kq == kn->kn_kq &&
891 kev->filter == kn->kn_filter)
892 break;
893 }
894 }
895 }
896
897 /*
898 * kn now contains the matching knote, or NULL if no match
899 */
900 if (kev->flags & EV_ADD) {
901 if (kn == NULL) {
902 /* create new knote */
903 kn = newkn;
904 newkn = NULL;
905 kn->kn_obj = fp;
906 kn->kn_kq = kq;
907 kn->kn_fop = kfilter->filtops;
908 kn->kn_kfilter = kfilter;
909 kn->kn_sfflags = kev->fflags;
910 kn->kn_sdata = kev->data;
911 kev->fflags = 0;
912 kev->data = 0;
913 kn->kn_kevent = *kev;
914
915 /*
916 * apply reference count to knote structure, and
917 * do not release it at the end of this routine.
918 */
919 fp = NULL;
920
921 if (!kn->kn_fop->f_isfd) {
922 /*
923 * If knote is not on an fd, store on
924 * internal hash table.
925 */
926 if (fdp->fd_knhashmask == 0) {
927 /* XXXAD can block with fd_lock held */
928 fdp->fd_knhash = hashinit(KN_HASHSIZE,
929 HASH_LIST, true,
930 &fdp->fd_knhashmask);
931 }
932 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
933 fdp->fd_knhashmask)];
934 } else {
935 /* Otherwise, knote is on an fd. */
936 list = (struct klist *)
937 &fdp->fd_ofiles[kn->kn_id]->ff_knlist;
938 if ((int)kn->kn_id > fdp->fd_lastkqfile)
939 fdp->fd_lastkqfile = kn->kn_id;
940 }
941 SLIST_INSERT_HEAD(list, kn, kn_link);
942
943 KERNEL_LOCK(1, NULL); /* XXXSMP */
944 error = (*kfilter->filtops->f_attach)(kn);
945 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
946 if (error != 0) {
947 /* knote_detach() drops fdp->fd_lock */
948 knote_detach(kn, fdp, false);
949 goto done;
950 }
951 atomic_inc_uint(&kfilter->refcnt);
952 } else {
953 /*
954 * The user may change some filter values after the
955 * initial EV_ADD, but doing so will not reset any
956 * filter which have already been triggered.
957 */
958 kn->kn_sfflags = kev->fflags;
959 kn->kn_sdata = kev->data;
960 kn->kn_kevent.udata = kev->udata;
961 }
962 KERNEL_LOCK(1, NULL); /* XXXSMP */
963 rv = (*kn->kn_fop->f_event)(kn, 0);
964 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
965 if (rv)
966 knote_activate(kn);
967 } else {
968 if (kn == NULL) {
969 error = ENOENT;
970 mutex_exit(&fdp->fd_lock);
971 goto done;
972 }
973 if (kev->flags & EV_DELETE) {
974 /* knote_detach() drops fdp->fd_lock */
975 knote_detach(kn, fdp, true);
976 goto done;
977 }
978 }
979
980 /* disable knote */
981 if ((kev->flags & EV_DISABLE)) {
982 mutex_spin_enter(&kq->kq_lock);
983 if ((kn->kn_status & KN_DISABLED) == 0)
984 kn->kn_status |= KN_DISABLED;
985 mutex_spin_exit(&kq->kq_lock);
986 }
987
988 /* enable knote */
989 if ((kev->flags & EV_ENABLE)) {
990 knote_enqueue(kn);
991 }
992 mutex_exit(&fdp->fd_lock);
993 done:
994 rw_exit(&kqueue_filter_lock);
995 if (newkn != NULL)
996 kmem_free(newkn, sizeof(*newkn));
997 if (fp != NULL)
998 fd_putfile(fd);
999 return (error);
1000 }
1001
1002 #if defined(DEBUG)
1003 static void
1004 kq_check(struct kqueue *kq)
1005 {
1006 const struct knote *kn;
1007 int count;
1008 int nmarker;
1009
1010 KASSERT(mutex_owned(&kq->kq_lock));
1011 KASSERT(kq->kq_count >= 0);
1012
1013 count = 0;
1014 nmarker = 0;
1015 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1016 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1017 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1018 }
1019 if ((kn->kn_status & KN_MARKER) == 0) {
1020 if (kn->kn_kq != kq) {
1021 panic("%s: kq=%p kn=%p inconsist 2",
1022 __func__, kq, kn);
1023 }
1024 if ((kn->kn_status & KN_ACTIVE) == 0) {
1025 panic("%s: kq=%p kn=%p: not active",
1026 __func__, kq, kn);
1027 }
1028 count++;
1029 if (count > kq->kq_count) {
1030 goto bad;
1031 }
1032 } else {
1033 nmarker++;
1034 #if 0
1035 if (nmarker > 10000) {
1036 panic("%s: kq=%p too many markers: %d != %d, "
1037 "nmarker=%d",
1038 __func__, kq, kq->kq_count, count, nmarker);
1039 }
1040 #endif
1041 }
1042 }
1043 if (kq->kq_count != count) {
1044 bad:
1045 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1046 __func__, kq, kq->kq_count, count, nmarker);
1047 }
1048 }
1049 #else /* defined(DEBUG) */
1050 #define kq_check(a) /* nothing */
1051 #endif /* defined(DEBUG) */
1052
1053 /*
1054 * Scan through the list of events on fp (for a maximum of maxevents),
1055 * returning the results in to ulistp. Timeout is determined by tsp; if
1056 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1057 * as appropriate.
1058 */
1059 static int
1060 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1061 const struct timespec *tsp, register_t *retval,
1062 const struct kevent_ops *keops, struct kevent *kevbuf,
1063 size_t kevcnt)
1064 {
1065 struct kqueue *kq;
1066 struct kevent *kevp;
1067 struct timeval atv, sleeptv;
1068 struct knote *kn, *marker;
1069 size_t count, nkev, nevents;
1070 int timeout, error, rv;
1071 filedesc_t *fdp;
1072
1073 fdp = curlwp->l_fd;
1074 kq = fp->f_data;
1075 count = maxevents;
1076 nkev = nevents = error = 0;
1077 if (count == 0) {
1078 *retval = 0;
1079 return 0;
1080 }
1081
1082 if (tsp) { /* timeout supplied */
1083 TIMESPEC_TO_TIMEVAL(&atv, tsp);
1084 if (inittimeleft(&atv, &sleeptv) == -1) {
1085 *retval = maxevents;
1086 return EINVAL;
1087 }
1088 timeout = tvtohz(&atv);
1089 if (timeout <= 0)
1090 timeout = -1; /* do poll */
1091 } else {
1092 /* no timeout, wait forever */
1093 timeout = 0;
1094 }
1095
1096 marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1097 marker->kn_status = KN_MARKER;
1098 mutex_spin_enter(&kq->kq_lock);
1099 retry:
1100 kevp = kevbuf;
1101 if (kq->kq_count == 0) {
1102 if (timeout >= 0) {
1103 error = cv_timedwait_sig(&kq->kq_cv,
1104 &kq->kq_lock, timeout);
1105 if (error == 0) {
1106 if (tsp == NULL || (timeout =
1107 gettimeleft(&atv, &sleeptv)) > 0)
1108 goto retry;
1109 } else {
1110 /* don't restart after signals... */
1111 if (error == ERESTART)
1112 error = EINTR;
1113 if (error == EWOULDBLOCK)
1114 error = 0;
1115 }
1116 }
1117 } else {
1118 /* mark end of knote list */
1119 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1120
1121 while (count != 0) {
1122 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1123 while ((kn->kn_status & KN_MARKER) != 0) {
1124 if (kn == marker) {
1125 /* it's our marker, stop */
1126 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1127 if (count < maxevents || (tsp != NULL &&
1128 (timeout = gettimeleft(&atv,
1129 &sleeptv)) <= 0))
1130 goto done;
1131 goto retry;
1132 }
1133 /* someone else's marker. */
1134 kn = TAILQ_NEXT(kn, kn_tqe);
1135 }
1136 kq_check(kq);
1137 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1138 kq->kq_count--;
1139 kn->kn_status &= ~KN_QUEUED;
1140 kq_check(kq);
1141 if (kn->kn_status & KN_DISABLED) {
1142 /* don't want disabled events */
1143 continue;
1144 }
1145 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1146 mutex_spin_exit(&kq->kq_lock);
1147 KERNEL_LOCK(1, NULL); /* XXXSMP */
1148 rv = (*kn->kn_fop->f_event)(kn, 0);
1149 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1150 mutex_spin_enter(&kq->kq_lock);
1151 /* Re-poll if note was re-enqueued. */
1152 if ((kn->kn_status & KN_QUEUED) != 0)
1153 continue;
1154 if (rv == 0) {
1155 /*
1156 * non-ONESHOT event that hasn't
1157 * triggered again, so de-queue.
1158 */
1159 kn->kn_status &= ~KN_ACTIVE;
1160 continue;
1161 }
1162 }
1163 /* XXXAD should be got from f_event if !oneshot. */
1164 *kevp++ = kn->kn_kevent;
1165 nkev++;
1166 if (kn->kn_flags & EV_ONESHOT) {
1167 /* delete ONESHOT events after retrieval */
1168 mutex_spin_exit(&kq->kq_lock);
1169 mutex_enter(&fdp->fd_lock);
1170 knote_detach(kn, fdp, true);
1171 mutex_spin_enter(&kq->kq_lock);
1172 } else if (kn->kn_flags & EV_CLEAR) {
1173 /* clear state after retrieval */
1174 kn->kn_data = 0;
1175 kn->kn_fflags = 0;
1176 kn->kn_status &= ~KN_ACTIVE;
1177 } else {
1178 /* add event back on list */
1179 kq_check(kq);
1180 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1181 kq->kq_count++;
1182 kn->kn_status |= KN_QUEUED;
1183 kq_check(kq);
1184 }
1185 if (nkev == kevcnt) {
1186 /* do copyouts in kevcnt chunks */
1187 mutex_spin_exit(&kq->kq_lock);
1188 error = (*keops->keo_put_events)
1189 (keops->keo_private,
1190 kevbuf, ulistp, nevents, nkev);
1191 mutex_spin_enter(&kq->kq_lock);
1192 nevents += nkev;
1193 nkev = 0;
1194 kevp = kevbuf;
1195 }
1196 count--;
1197 if (error != 0 || count == 0) {
1198 /* remove marker */
1199 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1200 break;
1201 }
1202 }
1203 }
1204 done:
1205 mutex_spin_exit(&kq->kq_lock);
1206 if (marker != NULL)
1207 kmem_free(marker, sizeof(*marker));
1208 if (nkev != 0) {
1209 /* copyout remaining events */
1210 error = (*keops->keo_put_events)(keops->keo_private,
1211 kevbuf, ulistp, nevents, nkev);
1212 }
1213 *retval = maxevents - count;
1214
1215 return error;
1216 }
1217
1218 /*
1219 * fileops ioctl method for a kqueue descriptor.
1220 *
1221 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1222 * KFILTER_BYNAME find name for filter, and return result in
1223 * name, which is of size len.
1224 * KFILTER_BYFILTER find filter for name. len is ignored.
1225 */
1226 /*ARGSUSED*/
1227 static int
1228 kqueue_ioctl(file_t *fp, u_long com, void *data)
1229 {
1230 struct kfilter_mapping *km;
1231 const struct kfilter *kfilter;
1232 char *name;
1233 int error;
1234
1235 km = data;
1236 error = 0;
1237 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1238
1239 switch (com) {
1240 case KFILTER_BYFILTER: /* convert filter -> name */
1241 rw_enter(&kqueue_filter_lock, RW_READER);
1242 kfilter = kfilter_byfilter(km->filter);
1243 if (kfilter != NULL) {
1244 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1245 rw_exit(&kqueue_filter_lock);
1246 error = copyoutstr(name, km->name, km->len, NULL);
1247 } else {
1248 rw_exit(&kqueue_filter_lock);
1249 error = ENOENT;
1250 }
1251 break;
1252
1253 case KFILTER_BYNAME: /* convert name -> filter */
1254 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1255 if (error) {
1256 break;
1257 }
1258 rw_enter(&kqueue_filter_lock, RW_READER);
1259 kfilter = kfilter_byname(name);
1260 if (kfilter != NULL)
1261 km->filter = kfilter->filter;
1262 else
1263 error = ENOENT;
1264 rw_exit(&kqueue_filter_lock);
1265 break;
1266
1267 default:
1268 error = ENOTTY;
1269 break;
1270
1271 }
1272 kmem_free(name, KFILTER_MAXNAME);
1273 return (error);
1274 }
1275
1276 /*
1277 * fileops fcntl method for a kqueue descriptor.
1278 */
1279 static int
1280 kqueue_fcntl(file_t *fp, u_int com, void *data)
1281 {
1282
1283 return (ENOTTY);
1284 }
1285
1286 /*
1287 * fileops poll method for a kqueue descriptor.
1288 * Determine if kqueue has events pending.
1289 */
1290 static int
1291 kqueue_poll(file_t *fp, int events)
1292 {
1293 struct kqueue *kq;
1294 int revents;
1295
1296 kq = fp->f_data;
1297
1298 revents = 0;
1299 if (events & (POLLIN | POLLRDNORM)) {
1300 mutex_spin_enter(&kq->kq_lock);
1301 if (kq->kq_count != 0) {
1302 revents |= events & (POLLIN | POLLRDNORM);
1303 } else {
1304 selrecord(curlwp, &kq->kq_sel);
1305 }
1306 kq_check(kq);
1307 mutex_spin_exit(&kq->kq_lock);
1308 }
1309
1310 return revents;
1311 }
1312
1313 /*
1314 * fileops stat method for a kqueue descriptor.
1315 * Returns dummy info, with st_size being number of events pending.
1316 */
1317 static int
1318 kqueue_stat(file_t *fp, struct stat *st)
1319 {
1320 struct kqueue *kq;
1321
1322 kq = fp->f_data;
1323
1324 memset(st, 0, sizeof(*st));
1325 st->st_size = kq->kq_count;
1326 st->st_blksize = sizeof(struct kevent);
1327 st->st_mode = S_IFIFO;
1328
1329 return 0;
1330 }
1331
1332 static void
1333 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1334 {
1335 struct knote *kn;
1336 filedesc_t *fdp;
1337
1338 fdp = kq->kq_fdp;
1339
1340 KASSERT(mutex_owned(&fdp->fd_lock));
1341
1342 for (kn = SLIST_FIRST(list); kn != NULL;) {
1343 if (kq != kn->kn_kq) {
1344 kn = SLIST_NEXT(kn, kn_link);
1345 continue;
1346 }
1347 knote_detach(kn, fdp, true);
1348 mutex_enter(&fdp->fd_lock);
1349 kn = SLIST_FIRST(list);
1350 }
1351 }
1352
1353
1354 /*
1355 * fileops close method for a kqueue descriptor.
1356 */
1357 static int
1358 kqueue_close(file_t *fp)
1359 {
1360 struct kqueue *kq;
1361 filedesc_t *fdp;
1362 fdfile_t *ff;
1363 int i;
1364
1365 kq = fp->f_data;
1366 fdp = curlwp->l_fd;
1367
1368 mutex_enter(&fdp->fd_lock);
1369 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1370 if ((ff = fdp->fd_ofiles[i]) == NULL)
1371 continue;
1372 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1373 }
1374 if (fdp->fd_knhashmask != 0) {
1375 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1376 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1377 }
1378 }
1379 mutex_exit(&fdp->fd_lock);
1380
1381 KASSERT(kq->kq_count == 0);
1382 mutex_destroy(&kq->kq_lock);
1383 cv_destroy(&kq->kq_cv);
1384 seldestroy(&kq->kq_sel);
1385 kmem_free(kq, sizeof(*kq));
1386 fp->f_data = NULL;
1387
1388 return (0);
1389 }
1390
1391 /*
1392 * struct fileops kqfilter method for a kqueue descriptor.
1393 * Event triggered when monitored kqueue changes.
1394 */
1395 static int
1396 kqueue_kqfilter(file_t *fp, struct knote *kn)
1397 {
1398 struct kqueue *kq;
1399 filedesc_t *fdp;
1400
1401 kq = ((file_t *)kn->kn_obj)->f_data;
1402
1403 KASSERT(fp == kn->kn_obj);
1404
1405 if (kn->kn_filter != EVFILT_READ)
1406 return 1;
1407
1408 kn->kn_fop = &kqread_filtops;
1409 fdp = curlwp->l_fd;
1410 mutex_enter(&kq->kq_lock);
1411 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1412 mutex_exit(&kq->kq_lock);
1413
1414 return 0;
1415 }
1416
1417
1418 /*
1419 * Walk down a list of knotes, activating them if their event has
1420 * triggered. The caller's object lock (e.g. device driver lock)
1421 * must be held.
1422 */
1423 void
1424 knote(struct klist *list, long hint)
1425 {
1426 struct knote *kn;
1427
1428 SLIST_FOREACH(kn, list, kn_selnext) {
1429 if ((*kn->kn_fop->f_event)(kn, hint))
1430 knote_activate(kn);
1431 }
1432 }
1433
1434 /*
1435 * Remove all knotes referencing a specified fd
1436 */
1437 void
1438 knote_fdclose(int fd)
1439 {
1440 struct klist *list;
1441 struct knote *kn;
1442 filedesc_t *fdp;
1443
1444 fdp = curlwp->l_fd;
1445 list = (struct klist *)&fdp->fd_ofiles[fd]->ff_knlist;
1446 mutex_enter(&fdp->fd_lock);
1447 while ((kn = SLIST_FIRST(list)) != NULL) {
1448 knote_detach(kn, fdp, true);
1449 mutex_enter(&fdp->fd_lock);
1450 }
1451 mutex_exit(&fdp->fd_lock);
1452 }
1453
1454 /*
1455 * Drop knote. Called with fdp->fd_lock held, and will drop before
1456 * returning.
1457 */
1458 static void
1459 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1460 {
1461 struct klist *list;
1462 struct kqueue *kq;
1463
1464 kq = kn->kn_kq;
1465
1466 KASSERT((kn->kn_status & KN_MARKER) == 0);
1467 KASSERT(mutex_owned(&fdp->fd_lock));
1468
1469 /* Remove from monitored object. */
1470 if (dofop) {
1471 KERNEL_LOCK(1, NULL); /* XXXSMP */
1472 (*kn->kn_fop->f_detach)(kn);
1473 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1474 }
1475
1476 /* Remove from descriptor table. */
1477 if (kn->kn_fop->f_isfd)
1478 list = (struct klist *)&fdp->fd_ofiles[kn->kn_id]->ff_knlist;
1479 else
1480 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1481
1482 SLIST_REMOVE(list, kn, knote, kn_link);
1483
1484 /* Remove from kqueue. */
1485 /* XXXAD should verify not in use by kqueue_scan. */
1486 mutex_spin_enter(&kq->kq_lock);
1487 if ((kn->kn_status & KN_QUEUED) != 0) {
1488 kq_check(kq);
1489 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1490 kn->kn_status &= ~KN_QUEUED;
1491 kq->kq_count--;
1492 kq_check(kq);
1493 }
1494 mutex_spin_exit(&kq->kq_lock);
1495
1496 mutex_exit(&fdp->fd_lock);
1497 if (kn->kn_fop->f_isfd)
1498 fd_putfile(kn->kn_id);
1499 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1500 kmem_free(kn, sizeof(*kn));
1501 }
1502
1503 /*
1504 * Queue new event for knote.
1505 */
1506 static void
1507 knote_enqueue(struct knote *kn)
1508 {
1509 struct kqueue *kq;
1510
1511 KASSERT((kn->kn_status & KN_MARKER) == 0);
1512
1513 kq = kn->kn_kq;
1514
1515 mutex_spin_enter(&kq->kq_lock);
1516 if ((kn->kn_status & KN_DISABLED) != 0) {
1517 kn->kn_status &= ~KN_DISABLED;
1518 }
1519 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1520 kq_check(kq);
1521 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1522 kn->kn_status |= KN_QUEUED;
1523 kq->kq_count++;
1524 kq_check(kq);
1525 cv_broadcast(&kq->kq_cv);
1526 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1527 }
1528 mutex_spin_exit(&kq->kq_lock);
1529 }
1530 /*
1531 * Queue new event for knote.
1532 */
1533 static void
1534 knote_activate(struct knote *kn)
1535 {
1536 struct kqueue *kq;
1537
1538 KASSERT((kn->kn_status & KN_MARKER) == 0);
1539
1540 kq = kn->kn_kq;
1541
1542 mutex_spin_enter(&kq->kq_lock);
1543 kn->kn_status |= KN_ACTIVE;
1544 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1545 kq_check(kq);
1546 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1547 kn->kn_status |= KN_QUEUED;
1548 kq->kq_count++;
1549 kq_check(kq);
1550 cv_broadcast(&kq->kq_cv);
1551 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1552 }
1553 mutex_spin_exit(&kq->kq_lock);
1554 }
1555