Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.72
      1 /*	$NetBSD: kern_event.c,v 1.72 2011/06/26 16:42:42 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.72 2011/06/26 16:42:42 christos Exp $");
     62 
     63 #include <sys/param.h>
     64 #include <sys/systm.h>
     65 #include <sys/kernel.h>
     66 #include <sys/proc.h>
     67 #include <sys/file.h>
     68 #include <sys/select.h>
     69 #include <sys/queue.h>
     70 #include <sys/event.h>
     71 #include <sys/eventvar.h>
     72 #include <sys/poll.h>
     73 #include <sys/kmem.h>
     74 #include <sys/stat.h>
     75 #include <sys/filedesc.h>
     76 #include <sys/syscallargs.h>
     77 #include <sys/kauth.h>
     78 #include <sys/conf.h>
     79 #include <sys/atomic.h>
     80 
     81 static int	kqueue_scan(file_t *, size_t, struct kevent *,
     82 			    const struct timespec *, register_t *,
     83 			    const struct kevent_ops *, struct kevent *,
     84 			    size_t);
     85 static int	kqueue_ioctl(file_t *, u_long, void *);
     86 static int	kqueue_fcntl(file_t *, u_int, void *);
     87 static int	kqueue_poll(file_t *, int);
     88 static int	kqueue_kqfilter(file_t *, struct knote *);
     89 static int	kqueue_stat(file_t *, struct stat *);
     90 static int	kqueue_close(file_t *);
     91 static int	kqueue_register(struct kqueue *, struct kevent *);
     92 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
     93 
     94 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
     95 static void	knote_enqueue(struct knote *);
     96 static void	knote_activate(struct knote *);
     97 
     98 static void	filt_kqdetach(struct knote *);
     99 static int	filt_kqueue(struct knote *, long hint);
    100 static int	filt_procattach(struct knote *);
    101 static void	filt_procdetach(struct knote *);
    102 static int	filt_proc(struct knote *, long hint);
    103 static int	filt_fileattach(struct knote *);
    104 static void	filt_timerexpire(void *x);
    105 static int	filt_timerattach(struct knote *);
    106 static void	filt_timerdetach(struct knote *);
    107 static int	filt_timer(struct knote *, long hint);
    108 
    109 static const struct fileops kqueueops = {
    110 	.fo_read = (void *)enxio,
    111 	.fo_write = (void *)enxio,
    112 	.fo_ioctl = kqueue_ioctl,
    113 	.fo_fcntl = kqueue_fcntl,
    114 	.fo_poll = kqueue_poll,
    115 	.fo_stat = kqueue_stat,
    116 	.fo_close = kqueue_close,
    117 	.fo_kqfilter = kqueue_kqfilter,
    118 	.fo_restart = fnullop_restart,
    119 };
    120 
    121 static const struct filterops kqread_filtops =
    122 	{ 1, NULL, filt_kqdetach, filt_kqueue };
    123 static const struct filterops proc_filtops =
    124 	{ 0, filt_procattach, filt_procdetach, filt_proc };
    125 static const struct filterops file_filtops =
    126 	{ 1, filt_fileattach, NULL, NULL };
    127 static const struct filterops timer_filtops =
    128 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
    129 
    130 static u_int	kq_ncallouts = 0;
    131 static int	kq_calloutmax = (4 * 1024);
    132 
    133 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    134 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    135 
    136 extern const struct filterops sig_filtops;
    137 
    138 /*
    139  * Table for for all system-defined filters.
    140  * These should be listed in the numeric order of the EVFILT_* defines.
    141  * If filtops is NULL, the filter isn't implemented in NetBSD.
    142  * End of list is when name is NULL.
    143  *
    144  * Note that 'refcnt' is meaningless for built-in filters.
    145  */
    146 struct kfilter {
    147 	const char	*name;		/* name of filter */
    148 	uint32_t	filter;		/* id of filter */
    149 	unsigned	refcnt;		/* reference count */
    150 	const struct filterops *filtops;/* operations for filter */
    151 	size_t		namelen;	/* length of name string */
    152 };
    153 
    154 /* System defined filters */
    155 static struct kfilter sys_kfilters[] = {
    156 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    157 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    158 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    159 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    160 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    161 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    162 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    163 	{ NULL,			0,		0, NULL, 0 },
    164 };
    165 
    166 /* User defined kfilters */
    167 static struct kfilter	*user_kfilters;		/* array */
    168 static int		user_kfilterc;		/* current offset */
    169 static int		user_kfiltermaxc;	/* max size so far */
    170 static size_t		user_kfiltersz;		/* size of allocated memory */
    171 
    172 /* Locks */
    173 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    174 static kmutex_t		kqueue_misc_lock;	/* miscellaneous */
    175 
    176 static kauth_listener_t	kqueue_listener;
    177 
    178 static int
    179 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    180     void *arg0, void *arg1, void *arg2, void *arg3)
    181 {
    182 	struct proc *p;
    183 	int result;
    184 
    185 	result = KAUTH_RESULT_DEFER;
    186 	p = arg0;
    187 
    188 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
    189 		return result;
    190 
    191 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
    192 	    ISSET(p->p_flag, PK_SUGID)))
    193 		return result;
    194 
    195 	result = KAUTH_RESULT_ALLOW;
    196 
    197 	return result;
    198 }
    199 
    200 /*
    201  * Initialize the kqueue subsystem.
    202  */
    203 void
    204 kqueue_init(void)
    205 {
    206 
    207 	rw_init(&kqueue_filter_lock);
    208 	mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    209 
    210 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    211 	    kqueue_listener_cb, NULL);
    212 }
    213 
    214 /*
    215  * Find kfilter entry by name, or NULL if not found.
    216  */
    217 static struct kfilter *
    218 kfilter_byname_sys(const char *name)
    219 {
    220 	int i;
    221 
    222 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    223 
    224 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    225 		if (strcmp(name, sys_kfilters[i].name) == 0)
    226 			return &sys_kfilters[i];
    227 	}
    228 	return NULL;
    229 }
    230 
    231 static struct kfilter *
    232 kfilter_byname_user(const char *name)
    233 {
    234 	int i;
    235 
    236 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    237 
    238 	/* user filter slots have a NULL name if previously deregistered */
    239 	for (i = 0; i < user_kfilterc ; i++) {
    240 		if (user_kfilters[i].name != NULL &&
    241 		    strcmp(name, user_kfilters[i].name) == 0)
    242 			return &user_kfilters[i];
    243 	}
    244 	return NULL;
    245 }
    246 
    247 static struct kfilter *
    248 kfilter_byname(const char *name)
    249 {
    250 	struct kfilter *kfilter;
    251 
    252 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    253 
    254 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    255 		return kfilter;
    256 
    257 	return kfilter_byname_user(name);
    258 }
    259 
    260 /*
    261  * Find kfilter entry by filter id, or NULL if not found.
    262  * Assumes entries are indexed in filter id order, for speed.
    263  */
    264 static struct kfilter *
    265 kfilter_byfilter(uint32_t filter)
    266 {
    267 	struct kfilter *kfilter;
    268 
    269 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    270 
    271 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    272 		kfilter = &sys_kfilters[filter];
    273 	else if (user_kfilters != NULL &&
    274 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    275 					/* it's a user filter */
    276 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    277 	else
    278 		return (NULL);		/* out of range */
    279 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    280 	return (kfilter);
    281 }
    282 
    283 /*
    284  * Register a new kfilter. Stores the entry in user_kfilters.
    285  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    286  * If retfilter != NULL, the new filterid is returned in it.
    287  */
    288 int
    289 kfilter_register(const char *name, const struct filterops *filtops,
    290 		 int *retfilter)
    291 {
    292 	struct kfilter *kfilter;
    293 	size_t len;
    294 	int i;
    295 
    296 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    297 		return (EINVAL);	/* invalid args */
    298 
    299 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    300 	if (kfilter_byname(name) != NULL) {
    301 		rw_exit(&kqueue_filter_lock);
    302 		return (EEXIST);	/* already exists */
    303 	}
    304 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    305 		rw_exit(&kqueue_filter_lock);
    306 		return (EINVAL);	/* too many */
    307 	}
    308 
    309 	for (i = 0; i < user_kfilterc; i++) {
    310 		kfilter = &user_kfilters[i];
    311 		if (kfilter->name == NULL) {
    312 			/* Previously deregistered slot.  Reuse. */
    313 			goto reuse;
    314 		}
    315 	}
    316 
    317 	/* check if need to grow user_kfilters */
    318 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    319 		/* Grow in KFILTER_EXTENT chunks. */
    320 		user_kfiltermaxc += KFILTER_EXTENT;
    321 		len = user_kfiltermaxc * sizeof(*kfilter);
    322 		kfilter = kmem_alloc(len, KM_SLEEP);
    323 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    324 		if (user_kfilters != NULL) {
    325 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    326 			kmem_free(user_kfilters, user_kfiltersz);
    327 		}
    328 		user_kfiltersz = len;
    329 		user_kfilters = kfilter;
    330 	}
    331 	/* Adding new slot */
    332 	kfilter = &user_kfilters[user_kfilterc++];
    333 reuse:
    334 	kfilter->namelen = strlen(name) + 1;
    335 	kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
    336 	memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
    337 
    338 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    339 
    340 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    341 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    342 
    343 	if (retfilter != NULL)
    344 		*retfilter = kfilter->filter;
    345 	rw_exit(&kqueue_filter_lock);
    346 
    347 	return (0);
    348 }
    349 
    350 /*
    351  * Unregister a kfilter previously registered with kfilter_register.
    352  * This retains the filter id, but clears the name and frees filtops (filter
    353  * operations), so that the number isn't reused during a boot.
    354  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    355  */
    356 int
    357 kfilter_unregister(const char *name)
    358 {
    359 	struct kfilter *kfilter;
    360 
    361 	if (name == NULL || name[0] == '\0')
    362 		return (EINVAL);	/* invalid name */
    363 
    364 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    365 	if (kfilter_byname_sys(name) != NULL) {
    366 		rw_exit(&kqueue_filter_lock);
    367 		return (EINVAL);	/* can't detach system filters */
    368 	}
    369 
    370 	kfilter = kfilter_byname_user(name);
    371 	if (kfilter == NULL) {
    372 		rw_exit(&kqueue_filter_lock);
    373 		return (ENOENT);
    374 	}
    375 	if (kfilter->refcnt != 0) {
    376 		rw_exit(&kqueue_filter_lock);
    377 		return (EBUSY);
    378 	}
    379 
    380 	/* Cast away const (but we know it's safe. */
    381 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    382 	kfilter->name = NULL;	/* mark as `not implemented' */
    383 
    384 	if (kfilter->filtops != NULL) {
    385 		/* Cast away const (but we know it's safe. */
    386 		kmem_free(__UNCONST(kfilter->filtops),
    387 		    sizeof(*kfilter->filtops));
    388 		kfilter->filtops = NULL; /* mark as `not implemented' */
    389 	}
    390 	rw_exit(&kqueue_filter_lock);
    391 
    392 	return (0);
    393 }
    394 
    395 
    396 /*
    397  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    398  * descriptors. Calls fileops kqfilter method for given file descriptor.
    399  */
    400 static int
    401 filt_fileattach(struct knote *kn)
    402 {
    403 	file_t *fp;
    404 
    405 	fp = kn->kn_obj;
    406 
    407 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    408 }
    409 
    410 /*
    411  * Filter detach method for EVFILT_READ on kqueue descriptor.
    412  */
    413 static void
    414 filt_kqdetach(struct knote *kn)
    415 {
    416 	struct kqueue *kq;
    417 
    418 	kq = ((file_t *)kn->kn_obj)->f_data;
    419 
    420 	mutex_spin_enter(&kq->kq_lock);
    421 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
    422 	mutex_spin_exit(&kq->kq_lock);
    423 }
    424 
    425 /*
    426  * Filter event method for EVFILT_READ on kqueue descriptor.
    427  */
    428 /*ARGSUSED*/
    429 static int
    430 filt_kqueue(struct knote *kn, long hint)
    431 {
    432 	struct kqueue *kq;
    433 	int rv;
    434 
    435 	kq = ((file_t *)kn->kn_obj)->f_data;
    436 
    437 	if (hint != NOTE_SUBMIT)
    438 		mutex_spin_enter(&kq->kq_lock);
    439 	kn->kn_data = kq->kq_count;
    440 	rv = (kn->kn_data > 0);
    441 	if (hint != NOTE_SUBMIT)
    442 		mutex_spin_exit(&kq->kq_lock);
    443 
    444 	return rv;
    445 }
    446 
    447 /*
    448  * Filter attach method for EVFILT_PROC.
    449  */
    450 static int
    451 filt_procattach(struct knote *kn)
    452 {
    453 	struct proc *p, *curp;
    454 	struct lwp *curl;
    455 
    456 	curl = curlwp;
    457 	curp = curl->l_proc;
    458 
    459 	mutex_enter(proc_lock);
    460 	p = proc_find(kn->kn_id);
    461 	if (p == NULL) {
    462 		mutex_exit(proc_lock);
    463 		return ESRCH;
    464 	}
    465 
    466 	/*
    467 	 * Fail if it's not owned by you, or the last exec gave us
    468 	 * setuid/setgid privs (unless you're root).
    469 	 */
    470 	mutex_enter(p->p_lock);
    471 	mutex_exit(proc_lock);
    472 	if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
    473 	    p, NULL, NULL, NULL) != 0) {
    474 	    	mutex_exit(p->p_lock);
    475 		return EACCES;
    476 	}
    477 
    478 	kn->kn_obj = p;
    479 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    480 
    481 	/*
    482 	 * internal flag indicating registration done by kernel
    483 	 */
    484 	if (kn->kn_flags & EV_FLAG1) {
    485 		kn->kn_data = kn->kn_sdata;	/* ppid */
    486 		kn->kn_fflags = NOTE_CHILD;
    487 		kn->kn_flags &= ~EV_FLAG1;
    488 	}
    489 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    490     	mutex_exit(p->p_lock);
    491 
    492 	return 0;
    493 }
    494 
    495 /*
    496  * Filter detach method for EVFILT_PROC.
    497  *
    498  * The knote may be attached to a different process, which may exit,
    499  * leaving nothing for the knote to be attached to.  So when the process
    500  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    501  * it will be deleted when read out.  However, as part of the knote deletion,
    502  * this routine is called, so a check is needed to avoid actually performing
    503  * a detach, because the original process might not exist any more.
    504  */
    505 static void
    506 filt_procdetach(struct knote *kn)
    507 {
    508 	struct proc *p;
    509 
    510 	if (kn->kn_status & KN_DETACHED)
    511 		return;
    512 
    513 	p = kn->kn_obj;
    514 
    515 	mutex_enter(p->p_lock);
    516 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    517 	mutex_exit(p->p_lock);
    518 }
    519 
    520 /*
    521  * Filter event method for EVFILT_PROC.
    522  */
    523 static int
    524 filt_proc(struct knote *kn, long hint)
    525 {
    526 	u_int event, fflag;
    527 	struct kevent kev;
    528 	struct kqueue *kq;
    529 	int error;
    530 
    531 	event = (u_int)hint & NOTE_PCTRLMASK;
    532 	kq = kn->kn_kq;
    533 	fflag = 0;
    534 
    535 	/* If the user is interested in this event, record it. */
    536 	if (kn->kn_sfflags & event)
    537 		fflag |= event;
    538 
    539 	if (event == NOTE_EXIT) {
    540 		/*
    541 		 * Process is gone, so flag the event as finished.
    542 		 *
    543 		 * Detach the knote from watched process and mark
    544 		 * it as such. We can't leave this to kqueue_scan(),
    545 		 * since the process might not exist by then. And we
    546 		 * have to do this now, since psignal KNOTE() is called
    547 		 * also for zombies and we might end up reading freed
    548 		 * memory if the kevent would already be picked up
    549 		 * and knote g/c'ed.
    550 		 */
    551 		filt_procdetach(kn);
    552 
    553 		mutex_spin_enter(&kq->kq_lock);
    554 		kn->kn_status |= KN_DETACHED;
    555 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
    556 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
    557 		kn->kn_fflags |= fflag;
    558 		mutex_spin_exit(&kq->kq_lock);
    559 
    560 		return 1;
    561 	}
    562 
    563 	mutex_spin_enter(&kq->kq_lock);
    564 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
    565 		/*
    566 		 * Process forked, and user wants to track the new process,
    567 		 * so attach a new knote to it, and immediately report an
    568 		 * event with the parent's pid.  Register knote with new
    569 		 * process.
    570 		 */
    571 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
    572 		kev.filter = kn->kn_filter;
    573 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
    574 		kev.fflags = kn->kn_sfflags;
    575 		kev.data = kn->kn_id;			/* parent */
    576 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
    577 		mutex_spin_exit(&kq->kq_lock);
    578 		error = kqueue_register(kq, &kev);
    579 		mutex_spin_enter(&kq->kq_lock);
    580 		if (error != 0)
    581 			kn->kn_fflags |= NOTE_TRACKERR;
    582 	}
    583 	kn->kn_fflags |= fflag;
    584 	fflag = kn->kn_fflags;
    585 	mutex_spin_exit(&kq->kq_lock);
    586 
    587 	return fflag != 0;
    588 }
    589 
    590 static void
    591 filt_timerexpire(void *knx)
    592 {
    593 	struct knote *kn = knx;
    594 	int tticks;
    595 
    596 	mutex_enter(&kqueue_misc_lock);
    597 	kn->kn_data++;
    598 	knote_activate(kn);
    599 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
    600 		tticks = mstohz(kn->kn_sdata);
    601 		callout_schedule((callout_t *)kn->kn_hook, tticks);
    602 	}
    603 	mutex_exit(&kqueue_misc_lock);
    604 }
    605 
    606 /*
    607  * data contains amount of time to sleep, in milliseconds
    608  */
    609 static int
    610 filt_timerattach(struct knote *kn)
    611 {
    612 	callout_t *calloutp;
    613 	struct kqueue *kq;
    614 	int tticks;
    615 
    616 	tticks = mstohz(kn->kn_sdata);
    617 
    618 	/* if the supplied value is under our resolution, use 1 tick */
    619 	if (tticks == 0) {
    620 		if (kn->kn_sdata == 0)
    621 			return EINVAL;
    622 		tticks = 1;
    623 	}
    624 
    625 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
    626 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
    627 		atomic_dec_uint(&kq_ncallouts);
    628 		return ENOMEM;
    629 	}
    630 	callout_init(calloutp, CALLOUT_MPSAFE);
    631 
    632 	kq = kn->kn_kq;
    633 	mutex_spin_enter(&kq->kq_lock);
    634 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
    635 	kn->kn_hook = calloutp;
    636 	mutex_spin_exit(&kq->kq_lock);
    637 
    638 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
    639 
    640 	return (0);
    641 }
    642 
    643 static void
    644 filt_timerdetach(struct knote *kn)
    645 {
    646 	callout_t *calloutp;
    647 
    648 	calloutp = (callout_t *)kn->kn_hook;
    649 	callout_halt(calloutp, NULL);
    650 	callout_destroy(calloutp);
    651 	kmem_free(calloutp, sizeof(*calloutp));
    652 	atomic_dec_uint(&kq_ncallouts);
    653 }
    654 
    655 static int
    656 filt_timer(struct knote *kn, long hint)
    657 {
    658 	int rv;
    659 
    660 	mutex_enter(&kqueue_misc_lock);
    661 	rv = (kn->kn_data != 0);
    662 	mutex_exit(&kqueue_misc_lock);
    663 
    664 	return rv;
    665 }
    666 
    667 /*
    668  * filt_seltrue:
    669  *
    670  *	This filter "event" routine simulates seltrue().
    671  */
    672 int
    673 filt_seltrue(struct knote *kn, long hint)
    674 {
    675 
    676 	/*
    677 	 * We don't know how much data can be read/written,
    678 	 * but we know that it *can* be.  This is about as
    679 	 * good as select/poll does as well.
    680 	 */
    681 	kn->kn_data = 0;
    682 	return (1);
    683 }
    684 
    685 /*
    686  * This provides full kqfilter entry for device switch tables, which
    687  * has same effect as filter using filt_seltrue() as filter method.
    688  */
    689 static void
    690 filt_seltruedetach(struct knote *kn)
    691 {
    692 	/* Nothing to do */
    693 }
    694 
    695 const struct filterops seltrue_filtops =
    696 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
    697 
    698 int
    699 seltrue_kqfilter(dev_t dev, struct knote *kn)
    700 {
    701 	switch (kn->kn_filter) {
    702 	case EVFILT_READ:
    703 	case EVFILT_WRITE:
    704 		kn->kn_fop = &seltrue_filtops;
    705 		break;
    706 	default:
    707 		return (EINVAL);
    708 	}
    709 
    710 	/* Nothing more to do */
    711 	return (0);
    712 }
    713 
    714 /*
    715  * kqueue(2) system call.
    716  */
    717 static int
    718 kqueue1(struct lwp *l, int flags, register_t *retval)
    719 {
    720 	struct kqueue *kq;
    721 	file_t *fp;
    722 	int fd, error;
    723 
    724 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    725 		return error;
    726 	fp->f_flag = FREAD | FWRITE | (flags & FNONBLOCK);
    727 	fp->f_type = DTYPE_KQUEUE;
    728 	fp->f_ops = &kqueueops;
    729 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
    730 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
    731 	cv_init(&kq->kq_cv, "kqueue");
    732 	selinit(&kq->kq_sel);
    733 	TAILQ_INIT(&kq->kq_head);
    734 	fp->f_data = kq;
    735 	*retval = fd;
    736 	kq->kq_fdp = curlwp->l_fd;
    737 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
    738 	fd_affix(curproc, fp, fd);
    739 	return error;
    740 }
    741 
    742 /*
    743  * kqueue(2) system call.
    744  */
    745 int
    746 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
    747 {
    748 	return kqueue1(l, 0, retval);
    749 }
    750 
    751 int
    752 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
    753     register_t *retval)
    754 {
    755 	/* {
    756 		syscallarg(int) flags;
    757 	} */
    758 	return kqueue1(l, SCARG(uap, flags), retval);
    759 }
    760 
    761 /*
    762  * kevent(2) system call.
    763  */
    764 int
    765 kevent_fetch_changes(void *private, const struct kevent *changelist,
    766     struct kevent *changes, size_t index, int n)
    767 {
    768 
    769 	return copyin(changelist + index, changes, n * sizeof(*changes));
    770 }
    771 
    772 int
    773 kevent_put_events(void *private, struct kevent *events,
    774     struct kevent *eventlist, size_t index, int n)
    775 {
    776 
    777 	return copyout(events, eventlist + index, n * sizeof(*events));
    778 }
    779 
    780 static const struct kevent_ops kevent_native_ops = {
    781 	.keo_private = NULL,
    782 	.keo_fetch_timeout = copyin,
    783 	.keo_fetch_changes = kevent_fetch_changes,
    784 	.keo_put_events = kevent_put_events,
    785 };
    786 
    787 int
    788 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
    789     register_t *retval)
    790 {
    791 	/* {
    792 		syscallarg(int) fd;
    793 		syscallarg(const struct kevent *) changelist;
    794 		syscallarg(size_t) nchanges;
    795 		syscallarg(struct kevent *) eventlist;
    796 		syscallarg(size_t) nevents;
    797 		syscallarg(const struct timespec *) timeout;
    798 	} */
    799 
    800 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
    801 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
    802 	    SCARG(uap, timeout), &kevent_native_ops);
    803 }
    804 
    805 int
    806 kevent1(register_t *retval, int fd,
    807 	const struct kevent *changelist, size_t nchanges,
    808 	struct kevent *eventlist, size_t nevents,
    809 	const struct timespec *timeout,
    810 	const struct kevent_ops *keops)
    811 {
    812 	struct kevent *kevp;
    813 	struct kqueue *kq;
    814 	struct timespec	ts;
    815 	size_t i, n, ichange;
    816 	int nerrors, error;
    817 	struct kevent kevbuf[8];	/* approx 300 bytes on 64-bit */
    818 	file_t *fp;
    819 
    820 	/* check that we're dealing with a kq */
    821 	fp = fd_getfile(fd);
    822 	if (fp == NULL)
    823 		return (EBADF);
    824 
    825 	if (fp->f_type != DTYPE_KQUEUE) {
    826 		fd_putfile(fd);
    827 		return (EBADF);
    828 	}
    829 
    830 	if (timeout != NULL) {
    831 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
    832 		if (error)
    833 			goto done;
    834 		timeout = &ts;
    835 	}
    836 
    837 	kq = (struct kqueue *)fp->f_data;
    838 	nerrors = 0;
    839 	ichange = 0;
    840 
    841 	/* traverse list of events to register */
    842 	while (nchanges > 0) {
    843 		n = MIN(nchanges, __arraycount(kevbuf));
    844 		error = (*keops->keo_fetch_changes)(keops->keo_private,
    845 		    changelist, kevbuf, ichange, n);
    846 		if (error)
    847 			goto done;
    848 		for (i = 0; i < n; i++) {
    849 			kevp = &kevbuf[i];
    850 			kevp->flags &= ~EV_SYSFLAGS;
    851 			/* register each knote */
    852 			error = kqueue_register(kq, kevp);
    853 			if (error) {
    854 				if (nevents != 0) {
    855 					kevp->flags = EV_ERROR;
    856 					kevp->data = error;
    857 					error = (*keops->keo_put_events)
    858 					    (keops->keo_private, kevp,
    859 					    eventlist, nerrors, 1);
    860 					if (error)
    861 						goto done;
    862 					nevents--;
    863 					nerrors++;
    864 				} else {
    865 					goto done;
    866 				}
    867 			}
    868 		}
    869 		nchanges -= n;	/* update the results */
    870 		ichange += n;
    871 	}
    872 	if (nerrors) {
    873 		*retval = nerrors;
    874 		error = 0;
    875 		goto done;
    876 	}
    877 
    878 	/* actually scan through the events */
    879 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
    880 	    kevbuf, __arraycount(kevbuf));
    881  done:
    882 	fd_putfile(fd);
    883 	return (error);
    884 }
    885 
    886 /*
    887  * Register a given kevent kev onto the kqueue
    888  */
    889 static int
    890 kqueue_register(struct kqueue *kq, struct kevent *kev)
    891 {
    892 	struct kfilter *kfilter;
    893 	filedesc_t *fdp;
    894 	file_t *fp;
    895 	fdfile_t *ff;
    896 	struct knote *kn, *newkn;
    897 	struct klist *list;
    898 	int error, fd, rv;
    899 
    900 	fdp = kq->kq_fdp;
    901 	fp = NULL;
    902 	kn = NULL;
    903 	error = 0;
    904 	fd = 0;
    905 
    906 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
    907 
    908 	rw_enter(&kqueue_filter_lock, RW_READER);
    909 	kfilter = kfilter_byfilter(kev->filter);
    910 	if (kfilter == NULL || kfilter->filtops == NULL) {
    911 		/* filter not found nor implemented */
    912 		rw_exit(&kqueue_filter_lock);
    913 		kmem_free(newkn, sizeof(*newkn));
    914 		return (EINVAL);
    915 	}
    916 
    917  	mutex_enter(&fdp->fd_lock);
    918 
    919 	/* search if knote already exists */
    920 	if (kfilter->filtops->f_isfd) {
    921 		/* monitoring a file descriptor */
    922 		fd = kev->ident;
    923 		if ((fp = fd_getfile(fd)) == NULL) {
    924 		 	mutex_exit(&fdp->fd_lock);
    925 			rw_exit(&kqueue_filter_lock);
    926 			kmem_free(newkn, sizeof(*newkn));
    927 			return EBADF;
    928 		}
    929 		ff = fdp->fd_dt->dt_ff[fd];
    930 		if (fd <= fdp->fd_lastkqfile) {
    931 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
    932 				if (kq == kn->kn_kq &&
    933 				    kev->filter == kn->kn_filter)
    934 					break;
    935 			}
    936 		}
    937 	} else {
    938 		/*
    939 		 * not monitoring a file descriptor, so
    940 		 * lookup knotes in internal hash table
    941 		 */
    942 		if (fdp->fd_knhashmask != 0) {
    943 			list = &fdp->fd_knhash[
    944 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
    945 			SLIST_FOREACH(kn, list, kn_link) {
    946 				if (kev->ident == kn->kn_id &&
    947 				    kq == kn->kn_kq &&
    948 				    kev->filter == kn->kn_filter)
    949 					break;
    950 			}
    951 		}
    952 	}
    953 
    954 	/*
    955 	 * kn now contains the matching knote, or NULL if no match
    956 	 */
    957 	if (kev->flags & EV_ADD) {
    958 		if (kn == NULL) {
    959 			/* create new knote */
    960 			kn = newkn;
    961 			newkn = NULL;
    962 			kn->kn_obj = fp;
    963 			kn->kn_kq = kq;
    964 			kn->kn_fop = kfilter->filtops;
    965 			kn->kn_kfilter = kfilter;
    966 			kn->kn_sfflags = kev->fflags;
    967 			kn->kn_sdata = kev->data;
    968 			kev->fflags = 0;
    969 			kev->data = 0;
    970 			kn->kn_kevent = *kev;
    971 
    972 			/*
    973 			 * apply reference count to knote structure, and
    974 			 * do not release it at the end of this routine.
    975 			 */
    976 			fp = NULL;
    977 
    978 			if (!kn->kn_fop->f_isfd) {
    979 				/*
    980 				 * If knote is not on an fd, store on
    981 				 * internal hash table.
    982 				 */
    983 				if (fdp->fd_knhashmask == 0) {
    984 					/* XXXAD can block with fd_lock held */
    985 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
    986 					    HASH_LIST, true,
    987 					    &fdp->fd_knhashmask);
    988 				}
    989 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
    990 				    fdp->fd_knhashmask)];
    991 			} else {
    992 				/* Otherwise, knote is on an fd. */
    993 				list = (struct klist *)
    994 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
    995 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
    996 					fdp->fd_lastkqfile = kn->kn_id;
    997 			}
    998 			SLIST_INSERT_HEAD(list, kn, kn_link);
    999 
   1000 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1001 			error = (*kfilter->filtops->f_attach)(kn);
   1002 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1003 			if (error != 0) {
   1004 				/* knote_detach() drops fdp->fd_lock */
   1005 				knote_detach(kn, fdp, false);
   1006 				goto done;
   1007 			}
   1008 			atomic_inc_uint(&kfilter->refcnt);
   1009 		} else {
   1010 			/*
   1011 			 * The user may change some filter values after the
   1012 			 * initial EV_ADD, but doing so will not reset any
   1013 			 * filter which have already been triggered.
   1014 			 */
   1015 			kn->kn_sfflags = kev->fflags;
   1016 			kn->kn_sdata = kev->data;
   1017 			kn->kn_kevent.udata = kev->udata;
   1018 		}
   1019 		KERNEL_LOCK(1, NULL);			/* XXXSMP */
   1020 		rv = (*kn->kn_fop->f_event)(kn, 0);
   1021 		KERNEL_UNLOCK_ONE(NULL);		/* XXXSMP */
   1022 		if (rv)
   1023 			knote_activate(kn);
   1024 	} else {
   1025 		if (kn == NULL) {
   1026 			error = ENOENT;
   1027 		 	mutex_exit(&fdp->fd_lock);
   1028 			goto done;
   1029 		}
   1030 		if (kev->flags & EV_DELETE) {
   1031 			/* knote_detach() drops fdp->fd_lock */
   1032 			knote_detach(kn, fdp, true);
   1033 			goto done;
   1034 		}
   1035 	}
   1036 
   1037 	/* disable knote */
   1038 	if ((kev->flags & EV_DISABLE)) {
   1039 		mutex_spin_enter(&kq->kq_lock);
   1040 		if ((kn->kn_status & KN_DISABLED) == 0)
   1041 			kn->kn_status |= KN_DISABLED;
   1042 		mutex_spin_exit(&kq->kq_lock);
   1043 	}
   1044 
   1045 	/* enable knote */
   1046 	if ((kev->flags & EV_ENABLE)) {
   1047 		knote_enqueue(kn);
   1048 	}
   1049 	mutex_exit(&fdp->fd_lock);
   1050  done:
   1051 	rw_exit(&kqueue_filter_lock);
   1052 	if (newkn != NULL)
   1053 		kmem_free(newkn, sizeof(*newkn));
   1054 	if (fp != NULL)
   1055 		fd_putfile(fd);
   1056 	return (error);
   1057 }
   1058 
   1059 #if defined(DEBUG)
   1060 static void
   1061 kq_check(struct kqueue *kq)
   1062 {
   1063 	const struct knote *kn;
   1064 	int count;
   1065 	int nmarker;
   1066 
   1067 	KASSERT(mutex_owned(&kq->kq_lock));
   1068 	KASSERT(kq->kq_count >= 0);
   1069 
   1070 	count = 0;
   1071 	nmarker = 0;
   1072 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   1073 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   1074 			panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
   1075 		}
   1076 		if ((kn->kn_status & KN_MARKER) == 0) {
   1077 			if (kn->kn_kq != kq) {
   1078 				panic("%s: kq=%p kn=%p inconsist 2",
   1079 				    __func__, kq, kn);
   1080 			}
   1081 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   1082 				panic("%s: kq=%p kn=%p: not active",
   1083 				    __func__, kq, kn);
   1084 			}
   1085 			count++;
   1086 			if (count > kq->kq_count) {
   1087 				goto bad;
   1088 			}
   1089 		} else {
   1090 			nmarker++;
   1091 #if 0
   1092 			if (nmarker > 10000) {
   1093 				panic("%s: kq=%p too many markers: %d != %d, "
   1094 				    "nmarker=%d",
   1095 				    __func__, kq, kq->kq_count, count, nmarker);
   1096 			}
   1097 #endif
   1098 		}
   1099 	}
   1100 	if (kq->kq_count != count) {
   1101 bad:
   1102 		panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
   1103 		    __func__, kq, kq->kq_count, count, nmarker);
   1104 	}
   1105 }
   1106 #else /* defined(DEBUG) */
   1107 #define	kq_check(a)	/* nothing */
   1108 #endif /* defined(DEBUG) */
   1109 
   1110 /*
   1111  * Scan through the list of events on fp (for a maximum of maxevents),
   1112  * returning the results in to ulistp. Timeout is determined by tsp; if
   1113  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   1114  * as appropriate.
   1115  */
   1116 static int
   1117 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   1118 	    const struct timespec *tsp, register_t *retval,
   1119 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   1120 	    size_t kevcnt)
   1121 {
   1122 	struct kqueue	*kq;
   1123 	struct kevent	*kevp;
   1124 	struct timespec	ats, sleepts;
   1125 	struct knote	*kn, *marker;
   1126 	size_t		count, nkev, nevents;
   1127 	int		timeout, error, rv;
   1128 	filedesc_t	*fdp;
   1129 
   1130 	fdp = curlwp->l_fd;
   1131 	kq = fp->f_data;
   1132 	count = maxevents;
   1133 	nkev = nevents = error = 0;
   1134 	if (count == 0) {
   1135 		*retval = 0;
   1136 		return 0;
   1137 	}
   1138 
   1139 	if (tsp) {				/* timeout supplied */
   1140 		ats = *tsp;
   1141 		if (inittimeleft(&ats, &sleepts) == -1) {
   1142 			*retval = maxevents;
   1143 			return EINVAL;
   1144 		}
   1145 		timeout = tstohz(&ats);
   1146 		if (timeout <= 0)
   1147 			timeout = -1;           /* do poll */
   1148 	} else {
   1149 		/* no timeout, wait forever */
   1150 		timeout = 0;
   1151 	}
   1152 
   1153 	marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
   1154 	marker->kn_status = KN_MARKER;
   1155 	mutex_spin_enter(&kq->kq_lock);
   1156  retry:
   1157 	kevp = kevbuf;
   1158 	if (kq->kq_count == 0) {
   1159 		if (timeout >= 0) {
   1160 			error = cv_timedwait_sig(&kq->kq_cv,
   1161 			    &kq->kq_lock, timeout);
   1162 			if (error == 0) {
   1163 				 if (tsp == NULL || (timeout =
   1164 				     gettimeleft(&ats, &sleepts)) > 0)
   1165 					goto retry;
   1166 			} else {
   1167 				/* don't restart after signals... */
   1168 				if (error == ERESTART)
   1169 					error = EINTR;
   1170 				if (error == EWOULDBLOCK)
   1171 					error = 0;
   1172 			}
   1173 		}
   1174 	} else {
   1175 		/* mark end of knote list */
   1176 		TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   1177 
   1178 		while (count != 0) {
   1179 			kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
   1180 			while ((kn->kn_status & KN_MARKER) != 0) {
   1181 				if (kn == marker) {
   1182 					/* it's our marker, stop */
   1183 					TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1184 					if (count < maxevents || (tsp != NULL &&
   1185 					    (timeout = gettimeleft(&ats,
   1186 					    &sleepts)) <= 0))
   1187 						goto done;
   1188 					goto retry;
   1189 				}
   1190 				/* someone else's marker. */
   1191 				kn = TAILQ_NEXT(kn, kn_tqe);
   1192 			}
   1193 			kq_check(kq);
   1194 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1195 			kq->kq_count--;
   1196 			kn->kn_status &= ~KN_QUEUED;
   1197 			kq_check(kq);
   1198 			if (kn->kn_status & KN_DISABLED) {
   1199 				/* don't want disabled events */
   1200 				continue;
   1201 			}
   1202 			if ((kn->kn_flags & EV_ONESHOT) == 0) {
   1203 				mutex_spin_exit(&kq->kq_lock);
   1204 				KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1205 				rv = (*kn->kn_fop->f_event)(kn, 0);
   1206 				KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1207 				mutex_spin_enter(&kq->kq_lock);
   1208 				/* Re-poll if note was re-enqueued. */
   1209 				if ((kn->kn_status & KN_QUEUED) != 0)
   1210 					continue;
   1211 				if (rv == 0) {
   1212 					/*
   1213 					 * non-ONESHOT event that hasn't
   1214 					 * triggered again, so de-queue.
   1215 					 */
   1216 					kn->kn_status &= ~KN_ACTIVE;
   1217 					continue;
   1218 				}
   1219 			}
   1220 			/* XXXAD should be got from f_event if !oneshot. */
   1221 			*kevp++ = kn->kn_kevent;
   1222 			nkev++;
   1223 			if (kn->kn_flags & EV_ONESHOT) {
   1224 				/* delete ONESHOT events after retrieval */
   1225 				mutex_spin_exit(&kq->kq_lock);
   1226 				mutex_enter(&fdp->fd_lock);
   1227 				knote_detach(kn, fdp, true);
   1228 				mutex_spin_enter(&kq->kq_lock);
   1229 			} else if (kn->kn_flags & EV_CLEAR) {
   1230 				/* clear state after retrieval */
   1231 				kn->kn_data = 0;
   1232 				kn->kn_fflags = 0;
   1233 				kn->kn_status &= ~KN_ACTIVE;
   1234 			} else {
   1235 				/* add event back on list */
   1236 				kq_check(kq);
   1237 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1238 				kq->kq_count++;
   1239 				kn->kn_status |= KN_QUEUED;
   1240 				kq_check(kq);
   1241 			}
   1242 			if (nkev == kevcnt) {
   1243 				/* do copyouts in kevcnt chunks */
   1244 				mutex_spin_exit(&kq->kq_lock);
   1245 				error = (*keops->keo_put_events)
   1246 				    (keops->keo_private,
   1247 				    kevbuf, ulistp, nevents, nkev);
   1248 				mutex_spin_enter(&kq->kq_lock);
   1249 				nevents += nkev;
   1250 				nkev = 0;
   1251 				kevp = kevbuf;
   1252 			}
   1253 			count--;
   1254 			if (error != 0 || count == 0) {
   1255 				/* remove marker */
   1256 				TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   1257 				break;
   1258 			}
   1259 		}
   1260 	}
   1261  done:
   1262  	mutex_spin_exit(&kq->kq_lock);
   1263 	if (marker != NULL)
   1264 		kmem_free(marker, sizeof(*marker));
   1265 	if (nkev != 0) {
   1266 		/* copyout remaining events */
   1267 		error = (*keops->keo_put_events)(keops->keo_private,
   1268 		    kevbuf, ulistp, nevents, nkev);
   1269 	}
   1270 	*retval = maxevents - count;
   1271 
   1272 	return error;
   1273 }
   1274 
   1275 /*
   1276  * fileops ioctl method for a kqueue descriptor.
   1277  *
   1278  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   1279  *	KFILTER_BYNAME		find name for filter, and return result in
   1280  *				name, which is of size len.
   1281  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   1282  */
   1283 /*ARGSUSED*/
   1284 static int
   1285 kqueue_ioctl(file_t *fp, u_long com, void *data)
   1286 {
   1287 	struct kfilter_mapping	*km;
   1288 	const struct kfilter	*kfilter;
   1289 	char			*name;
   1290 	int			error;
   1291 
   1292 	km = data;
   1293 	error = 0;
   1294 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   1295 
   1296 	switch (com) {
   1297 	case KFILTER_BYFILTER:	/* convert filter -> name */
   1298 		rw_enter(&kqueue_filter_lock, RW_READER);
   1299 		kfilter = kfilter_byfilter(km->filter);
   1300 		if (kfilter != NULL) {
   1301 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   1302 			rw_exit(&kqueue_filter_lock);
   1303 			error = copyoutstr(name, km->name, km->len, NULL);
   1304 		} else {
   1305 			rw_exit(&kqueue_filter_lock);
   1306 			error = ENOENT;
   1307 		}
   1308 		break;
   1309 
   1310 	case KFILTER_BYNAME:	/* convert name -> filter */
   1311 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   1312 		if (error) {
   1313 			break;
   1314 		}
   1315 		rw_enter(&kqueue_filter_lock, RW_READER);
   1316 		kfilter = kfilter_byname(name);
   1317 		if (kfilter != NULL)
   1318 			km->filter = kfilter->filter;
   1319 		else
   1320 			error = ENOENT;
   1321 		rw_exit(&kqueue_filter_lock);
   1322 		break;
   1323 
   1324 	default:
   1325 		error = ENOTTY;
   1326 		break;
   1327 
   1328 	}
   1329 	kmem_free(name, KFILTER_MAXNAME);
   1330 	return (error);
   1331 }
   1332 
   1333 /*
   1334  * fileops fcntl method for a kqueue descriptor.
   1335  */
   1336 static int
   1337 kqueue_fcntl(file_t *fp, u_int com, void *data)
   1338 {
   1339 
   1340 	return (ENOTTY);
   1341 }
   1342 
   1343 /*
   1344  * fileops poll method for a kqueue descriptor.
   1345  * Determine if kqueue has events pending.
   1346  */
   1347 static int
   1348 kqueue_poll(file_t *fp, int events)
   1349 {
   1350 	struct kqueue	*kq;
   1351 	int		revents;
   1352 
   1353 	kq = fp->f_data;
   1354 
   1355 	revents = 0;
   1356 	if (events & (POLLIN | POLLRDNORM)) {
   1357 		mutex_spin_enter(&kq->kq_lock);
   1358 		if (kq->kq_count != 0) {
   1359 			revents |= events & (POLLIN | POLLRDNORM);
   1360 		} else {
   1361 			selrecord(curlwp, &kq->kq_sel);
   1362 		}
   1363 		kq_check(kq);
   1364 		mutex_spin_exit(&kq->kq_lock);
   1365 	}
   1366 
   1367 	return revents;
   1368 }
   1369 
   1370 /*
   1371  * fileops stat method for a kqueue descriptor.
   1372  * Returns dummy info, with st_size being number of events pending.
   1373  */
   1374 static int
   1375 kqueue_stat(file_t *fp, struct stat *st)
   1376 {
   1377 	struct kqueue *kq;
   1378 
   1379 	kq = fp->f_data;
   1380 
   1381 	memset(st, 0, sizeof(*st));
   1382 	st->st_size = kq->kq_count;
   1383 	st->st_blksize = sizeof(struct kevent);
   1384 	st->st_mode = S_IFIFO;
   1385 
   1386 	return 0;
   1387 }
   1388 
   1389 static void
   1390 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   1391 {
   1392 	struct knote *kn;
   1393 	filedesc_t *fdp;
   1394 
   1395 	fdp = kq->kq_fdp;
   1396 
   1397 	KASSERT(mutex_owned(&fdp->fd_lock));
   1398 
   1399 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   1400 		if (kq != kn->kn_kq) {
   1401 			kn = SLIST_NEXT(kn, kn_link);
   1402 			continue;
   1403 		}
   1404 		knote_detach(kn, fdp, true);
   1405 		mutex_enter(&fdp->fd_lock);
   1406 		kn = SLIST_FIRST(list);
   1407 	}
   1408 }
   1409 
   1410 
   1411 /*
   1412  * fileops close method for a kqueue descriptor.
   1413  */
   1414 static int
   1415 kqueue_close(file_t *fp)
   1416 {
   1417 	struct kqueue *kq;
   1418 	filedesc_t *fdp;
   1419 	fdfile_t *ff;
   1420 	int i;
   1421 
   1422 	kq = fp->f_data;
   1423 	fdp = curlwp->l_fd;
   1424 
   1425 	mutex_enter(&fdp->fd_lock);
   1426 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   1427 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
   1428 			continue;
   1429 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   1430 	}
   1431 	if (fdp->fd_knhashmask != 0) {
   1432 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   1433 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   1434 		}
   1435 	}
   1436 	mutex_exit(&fdp->fd_lock);
   1437 
   1438 	KASSERT(kq->kq_count == 0);
   1439 	mutex_destroy(&kq->kq_lock);
   1440 	cv_destroy(&kq->kq_cv);
   1441 	seldestroy(&kq->kq_sel);
   1442 	kmem_free(kq, sizeof(*kq));
   1443 	fp->f_data = NULL;
   1444 
   1445 	return (0);
   1446 }
   1447 
   1448 /*
   1449  * struct fileops kqfilter method for a kqueue descriptor.
   1450  * Event triggered when monitored kqueue changes.
   1451  */
   1452 static int
   1453 kqueue_kqfilter(file_t *fp, struct knote *kn)
   1454 {
   1455 	struct kqueue *kq;
   1456 	filedesc_t *fdp;
   1457 
   1458 	kq = ((file_t *)kn->kn_obj)->f_data;
   1459 
   1460 	KASSERT(fp == kn->kn_obj);
   1461 
   1462 	if (kn->kn_filter != EVFILT_READ)
   1463 		return 1;
   1464 
   1465 	kn->kn_fop = &kqread_filtops;
   1466 	fdp = curlwp->l_fd;
   1467 	mutex_enter(&kq->kq_lock);
   1468 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
   1469 	mutex_exit(&kq->kq_lock);
   1470 
   1471 	return 0;
   1472 }
   1473 
   1474 
   1475 /*
   1476  * Walk down a list of knotes, activating them if their event has
   1477  * triggered.  The caller's object lock (e.g. device driver lock)
   1478  * must be held.
   1479  */
   1480 void
   1481 knote(struct klist *list, long hint)
   1482 {
   1483 	struct knote *kn, *tmpkn;
   1484 
   1485 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
   1486 		if ((*kn->kn_fop->f_event)(kn, hint))
   1487 			knote_activate(kn);
   1488 	}
   1489 }
   1490 
   1491 /*
   1492  * Remove all knotes referencing a specified fd
   1493  */
   1494 void
   1495 knote_fdclose(int fd)
   1496 {
   1497 	struct klist *list;
   1498 	struct knote *kn;
   1499 	filedesc_t *fdp;
   1500 
   1501 	fdp = curlwp->l_fd;
   1502 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
   1503 	mutex_enter(&fdp->fd_lock);
   1504 	while ((kn = SLIST_FIRST(list)) != NULL) {
   1505 		knote_detach(kn, fdp, true);
   1506 		mutex_enter(&fdp->fd_lock);
   1507 	}
   1508 	mutex_exit(&fdp->fd_lock);
   1509 }
   1510 
   1511 /*
   1512  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   1513  * returning.
   1514  */
   1515 static void
   1516 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   1517 {
   1518 	struct klist *list;
   1519 	struct kqueue *kq;
   1520 
   1521 	kq = kn->kn_kq;
   1522 
   1523 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1524 	KASSERT(mutex_owned(&fdp->fd_lock));
   1525 
   1526 	/* Remove from monitored object. */
   1527 	if (dofop) {
   1528 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1529 		(*kn->kn_fop->f_detach)(kn);
   1530 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1531 	}
   1532 
   1533 	/* Remove from descriptor table. */
   1534 	if (kn->kn_fop->f_isfd)
   1535 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   1536 	else
   1537 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1538 
   1539 	SLIST_REMOVE(list, kn, knote, kn_link);
   1540 
   1541 	/* Remove from kqueue. */
   1542 	/* XXXAD should verify not in use by kqueue_scan. */
   1543 	mutex_spin_enter(&kq->kq_lock);
   1544 	if ((kn->kn_status & KN_QUEUED) != 0) {
   1545 		kq_check(kq);
   1546 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1547 		kn->kn_status &= ~KN_QUEUED;
   1548 		kq->kq_count--;
   1549 		kq_check(kq);
   1550 	}
   1551 	mutex_spin_exit(&kq->kq_lock);
   1552 
   1553 	mutex_exit(&fdp->fd_lock);
   1554 	if (kn->kn_fop->f_isfd)
   1555 		fd_putfile(kn->kn_id);
   1556 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   1557 	kmem_free(kn, sizeof(*kn));
   1558 }
   1559 
   1560 /*
   1561  * Queue new event for knote.
   1562  */
   1563 static void
   1564 knote_enqueue(struct knote *kn)
   1565 {
   1566 	struct kqueue *kq;
   1567 
   1568 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1569 
   1570 	kq = kn->kn_kq;
   1571 
   1572 	mutex_spin_enter(&kq->kq_lock);
   1573 	if ((kn->kn_status & KN_DISABLED) != 0) {
   1574 		kn->kn_status &= ~KN_DISABLED;
   1575 	}
   1576 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   1577 		kq_check(kq);
   1578 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1579 		kn->kn_status |= KN_QUEUED;
   1580 		kq->kq_count++;
   1581 		kq_check(kq);
   1582 		cv_broadcast(&kq->kq_cv);
   1583 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1584 	}
   1585 	mutex_spin_exit(&kq->kq_lock);
   1586 }
   1587 /*
   1588  * Queue new event for knote.
   1589  */
   1590 static void
   1591 knote_activate(struct knote *kn)
   1592 {
   1593 	struct kqueue *kq;
   1594 
   1595 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1596 
   1597 	kq = kn->kn_kq;
   1598 
   1599 	mutex_spin_enter(&kq->kq_lock);
   1600 	kn->kn_status |= KN_ACTIVE;
   1601 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   1602 		kq_check(kq);
   1603 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1604 		kn->kn_status |= KN_QUEUED;
   1605 		kq->kq_count++;
   1606 		kq_check(kq);
   1607 		cv_broadcast(&kq->kq_cv);
   1608 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1609 	}
   1610 	mutex_spin_exit(&kq->kq_lock);
   1611 }
   1612