kern_event.c revision 1.72 1 /* $NetBSD: kern_event.c,v 1.72 2011/06/26 16:42:42 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.72 2011/06/26 16:42:42 christos Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/proc.h>
67 #include <sys/file.h>
68 #include <sys/select.h>
69 #include <sys/queue.h>
70 #include <sys/event.h>
71 #include <sys/eventvar.h>
72 #include <sys/poll.h>
73 #include <sys/kmem.h>
74 #include <sys/stat.h>
75 #include <sys/filedesc.h>
76 #include <sys/syscallargs.h>
77 #include <sys/kauth.h>
78 #include <sys/conf.h>
79 #include <sys/atomic.h>
80
81 static int kqueue_scan(file_t *, size_t, struct kevent *,
82 const struct timespec *, register_t *,
83 const struct kevent_ops *, struct kevent *,
84 size_t);
85 static int kqueue_ioctl(file_t *, u_long, void *);
86 static int kqueue_fcntl(file_t *, u_int, void *);
87 static int kqueue_poll(file_t *, int);
88 static int kqueue_kqfilter(file_t *, struct knote *);
89 static int kqueue_stat(file_t *, struct stat *);
90 static int kqueue_close(file_t *);
91 static int kqueue_register(struct kqueue *, struct kevent *);
92 static void kqueue_doclose(struct kqueue *, struct klist *, int);
93
94 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
95 static void knote_enqueue(struct knote *);
96 static void knote_activate(struct knote *);
97
98 static void filt_kqdetach(struct knote *);
99 static int filt_kqueue(struct knote *, long hint);
100 static int filt_procattach(struct knote *);
101 static void filt_procdetach(struct knote *);
102 static int filt_proc(struct knote *, long hint);
103 static int filt_fileattach(struct knote *);
104 static void filt_timerexpire(void *x);
105 static int filt_timerattach(struct knote *);
106 static void filt_timerdetach(struct knote *);
107 static int filt_timer(struct knote *, long hint);
108
109 static const struct fileops kqueueops = {
110 .fo_read = (void *)enxio,
111 .fo_write = (void *)enxio,
112 .fo_ioctl = kqueue_ioctl,
113 .fo_fcntl = kqueue_fcntl,
114 .fo_poll = kqueue_poll,
115 .fo_stat = kqueue_stat,
116 .fo_close = kqueue_close,
117 .fo_kqfilter = kqueue_kqfilter,
118 .fo_restart = fnullop_restart,
119 };
120
121 static const struct filterops kqread_filtops =
122 { 1, NULL, filt_kqdetach, filt_kqueue };
123 static const struct filterops proc_filtops =
124 { 0, filt_procattach, filt_procdetach, filt_proc };
125 static const struct filterops file_filtops =
126 { 1, filt_fileattach, NULL, NULL };
127 static const struct filterops timer_filtops =
128 { 0, filt_timerattach, filt_timerdetach, filt_timer };
129
130 static u_int kq_ncallouts = 0;
131 static int kq_calloutmax = (4 * 1024);
132
133 #define KN_HASHSIZE 64 /* XXX should be tunable */
134 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
135
136 extern const struct filterops sig_filtops;
137
138 /*
139 * Table for for all system-defined filters.
140 * These should be listed in the numeric order of the EVFILT_* defines.
141 * If filtops is NULL, the filter isn't implemented in NetBSD.
142 * End of list is when name is NULL.
143 *
144 * Note that 'refcnt' is meaningless for built-in filters.
145 */
146 struct kfilter {
147 const char *name; /* name of filter */
148 uint32_t filter; /* id of filter */
149 unsigned refcnt; /* reference count */
150 const struct filterops *filtops;/* operations for filter */
151 size_t namelen; /* length of name string */
152 };
153
154 /* System defined filters */
155 static struct kfilter sys_kfilters[] = {
156 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
157 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
158 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
159 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
160 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
161 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
162 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
163 { NULL, 0, 0, NULL, 0 },
164 };
165
166 /* User defined kfilters */
167 static struct kfilter *user_kfilters; /* array */
168 static int user_kfilterc; /* current offset */
169 static int user_kfiltermaxc; /* max size so far */
170 static size_t user_kfiltersz; /* size of allocated memory */
171
172 /* Locks */
173 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
174 static kmutex_t kqueue_misc_lock; /* miscellaneous */
175
176 static kauth_listener_t kqueue_listener;
177
178 static int
179 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
180 void *arg0, void *arg1, void *arg2, void *arg3)
181 {
182 struct proc *p;
183 int result;
184
185 result = KAUTH_RESULT_DEFER;
186 p = arg0;
187
188 if (action != KAUTH_PROCESS_KEVENT_FILTER)
189 return result;
190
191 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
192 ISSET(p->p_flag, PK_SUGID)))
193 return result;
194
195 result = KAUTH_RESULT_ALLOW;
196
197 return result;
198 }
199
200 /*
201 * Initialize the kqueue subsystem.
202 */
203 void
204 kqueue_init(void)
205 {
206
207 rw_init(&kqueue_filter_lock);
208 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
209
210 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
211 kqueue_listener_cb, NULL);
212 }
213
214 /*
215 * Find kfilter entry by name, or NULL if not found.
216 */
217 static struct kfilter *
218 kfilter_byname_sys(const char *name)
219 {
220 int i;
221
222 KASSERT(rw_lock_held(&kqueue_filter_lock));
223
224 for (i = 0; sys_kfilters[i].name != NULL; i++) {
225 if (strcmp(name, sys_kfilters[i].name) == 0)
226 return &sys_kfilters[i];
227 }
228 return NULL;
229 }
230
231 static struct kfilter *
232 kfilter_byname_user(const char *name)
233 {
234 int i;
235
236 KASSERT(rw_lock_held(&kqueue_filter_lock));
237
238 /* user filter slots have a NULL name if previously deregistered */
239 for (i = 0; i < user_kfilterc ; i++) {
240 if (user_kfilters[i].name != NULL &&
241 strcmp(name, user_kfilters[i].name) == 0)
242 return &user_kfilters[i];
243 }
244 return NULL;
245 }
246
247 static struct kfilter *
248 kfilter_byname(const char *name)
249 {
250 struct kfilter *kfilter;
251
252 KASSERT(rw_lock_held(&kqueue_filter_lock));
253
254 if ((kfilter = kfilter_byname_sys(name)) != NULL)
255 return kfilter;
256
257 return kfilter_byname_user(name);
258 }
259
260 /*
261 * Find kfilter entry by filter id, or NULL if not found.
262 * Assumes entries are indexed in filter id order, for speed.
263 */
264 static struct kfilter *
265 kfilter_byfilter(uint32_t filter)
266 {
267 struct kfilter *kfilter;
268
269 KASSERT(rw_lock_held(&kqueue_filter_lock));
270
271 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
272 kfilter = &sys_kfilters[filter];
273 else if (user_kfilters != NULL &&
274 filter < EVFILT_SYSCOUNT + user_kfilterc)
275 /* it's a user filter */
276 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
277 else
278 return (NULL); /* out of range */
279 KASSERT(kfilter->filter == filter); /* sanity check! */
280 return (kfilter);
281 }
282
283 /*
284 * Register a new kfilter. Stores the entry in user_kfilters.
285 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286 * If retfilter != NULL, the new filterid is returned in it.
287 */
288 int
289 kfilter_register(const char *name, const struct filterops *filtops,
290 int *retfilter)
291 {
292 struct kfilter *kfilter;
293 size_t len;
294 int i;
295
296 if (name == NULL || name[0] == '\0' || filtops == NULL)
297 return (EINVAL); /* invalid args */
298
299 rw_enter(&kqueue_filter_lock, RW_WRITER);
300 if (kfilter_byname(name) != NULL) {
301 rw_exit(&kqueue_filter_lock);
302 return (EEXIST); /* already exists */
303 }
304 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
305 rw_exit(&kqueue_filter_lock);
306 return (EINVAL); /* too many */
307 }
308
309 for (i = 0; i < user_kfilterc; i++) {
310 kfilter = &user_kfilters[i];
311 if (kfilter->name == NULL) {
312 /* Previously deregistered slot. Reuse. */
313 goto reuse;
314 }
315 }
316
317 /* check if need to grow user_kfilters */
318 if (user_kfilterc + 1 > user_kfiltermaxc) {
319 /* Grow in KFILTER_EXTENT chunks. */
320 user_kfiltermaxc += KFILTER_EXTENT;
321 len = user_kfiltermaxc * sizeof(*kfilter);
322 kfilter = kmem_alloc(len, KM_SLEEP);
323 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
324 if (user_kfilters != NULL) {
325 memcpy(kfilter, user_kfilters, user_kfiltersz);
326 kmem_free(user_kfilters, user_kfiltersz);
327 }
328 user_kfiltersz = len;
329 user_kfilters = kfilter;
330 }
331 /* Adding new slot */
332 kfilter = &user_kfilters[user_kfilterc++];
333 reuse:
334 kfilter->namelen = strlen(name) + 1;
335 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
336 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
337
338 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
339
340 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
341 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
342
343 if (retfilter != NULL)
344 *retfilter = kfilter->filter;
345 rw_exit(&kqueue_filter_lock);
346
347 return (0);
348 }
349
350 /*
351 * Unregister a kfilter previously registered with kfilter_register.
352 * This retains the filter id, but clears the name and frees filtops (filter
353 * operations), so that the number isn't reused during a boot.
354 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
355 */
356 int
357 kfilter_unregister(const char *name)
358 {
359 struct kfilter *kfilter;
360
361 if (name == NULL || name[0] == '\0')
362 return (EINVAL); /* invalid name */
363
364 rw_enter(&kqueue_filter_lock, RW_WRITER);
365 if (kfilter_byname_sys(name) != NULL) {
366 rw_exit(&kqueue_filter_lock);
367 return (EINVAL); /* can't detach system filters */
368 }
369
370 kfilter = kfilter_byname_user(name);
371 if (kfilter == NULL) {
372 rw_exit(&kqueue_filter_lock);
373 return (ENOENT);
374 }
375 if (kfilter->refcnt != 0) {
376 rw_exit(&kqueue_filter_lock);
377 return (EBUSY);
378 }
379
380 /* Cast away const (but we know it's safe. */
381 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
382 kfilter->name = NULL; /* mark as `not implemented' */
383
384 if (kfilter->filtops != NULL) {
385 /* Cast away const (but we know it's safe. */
386 kmem_free(__UNCONST(kfilter->filtops),
387 sizeof(*kfilter->filtops));
388 kfilter->filtops = NULL; /* mark as `not implemented' */
389 }
390 rw_exit(&kqueue_filter_lock);
391
392 return (0);
393 }
394
395
396 /*
397 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
398 * descriptors. Calls fileops kqfilter method for given file descriptor.
399 */
400 static int
401 filt_fileattach(struct knote *kn)
402 {
403 file_t *fp;
404
405 fp = kn->kn_obj;
406
407 return (*fp->f_ops->fo_kqfilter)(fp, kn);
408 }
409
410 /*
411 * Filter detach method for EVFILT_READ on kqueue descriptor.
412 */
413 static void
414 filt_kqdetach(struct knote *kn)
415 {
416 struct kqueue *kq;
417
418 kq = ((file_t *)kn->kn_obj)->f_data;
419
420 mutex_spin_enter(&kq->kq_lock);
421 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
422 mutex_spin_exit(&kq->kq_lock);
423 }
424
425 /*
426 * Filter event method for EVFILT_READ on kqueue descriptor.
427 */
428 /*ARGSUSED*/
429 static int
430 filt_kqueue(struct knote *kn, long hint)
431 {
432 struct kqueue *kq;
433 int rv;
434
435 kq = ((file_t *)kn->kn_obj)->f_data;
436
437 if (hint != NOTE_SUBMIT)
438 mutex_spin_enter(&kq->kq_lock);
439 kn->kn_data = kq->kq_count;
440 rv = (kn->kn_data > 0);
441 if (hint != NOTE_SUBMIT)
442 mutex_spin_exit(&kq->kq_lock);
443
444 return rv;
445 }
446
447 /*
448 * Filter attach method for EVFILT_PROC.
449 */
450 static int
451 filt_procattach(struct knote *kn)
452 {
453 struct proc *p, *curp;
454 struct lwp *curl;
455
456 curl = curlwp;
457 curp = curl->l_proc;
458
459 mutex_enter(proc_lock);
460 p = proc_find(kn->kn_id);
461 if (p == NULL) {
462 mutex_exit(proc_lock);
463 return ESRCH;
464 }
465
466 /*
467 * Fail if it's not owned by you, or the last exec gave us
468 * setuid/setgid privs (unless you're root).
469 */
470 mutex_enter(p->p_lock);
471 mutex_exit(proc_lock);
472 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
473 p, NULL, NULL, NULL) != 0) {
474 mutex_exit(p->p_lock);
475 return EACCES;
476 }
477
478 kn->kn_obj = p;
479 kn->kn_flags |= EV_CLEAR; /* automatically set */
480
481 /*
482 * internal flag indicating registration done by kernel
483 */
484 if (kn->kn_flags & EV_FLAG1) {
485 kn->kn_data = kn->kn_sdata; /* ppid */
486 kn->kn_fflags = NOTE_CHILD;
487 kn->kn_flags &= ~EV_FLAG1;
488 }
489 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
490 mutex_exit(p->p_lock);
491
492 return 0;
493 }
494
495 /*
496 * Filter detach method for EVFILT_PROC.
497 *
498 * The knote may be attached to a different process, which may exit,
499 * leaving nothing for the knote to be attached to. So when the process
500 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
501 * it will be deleted when read out. However, as part of the knote deletion,
502 * this routine is called, so a check is needed to avoid actually performing
503 * a detach, because the original process might not exist any more.
504 */
505 static void
506 filt_procdetach(struct knote *kn)
507 {
508 struct proc *p;
509
510 if (kn->kn_status & KN_DETACHED)
511 return;
512
513 p = kn->kn_obj;
514
515 mutex_enter(p->p_lock);
516 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
517 mutex_exit(p->p_lock);
518 }
519
520 /*
521 * Filter event method for EVFILT_PROC.
522 */
523 static int
524 filt_proc(struct knote *kn, long hint)
525 {
526 u_int event, fflag;
527 struct kevent kev;
528 struct kqueue *kq;
529 int error;
530
531 event = (u_int)hint & NOTE_PCTRLMASK;
532 kq = kn->kn_kq;
533 fflag = 0;
534
535 /* If the user is interested in this event, record it. */
536 if (kn->kn_sfflags & event)
537 fflag |= event;
538
539 if (event == NOTE_EXIT) {
540 /*
541 * Process is gone, so flag the event as finished.
542 *
543 * Detach the knote from watched process and mark
544 * it as such. We can't leave this to kqueue_scan(),
545 * since the process might not exist by then. And we
546 * have to do this now, since psignal KNOTE() is called
547 * also for zombies and we might end up reading freed
548 * memory if the kevent would already be picked up
549 * and knote g/c'ed.
550 */
551 filt_procdetach(kn);
552
553 mutex_spin_enter(&kq->kq_lock);
554 kn->kn_status |= KN_DETACHED;
555 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
556 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
557 kn->kn_fflags |= fflag;
558 mutex_spin_exit(&kq->kq_lock);
559
560 return 1;
561 }
562
563 mutex_spin_enter(&kq->kq_lock);
564 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
565 /*
566 * Process forked, and user wants to track the new process,
567 * so attach a new knote to it, and immediately report an
568 * event with the parent's pid. Register knote with new
569 * process.
570 */
571 kev.ident = hint & NOTE_PDATAMASK; /* pid */
572 kev.filter = kn->kn_filter;
573 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
574 kev.fflags = kn->kn_sfflags;
575 kev.data = kn->kn_id; /* parent */
576 kev.udata = kn->kn_kevent.udata; /* preserve udata */
577 mutex_spin_exit(&kq->kq_lock);
578 error = kqueue_register(kq, &kev);
579 mutex_spin_enter(&kq->kq_lock);
580 if (error != 0)
581 kn->kn_fflags |= NOTE_TRACKERR;
582 }
583 kn->kn_fflags |= fflag;
584 fflag = kn->kn_fflags;
585 mutex_spin_exit(&kq->kq_lock);
586
587 return fflag != 0;
588 }
589
590 static void
591 filt_timerexpire(void *knx)
592 {
593 struct knote *kn = knx;
594 int tticks;
595
596 mutex_enter(&kqueue_misc_lock);
597 kn->kn_data++;
598 knote_activate(kn);
599 if ((kn->kn_flags & EV_ONESHOT) == 0) {
600 tticks = mstohz(kn->kn_sdata);
601 callout_schedule((callout_t *)kn->kn_hook, tticks);
602 }
603 mutex_exit(&kqueue_misc_lock);
604 }
605
606 /*
607 * data contains amount of time to sleep, in milliseconds
608 */
609 static int
610 filt_timerattach(struct knote *kn)
611 {
612 callout_t *calloutp;
613 struct kqueue *kq;
614 int tticks;
615
616 tticks = mstohz(kn->kn_sdata);
617
618 /* if the supplied value is under our resolution, use 1 tick */
619 if (tticks == 0) {
620 if (kn->kn_sdata == 0)
621 return EINVAL;
622 tticks = 1;
623 }
624
625 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
626 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
627 atomic_dec_uint(&kq_ncallouts);
628 return ENOMEM;
629 }
630 callout_init(calloutp, CALLOUT_MPSAFE);
631
632 kq = kn->kn_kq;
633 mutex_spin_enter(&kq->kq_lock);
634 kn->kn_flags |= EV_CLEAR; /* automatically set */
635 kn->kn_hook = calloutp;
636 mutex_spin_exit(&kq->kq_lock);
637
638 callout_reset(calloutp, tticks, filt_timerexpire, kn);
639
640 return (0);
641 }
642
643 static void
644 filt_timerdetach(struct knote *kn)
645 {
646 callout_t *calloutp;
647
648 calloutp = (callout_t *)kn->kn_hook;
649 callout_halt(calloutp, NULL);
650 callout_destroy(calloutp);
651 kmem_free(calloutp, sizeof(*calloutp));
652 atomic_dec_uint(&kq_ncallouts);
653 }
654
655 static int
656 filt_timer(struct knote *kn, long hint)
657 {
658 int rv;
659
660 mutex_enter(&kqueue_misc_lock);
661 rv = (kn->kn_data != 0);
662 mutex_exit(&kqueue_misc_lock);
663
664 return rv;
665 }
666
667 /*
668 * filt_seltrue:
669 *
670 * This filter "event" routine simulates seltrue().
671 */
672 int
673 filt_seltrue(struct knote *kn, long hint)
674 {
675
676 /*
677 * We don't know how much data can be read/written,
678 * but we know that it *can* be. This is about as
679 * good as select/poll does as well.
680 */
681 kn->kn_data = 0;
682 return (1);
683 }
684
685 /*
686 * This provides full kqfilter entry for device switch tables, which
687 * has same effect as filter using filt_seltrue() as filter method.
688 */
689 static void
690 filt_seltruedetach(struct knote *kn)
691 {
692 /* Nothing to do */
693 }
694
695 const struct filterops seltrue_filtops =
696 { 1, NULL, filt_seltruedetach, filt_seltrue };
697
698 int
699 seltrue_kqfilter(dev_t dev, struct knote *kn)
700 {
701 switch (kn->kn_filter) {
702 case EVFILT_READ:
703 case EVFILT_WRITE:
704 kn->kn_fop = &seltrue_filtops;
705 break;
706 default:
707 return (EINVAL);
708 }
709
710 /* Nothing more to do */
711 return (0);
712 }
713
714 /*
715 * kqueue(2) system call.
716 */
717 static int
718 kqueue1(struct lwp *l, int flags, register_t *retval)
719 {
720 struct kqueue *kq;
721 file_t *fp;
722 int fd, error;
723
724 if ((error = fd_allocfile(&fp, &fd)) != 0)
725 return error;
726 fp->f_flag = FREAD | FWRITE | (flags & FNONBLOCK);
727 fp->f_type = DTYPE_KQUEUE;
728 fp->f_ops = &kqueueops;
729 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
730 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
731 cv_init(&kq->kq_cv, "kqueue");
732 selinit(&kq->kq_sel);
733 TAILQ_INIT(&kq->kq_head);
734 fp->f_data = kq;
735 *retval = fd;
736 kq->kq_fdp = curlwp->l_fd;
737 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
738 fd_affix(curproc, fp, fd);
739 return error;
740 }
741
742 /*
743 * kqueue(2) system call.
744 */
745 int
746 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
747 {
748 return kqueue1(l, 0, retval);
749 }
750
751 int
752 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
753 register_t *retval)
754 {
755 /* {
756 syscallarg(int) flags;
757 } */
758 return kqueue1(l, SCARG(uap, flags), retval);
759 }
760
761 /*
762 * kevent(2) system call.
763 */
764 int
765 kevent_fetch_changes(void *private, const struct kevent *changelist,
766 struct kevent *changes, size_t index, int n)
767 {
768
769 return copyin(changelist + index, changes, n * sizeof(*changes));
770 }
771
772 int
773 kevent_put_events(void *private, struct kevent *events,
774 struct kevent *eventlist, size_t index, int n)
775 {
776
777 return copyout(events, eventlist + index, n * sizeof(*events));
778 }
779
780 static const struct kevent_ops kevent_native_ops = {
781 .keo_private = NULL,
782 .keo_fetch_timeout = copyin,
783 .keo_fetch_changes = kevent_fetch_changes,
784 .keo_put_events = kevent_put_events,
785 };
786
787 int
788 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
789 register_t *retval)
790 {
791 /* {
792 syscallarg(int) fd;
793 syscallarg(const struct kevent *) changelist;
794 syscallarg(size_t) nchanges;
795 syscallarg(struct kevent *) eventlist;
796 syscallarg(size_t) nevents;
797 syscallarg(const struct timespec *) timeout;
798 } */
799
800 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
801 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
802 SCARG(uap, timeout), &kevent_native_ops);
803 }
804
805 int
806 kevent1(register_t *retval, int fd,
807 const struct kevent *changelist, size_t nchanges,
808 struct kevent *eventlist, size_t nevents,
809 const struct timespec *timeout,
810 const struct kevent_ops *keops)
811 {
812 struct kevent *kevp;
813 struct kqueue *kq;
814 struct timespec ts;
815 size_t i, n, ichange;
816 int nerrors, error;
817 struct kevent kevbuf[8]; /* approx 300 bytes on 64-bit */
818 file_t *fp;
819
820 /* check that we're dealing with a kq */
821 fp = fd_getfile(fd);
822 if (fp == NULL)
823 return (EBADF);
824
825 if (fp->f_type != DTYPE_KQUEUE) {
826 fd_putfile(fd);
827 return (EBADF);
828 }
829
830 if (timeout != NULL) {
831 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
832 if (error)
833 goto done;
834 timeout = &ts;
835 }
836
837 kq = (struct kqueue *)fp->f_data;
838 nerrors = 0;
839 ichange = 0;
840
841 /* traverse list of events to register */
842 while (nchanges > 0) {
843 n = MIN(nchanges, __arraycount(kevbuf));
844 error = (*keops->keo_fetch_changes)(keops->keo_private,
845 changelist, kevbuf, ichange, n);
846 if (error)
847 goto done;
848 for (i = 0; i < n; i++) {
849 kevp = &kevbuf[i];
850 kevp->flags &= ~EV_SYSFLAGS;
851 /* register each knote */
852 error = kqueue_register(kq, kevp);
853 if (error) {
854 if (nevents != 0) {
855 kevp->flags = EV_ERROR;
856 kevp->data = error;
857 error = (*keops->keo_put_events)
858 (keops->keo_private, kevp,
859 eventlist, nerrors, 1);
860 if (error)
861 goto done;
862 nevents--;
863 nerrors++;
864 } else {
865 goto done;
866 }
867 }
868 }
869 nchanges -= n; /* update the results */
870 ichange += n;
871 }
872 if (nerrors) {
873 *retval = nerrors;
874 error = 0;
875 goto done;
876 }
877
878 /* actually scan through the events */
879 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
880 kevbuf, __arraycount(kevbuf));
881 done:
882 fd_putfile(fd);
883 return (error);
884 }
885
886 /*
887 * Register a given kevent kev onto the kqueue
888 */
889 static int
890 kqueue_register(struct kqueue *kq, struct kevent *kev)
891 {
892 struct kfilter *kfilter;
893 filedesc_t *fdp;
894 file_t *fp;
895 fdfile_t *ff;
896 struct knote *kn, *newkn;
897 struct klist *list;
898 int error, fd, rv;
899
900 fdp = kq->kq_fdp;
901 fp = NULL;
902 kn = NULL;
903 error = 0;
904 fd = 0;
905
906 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
907
908 rw_enter(&kqueue_filter_lock, RW_READER);
909 kfilter = kfilter_byfilter(kev->filter);
910 if (kfilter == NULL || kfilter->filtops == NULL) {
911 /* filter not found nor implemented */
912 rw_exit(&kqueue_filter_lock);
913 kmem_free(newkn, sizeof(*newkn));
914 return (EINVAL);
915 }
916
917 mutex_enter(&fdp->fd_lock);
918
919 /* search if knote already exists */
920 if (kfilter->filtops->f_isfd) {
921 /* monitoring a file descriptor */
922 fd = kev->ident;
923 if ((fp = fd_getfile(fd)) == NULL) {
924 mutex_exit(&fdp->fd_lock);
925 rw_exit(&kqueue_filter_lock);
926 kmem_free(newkn, sizeof(*newkn));
927 return EBADF;
928 }
929 ff = fdp->fd_dt->dt_ff[fd];
930 if (fd <= fdp->fd_lastkqfile) {
931 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
932 if (kq == kn->kn_kq &&
933 kev->filter == kn->kn_filter)
934 break;
935 }
936 }
937 } else {
938 /*
939 * not monitoring a file descriptor, so
940 * lookup knotes in internal hash table
941 */
942 if (fdp->fd_knhashmask != 0) {
943 list = &fdp->fd_knhash[
944 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
945 SLIST_FOREACH(kn, list, kn_link) {
946 if (kev->ident == kn->kn_id &&
947 kq == kn->kn_kq &&
948 kev->filter == kn->kn_filter)
949 break;
950 }
951 }
952 }
953
954 /*
955 * kn now contains the matching knote, or NULL if no match
956 */
957 if (kev->flags & EV_ADD) {
958 if (kn == NULL) {
959 /* create new knote */
960 kn = newkn;
961 newkn = NULL;
962 kn->kn_obj = fp;
963 kn->kn_kq = kq;
964 kn->kn_fop = kfilter->filtops;
965 kn->kn_kfilter = kfilter;
966 kn->kn_sfflags = kev->fflags;
967 kn->kn_sdata = kev->data;
968 kev->fflags = 0;
969 kev->data = 0;
970 kn->kn_kevent = *kev;
971
972 /*
973 * apply reference count to knote structure, and
974 * do not release it at the end of this routine.
975 */
976 fp = NULL;
977
978 if (!kn->kn_fop->f_isfd) {
979 /*
980 * If knote is not on an fd, store on
981 * internal hash table.
982 */
983 if (fdp->fd_knhashmask == 0) {
984 /* XXXAD can block with fd_lock held */
985 fdp->fd_knhash = hashinit(KN_HASHSIZE,
986 HASH_LIST, true,
987 &fdp->fd_knhashmask);
988 }
989 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
990 fdp->fd_knhashmask)];
991 } else {
992 /* Otherwise, knote is on an fd. */
993 list = (struct klist *)
994 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
995 if ((int)kn->kn_id > fdp->fd_lastkqfile)
996 fdp->fd_lastkqfile = kn->kn_id;
997 }
998 SLIST_INSERT_HEAD(list, kn, kn_link);
999
1000 KERNEL_LOCK(1, NULL); /* XXXSMP */
1001 error = (*kfilter->filtops->f_attach)(kn);
1002 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1003 if (error != 0) {
1004 /* knote_detach() drops fdp->fd_lock */
1005 knote_detach(kn, fdp, false);
1006 goto done;
1007 }
1008 atomic_inc_uint(&kfilter->refcnt);
1009 } else {
1010 /*
1011 * The user may change some filter values after the
1012 * initial EV_ADD, but doing so will not reset any
1013 * filter which have already been triggered.
1014 */
1015 kn->kn_sfflags = kev->fflags;
1016 kn->kn_sdata = kev->data;
1017 kn->kn_kevent.udata = kev->udata;
1018 }
1019 KERNEL_LOCK(1, NULL); /* XXXSMP */
1020 rv = (*kn->kn_fop->f_event)(kn, 0);
1021 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1022 if (rv)
1023 knote_activate(kn);
1024 } else {
1025 if (kn == NULL) {
1026 error = ENOENT;
1027 mutex_exit(&fdp->fd_lock);
1028 goto done;
1029 }
1030 if (kev->flags & EV_DELETE) {
1031 /* knote_detach() drops fdp->fd_lock */
1032 knote_detach(kn, fdp, true);
1033 goto done;
1034 }
1035 }
1036
1037 /* disable knote */
1038 if ((kev->flags & EV_DISABLE)) {
1039 mutex_spin_enter(&kq->kq_lock);
1040 if ((kn->kn_status & KN_DISABLED) == 0)
1041 kn->kn_status |= KN_DISABLED;
1042 mutex_spin_exit(&kq->kq_lock);
1043 }
1044
1045 /* enable knote */
1046 if ((kev->flags & EV_ENABLE)) {
1047 knote_enqueue(kn);
1048 }
1049 mutex_exit(&fdp->fd_lock);
1050 done:
1051 rw_exit(&kqueue_filter_lock);
1052 if (newkn != NULL)
1053 kmem_free(newkn, sizeof(*newkn));
1054 if (fp != NULL)
1055 fd_putfile(fd);
1056 return (error);
1057 }
1058
1059 #if defined(DEBUG)
1060 static void
1061 kq_check(struct kqueue *kq)
1062 {
1063 const struct knote *kn;
1064 int count;
1065 int nmarker;
1066
1067 KASSERT(mutex_owned(&kq->kq_lock));
1068 KASSERT(kq->kq_count >= 0);
1069
1070 count = 0;
1071 nmarker = 0;
1072 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1073 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1074 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1075 }
1076 if ((kn->kn_status & KN_MARKER) == 0) {
1077 if (kn->kn_kq != kq) {
1078 panic("%s: kq=%p kn=%p inconsist 2",
1079 __func__, kq, kn);
1080 }
1081 if ((kn->kn_status & KN_ACTIVE) == 0) {
1082 panic("%s: kq=%p kn=%p: not active",
1083 __func__, kq, kn);
1084 }
1085 count++;
1086 if (count > kq->kq_count) {
1087 goto bad;
1088 }
1089 } else {
1090 nmarker++;
1091 #if 0
1092 if (nmarker > 10000) {
1093 panic("%s: kq=%p too many markers: %d != %d, "
1094 "nmarker=%d",
1095 __func__, kq, kq->kq_count, count, nmarker);
1096 }
1097 #endif
1098 }
1099 }
1100 if (kq->kq_count != count) {
1101 bad:
1102 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1103 __func__, kq, kq->kq_count, count, nmarker);
1104 }
1105 }
1106 #else /* defined(DEBUG) */
1107 #define kq_check(a) /* nothing */
1108 #endif /* defined(DEBUG) */
1109
1110 /*
1111 * Scan through the list of events on fp (for a maximum of maxevents),
1112 * returning the results in to ulistp. Timeout is determined by tsp; if
1113 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1114 * as appropriate.
1115 */
1116 static int
1117 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1118 const struct timespec *tsp, register_t *retval,
1119 const struct kevent_ops *keops, struct kevent *kevbuf,
1120 size_t kevcnt)
1121 {
1122 struct kqueue *kq;
1123 struct kevent *kevp;
1124 struct timespec ats, sleepts;
1125 struct knote *kn, *marker;
1126 size_t count, nkev, nevents;
1127 int timeout, error, rv;
1128 filedesc_t *fdp;
1129
1130 fdp = curlwp->l_fd;
1131 kq = fp->f_data;
1132 count = maxevents;
1133 nkev = nevents = error = 0;
1134 if (count == 0) {
1135 *retval = 0;
1136 return 0;
1137 }
1138
1139 if (tsp) { /* timeout supplied */
1140 ats = *tsp;
1141 if (inittimeleft(&ats, &sleepts) == -1) {
1142 *retval = maxevents;
1143 return EINVAL;
1144 }
1145 timeout = tstohz(&ats);
1146 if (timeout <= 0)
1147 timeout = -1; /* do poll */
1148 } else {
1149 /* no timeout, wait forever */
1150 timeout = 0;
1151 }
1152
1153 marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1154 marker->kn_status = KN_MARKER;
1155 mutex_spin_enter(&kq->kq_lock);
1156 retry:
1157 kevp = kevbuf;
1158 if (kq->kq_count == 0) {
1159 if (timeout >= 0) {
1160 error = cv_timedwait_sig(&kq->kq_cv,
1161 &kq->kq_lock, timeout);
1162 if (error == 0) {
1163 if (tsp == NULL || (timeout =
1164 gettimeleft(&ats, &sleepts)) > 0)
1165 goto retry;
1166 } else {
1167 /* don't restart after signals... */
1168 if (error == ERESTART)
1169 error = EINTR;
1170 if (error == EWOULDBLOCK)
1171 error = 0;
1172 }
1173 }
1174 } else {
1175 /* mark end of knote list */
1176 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1177
1178 while (count != 0) {
1179 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1180 while ((kn->kn_status & KN_MARKER) != 0) {
1181 if (kn == marker) {
1182 /* it's our marker, stop */
1183 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1184 if (count < maxevents || (tsp != NULL &&
1185 (timeout = gettimeleft(&ats,
1186 &sleepts)) <= 0))
1187 goto done;
1188 goto retry;
1189 }
1190 /* someone else's marker. */
1191 kn = TAILQ_NEXT(kn, kn_tqe);
1192 }
1193 kq_check(kq);
1194 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1195 kq->kq_count--;
1196 kn->kn_status &= ~KN_QUEUED;
1197 kq_check(kq);
1198 if (kn->kn_status & KN_DISABLED) {
1199 /* don't want disabled events */
1200 continue;
1201 }
1202 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1203 mutex_spin_exit(&kq->kq_lock);
1204 KERNEL_LOCK(1, NULL); /* XXXSMP */
1205 rv = (*kn->kn_fop->f_event)(kn, 0);
1206 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1207 mutex_spin_enter(&kq->kq_lock);
1208 /* Re-poll if note was re-enqueued. */
1209 if ((kn->kn_status & KN_QUEUED) != 0)
1210 continue;
1211 if (rv == 0) {
1212 /*
1213 * non-ONESHOT event that hasn't
1214 * triggered again, so de-queue.
1215 */
1216 kn->kn_status &= ~KN_ACTIVE;
1217 continue;
1218 }
1219 }
1220 /* XXXAD should be got from f_event if !oneshot. */
1221 *kevp++ = kn->kn_kevent;
1222 nkev++;
1223 if (kn->kn_flags & EV_ONESHOT) {
1224 /* delete ONESHOT events after retrieval */
1225 mutex_spin_exit(&kq->kq_lock);
1226 mutex_enter(&fdp->fd_lock);
1227 knote_detach(kn, fdp, true);
1228 mutex_spin_enter(&kq->kq_lock);
1229 } else if (kn->kn_flags & EV_CLEAR) {
1230 /* clear state after retrieval */
1231 kn->kn_data = 0;
1232 kn->kn_fflags = 0;
1233 kn->kn_status &= ~KN_ACTIVE;
1234 } else {
1235 /* add event back on list */
1236 kq_check(kq);
1237 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1238 kq->kq_count++;
1239 kn->kn_status |= KN_QUEUED;
1240 kq_check(kq);
1241 }
1242 if (nkev == kevcnt) {
1243 /* do copyouts in kevcnt chunks */
1244 mutex_spin_exit(&kq->kq_lock);
1245 error = (*keops->keo_put_events)
1246 (keops->keo_private,
1247 kevbuf, ulistp, nevents, nkev);
1248 mutex_spin_enter(&kq->kq_lock);
1249 nevents += nkev;
1250 nkev = 0;
1251 kevp = kevbuf;
1252 }
1253 count--;
1254 if (error != 0 || count == 0) {
1255 /* remove marker */
1256 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1257 break;
1258 }
1259 }
1260 }
1261 done:
1262 mutex_spin_exit(&kq->kq_lock);
1263 if (marker != NULL)
1264 kmem_free(marker, sizeof(*marker));
1265 if (nkev != 0) {
1266 /* copyout remaining events */
1267 error = (*keops->keo_put_events)(keops->keo_private,
1268 kevbuf, ulistp, nevents, nkev);
1269 }
1270 *retval = maxevents - count;
1271
1272 return error;
1273 }
1274
1275 /*
1276 * fileops ioctl method for a kqueue descriptor.
1277 *
1278 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1279 * KFILTER_BYNAME find name for filter, and return result in
1280 * name, which is of size len.
1281 * KFILTER_BYFILTER find filter for name. len is ignored.
1282 */
1283 /*ARGSUSED*/
1284 static int
1285 kqueue_ioctl(file_t *fp, u_long com, void *data)
1286 {
1287 struct kfilter_mapping *km;
1288 const struct kfilter *kfilter;
1289 char *name;
1290 int error;
1291
1292 km = data;
1293 error = 0;
1294 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1295
1296 switch (com) {
1297 case KFILTER_BYFILTER: /* convert filter -> name */
1298 rw_enter(&kqueue_filter_lock, RW_READER);
1299 kfilter = kfilter_byfilter(km->filter);
1300 if (kfilter != NULL) {
1301 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1302 rw_exit(&kqueue_filter_lock);
1303 error = copyoutstr(name, km->name, km->len, NULL);
1304 } else {
1305 rw_exit(&kqueue_filter_lock);
1306 error = ENOENT;
1307 }
1308 break;
1309
1310 case KFILTER_BYNAME: /* convert name -> filter */
1311 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1312 if (error) {
1313 break;
1314 }
1315 rw_enter(&kqueue_filter_lock, RW_READER);
1316 kfilter = kfilter_byname(name);
1317 if (kfilter != NULL)
1318 km->filter = kfilter->filter;
1319 else
1320 error = ENOENT;
1321 rw_exit(&kqueue_filter_lock);
1322 break;
1323
1324 default:
1325 error = ENOTTY;
1326 break;
1327
1328 }
1329 kmem_free(name, KFILTER_MAXNAME);
1330 return (error);
1331 }
1332
1333 /*
1334 * fileops fcntl method for a kqueue descriptor.
1335 */
1336 static int
1337 kqueue_fcntl(file_t *fp, u_int com, void *data)
1338 {
1339
1340 return (ENOTTY);
1341 }
1342
1343 /*
1344 * fileops poll method for a kqueue descriptor.
1345 * Determine if kqueue has events pending.
1346 */
1347 static int
1348 kqueue_poll(file_t *fp, int events)
1349 {
1350 struct kqueue *kq;
1351 int revents;
1352
1353 kq = fp->f_data;
1354
1355 revents = 0;
1356 if (events & (POLLIN | POLLRDNORM)) {
1357 mutex_spin_enter(&kq->kq_lock);
1358 if (kq->kq_count != 0) {
1359 revents |= events & (POLLIN | POLLRDNORM);
1360 } else {
1361 selrecord(curlwp, &kq->kq_sel);
1362 }
1363 kq_check(kq);
1364 mutex_spin_exit(&kq->kq_lock);
1365 }
1366
1367 return revents;
1368 }
1369
1370 /*
1371 * fileops stat method for a kqueue descriptor.
1372 * Returns dummy info, with st_size being number of events pending.
1373 */
1374 static int
1375 kqueue_stat(file_t *fp, struct stat *st)
1376 {
1377 struct kqueue *kq;
1378
1379 kq = fp->f_data;
1380
1381 memset(st, 0, sizeof(*st));
1382 st->st_size = kq->kq_count;
1383 st->st_blksize = sizeof(struct kevent);
1384 st->st_mode = S_IFIFO;
1385
1386 return 0;
1387 }
1388
1389 static void
1390 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1391 {
1392 struct knote *kn;
1393 filedesc_t *fdp;
1394
1395 fdp = kq->kq_fdp;
1396
1397 KASSERT(mutex_owned(&fdp->fd_lock));
1398
1399 for (kn = SLIST_FIRST(list); kn != NULL;) {
1400 if (kq != kn->kn_kq) {
1401 kn = SLIST_NEXT(kn, kn_link);
1402 continue;
1403 }
1404 knote_detach(kn, fdp, true);
1405 mutex_enter(&fdp->fd_lock);
1406 kn = SLIST_FIRST(list);
1407 }
1408 }
1409
1410
1411 /*
1412 * fileops close method for a kqueue descriptor.
1413 */
1414 static int
1415 kqueue_close(file_t *fp)
1416 {
1417 struct kqueue *kq;
1418 filedesc_t *fdp;
1419 fdfile_t *ff;
1420 int i;
1421
1422 kq = fp->f_data;
1423 fdp = curlwp->l_fd;
1424
1425 mutex_enter(&fdp->fd_lock);
1426 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1427 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1428 continue;
1429 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1430 }
1431 if (fdp->fd_knhashmask != 0) {
1432 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1433 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1434 }
1435 }
1436 mutex_exit(&fdp->fd_lock);
1437
1438 KASSERT(kq->kq_count == 0);
1439 mutex_destroy(&kq->kq_lock);
1440 cv_destroy(&kq->kq_cv);
1441 seldestroy(&kq->kq_sel);
1442 kmem_free(kq, sizeof(*kq));
1443 fp->f_data = NULL;
1444
1445 return (0);
1446 }
1447
1448 /*
1449 * struct fileops kqfilter method for a kqueue descriptor.
1450 * Event triggered when monitored kqueue changes.
1451 */
1452 static int
1453 kqueue_kqfilter(file_t *fp, struct knote *kn)
1454 {
1455 struct kqueue *kq;
1456 filedesc_t *fdp;
1457
1458 kq = ((file_t *)kn->kn_obj)->f_data;
1459
1460 KASSERT(fp == kn->kn_obj);
1461
1462 if (kn->kn_filter != EVFILT_READ)
1463 return 1;
1464
1465 kn->kn_fop = &kqread_filtops;
1466 fdp = curlwp->l_fd;
1467 mutex_enter(&kq->kq_lock);
1468 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1469 mutex_exit(&kq->kq_lock);
1470
1471 return 0;
1472 }
1473
1474
1475 /*
1476 * Walk down a list of knotes, activating them if their event has
1477 * triggered. The caller's object lock (e.g. device driver lock)
1478 * must be held.
1479 */
1480 void
1481 knote(struct klist *list, long hint)
1482 {
1483 struct knote *kn, *tmpkn;
1484
1485 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1486 if ((*kn->kn_fop->f_event)(kn, hint))
1487 knote_activate(kn);
1488 }
1489 }
1490
1491 /*
1492 * Remove all knotes referencing a specified fd
1493 */
1494 void
1495 knote_fdclose(int fd)
1496 {
1497 struct klist *list;
1498 struct knote *kn;
1499 filedesc_t *fdp;
1500
1501 fdp = curlwp->l_fd;
1502 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1503 mutex_enter(&fdp->fd_lock);
1504 while ((kn = SLIST_FIRST(list)) != NULL) {
1505 knote_detach(kn, fdp, true);
1506 mutex_enter(&fdp->fd_lock);
1507 }
1508 mutex_exit(&fdp->fd_lock);
1509 }
1510
1511 /*
1512 * Drop knote. Called with fdp->fd_lock held, and will drop before
1513 * returning.
1514 */
1515 static void
1516 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1517 {
1518 struct klist *list;
1519 struct kqueue *kq;
1520
1521 kq = kn->kn_kq;
1522
1523 KASSERT((kn->kn_status & KN_MARKER) == 0);
1524 KASSERT(mutex_owned(&fdp->fd_lock));
1525
1526 /* Remove from monitored object. */
1527 if (dofop) {
1528 KERNEL_LOCK(1, NULL); /* XXXSMP */
1529 (*kn->kn_fop->f_detach)(kn);
1530 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1531 }
1532
1533 /* Remove from descriptor table. */
1534 if (kn->kn_fop->f_isfd)
1535 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1536 else
1537 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1538
1539 SLIST_REMOVE(list, kn, knote, kn_link);
1540
1541 /* Remove from kqueue. */
1542 /* XXXAD should verify not in use by kqueue_scan. */
1543 mutex_spin_enter(&kq->kq_lock);
1544 if ((kn->kn_status & KN_QUEUED) != 0) {
1545 kq_check(kq);
1546 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1547 kn->kn_status &= ~KN_QUEUED;
1548 kq->kq_count--;
1549 kq_check(kq);
1550 }
1551 mutex_spin_exit(&kq->kq_lock);
1552
1553 mutex_exit(&fdp->fd_lock);
1554 if (kn->kn_fop->f_isfd)
1555 fd_putfile(kn->kn_id);
1556 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1557 kmem_free(kn, sizeof(*kn));
1558 }
1559
1560 /*
1561 * Queue new event for knote.
1562 */
1563 static void
1564 knote_enqueue(struct knote *kn)
1565 {
1566 struct kqueue *kq;
1567
1568 KASSERT((kn->kn_status & KN_MARKER) == 0);
1569
1570 kq = kn->kn_kq;
1571
1572 mutex_spin_enter(&kq->kq_lock);
1573 if ((kn->kn_status & KN_DISABLED) != 0) {
1574 kn->kn_status &= ~KN_DISABLED;
1575 }
1576 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1577 kq_check(kq);
1578 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1579 kn->kn_status |= KN_QUEUED;
1580 kq->kq_count++;
1581 kq_check(kq);
1582 cv_broadcast(&kq->kq_cv);
1583 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1584 }
1585 mutex_spin_exit(&kq->kq_lock);
1586 }
1587 /*
1588 * Queue new event for knote.
1589 */
1590 static void
1591 knote_activate(struct knote *kn)
1592 {
1593 struct kqueue *kq;
1594
1595 KASSERT((kn->kn_status & KN_MARKER) == 0);
1596
1597 kq = kn->kn_kq;
1598
1599 mutex_spin_enter(&kq->kq_lock);
1600 kn->kn_status |= KN_ACTIVE;
1601 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1602 kq_check(kq);
1603 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1604 kn->kn_status |= KN_QUEUED;
1605 kq->kq_count++;
1606 kq_check(kq);
1607 cv_broadcast(&kq->kq_cv);
1608 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1609 }
1610 mutex_spin_exit(&kq->kq_lock);
1611 }
1612