kern_event.c revision 1.73 1 /* $NetBSD: kern_event.c,v 1.73 2011/11/17 01:19:37 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.73 2011/11/17 01:19:37 christos Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/proc.h>
67 #include <sys/file.h>
68 #include <sys/select.h>
69 #include <sys/queue.h>
70 #include <sys/event.h>
71 #include <sys/eventvar.h>
72 #include <sys/poll.h>
73 #include <sys/kmem.h>
74 #include <sys/stat.h>
75 #include <sys/filedesc.h>
76 #include <sys/syscallargs.h>
77 #include <sys/kauth.h>
78 #include <sys/conf.h>
79 #include <sys/atomic.h>
80
81 static int kqueue_scan(file_t *, size_t, struct kevent *,
82 const struct timespec *, register_t *,
83 const struct kevent_ops *, struct kevent *,
84 size_t);
85 static int kqueue_ioctl(file_t *, u_long, void *);
86 static int kqueue_fcntl(file_t *, u_int, void *);
87 static int kqueue_poll(file_t *, int);
88 static int kqueue_kqfilter(file_t *, struct knote *);
89 static int kqueue_stat(file_t *, struct stat *);
90 static int kqueue_close(file_t *);
91 static int kqueue_register(struct kqueue *, struct kevent *);
92 static void kqueue_doclose(struct kqueue *, struct klist *, int);
93
94 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
95 static void knote_enqueue(struct knote *);
96 static void knote_activate(struct knote *);
97
98 static void filt_kqdetach(struct knote *);
99 static int filt_kqueue(struct knote *, long hint);
100 static int filt_procattach(struct knote *);
101 static void filt_procdetach(struct knote *);
102 static int filt_proc(struct knote *, long hint);
103 static int filt_fileattach(struct knote *);
104 static void filt_timerexpire(void *x);
105 static int filt_timerattach(struct knote *);
106 static void filt_timerdetach(struct knote *);
107 static int filt_timer(struct knote *, long hint);
108
109 static const struct fileops kqueueops = {
110 .fo_read = (void *)enxio,
111 .fo_write = (void *)enxio,
112 .fo_ioctl = kqueue_ioctl,
113 .fo_fcntl = kqueue_fcntl,
114 .fo_poll = kqueue_poll,
115 .fo_stat = kqueue_stat,
116 .fo_close = kqueue_close,
117 .fo_kqfilter = kqueue_kqfilter,
118 .fo_restart = fnullop_restart,
119 };
120
121 static const struct filterops kqread_filtops =
122 { 1, NULL, filt_kqdetach, filt_kqueue };
123 static const struct filterops proc_filtops =
124 { 0, filt_procattach, filt_procdetach, filt_proc };
125 static const struct filterops file_filtops =
126 { 1, filt_fileattach, NULL, NULL };
127 static const struct filterops timer_filtops =
128 { 0, filt_timerattach, filt_timerdetach, filt_timer };
129
130 static u_int kq_ncallouts = 0;
131 static int kq_calloutmax = (4 * 1024);
132
133 #define KN_HASHSIZE 64 /* XXX should be tunable */
134 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
135
136 extern const struct filterops sig_filtops;
137
138 /*
139 * Table for for all system-defined filters.
140 * These should be listed in the numeric order of the EVFILT_* defines.
141 * If filtops is NULL, the filter isn't implemented in NetBSD.
142 * End of list is when name is NULL.
143 *
144 * Note that 'refcnt' is meaningless for built-in filters.
145 */
146 struct kfilter {
147 const char *name; /* name of filter */
148 uint32_t filter; /* id of filter */
149 unsigned refcnt; /* reference count */
150 const struct filterops *filtops;/* operations for filter */
151 size_t namelen; /* length of name string */
152 };
153
154 /* System defined filters */
155 static struct kfilter sys_kfilters[] = {
156 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
157 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
158 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
159 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
160 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
161 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
162 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
163 { NULL, 0, 0, NULL, 0 },
164 };
165
166 /* User defined kfilters */
167 static struct kfilter *user_kfilters; /* array */
168 static int user_kfilterc; /* current offset */
169 static int user_kfiltermaxc; /* max size so far */
170 static size_t user_kfiltersz; /* size of allocated memory */
171
172 /* Locks */
173 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
174 static kmutex_t kqueue_misc_lock; /* miscellaneous */
175
176 static kauth_listener_t kqueue_listener;
177
178 static int
179 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
180 void *arg0, void *arg1, void *arg2, void *arg3)
181 {
182 struct proc *p;
183 int result;
184
185 result = KAUTH_RESULT_DEFER;
186 p = arg0;
187
188 if (action != KAUTH_PROCESS_KEVENT_FILTER)
189 return result;
190
191 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
192 ISSET(p->p_flag, PK_SUGID)))
193 return result;
194
195 result = KAUTH_RESULT_ALLOW;
196
197 return result;
198 }
199
200 /*
201 * Initialize the kqueue subsystem.
202 */
203 void
204 kqueue_init(void)
205 {
206
207 rw_init(&kqueue_filter_lock);
208 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
209
210 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
211 kqueue_listener_cb, NULL);
212 }
213
214 /*
215 * Find kfilter entry by name, or NULL if not found.
216 */
217 static struct kfilter *
218 kfilter_byname_sys(const char *name)
219 {
220 int i;
221
222 KASSERT(rw_lock_held(&kqueue_filter_lock));
223
224 for (i = 0; sys_kfilters[i].name != NULL; i++) {
225 if (strcmp(name, sys_kfilters[i].name) == 0)
226 return &sys_kfilters[i];
227 }
228 return NULL;
229 }
230
231 static struct kfilter *
232 kfilter_byname_user(const char *name)
233 {
234 int i;
235
236 KASSERT(rw_lock_held(&kqueue_filter_lock));
237
238 /* user filter slots have a NULL name if previously deregistered */
239 for (i = 0; i < user_kfilterc ; i++) {
240 if (user_kfilters[i].name != NULL &&
241 strcmp(name, user_kfilters[i].name) == 0)
242 return &user_kfilters[i];
243 }
244 return NULL;
245 }
246
247 static struct kfilter *
248 kfilter_byname(const char *name)
249 {
250 struct kfilter *kfilter;
251
252 KASSERT(rw_lock_held(&kqueue_filter_lock));
253
254 if ((kfilter = kfilter_byname_sys(name)) != NULL)
255 return kfilter;
256
257 return kfilter_byname_user(name);
258 }
259
260 /*
261 * Find kfilter entry by filter id, or NULL if not found.
262 * Assumes entries are indexed in filter id order, for speed.
263 */
264 static struct kfilter *
265 kfilter_byfilter(uint32_t filter)
266 {
267 struct kfilter *kfilter;
268
269 KASSERT(rw_lock_held(&kqueue_filter_lock));
270
271 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
272 kfilter = &sys_kfilters[filter];
273 else if (user_kfilters != NULL &&
274 filter < EVFILT_SYSCOUNT + user_kfilterc)
275 /* it's a user filter */
276 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
277 else
278 return (NULL); /* out of range */
279 KASSERT(kfilter->filter == filter); /* sanity check! */
280 return (kfilter);
281 }
282
283 /*
284 * Register a new kfilter. Stores the entry in user_kfilters.
285 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286 * If retfilter != NULL, the new filterid is returned in it.
287 */
288 int
289 kfilter_register(const char *name, const struct filterops *filtops,
290 int *retfilter)
291 {
292 struct kfilter *kfilter;
293 size_t len;
294 int i;
295
296 if (name == NULL || name[0] == '\0' || filtops == NULL)
297 return (EINVAL); /* invalid args */
298
299 rw_enter(&kqueue_filter_lock, RW_WRITER);
300 if (kfilter_byname(name) != NULL) {
301 rw_exit(&kqueue_filter_lock);
302 return (EEXIST); /* already exists */
303 }
304 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
305 rw_exit(&kqueue_filter_lock);
306 return (EINVAL); /* too many */
307 }
308
309 for (i = 0; i < user_kfilterc; i++) {
310 kfilter = &user_kfilters[i];
311 if (kfilter->name == NULL) {
312 /* Previously deregistered slot. Reuse. */
313 goto reuse;
314 }
315 }
316
317 /* check if need to grow user_kfilters */
318 if (user_kfilterc + 1 > user_kfiltermaxc) {
319 /* Grow in KFILTER_EXTENT chunks. */
320 user_kfiltermaxc += KFILTER_EXTENT;
321 len = user_kfiltermaxc * sizeof(*kfilter);
322 kfilter = kmem_alloc(len, KM_SLEEP);
323 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
324 if (user_kfilters != NULL) {
325 memcpy(kfilter, user_kfilters, user_kfiltersz);
326 kmem_free(user_kfilters, user_kfiltersz);
327 }
328 user_kfiltersz = len;
329 user_kfilters = kfilter;
330 }
331 /* Adding new slot */
332 kfilter = &user_kfilters[user_kfilterc++];
333 reuse:
334 kfilter->namelen = strlen(name) + 1;
335 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
336 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
337
338 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
339
340 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
341 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
342
343 if (retfilter != NULL)
344 *retfilter = kfilter->filter;
345 rw_exit(&kqueue_filter_lock);
346
347 return (0);
348 }
349
350 /*
351 * Unregister a kfilter previously registered with kfilter_register.
352 * This retains the filter id, but clears the name and frees filtops (filter
353 * operations), so that the number isn't reused during a boot.
354 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
355 */
356 int
357 kfilter_unregister(const char *name)
358 {
359 struct kfilter *kfilter;
360
361 if (name == NULL || name[0] == '\0')
362 return (EINVAL); /* invalid name */
363
364 rw_enter(&kqueue_filter_lock, RW_WRITER);
365 if (kfilter_byname_sys(name) != NULL) {
366 rw_exit(&kqueue_filter_lock);
367 return (EINVAL); /* can't detach system filters */
368 }
369
370 kfilter = kfilter_byname_user(name);
371 if (kfilter == NULL) {
372 rw_exit(&kqueue_filter_lock);
373 return (ENOENT);
374 }
375 if (kfilter->refcnt != 0) {
376 rw_exit(&kqueue_filter_lock);
377 return (EBUSY);
378 }
379
380 /* Cast away const (but we know it's safe. */
381 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
382 kfilter->name = NULL; /* mark as `not implemented' */
383
384 if (kfilter->filtops != NULL) {
385 /* Cast away const (but we know it's safe. */
386 kmem_free(__UNCONST(kfilter->filtops),
387 sizeof(*kfilter->filtops));
388 kfilter->filtops = NULL; /* mark as `not implemented' */
389 }
390 rw_exit(&kqueue_filter_lock);
391
392 return (0);
393 }
394
395
396 /*
397 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
398 * descriptors. Calls fileops kqfilter method for given file descriptor.
399 */
400 static int
401 filt_fileattach(struct knote *kn)
402 {
403 file_t *fp;
404
405 fp = kn->kn_obj;
406
407 return (*fp->f_ops->fo_kqfilter)(fp, kn);
408 }
409
410 /*
411 * Filter detach method for EVFILT_READ on kqueue descriptor.
412 */
413 static void
414 filt_kqdetach(struct knote *kn)
415 {
416 struct kqueue *kq;
417
418 kq = ((file_t *)kn->kn_obj)->f_data;
419
420 mutex_spin_enter(&kq->kq_lock);
421 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
422 mutex_spin_exit(&kq->kq_lock);
423 }
424
425 /*
426 * Filter event method for EVFILT_READ on kqueue descriptor.
427 */
428 /*ARGSUSED*/
429 static int
430 filt_kqueue(struct knote *kn, long hint)
431 {
432 struct kqueue *kq;
433 int rv;
434
435 kq = ((file_t *)kn->kn_obj)->f_data;
436
437 if (hint != NOTE_SUBMIT)
438 mutex_spin_enter(&kq->kq_lock);
439 kn->kn_data = kq->kq_count;
440 rv = (kn->kn_data > 0);
441 if (hint != NOTE_SUBMIT)
442 mutex_spin_exit(&kq->kq_lock);
443
444 return rv;
445 }
446
447 /*
448 * Filter attach method for EVFILT_PROC.
449 */
450 static int
451 filt_procattach(struct knote *kn)
452 {
453 struct proc *p, *curp;
454 struct lwp *curl;
455
456 curl = curlwp;
457 curp = curl->l_proc;
458
459 mutex_enter(proc_lock);
460 p = proc_find(kn->kn_id);
461 if (p == NULL) {
462 mutex_exit(proc_lock);
463 return ESRCH;
464 }
465
466 /*
467 * Fail if it's not owned by you, or the last exec gave us
468 * setuid/setgid privs (unless you're root).
469 */
470 mutex_enter(p->p_lock);
471 mutex_exit(proc_lock);
472 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
473 p, NULL, NULL, NULL) != 0) {
474 mutex_exit(p->p_lock);
475 return EACCES;
476 }
477
478 kn->kn_obj = p;
479 kn->kn_flags |= EV_CLEAR; /* automatically set */
480
481 /*
482 * internal flag indicating registration done by kernel
483 */
484 if (kn->kn_flags & EV_FLAG1) {
485 kn->kn_data = kn->kn_sdata; /* ppid */
486 kn->kn_fflags = NOTE_CHILD;
487 kn->kn_flags &= ~EV_FLAG1;
488 }
489 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
490 mutex_exit(p->p_lock);
491
492 return 0;
493 }
494
495 /*
496 * Filter detach method for EVFILT_PROC.
497 *
498 * The knote may be attached to a different process, which may exit,
499 * leaving nothing for the knote to be attached to. So when the process
500 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
501 * it will be deleted when read out. However, as part of the knote deletion,
502 * this routine is called, so a check is needed to avoid actually performing
503 * a detach, because the original process might not exist any more.
504 */
505 static void
506 filt_procdetach(struct knote *kn)
507 {
508 struct proc *p;
509
510 if (kn->kn_status & KN_DETACHED)
511 return;
512
513 p = kn->kn_obj;
514
515 mutex_enter(p->p_lock);
516 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
517 mutex_exit(p->p_lock);
518 }
519
520 /*
521 * Filter event method for EVFILT_PROC.
522 */
523 static int
524 filt_proc(struct knote *kn, long hint)
525 {
526 u_int event, fflag;
527 struct kevent kev;
528 struct kqueue *kq;
529 int error;
530
531 event = (u_int)hint & NOTE_PCTRLMASK;
532 kq = kn->kn_kq;
533 fflag = 0;
534
535 /* If the user is interested in this event, record it. */
536 if (kn->kn_sfflags & event)
537 fflag |= event;
538
539 if (event == NOTE_EXIT) {
540 /*
541 * Process is gone, so flag the event as finished.
542 *
543 * Detach the knote from watched process and mark
544 * it as such. We can't leave this to kqueue_scan(),
545 * since the process might not exist by then. And we
546 * have to do this now, since psignal KNOTE() is called
547 * also for zombies and we might end up reading freed
548 * memory if the kevent would already be picked up
549 * and knote g/c'ed.
550 */
551 filt_procdetach(kn);
552
553 mutex_spin_enter(&kq->kq_lock);
554 kn->kn_status |= KN_DETACHED;
555 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
556 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
557 kn->kn_fflags |= fflag;
558 mutex_spin_exit(&kq->kq_lock);
559
560 return 1;
561 }
562
563 mutex_spin_enter(&kq->kq_lock);
564 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
565 /*
566 * Process forked, and user wants to track the new process,
567 * so attach a new knote to it, and immediately report an
568 * event with the parent's pid. Register knote with new
569 * process.
570 */
571 kev.ident = hint & NOTE_PDATAMASK; /* pid */
572 kev.filter = kn->kn_filter;
573 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
574 kev.fflags = kn->kn_sfflags;
575 kev.data = kn->kn_id; /* parent */
576 kev.udata = kn->kn_kevent.udata; /* preserve udata */
577 mutex_spin_exit(&kq->kq_lock);
578 error = kqueue_register(kq, &kev);
579 mutex_spin_enter(&kq->kq_lock);
580 if (error != 0)
581 kn->kn_fflags |= NOTE_TRACKERR;
582 }
583 kn->kn_fflags |= fflag;
584 fflag = kn->kn_fflags;
585 mutex_spin_exit(&kq->kq_lock);
586
587 return fflag != 0;
588 }
589
590 static void
591 filt_timerexpire(void *knx)
592 {
593 struct knote *kn = knx;
594 int tticks;
595
596 mutex_enter(&kqueue_misc_lock);
597 kn->kn_data++;
598 knote_activate(kn);
599 if ((kn->kn_flags & EV_ONESHOT) == 0) {
600 tticks = mstohz(kn->kn_sdata);
601 if (tticks <= 0)
602 tticks = 1;
603 callout_schedule((callout_t *)kn->kn_hook, tticks);
604 }
605 mutex_exit(&kqueue_misc_lock);
606 }
607
608 /*
609 * data contains amount of time to sleep, in milliseconds
610 */
611 static int
612 filt_timerattach(struct knote *kn)
613 {
614 callout_t *calloutp;
615 struct kqueue *kq;
616 int tticks;
617
618 tticks = mstohz(kn->kn_sdata);
619
620 /* if the supplied value is under our resolution, use 1 tick */
621 if (tticks == 0) {
622 if (kn->kn_sdata == 0)
623 return EINVAL;
624 tticks = 1;
625 }
626
627 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
628 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
629 atomic_dec_uint(&kq_ncallouts);
630 return ENOMEM;
631 }
632 callout_init(calloutp, CALLOUT_MPSAFE);
633
634 kq = kn->kn_kq;
635 mutex_spin_enter(&kq->kq_lock);
636 kn->kn_flags |= EV_CLEAR; /* automatically set */
637 kn->kn_hook = calloutp;
638 mutex_spin_exit(&kq->kq_lock);
639
640 callout_reset(calloutp, tticks, filt_timerexpire, kn);
641
642 return (0);
643 }
644
645 static void
646 filt_timerdetach(struct knote *kn)
647 {
648 callout_t *calloutp;
649
650 calloutp = (callout_t *)kn->kn_hook;
651 callout_halt(calloutp, NULL);
652 callout_destroy(calloutp);
653 kmem_free(calloutp, sizeof(*calloutp));
654 atomic_dec_uint(&kq_ncallouts);
655 }
656
657 static int
658 filt_timer(struct knote *kn, long hint)
659 {
660 int rv;
661
662 mutex_enter(&kqueue_misc_lock);
663 rv = (kn->kn_data != 0);
664 mutex_exit(&kqueue_misc_lock);
665
666 return rv;
667 }
668
669 /*
670 * filt_seltrue:
671 *
672 * This filter "event" routine simulates seltrue().
673 */
674 int
675 filt_seltrue(struct knote *kn, long hint)
676 {
677
678 /*
679 * We don't know how much data can be read/written,
680 * but we know that it *can* be. This is about as
681 * good as select/poll does as well.
682 */
683 kn->kn_data = 0;
684 return (1);
685 }
686
687 /*
688 * This provides full kqfilter entry for device switch tables, which
689 * has same effect as filter using filt_seltrue() as filter method.
690 */
691 static void
692 filt_seltruedetach(struct knote *kn)
693 {
694 /* Nothing to do */
695 }
696
697 const struct filterops seltrue_filtops =
698 { 1, NULL, filt_seltruedetach, filt_seltrue };
699
700 int
701 seltrue_kqfilter(dev_t dev, struct knote *kn)
702 {
703 switch (kn->kn_filter) {
704 case EVFILT_READ:
705 case EVFILT_WRITE:
706 kn->kn_fop = &seltrue_filtops;
707 break;
708 default:
709 return (EINVAL);
710 }
711
712 /* Nothing more to do */
713 return (0);
714 }
715
716 /*
717 * kqueue(2) system call.
718 */
719 static int
720 kqueue1(struct lwp *l, int flags, register_t *retval)
721 {
722 struct kqueue *kq;
723 file_t *fp;
724 int fd, error;
725
726 if ((error = fd_allocfile(&fp, &fd)) != 0)
727 return error;
728 fp->f_flag = FREAD | FWRITE | (flags & FNONBLOCK);
729 fp->f_type = DTYPE_KQUEUE;
730 fp->f_ops = &kqueueops;
731 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
732 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
733 cv_init(&kq->kq_cv, "kqueue");
734 selinit(&kq->kq_sel);
735 TAILQ_INIT(&kq->kq_head);
736 fp->f_data = kq;
737 *retval = fd;
738 kq->kq_fdp = curlwp->l_fd;
739 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
740 fd_affix(curproc, fp, fd);
741 return error;
742 }
743
744 /*
745 * kqueue(2) system call.
746 */
747 int
748 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
749 {
750 return kqueue1(l, 0, retval);
751 }
752
753 int
754 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
755 register_t *retval)
756 {
757 /* {
758 syscallarg(int) flags;
759 } */
760 return kqueue1(l, SCARG(uap, flags), retval);
761 }
762
763 /*
764 * kevent(2) system call.
765 */
766 int
767 kevent_fetch_changes(void *private, const struct kevent *changelist,
768 struct kevent *changes, size_t index, int n)
769 {
770
771 return copyin(changelist + index, changes, n * sizeof(*changes));
772 }
773
774 int
775 kevent_put_events(void *private, struct kevent *events,
776 struct kevent *eventlist, size_t index, int n)
777 {
778
779 return copyout(events, eventlist + index, n * sizeof(*events));
780 }
781
782 static const struct kevent_ops kevent_native_ops = {
783 .keo_private = NULL,
784 .keo_fetch_timeout = copyin,
785 .keo_fetch_changes = kevent_fetch_changes,
786 .keo_put_events = kevent_put_events,
787 };
788
789 int
790 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
791 register_t *retval)
792 {
793 /* {
794 syscallarg(int) fd;
795 syscallarg(const struct kevent *) changelist;
796 syscallarg(size_t) nchanges;
797 syscallarg(struct kevent *) eventlist;
798 syscallarg(size_t) nevents;
799 syscallarg(const struct timespec *) timeout;
800 } */
801
802 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
803 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
804 SCARG(uap, timeout), &kevent_native_ops);
805 }
806
807 int
808 kevent1(register_t *retval, int fd,
809 const struct kevent *changelist, size_t nchanges,
810 struct kevent *eventlist, size_t nevents,
811 const struct timespec *timeout,
812 const struct kevent_ops *keops)
813 {
814 struct kevent *kevp;
815 struct kqueue *kq;
816 struct timespec ts;
817 size_t i, n, ichange;
818 int nerrors, error;
819 struct kevent kevbuf[8]; /* approx 300 bytes on 64-bit */
820 file_t *fp;
821
822 /* check that we're dealing with a kq */
823 fp = fd_getfile(fd);
824 if (fp == NULL)
825 return (EBADF);
826
827 if (fp->f_type != DTYPE_KQUEUE) {
828 fd_putfile(fd);
829 return (EBADF);
830 }
831
832 if (timeout != NULL) {
833 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
834 if (error)
835 goto done;
836 timeout = &ts;
837 }
838
839 kq = (struct kqueue *)fp->f_data;
840 nerrors = 0;
841 ichange = 0;
842
843 /* traverse list of events to register */
844 while (nchanges > 0) {
845 n = MIN(nchanges, __arraycount(kevbuf));
846 error = (*keops->keo_fetch_changes)(keops->keo_private,
847 changelist, kevbuf, ichange, n);
848 if (error)
849 goto done;
850 for (i = 0; i < n; i++) {
851 kevp = &kevbuf[i];
852 kevp->flags &= ~EV_SYSFLAGS;
853 /* register each knote */
854 error = kqueue_register(kq, kevp);
855 if (error) {
856 if (nevents != 0) {
857 kevp->flags = EV_ERROR;
858 kevp->data = error;
859 error = (*keops->keo_put_events)
860 (keops->keo_private, kevp,
861 eventlist, nerrors, 1);
862 if (error)
863 goto done;
864 nevents--;
865 nerrors++;
866 } else {
867 goto done;
868 }
869 }
870 }
871 nchanges -= n; /* update the results */
872 ichange += n;
873 }
874 if (nerrors) {
875 *retval = nerrors;
876 error = 0;
877 goto done;
878 }
879
880 /* actually scan through the events */
881 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
882 kevbuf, __arraycount(kevbuf));
883 done:
884 fd_putfile(fd);
885 return (error);
886 }
887
888 /*
889 * Register a given kevent kev onto the kqueue
890 */
891 static int
892 kqueue_register(struct kqueue *kq, struct kevent *kev)
893 {
894 struct kfilter *kfilter;
895 filedesc_t *fdp;
896 file_t *fp;
897 fdfile_t *ff;
898 struct knote *kn, *newkn;
899 struct klist *list;
900 int error, fd, rv;
901
902 fdp = kq->kq_fdp;
903 fp = NULL;
904 kn = NULL;
905 error = 0;
906 fd = 0;
907
908 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
909
910 rw_enter(&kqueue_filter_lock, RW_READER);
911 kfilter = kfilter_byfilter(kev->filter);
912 if (kfilter == NULL || kfilter->filtops == NULL) {
913 /* filter not found nor implemented */
914 rw_exit(&kqueue_filter_lock);
915 kmem_free(newkn, sizeof(*newkn));
916 return (EINVAL);
917 }
918
919 mutex_enter(&fdp->fd_lock);
920
921 /* search if knote already exists */
922 if (kfilter->filtops->f_isfd) {
923 /* monitoring a file descriptor */
924 fd = kev->ident;
925 if ((fp = fd_getfile(fd)) == NULL) {
926 mutex_exit(&fdp->fd_lock);
927 rw_exit(&kqueue_filter_lock);
928 kmem_free(newkn, sizeof(*newkn));
929 return EBADF;
930 }
931 ff = fdp->fd_dt->dt_ff[fd];
932 if (fd <= fdp->fd_lastkqfile) {
933 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
934 if (kq == kn->kn_kq &&
935 kev->filter == kn->kn_filter)
936 break;
937 }
938 }
939 } else {
940 /*
941 * not monitoring a file descriptor, so
942 * lookup knotes in internal hash table
943 */
944 if (fdp->fd_knhashmask != 0) {
945 list = &fdp->fd_knhash[
946 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
947 SLIST_FOREACH(kn, list, kn_link) {
948 if (kev->ident == kn->kn_id &&
949 kq == kn->kn_kq &&
950 kev->filter == kn->kn_filter)
951 break;
952 }
953 }
954 }
955
956 /*
957 * kn now contains the matching knote, or NULL if no match
958 */
959 if (kev->flags & EV_ADD) {
960 if (kn == NULL) {
961 /* create new knote */
962 kn = newkn;
963 newkn = NULL;
964 kn->kn_obj = fp;
965 kn->kn_kq = kq;
966 kn->kn_fop = kfilter->filtops;
967 kn->kn_kfilter = kfilter;
968 kn->kn_sfflags = kev->fflags;
969 kn->kn_sdata = kev->data;
970 kev->fflags = 0;
971 kev->data = 0;
972 kn->kn_kevent = *kev;
973
974 /*
975 * apply reference count to knote structure, and
976 * do not release it at the end of this routine.
977 */
978 fp = NULL;
979
980 if (!kn->kn_fop->f_isfd) {
981 /*
982 * If knote is not on an fd, store on
983 * internal hash table.
984 */
985 if (fdp->fd_knhashmask == 0) {
986 /* XXXAD can block with fd_lock held */
987 fdp->fd_knhash = hashinit(KN_HASHSIZE,
988 HASH_LIST, true,
989 &fdp->fd_knhashmask);
990 }
991 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
992 fdp->fd_knhashmask)];
993 } else {
994 /* Otherwise, knote is on an fd. */
995 list = (struct klist *)
996 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
997 if ((int)kn->kn_id > fdp->fd_lastkqfile)
998 fdp->fd_lastkqfile = kn->kn_id;
999 }
1000 SLIST_INSERT_HEAD(list, kn, kn_link);
1001
1002 KERNEL_LOCK(1, NULL); /* XXXSMP */
1003 error = (*kfilter->filtops->f_attach)(kn);
1004 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1005 if (error != 0) {
1006 /* knote_detach() drops fdp->fd_lock */
1007 knote_detach(kn, fdp, false);
1008 goto done;
1009 }
1010 atomic_inc_uint(&kfilter->refcnt);
1011 } else {
1012 /*
1013 * The user may change some filter values after the
1014 * initial EV_ADD, but doing so will not reset any
1015 * filter which have already been triggered.
1016 */
1017 kn->kn_sfflags = kev->fflags;
1018 kn->kn_sdata = kev->data;
1019 kn->kn_kevent.udata = kev->udata;
1020 }
1021 KERNEL_LOCK(1, NULL); /* XXXSMP */
1022 rv = (*kn->kn_fop->f_event)(kn, 0);
1023 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1024 if (rv)
1025 knote_activate(kn);
1026 } else {
1027 if (kn == NULL) {
1028 error = ENOENT;
1029 mutex_exit(&fdp->fd_lock);
1030 goto done;
1031 }
1032 if (kev->flags & EV_DELETE) {
1033 /* knote_detach() drops fdp->fd_lock */
1034 knote_detach(kn, fdp, true);
1035 goto done;
1036 }
1037 }
1038
1039 /* disable knote */
1040 if ((kev->flags & EV_DISABLE)) {
1041 mutex_spin_enter(&kq->kq_lock);
1042 if ((kn->kn_status & KN_DISABLED) == 0)
1043 kn->kn_status |= KN_DISABLED;
1044 mutex_spin_exit(&kq->kq_lock);
1045 }
1046
1047 /* enable knote */
1048 if ((kev->flags & EV_ENABLE)) {
1049 knote_enqueue(kn);
1050 }
1051 mutex_exit(&fdp->fd_lock);
1052 done:
1053 rw_exit(&kqueue_filter_lock);
1054 if (newkn != NULL)
1055 kmem_free(newkn, sizeof(*newkn));
1056 if (fp != NULL)
1057 fd_putfile(fd);
1058 return (error);
1059 }
1060
1061 #if defined(DEBUG)
1062 static void
1063 kq_check(struct kqueue *kq)
1064 {
1065 const struct knote *kn;
1066 int count;
1067 int nmarker;
1068
1069 KASSERT(mutex_owned(&kq->kq_lock));
1070 KASSERT(kq->kq_count >= 0);
1071
1072 count = 0;
1073 nmarker = 0;
1074 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1075 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1076 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1077 }
1078 if ((kn->kn_status & KN_MARKER) == 0) {
1079 if (kn->kn_kq != kq) {
1080 panic("%s: kq=%p kn=%p inconsist 2",
1081 __func__, kq, kn);
1082 }
1083 if ((kn->kn_status & KN_ACTIVE) == 0) {
1084 panic("%s: kq=%p kn=%p: not active",
1085 __func__, kq, kn);
1086 }
1087 count++;
1088 if (count > kq->kq_count) {
1089 goto bad;
1090 }
1091 } else {
1092 nmarker++;
1093 #if 0
1094 if (nmarker > 10000) {
1095 panic("%s: kq=%p too many markers: %d != %d, "
1096 "nmarker=%d",
1097 __func__, kq, kq->kq_count, count, nmarker);
1098 }
1099 #endif
1100 }
1101 }
1102 if (kq->kq_count != count) {
1103 bad:
1104 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1105 __func__, kq, kq->kq_count, count, nmarker);
1106 }
1107 }
1108 #else /* defined(DEBUG) */
1109 #define kq_check(a) /* nothing */
1110 #endif /* defined(DEBUG) */
1111
1112 /*
1113 * Scan through the list of events on fp (for a maximum of maxevents),
1114 * returning the results in to ulistp. Timeout is determined by tsp; if
1115 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1116 * as appropriate.
1117 */
1118 static int
1119 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1120 const struct timespec *tsp, register_t *retval,
1121 const struct kevent_ops *keops, struct kevent *kevbuf,
1122 size_t kevcnt)
1123 {
1124 struct kqueue *kq;
1125 struct kevent *kevp;
1126 struct timespec ats, sleepts;
1127 struct knote *kn, *marker;
1128 size_t count, nkev, nevents;
1129 int timeout, error, rv;
1130 filedesc_t *fdp;
1131
1132 fdp = curlwp->l_fd;
1133 kq = fp->f_data;
1134 count = maxevents;
1135 nkev = nevents = error = 0;
1136 if (count == 0) {
1137 *retval = 0;
1138 return 0;
1139 }
1140
1141 if (tsp) { /* timeout supplied */
1142 ats = *tsp;
1143 if (inittimeleft(&ats, &sleepts) == -1) {
1144 *retval = maxevents;
1145 return EINVAL;
1146 }
1147 timeout = tstohz(&ats);
1148 if (timeout <= 0)
1149 timeout = -1; /* do poll */
1150 } else {
1151 /* no timeout, wait forever */
1152 timeout = 0;
1153 }
1154
1155 marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1156 marker->kn_status = KN_MARKER;
1157 mutex_spin_enter(&kq->kq_lock);
1158 retry:
1159 kevp = kevbuf;
1160 if (kq->kq_count == 0) {
1161 if (timeout >= 0) {
1162 error = cv_timedwait_sig(&kq->kq_cv,
1163 &kq->kq_lock, timeout);
1164 if (error == 0) {
1165 if (tsp == NULL || (timeout =
1166 gettimeleft(&ats, &sleepts)) > 0)
1167 goto retry;
1168 } else {
1169 /* don't restart after signals... */
1170 if (error == ERESTART)
1171 error = EINTR;
1172 if (error == EWOULDBLOCK)
1173 error = 0;
1174 }
1175 }
1176 } else {
1177 /* mark end of knote list */
1178 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1179
1180 while (count != 0) {
1181 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1182 while ((kn->kn_status & KN_MARKER) != 0) {
1183 if (kn == marker) {
1184 /* it's our marker, stop */
1185 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1186 if (count < maxevents || (tsp != NULL &&
1187 (timeout = gettimeleft(&ats,
1188 &sleepts)) <= 0))
1189 goto done;
1190 goto retry;
1191 }
1192 /* someone else's marker. */
1193 kn = TAILQ_NEXT(kn, kn_tqe);
1194 }
1195 kq_check(kq);
1196 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1197 kq->kq_count--;
1198 kn->kn_status &= ~KN_QUEUED;
1199 kq_check(kq);
1200 if (kn->kn_status & KN_DISABLED) {
1201 /* don't want disabled events */
1202 continue;
1203 }
1204 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1205 mutex_spin_exit(&kq->kq_lock);
1206 KERNEL_LOCK(1, NULL); /* XXXSMP */
1207 rv = (*kn->kn_fop->f_event)(kn, 0);
1208 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1209 mutex_spin_enter(&kq->kq_lock);
1210 /* Re-poll if note was re-enqueued. */
1211 if ((kn->kn_status & KN_QUEUED) != 0)
1212 continue;
1213 if (rv == 0) {
1214 /*
1215 * non-ONESHOT event that hasn't
1216 * triggered again, so de-queue.
1217 */
1218 kn->kn_status &= ~KN_ACTIVE;
1219 continue;
1220 }
1221 }
1222 /* XXXAD should be got from f_event if !oneshot. */
1223 *kevp++ = kn->kn_kevent;
1224 nkev++;
1225 if (kn->kn_flags & EV_ONESHOT) {
1226 /* delete ONESHOT events after retrieval */
1227 mutex_spin_exit(&kq->kq_lock);
1228 mutex_enter(&fdp->fd_lock);
1229 knote_detach(kn, fdp, true);
1230 mutex_spin_enter(&kq->kq_lock);
1231 } else if (kn->kn_flags & EV_CLEAR) {
1232 /* clear state after retrieval */
1233 kn->kn_data = 0;
1234 kn->kn_fflags = 0;
1235 kn->kn_status &= ~KN_ACTIVE;
1236 } else {
1237 /* add event back on list */
1238 kq_check(kq);
1239 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1240 kq->kq_count++;
1241 kn->kn_status |= KN_QUEUED;
1242 kq_check(kq);
1243 }
1244 if (nkev == kevcnt) {
1245 /* do copyouts in kevcnt chunks */
1246 mutex_spin_exit(&kq->kq_lock);
1247 error = (*keops->keo_put_events)
1248 (keops->keo_private,
1249 kevbuf, ulistp, nevents, nkev);
1250 mutex_spin_enter(&kq->kq_lock);
1251 nevents += nkev;
1252 nkev = 0;
1253 kevp = kevbuf;
1254 }
1255 count--;
1256 if (error != 0 || count == 0) {
1257 /* remove marker */
1258 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1259 break;
1260 }
1261 }
1262 }
1263 done:
1264 mutex_spin_exit(&kq->kq_lock);
1265 if (marker != NULL)
1266 kmem_free(marker, sizeof(*marker));
1267 if (nkev != 0) {
1268 /* copyout remaining events */
1269 error = (*keops->keo_put_events)(keops->keo_private,
1270 kevbuf, ulistp, nevents, nkev);
1271 }
1272 *retval = maxevents - count;
1273
1274 return error;
1275 }
1276
1277 /*
1278 * fileops ioctl method for a kqueue descriptor.
1279 *
1280 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1281 * KFILTER_BYNAME find name for filter, and return result in
1282 * name, which is of size len.
1283 * KFILTER_BYFILTER find filter for name. len is ignored.
1284 */
1285 /*ARGSUSED*/
1286 static int
1287 kqueue_ioctl(file_t *fp, u_long com, void *data)
1288 {
1289 struct kfilter_mapping *km;
1290 const struct kfilter *kfilter;
1291 char *name;
1292 int error;
1293
1294 km = data;
1295 error = 0;
1296 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1297
1298 switch (com) {
1299 case KFILTER_BYFILTER: /* convert filter -> name */
1300 rw_enter(&kqueue_filter_lock, RW_READER);
1301 kfilter = kfilter_byfilter(km->filter);
1302 if (kfilter != NULL) {
1303 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1304 rw_exit(&kqueue_filter_lock);
1305 error = copyoutstr(name, km->name, km->len, NULL);
1306 } else {
1307 rw_exit(&kqueue_filter_lock);
1308 error = ENOENT;
1309 }
1310 break;
1311
1312 case KFILTER_BYNAME: /* convert name -> filter */
1313 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1314 if (error) {
1315 break;
1316 }
1317 rw_enter(&kqueue_filter_lock, RW_READER);
1318 kfilter = kfilter_byname(name);
1319 if (kfilter != NULL)
1320 km->filter = kfilter->filter;
1321 else
1322 error = ENOENT;
1323 rw_exit(&kqueue_filter_lock);
1324 break;
1325
1326 default:
1327 error = ENOTTY;
1328 break;
1329
1330 }
1331 kmem_free(name, KFILTER_MAXNAME);
1332 return (error);
1333 }
1334
1335 /*
1336 * fileops fcntl method for a kqueue descriptor.
1337 */
1338 static int
1339 kqueue_fcntl(file_t *fp, u_int com, void *data)
1340 {
1341
1342 return (ENOTTY);
1343 }
1344
1345 /*
1346 * fileops poll method for a kqueue descriptor.
1347 * Determine if kqueue has events pending.
1348 */
1349 static int
1350 kqueue_poll(file_t *fp, int events)
1351 {
1352 struct kqueue *kq;
1353 int revents;
1354
1355 kq = fp->f_data;
1356
1357 revents = 0;
1358 if (events & (POLLIN | POLLRDNORM)) {
1359 mutex_spin_enter(&kq->kq_lock);
1360 if (kq->kq_count != 0) {
1361 revents |= events & (POLLIN | POLLRDNORM);
1362 } else {
1363 selrecord(curlwp, &kq->kq_sel);
1364 }
1365 kq_check(kq);
1366 mutex_spin_exit(&kq->kq_lock);
1367 }
1368
1369 return revents;
1370 }
1371
1372 /*
1373 * fileops stat method for a kqueue descriptor.
1374 * Returns dummy info, with st_size being number of events pending.
1375 */
1376 static int
1377 kqueue_stat(file_t *fp, struct stat *st)
1378 {
1379 struct kqueue *kq;
1380
1381 kq = fp->f_data;
1382
1383 memset(st, 0, sizeof(*st));
1384 st->st_size = kq->kq_count;
1385 st->st_blksize = sizeof(struct kevent);
1386 st->st_mode = S_IFIFO;
1387
1388 return 0;
1389 }
1390
1391 static void
1392 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1393 {
1394 struct knote *kn;
1395 filedesc_t *fdp;
1396
1397 fdp = kq->kq_fdp;
1398
1399 KASSERT(mutex_owned(&fdp->fd_lock));
1400
1401 for (kn = SLIST_FIRST(list); kn != NULL;) {
1402 if (kq != kn->kn_kq) {
1403 kn = SLIST_NEXT(kn, kn_link);
1404 continue;
1405 }
1406 knote_detach(kn, fdp, true);
1407 mutex_enter(&fdp->fd_lock);
1408 kn = SLIST_FIRST(list);
1409 }
1410 }
1411
1412
1413 /*
1414 * fileops close method for a kqueue descriptor.
1415 */
1416 static int
1417 kqueue_close(file_t *fp)
1418 {
1419 struct kqueue *kq;
1420 filedesc_t *fdp;
1421 fdfile_t *ff;
1422 int i;
1423
1424 kq = fp->f_data;
1425 fdp = curlwp->l_fd;
1426
1427 mutex_enter(&fdp->fd_lock);
1428 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1429 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1430 continue;
1431 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1432 }
1433 if (fdp->fd_knhashmask != 0) {
1434 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1435 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1436 }
1437 }
1438 mutex_exit(&fdp->fd_lock);
1439
1440 KASSERT(kq->kq_count == 0);
1441 mutex_destroy(&kq->kq_lock);
1442 cv_destroy(&kq->kq_cv);
1443 seldestroy(&kq->kq_sel);
1444 kmem_free(kq, sizeof(*kq));
1445 fp->f_data = NULL;
1446
1447 return (0);
1448 }
1449
1450 /*
1451 * struct fileops kqfilter method for a kqueue descriptor.
1452 * Event triggered when monitored kqueue changes.
1453 */
1454 static int
1455 kqueue_kqfilter(file_t *fp, struct knote *kn)
1456 {
1457 struct kqueue *kq;
1458 filedesc_t *fdp;
1459
1460 kq = ((file_t *)kn->kn_obj)->f_data;
1461
1462 KASSERT(fp == kn->kn_obj);
1463
1464 if (kn->kn_filter != EVFILT_READ)
1465 return 1;
1466
1467 kn->kn_fop = &kqread_filtops;
1468 fdp = curlwp->l_fd;
1469 mutex_enter(&kq->kq_lock);
1470 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1471 mutex_exit(&kq->kq_lock);
1472
1473 return 0;
1474 }
1475
1476
1477 /*
1478 * Walk down a list of knotes, activating them if their event has
1479 * triggered. The caller's object lock (e.g. device driver lock)
1480 * must be held.
1481 */
1482 void
1483 knote(struct klist *list, long hint)
1484 {
1485 struct knote *kn, *tmpkn;
1486
1487 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1488 if ((*kn->kn_fop->f_event)(kn, hint))
1489 knote_activate(kn);
1490 }
1491 }
1492
1493 /*
1494 * Remove all knotes referencing a specified fd
1495 */
1496 void
1497 knote_fdclose(int fd)
1498 {
1499 struct klist *list;
1500 struct knote *kn;
1501 filedesc_t *fdp;
1502
1503 fdp = curlwp->l_fd;
1504 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1505 mutex_enter(&fdp->fd_lock);
1506 while ((kn = SLIST_FIRST(list)) != NULL) {
1507 knote_detach(kn, fdp, true);
1508 mutex_enter(&fdp->fd_lock);
1509 }
1510 mutex_exit(&fdp->fd_lock);
1511 }
1512
1513 /*
1514 * Drop knote. Called with fdp->fd_lock held, and will drop before
1515 * returning.
1516 */
1517 static void
1518 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1519 {
1520 struct klist *list;
1521 struct kqueue *kq;
1522
1523 kq = kn->kn_kq;
1524
1525 KASSERT((kn->kn_status & KN_MARKER) == 0);
1526 KASSERT(mutex_owned(&fdp->fd_lock));
1527
1528 /* Remove from monitored object. */
1529 if (dofop) {
1530 KERNEL_LOCK(1, NULL); /* XXXSMP */
1531 (*kn->kn_fop->f_detach)(kn);
1532 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1533 }
1534
1535 /* Remove from descriptor table. */
1536 if (kn->kn_fop->f_isfd)
1537 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1538 else
1539 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1540
1541 SLIST_REMOVE(list, kn, knote, kn_link);
1542
1543 /* Remove from kqueue. */
1544 /* XXXAD should verify not in use by kqueue_scan. */
1545 mutex_spin_enter(&kq->kq_lock);
1546 if ((kn->kn_status & KN_QUEUED) != 0) {
1547 kq_check(kq);
1548 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1549 kn->kn_status &= ~KN_QUEUED;
1550 kq->kq_count--;
1551 kq_check(kq);
1552 }
1553 mutex_spin_exit(&kq->kq_lock);
1554
1555 mutex_exit(&fdp->fd_lock);
1556 if (kn->kn_fop->f_isfd)
1557 fd_putfile(kn->kn_id);
1558 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1559 kmem_free(kn, sizeof(*kn));
1560 }
1561
1562 /*
1563 * Queue new event for knote.
1564 */
1565 static void
1566 knote_enqueue(struct knote *kn)
1567 {
1568 struct kqueue *kq;
1569
1570 KASSERT((kn->kn_status & KN_MARKER) == 0);
1571
1572 kq = kn->kn_kq;
1573
1574 mutex_spin_enter(&kq->kq_lock);
1575 if ((kn->kn_status & KN_DISABLED) != 0) {
1576 kn->kn_status &= ~KN_DISABLED;
1577 }
1578 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1579 kq_check(kq);
1580 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1581 kn->kn_status |= KN_QUEUED;
1582 kq->kq_count++;
1583 kq_check(kq);
1584 cv_broadcast(&kq->kq_cv);
1585 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1586 }
1587 mutex_spin_exit(&kq->kq_lock);
1588 }
1589 /*
1590 * Queue new event for knote.
1591 */
1592 static void
1593 knote_activate(struct knote *kn)
1594 {
1595 struct kqueue *kq;
1596
1597 KASSERT((kn->kn_status & KN_MARKER) == 0);
1598
1599 kq = kn->kn_kq;
1600
1601 mutex_spin_enter(&kq->kq_lock);
1602 kn->kn_status |= KN_ACTIVE;
1603 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1604 kq_check(kq);
1605 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1606 kn->kn_status |= KN_QUEUED;
1607 kq->kq_count++;
1608 kq_check(kq);
1609 cv_broadcast(&kq->kq_cv);
1610 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1611 }
1612 mutex_spin_exit(&kq->kq_lock);
1613 }
1614