kern_event.c revision 1.75 1 /* $NetBSD: kern_event.c,v 1.75 2012/01/25 00:28:35 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.75 2012/01/25 00:28:35 christos Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/proc.h>
67 #include <sys/file.h>
68 #include <sys/select.h>
69 #include <sys/queue.h>
70 #include <sys/event.h>
71 #include <sys/eventvar.h>
72 #include <sys/poll.h>
73 #include <sys/kmem.h>
74 #include <sys/stat.h>
75 #include <sys/filedesc.h>
76 #include <sys/syscallargs.h>
77 #include <sys/kauth.h>
78 #include <sys/conf.h>
79 #include <sys/atomic.h>
80
81 static int kqueue_scan(file_t *, size_t, struct kevent *,
82 const struct timespec *, register_t *,
83 const struct kevent_ops *, struct kevent *,
84 size_t);
85 static int kqueue_ioctl(file_t *, u_long, void *);
86 static int kqueue_fcntl(file_t *, u_int, void *);
87 static int kqueue_poll(file_t *, int);
88 static int kqueue_kqfilter(file_t *, struct knote *);
89 static int kqueue_stat(file_t *, struct stat *);
90 static int kqueue_close(file_t *);
91 static int kqueue_register(struct kqueue *, struct kevent *);
92 static void kqueue_doclose(struct kqueue *, struct klist *, int);
93
94 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
95 static void knote_enqueue(struct knote *);
96 static void knote_activate(struct knote *);
97
98 static void filt_kqdetach(struct knote *);
99 static int filt_kqueue(struct knote *, long hint);
100 static int filt_procattach(struct knote *);
101 static void filt_procdetach(struct knote *);
102 static int filt_proc(struct knote *, long hint);
103 static int filt_fileattach(struct knote *);
104 static void filt_timerexpire(void *x);
105 static int filt_timerattach(struct knote *);
106 static void filt_timerdetach(struct knote *);
107 static int filt_timer(struct knote *, long hint);
108
109 static const struct fileops kqueueops = {
110 .fo_read = (void *)enxio,
111 .fo_write = (void *)enxio,
112 .fo_ioctl = kqueue_ioctl,
113 .fo_fcntl = kqueue_fcntl,
114 .fo_poll = kqueue_poll,
115 .fo_stat = kqueue_stat,
116 .fo_close = kqueue_close,
117 .fo_kqfilter = kqueue_kqfilter,
118 .fo_restart = fnullop_restart,
119 };
120
121 static const struct filterops kqread_filtops =
122 { 1, NULL, filt_kqdetach, filt_kqueue };
123 static const struct filterops proc_filtops =
124 { 0, filt_procattach, filt_procdetach, filt_proc };
125 static const struct filterops file_filtops =
126 { 1, filt_fileattach, NULL, NULL };
127 static const struct filterops timer_filtops =
128 { 0, filt_timerattach, filt_timerdetach, filt_timer };
129
130 static u_int kq_ncallouts = 0;
131 static int kq_calloutmax = (4 * 1024);
132
133 #define KN_HASHSIZE 64 /* XXX should be tunable */
134 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
135
136 extern const struct filterops sig_filtops;
137
138 /*
139 * Table for for all system-defined filters.
140 * These should be listed in the numeric order of the EVFILT_* defines.
141 * If filtops is NULL, the filter isn't implemented in NetBSD.
142 * End of list is when name is NULL.
143 *
144 * Note that 'refcnt' is meaningless for built-in filters.
145 */
146 struct kfilter {
147 const char *name; /* name of filter */
148 uint32_t filter; /* id of filter */
149 unsigned refcnt; /* reference count */
150 const struct filterops *filtops;/* operations for filter */
151 size_t namelen; /* length of name string */
152 };
153
154 /* System defined filters */
155 static struct kfilter sys_kfilters[] = {
156 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
157 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
158 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
159 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
160 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
161 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
162 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
163 { NULL, 0, 0, NULL, 0 },
164 };
165
166 /* User defined kfilters */
167 static struct kfilter *user_kfilters; /* array */
168 static int user_kfilterc; /* current offset */
169 static int user_kfiltermaxc; /* max size so far */
170 static size_t user_kfiltersz; /* size of allocated memory */
171
172 /* Locks */
173 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
174 static kmutex_t kqueue_misc_lock; /* miscellaneous */
175
176 static kauth_listener_t kqueue_listener;
177
178 static int
179 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
180 void *arg0, void *arg1, void *arg2, void *arg3)
181 {
182 struct proc *p;
183 int result;
184
185 result = KAUTH_RESULT_DEFER;
186 p = arg0;
187
188 if (action != KAUTH_PROCESS_KEVENT_FILTER)
189 return result;
190
191 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
192 ISSET(p->p_flag, PK_SUGID)))
193 return result;
194
195 result = KAUTH_RESULT_ALLOW;
196
197 return result;
198 }
199
200 /*
201 * Initialize the kqueue subsystem.
202 */
203 void
204 kqueue_init(void)
205 {
206
207 rw_init(&kqueue_filter_lock);
208 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
209
210 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
211 kqueue_listener_cb, NULL);
212 }
213
214 /*
215 * Find kfilter entry by name, or NULL if not found.
216 */
217 static struct kfilter *
218 kfilter_byname_sys(const char *name)
219 {
220 int i;
221
222 KASSERT(rw_lock_held(&kqueue_filter_lock));
223
224 for (i = 0; sys_kfilters[i].name != NULL; i++) {
225 if (strcmp(name, sys_kfilters[i].name) == 0)
226 return &sys_kfilters[i];
227 }
228 return NULL;
229 }
230
231 static struct kfilter *
232 kfilter_byname_user(const char *name)
233 {
234 int i;
235
236 KASSERT(rw_lock_held(&kqueue_filter_lock));
237
238 /* user filter slots have a NULL name if previously deregistered */
239 for (i = 0; i < user_kfilterc ; i++) {
240 if (user_kfilters[i].name != NULL &&
241 strcmp(name, user_kfilters[i].name) == 0)
242 return &user_kfilters[i];
243 }
244 return NULL;
245 }
246
247 static struct kfilter *
248 kfilter_byname(const char *name)
249 {
250 struct kfilter *kfilter;
251
252 KASSERT(rw_lock_held(&kqueue_filter_lock));
253
254 if ((kfilter = kfilter_byname_sys(name)) != NULL)
255 return kfilter;
256
257 return kfilter_byname_user(name);
258 }
259
260 /*
261 * Find kfilter entry by filter id, or NULL if not found.
262 * Assumes entries are indexed in filter id order, for speed.
263 */
264 static struct kfilter *
265 kfilter_byfilter(uint32_t filter)
266 {
267 struct kfilter *kfilter;
268
269 KASSERT(rw_lock_held(&kqueue_filter_lock));
270
271 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
272 kfilter = &sys_kfilters[filter];
273 else if (user_kfilters != NULL &&
274 filter < EVFILT_SYSCOUNT + user_kfilterc)
275 /* it's a user filter */
276 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
277 else
278 return (NULL); /* out of range */
279 KASSERT(kfilter->filter == filter); /* sanity check! */
280 return (kfilter);
281 }
282
283 /*
284 * Register a new kfilter. Stores the entry in user_kfilters.
285 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286 * If retfilter != NULL, the new filterid is returned in it.
287 */
288 int
289 kfilter_register(const char *name, const struct filterops *filtops,
290 int *retfilter)
291 {
292 struct kfilter *kfilter;
293 size_t len;
294 int i;
295
296 if (name == NULL || name[0] == '\0' || filtops == NULL)
297 return (EINVAL); /* invalid args */
298
299 rw_enter(&kqueue_filter_lock, RW_WRITER);
300 if (kfilter_byname(name) != NULL) {
301 rw_exit(&kqueue_filter_lock);
302 return (EEXIST); /* already exists */
303 }
304 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
305 rw_exit(&kqueue_filter_lock);
306 return (EINVAL); /* too many */
307 }
308
309 for (i = 0; i < user_kfilterc; i++) {
310 kfilter = &user_kfilters[i];
311 if (kfilter->name == NULL) {
312 /* Previously deregistered slot. Reuse. */
313 goto reuse;
314 }
315 }
316
317 /* check if need to grow user_kfilters */
318 if (user_kfilterc + 1 > user_kfiltermaxc) {
319 /* Grow in KFILTER_EXTENT chunks. */
320 user_kfiltermaxc += KFILTER_EXTENT;
321 len = user_kfiltermaxc * sizeof(*kfilter);
322 kfilter = kmem_alloc(len, KM_SLEEP);
323 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
324 if (user_kfilters != NULL) {
325 memcpy(kfilter, user_kfilters, user_kfiltersz);
326 kmem_free(user_kfilters, user_kfiltersz);
327 }
328 user_kfiltersz = len;
329 user_kfilters = kfilter;
330 }
331 /* Adding new slot */
332 kfilter = &user_kfilters[user_kfilterc++];
333 reuse:
334 kfilter->namelen = strlen(name) + 1;
335 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
336 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
337
338 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
339
340 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
341 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
342
343 if (retfilter != NULL)
344 *retfilter = kfilter->filter;
345 rw_exit(&kqueue_filter_lock);
346
347 return (0);
348 }
349
350 /*
351 * Unregister a kfilter previously registered with kfilter_register.
352 * This retains the filter id, but clears the name and frees filtops (filter
353 * operations), so that the number isn't reused during a boot.
354 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
355 */
356 int
357 kfilter_unregister(const char *name)
358 {
359 struct kfilter *kfilter;
360
361 if (name == NULL || name[0] == '\0')
362 return (EINVAL); /* invalid name */
363
364 rw_enter(&kqueue_filter_lock, RW_WRITER);
365 if (kfilter_byname_sys(name) != NULL) {
366 rw_exit(&kqueue_filter_lock);
367 return (EINVAL); /* can't detach system filters */
368 }
369
370 kfilter = kfilter_byname_user(name);
371 if (kfilter == NULL) {
372 rw_exit(&kqueue_filter_lock);
373 return (ENOENT);
374 }
375 if (kfilter->refcnt != 0) {
376 rw_exit(&kqueue_filter_lock);
377 return (EBUSY);
378 }
379
380 /* Cast away const (but we know it's safe. */
381 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
382 kfilter->name = NULL; /* mark as `not implemented' */
383
384 if (kfilter->filtops != NULL) {
385 /* Cast away const (but we know it's safe. */
386 kmem_free(__UNCONST(kfilter->filtops),
387 sizeof(*kfilter->filtops));
388 kfilter->filtops = NULL; /* mark as `not implemented' */
389 }
390 rw_exit(&kqueue_filter_lock);
391
392 return (0);
393 }
394
395
396 /*
397 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
398 * descriptors. Calls fileops kqfilter method for given file descriptor.
399 */
400 static int
401 filt_fileattach(struct knote *kn)
402 {
403 file_t *fp;
404
405 fp = kn->kn_obj;
406
407 return (*fp->f_ops->fo_kqfilter)(fp, kn);
408 }
409
410 /*
411 * Filter detach method for EVFILT_READ on kqueue descriptor.
412 */
413 static void
414 filt_kqdetach(struct knote *kn)
415 {
416 struct kqueue *kq;
417
418 kq = ((file_t *)kn->kn_obj)->f_data;
419
420 mutex_spin_enter(&kq->kq_lock);
421 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
422 mutex_spin_exit(&kq->kq_lock);
423 }
424
425 /*
426 * Filter event method for EVFILT_READ on kqueue descriptor.
427 */
428 /*ARGSUSED*/
429 static int
430 filt_kqueue(struct knote *kn, long hint)
431 {
432 struct kqueue *kq;
433 int rv;
434
435 kq = ((file_t *)kn->kn_obj)->f_data;
436
437 if (hint != NOTE_SUBMIT)
438 mutex_spin_enter(&kq->kq_lock);
439 kn->kn_data = kq->kq_count;
440 rv = (kn->kn_data > 0);
441 if (hint != NOTE_SUBMIT)
442 mutex_spin_exit(&kq->kq_lock);
443
444 return rv;
445 }
446
447 /*
448 * Filter attach method for EVFILT_PROC.
449 */
450 static int
451 filt_procattach(struct knote *kn)
452 {
453 struct proc *p, *curp;
454 struct lwp *curl;
455
456 curl = curlwp;
457 curp = curl->l_proc;
458
459 mutex_enter(proc_lock);
460 p = proc_find(kn->kn_id);
461 if (p == NULL) {
462 mutex_exit(proc_lock);
463 return ESRCH;
464 }
465
466 /*
467 * Fail if it's not owned by you, or the last exec gave us
468 * setuid/setgid privs (unless you're root).
469 */
470 mutex_enter(p->p_lock);
471 mutex_exit(proc_lock);
472 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
473 p, NULL, NULL, NULL) != 0) {
474 mutex_exit(p->p_lock);
475 return EACCES;
476 }
477
478 kn->kn_obj = p;
479 kn->kn_flags |= EV_CLEAR; /* automatically set */
480
481 /*
482 * internal flag indicating registration done by kernel
483 */
484 if (kn->kn_flags & EV_FLAG1) {
485 kn->kn_data = kn->kn_sdata; /* ppid */
486 kn->kn_fflags = NOTE_CHILD;
487 kn->kn_flags &= ~EV_FLAG1;
488 }
489 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
490 mutex_exit(p->p_lock);
491
492 return 0;
493 }
494
495 /*
496 * Filter detach method for EVFILT_PROC.
497 *
498 * The knote may be attached to a different process, which may exit,
499 * leaving nothing for the knote to be attached to. So when the process
500 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
501 * it will be deleted when read out. However, as part of the knote deletion,
502 * this routine is called, so a check is needed to avoid actually performing
503 * a detach, because the original process might not exist any more.
504 */
505 static void
506 filt_procdetach(struct knote *kn)
507 {
508 struct proc *p;
509
510 if (kn->kn_status & KN_DETACHED)
511 return;
512
513 p = kn->kn_obj;
514
515 mutex_enter(p->p_lock);
516 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
517 mutex_exit(p->p_lock);
518 }
519
520 /*
521 * Filter event method for EVFILT_PROC.
522 */
523 static int
524 filt_proc(struct knote *kn, long hint)
525 {
526 u_int event, fflag;
527 struct kevent kev;
528 struct kqueue *kq;
529 int error;
530
531 event = (u_int)hint & NOTE_PCTRLMASK;
532 kq = kn->kn_kq;
533 fflag = 0;
534
535 /* If the user is interested in this event, record it. */
536 if (kn->kn_sfflags & event)
537 fflag |= event;
538
539 if (event == NOTE_EXIT) {
540 /*
541 * Process is gone, so flag the event as finished.
542 *
543 * Detach the knote from watched process and mark
544 * it as such. We can't leave this to kqueue_scan(),
545 * since the process might not exist by then. And we
546 * have to do this now, since psignal KNOTE() is called
547 * also for zombies and we might end up reading freed
548 * memory if the kevent would already be picked up
549 * and knote g/c'ed.
550 */
551 filt_procdetach(kn);
552
553 mutex_spin_enter(&kq->kq_lock);
554 kn->kn_status |= KN_DETACHED;
555 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
556 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
557 kn->kn_fflags |= fflag;
558 mutex_spin_exit(&kq->kq_lock);
559
560 return 1;
561 }
562
563 mutex_spin_enter(&kq->kq_lock);
564 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
565 /*
566 * Process forked, and user wants to track the new process,
567 * so attach a new knote to it, and immediately report an
568 * event with the parent's pid. Register knote with new
569 * process.
570 */
571 kev.ident = hint & NOTE_PDATAMASK; /* pid */
572 kev.filter = kn->kn_filter;
573 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
574 kev.fflags = kn->kn_sfflags;
575 kev.data = kn->kn_id; /* parent */
576 kev.udata = kn->kn_kevent.udata; /* preserve udata */
577 mutex_spin_exit(&kq->kq_lock);
578 error = kqueue_register(kq, &kev);
579 mutex_spin_enter(&kq->kq_lock);
580 if (error != 0)
581 kn->kn_fflags |= NOTE_TRACKERR;
582 }
583 kn->kn_fflags |= fflag;
584 fflag = kn->kn_fflags;
585 mutex_spin_exit(&kq->kq_lock);
586
587 return fflag != 0;
588 }
589
590 static void
591 filt_timerexpire(void *knx)
592 {
593 struct knote *kn = knx;
594 int tticks;
595
596 mutex_enter(&kqueue_misc_lock);
597 kn->kn_data++;
598 knote_activate(kn);
599 if ((kn->kn_flags & EV_ONESHOT) == 0) {
600 tticks = mstohz(kn->kn_sdata);
601 if (tticks <= 0)
602 tticks = 1;
603 callout_schedule((callout_t *)kn->kn_hook, tticks);
604 }
605 mutex_exit(&kqueue_misc_lock);
606 }
607
608 /*
609 * data contains amount of time to sleep, in milliseconds
610 */
611 static int
612 filt_timerattach(struct knote *kn)
613 {
614 callout_t *calloutp;
615 struct kqueue *kq;
616 int tticks;
617
618 tticks = mstohz(kn->kn_sdata);
619
620 /* if the supplied value is under our resolution, use 1 tick */
621 if (tticks == 0) {
622 if (kn->kn_sdata == 0)
623 return EINVAL;
624 tticks = 1;
625 }
626
627 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
628 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
629 atomic_dec_uint(&kq_ncallouts);
630 return ENOMEM;
631 }
632 callout_init(calloutp, CALLOUT_MPSAFE);
633
634 kq = kn->kn_kq;
635 mutex_spin_enter(&kq->kq_lock);
636 kn->kn_flags |= EV_CLEAR; /* automatically set */
637 kn->kn_hook = calloutp;
638 mutex_spin_exit(&kq->kq_lock);
639
640 callout_reset(calloutp, tticks, filt_timerexpire, kn);
641
642 return (0);
643 }
644
645 static void
646 filt_timerdetach(struct knote *kn)
647 {
648 callout_t *calloutp;
649
650 calloutp = (callout_t *)kn->kn_hook;
651 callout_halt(calloutp, NULL);
652 callout_destroy(calloutp);
653 kmem_free(calloutp, sizeof(*calloutp));
654 atomic_dec_uint(&kq_ncallouts);
655 }
656
657 static int
658 filt_timer(struct knote *kn, long hint)
659 {
660 int rv;
661
662 mutex_enter(&kqueue_misc_lock);
663 rv = (kn->kn_data != 0);
664 mutex_exit(&kqueue_misc_lock);
665
666 return rv;
667 }
668
669 /*
670 * filt_seltrue:
671 *
672 * This filter "event" routine simulates seltrue().
673 */
674 int
675 filt_seltrue(struct knote *kn, long hint)
676 {
677
678 /*
679 * We don't know how much data can be read/written,
680 * but we know that it *can* be. This is about as
681 * good as select/poll does as well.
682 */
683 kn->kn_data = 0;
684 return (1);
685 }
686
687 /*
688 * This provides full kqfilter entry for device switch tables, which
689 * has same effect as filter using filt_seltrue() as filter method.
690 */
691 static void
692 filt_seltruedetach(struct knote *kn)
693 {
694 /* Nothing to do */
695 }
696
697 const struct filterops seltrue_filtops =
698 { 1, NULL, filt_seltruedetach, filt_seltrue };
699
700 int
701 seltrue_kqfilter(dev_t dev, struct knote *kn)
702 {
703 switch (kn->kn_filter) {
704 case EVFILT_READ:
705 case EVFILT_WRITE:
706 kn->kn_fop = &seltrue_filtops;
707 break;
708 default:
709 return (EINVAL);
710 }
711
712 /* Nothing more to do */
713 return (0);
714 }
715
716 /*
717 * kqueue(2) system call.
718 */
719 static int
720 kqueue1(struct lwp *l, int flags, register_t *retval)
721 {
722 struct kqueue *kq;
723 file_t *fp;
724 int fd, error;
725
726 if ((error = fd_allocfile(&fp, &fd)) != 0)
727 return error;
728 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
729 fp->f_type = DTYPE_KQUEUE;
730 fp->f_ops = &kqueueops;
731 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
732 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
733 cv_init(&kq->kq_cv, "kqueue");
734 selinit(&kq->kq_sel);
735 TAILQ_INIT(&kq->kq_head);
736 fp->f_data = kq;
737 *retval = fd;
738 kq->kq_fdp = curlwp->l_fd;
739 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
740 fd_affix(curproc, fp, fd);
741 return error;
742 }
743
744 /*
745 * kqueue(2) system call.
746 */
747 int
748 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
749 {
750 return kqueue1(l, 0, retval);
751 }
752
753 int
754 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
755 register_t *retval)
756 {
757 /* {
758 syscallarg(int) flags;
759 } */
760 return kqueue1(l, SCARG(uap, flags), retval);
761 }
762
763 /*
764 * kevent(2) system call.
765 */
766 int
767 kevent_fetch_changes(void *private, const struct kevent *changelist,
768 struct kevent *changes, size_t index, int n)
769 {
770
771 return copyin(changelist + index, changes, n * sizeof(*changes));
772 }
773
774 int
775 kevent_put_events(void *private, struct kevent *events,
776 struct kevent *eventlist, size_t index, int n)
777 {
778
779 return copyout(events, eventlist + index, n * sizeof(*events));
780 }
781
782 static const struct kevent_ops kevent_native_ops = {
783 .keo_private = NULL,
784 .keo_fetch_timeout = copyin,
785 .keo_fetch_changes = kevent_fetch_changes,
786 .keo_put_events = kevent_put_events,
787 };
788
789 int
790 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
791 register_t *retval)
792 {
793 /* {
794 syscallarg(int) fd;
795 syscallarg(const struct kevent *) changelist;
796 syscallarg(size_t) nchanges;
797 syscallarg(struct kevent *) eventlist;
798 syscallarg(size_t) nevents;
799 syscallarg(const struct timespec *) timeout;
800 } */
801
802 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
803 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
804 SCARG(uap, timeout), &kevent_native_ops);
805 }
806
807 int
808 kevent1(register_t *retval, int fd,
809 const struct kevent *changelist, size_t nchanges,
810 struct kevent *eventlist, size_t nevents,
811 const struct timespec *timeout,
812 const struct kevent_ops *keops)
813 {
814 struct kevent *kevp;
815 struct kqueue *kq;
816 struct timespec ts;
817 size_t i, n, ichange;
818 int nerrors, error;
819 struct kevent kevbuf[8]; /* approx 300 bytes on 64-bit */
820 file_t *fp;
821
822 /* check that we're dealing with a kq */
823 fp = fd_getfile(fd);
824 if (fp == NULL)
825 return (EBADF);
826
827 if (fp->f_type != DTYPE_KQUEUE) {
828 fd_putfile(fd);
829 return (EBADF);
830 }
831
832 if (timeout != NULL) {
833 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
834 if (error)
835 goto done;
836 timeout = &ts;
837 }
838
839 kq = (struct kqueue *)fp->f_data;
840 nerrors = 0;
841 ichange = 0;
842
843 /* traverse list of events to register */
844 while (nchanges > 0) {
845 n = MIN(nchanges, __arraycount(kevbuf));
846 error = (*keops->keo_fetch_changes)(keops->keo_private,
847 changelist, kevbuf, ichange, n);
848 if (error)
849 goto done;
850 for (i = 0; i < n; i++) {
851 kevp = &kevbuf[i];
852 kevp->flags &= ~EV_SYSFLAGS;
853 /* register each knote */
854 error = kqueue_register(kq, kevp);
855 if (error) {
856 if (nevents != 0) {
857 kevp->flags = EV_ERROR;
858 kevp->data = error;
859 error = (*keops->keo_put_events)
860 (keops->keo_private, kevp,
861 eventlist, nerrors, 1);
862 if (error)
863 goto done;
864 nevents--;
865 nerrors++;
866 } else {
867 goto done;
868 }
869 }
870 }
871 nchanges -= n; /* update the results */
872 ichange += n;
873 }
874 if (nerrors) {
875 *retval = nerrors;
876 error = 0;
877 goto done;
878 }
879
880 /* actually scan through the events */
881 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
882 kevbuf, __arraycount(kevbuf));
883 done:
884 fd_putfile(fd);
885 return (error);
886 }
887
888 /*
889 * Register a given kevent kev onto the kqueue
890 */
891 static int
892 kqueue_register(struct kqueue *kq, struct kevent *kev)
893 {
894 struct kfilter *kfilter;
895 filedesc_t *fdp;
896 file_t *fp;
897 fdfile_t *ff;
898 struct knote *kn, *newkn;
899 struct klist *list;
900 int error, fd, rv;
901
902 fdp = kq->kq_fdp;
903 fp = NULL;
904 kn = NULL;
905 error = 0;
906 fd = 0;
907
908 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
909
910 rw_enter(&kqueue_filter_lock, RW_READER);
911 kfilter = kfilter_byfilter(kev->filter);
912 if (kfilter == NULL || kfilter->filtops == NULL) {
913 /* filter not found nor implemented */
914 rw_exit(&kqueue_filter_lock);
915 kmem_free(newkn, sizeof(*newkn));
916 return (EINVAL);
917 }
918
919 /* search if knote already exists */
920 if (kfilter->filtops->f_isfd) {
921 /* monitoring a file descriptor */
922 fd = kev->ident;
923 if ((fp = fd_getfile(fd)) == NULL) {
924 rw_exit(&kqueue_filter_lock);
925 kmem_free(newkn, sizeof(*newkn));
926 return EBADF;
927 }
928 mutex_enter(&fdp->fd_lock);
929 ff = fdp->fd_dt->dt_ff[fd];
930 if (fd <= fdp->fd_lastkqfile) {
931 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
932 if (kq == kn->kn_kq &&
933 kev->filter == kn->kn_filter)
934 break;
935 }
936 }
937 } else {
938 /*
939 * not monitoring a file descriptor, so
940 * lookup knotes in internal hash table
941 */
942 mutex_enter(&fdp->fd_lock);
943 if (fdp->fd_knhashmask != 0) {
944 list = &fdp->fd_knhash[
945 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
946 SLIST_FOREACH(kn, list, kn_link) {
947 if (kev->ident == kn->kn_id &&
948 kq == kn->kn_kq &&
949 kev->filter == kn->kn_filter)
950 break;
951 }
952 }
953 }
954
955 /*
956 * kn now contains the matching knote, or NULL if no match
957 */
958 if (kev->flags & EV_ADD) {
959 if (kn == NULL) {
960 /* create new knote */
961 kn = newkn;
962 newkn = NULL;
963 kn->kn_obj = fp;
964 kn->kn_kq = kq;
965 kn->kn_fop = kfilter->filtops;
966 kn->kn_kfilter = kfilter;
967 kn->kn_sfflags = kev->fflags;
968 kn->kn_sdata = kev->data;
969 kev->fflags = 0;
970 kev->data = 0;
971 kn->kn_kevent = *kev;
972
973 /*
974 * apply reference count to knote structure, and
975 * do not release it at the end of this routine.
976 */
977 fp = NULL;
978
979 if (!kn->kn_fop->f_isfd) {
980 /*
981 * If knote is not on an fd, store on
982 * internal hash table.
983 */
984 if (fdp->fd_knhashmask == 0) {
985 /* XXXAD can block with fd_lock held */
986 fdp->fd_knhash = hashinit(KN_HASHSIZE,
987 HASH_LIST, true,
988 &fdp->fd_knhashmask);
989 }
990 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
991 fdp->fd_knhashmask)];
992 } else {
993 /* Otherwise, knote is on an fd. */
994 list = (struct klist *)
995 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
996 if ((int)kn->kn_id > fdp->fd_lastkqfile)
997 fdp->fd_lastkqfile = kn->kn_id;
998 }
999 SLIST_INSERT_HEAD(list, kn, kn_link);
1000
1001 KERNEL_LOCK(1, NULL); /* XXXSMP */
1002 error = (*kfilter->filtops->f_attach)(kn);
1003 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1004 if (error != 0) {
1005 /* knote_detach() drops fdp->fd_lock */
1006 knote_detach(kn, fdp, false);
1007 goto done;
1008 }
1009 atomic_inc_uint(&kfilter->refcnt);
1010 } else {
1011 /*
1012 * The user may change some filter values after the
1013 * initial EV_ADD, but doing so will not reset any
1014 * filter which have already been triggered.
1015 */
1016 kn->kn_sfflags = kev->fflags;
1017 kn->kn_sdata = kev->data;
1018 kn->kn_kevent.udata = kev->udata;
1019 }
1020 KERNEL_LOCK(1, NULL); /* XXXSMP */
1021 rv = (*kn->kn_fop->f_event)(kn, 0);
1022 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1023 if (rv)
1024 knote_activate(kn);
1025 } else {
1026 if (kn == NULL) {
1027 error = ENOENT;
1028 mutex_exit(&fdp->fd_lock);
1029 goto done;
1030 }
1031 if (kev->flags & EV_DELETE) {
1032 /* knote_detach() drops fdp->fd_lock */
1033 knote_detach(kn, fdp, true);
1034 goto done;
1035 }
1036 }
1037
1038 /* disable knote */
1039 if ((kev->flags & EV_DISABLE)) {
1040 mutex_spin_enter(&kq->kq_lock);
1041 if ((kn->kn_status & KN_DISABLED) == 0)
1042 kn->kn_status |= KN_DISABLED;
1043 mutex_spin_exit(&kq->kq_lock);
1044 }
1045
1046 /* enable knote */
1047 if ((kev->flags & EV_ENABLE)) {
1048 knote_enqueue(kn);
1049 }
1050 mutex_exit(&fdp->fd_lock);
1051 done:
1052 rw_exit(&kqueue_filter_lock);
1053 if (newkn != NULL)
1054 kmem_free(newkn, sizeof(*newkn));
1055 if (fp != NULL)
1056 fd_putfile(fd);
1057 return (error);
1058 }
1059
1060 #if defined(DEBUG)
1061 static void
1062 kq_check(struct kqueue *kq)
1063 {
1064 const struct knote *kn;
1065 int count;
1066 int nmarker;
1067
1068 KASSERT(mutex_owned(&kq->kq_lock));
1069 KASSERT(kq->kq_count >= 0);
1070
1071 count = 0;
1072 nmarker = 0;
1073 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1074 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1075 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1076 }
1077 if ((kn->kn_status & KN_MARKER) == 0) {
1078 if (kn->kn_kq != kq) {
1079 panic("%s: kq=%p kn=%p inconsist 2",
1080 __func__, kq, kn);
1081 }
1082 if ((kn->kn_status & KN_ACTIVE) == 0) {
1083 panic("%s: kq=%p kn=%p: not active",
1084 __func__, kq, kn);
1085 }
1086 count++;
1087 if (count > kq->kq_count) {
1088 goto bad;
1089 }
1090 } else {
1091 nmarker++;
1092 #if 0
1093 if (nmarker > 10000) {
1094 panic("%s: kq=%p too many markers: %d != %d, "
1095 "nmarker=%d",
1096 __func__, kq, kq->kq_count, count, nmarker);
1097 }
1098 #endif
1099 }
1100 }
1101 if (kq->kq_count != count) {
1102 bad:
1103 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1104 __func__, kq, kq->kq_count, count, nmarker);
1105 }
1106 }
1107 #else /* defined(DEBUG) */
1108 #define kq_check(a) /* nothing */
1109 #endif /* defined(DEBUG) */
1110
1111 /*
1112 * Scan through the list of events on fp (for a maximum of maxevents),
1113 * returning the results in to ulistp. Timeout is determined by tsp; if
1114 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1115 * as appropriate.
1116 */
1117 static int
1118 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1119 const struct timespec *tsp, register_t *retval,
1120 const struct kevent_ops *keops, struct kevent *kevbuf,
1121 size_t kevcnt)
1122 {
1123 struct kqueue *kq;
1124 struct kevent *kevp;
1125 struct timespec ats, sleepts;
1126 struct knote *kn, *marker;
1127 size_t count, nkev, nevents;
1128 int timeout, error, rv;
1129 filedesc_t *fdp;
1130
1131 fdp = curlwp->l_fd;
1132 kq = fp->f_data;
1133 count = maxevents;
1134 nkev = nevents = error = 0;
1135 if (count == 0) {
1136 *retval = 0;
1137 return 0;
1138 }
1139
1140 if (tsp) { /* timeout supplied */
1141 ats = *tsp;
1142 if (inittimeleft(&ats, &sleepts) == -1) {
1143 *retval = maxevents;
1144 return EINVAL;
1145 }
1146 timeout = tstohz(&ats);
1147 if (timeout <= 0)
1148 timeout = -1; /* do poll */
1149 } else {
1150 /* no timeout, wait forever */
1151 timeout = 0;
1152 }
1153
1154 marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1155 marker->kn_status = KN_MARKER;
1156 mutex_spin_enter(&kq->kq_lock);
1157 retry:
1158 kevp = kevbuf;
1159 if (kq->kq_count == 0) {
1160 if (timeout >= 0) {
1161 error = cv_timedwait_sig(&kq->kq_cv,
1162 &kq->kq_lock, timeout);
1163 if (error == 0) {
1164 if (tsp == NULL || (timeout =
1165 gettimeleft(&ats, &sleepts)) > 0)
1166 goto retry;
1167 } else {
1168 /* don't restart after signals... */
1169 if (error == ERESTART)
1170 error = EINTR;
1171 if (error == EWOULDBLOCK)
1172 error = 0;
1173 }
1174 }
1175 } else {
1176 /* mark end of knote list */
1177 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1178
1179 while (count != 0) {
1180 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1181 while ((kn->kn_status & KN_MARKER) != 0) {
1182 if (kn == marker) {
1183 /* it's our marker, stop */
1184 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1185 if (count < maxevents || (tsp != NULL &&
1186 (timeout = gettimeleft(&ats,
1187 &sleepts)) <= 0))
1188 goto done;
1189 goto retry;
1190 }
1191 /* someone else's marker. */
1192 kn = TAILQ_NEXT(kn, kn_tqe);
1193 }
1194 kq_check(kq);
1195 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1196 kq->kq_count--;
1197 kn->kn_status &= ~KN_QUEUED;
1198 kq_check(kq);
1199 if (kn->kn_status & KN_DISABLED) {
1200 /* don't want disabled events */
1201 continue;
1202 }
1203 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1204 mutex_spin_exit(&kq->kq_lock);
1205 KERNEL_LOCK(1, NULL); /* XXXSMP */
1206 rv = (*kn->kn_fop->f_event)(kn, 0);
1207 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1208 mutex_spin_enter(&kq->kq_lock);
1209 /* Re-poll if note was re-enqueued. */
1210 if ((kn->kn_status & KN_QUEUED) != 0)
1211 continue;
1212 if (rv == 0) {
1213 /*
1214 * non-ONESHOT event that hasn't
1215 * triggered again, so de-queue.
1216 */
1217 kn->kn_status &= ~KN_ACTIVE;
1218 continue;
1219 }
1220 }
1221 /* XXXAD should be got from f_event if !oneshot. */
1222 *kevp++ = kn->kn_kevent;
1223 nkev++;
1224 if (kn->kn_flags & EV_ONESHOT) {
1225 /* delete ONESHOT events after retrieval */
1226 mutex_spin_exit(&kq->kq_lock);
1227 mutex_enter(&fdp->fd_lock);
1228 knote_detach(kn, fdp, true);
1229 mutex_spin_enter(&kq->kq_lock);
1230 } else if (kn->kn_flags & EV_CLEAR) {
1231 /* clear state after retrieval */
1232 kn->kn_data = 0;
1233 kn->kn_fflags = 0;
1234 kn->kn_status &= ~KN_ACTIVE;
1235 } else {
1236 /* add event back on list */
1237 kq_check(kq);
1238 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1239 kq->kq_count++;
1240 kn->kn_status |= KN_QUEUED;
1241 kq_check(kq);
1242 }
1243 if (nkev == kevcnt) {
1244 /* do copyouts in kevcnt chunks */
1245 mutex_spin_exit(&kq->kq_lock);
1246 error = (*keops->keo_put_events)
1247 (keops->keo_private,
1248 kevbuf, ulistp, nevents, nkev);
1249 mutex_spin_enter(&kq->kq_lock);
1250 nevents += nkev;
1251 nkev = 0;
1252 kevp = kevbuf;
1253 }
1254 count--;
1255 if (error != 0 || count == 0) {
1256 /* remove marker */
1257 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1258 break;
1259 }
1260 }
1261 }
1262 done:
1263 mutex_spin_exit(&kq->kq_lock);
1264 if (marker != NULL)
1265 kmem_free(marker, sizeof(*marker));
1266 if (nkev != 0) {
1267 /* copyout remaining events */
1268 error = (*keops->keo_put_events)(keops->keo_private,
1269 kevbuf, ulistp, nevents, nkev);
1270 }
1271 *retval = maxevents - count;
1272
1273 return error;
1274 }
1275
1276 /*
1277 * fileops ioctl method for a kqueue descriptor.
1278 *
1279 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1280 * KFILTER_BYNAME find name for filter, and return result in
1281 * name, which is of size len.
1282 * KFILTER_BYFILTER find filter for name. len is ignored.
1283 */
1284 /*ARGSUSED*/
1285 static int
1286 kqueue_ioctl(file_t *fp, u_long com, void *data)
1287 {
1288 struct kfilter_mapping *km;
1289 const struct kfilter *kfilter;
1290 char *name;
1291 int error;
1292
1293 km = data;
1294 error = 0;
1295 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1296
1297 switch (com) {
1298 case KFILTER_BYFILTER: /* convert filter -> name */
1299 rw_enter(&kqueue_filter_lock, RW_READER);
1300 kfilter = kfilter_byfilter(km->filter);
1301 if (kfilter != NULL) {
1302 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1303 rw_exit(&kqueue_filter_lock);
1304 error = copyoutstr(name, km->name, km->len, NULL);
1305 } else {
1306 rw_exit(&kqueue_filter_lock);
1307 error = ENOENT;
1308 }
1309 break;
1310
1311 case KFILTER_BYNAME: /* convert name -> filter */
1312 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1313 if (error) {
1314 break;
1315 }
1316 rw_enter(&kqueue_filter_lock, RW_READER);
1317 kfilter = kfilter_byname(name);
1318 if (kfilter != NULL)
1319 km->filter = kfilter->filter;
1320 else
1321 error = ENOENT;
1322 rw_exit(&kqueue_filter_lock);
1323 break;
1324
1325 default:
1326 error = ENOTTY;
1327 break;
1328
1329 }
1330 kmem_free(name, KFILTER_MAXNAME);
1331 return (error);
1332 }
1333
1334 /*
1335 * fileops fcntl method for a kqueue descriptor.
1336 */
1337 static int
1338 kqueue_fcntl(file_t *fp, u_int com, void *data)
1339 {
1340
1341 return (ENOTTY);
1342 }
1343
1344 /*
1345 * fileops poll method for a kqueue descriptor.
1346 * Determine if kqueue has events pending.
1347 */
1348 static int
1349 kqueue_poll(file_t *fp, int events)
1350 {
1351 struct kqueue *kq;
1352 int revents;
1353
1354 kq = fp->f_data;
1355
1356 revents = 0;
1357 if (events & (POLLIN | POLLRDNORM)) {
1358 mutex_spin_enter(&kq->kq_lock);
1359 if (kq->kq_count != 0) {
1360 revents |= events & (POLLIN | POLLRDNORM);
1361 } else {
1362 selrecord(curlwp, &kq->kq_sel);
1363 }
1364 kq_check(kq);
1365 mutex_spin_exit(&kq->kq_lock);
1366 }
1367
1368 return revents;
1369 }
1370
1371 /*
1372 * fileops stat method for a kqueue descriptor.
1373 * Returns dummy info, with st_size being number of events pending.
1374 */
1375 static int
1376 kqueue_stat(file_t *fp, struct stat *st)
1377 {
1378 struct kqueue *kq;
1379
1380 kq = fp->f_data;
1381
1382 memset(st, 0, sizeof(*st));
1383 st->st_size = kq->kq_count;
1384 st->st_blksize = sizeof(struct kevent);
1385 st->st_mode = S_IFIFO;
1386
1387 return 0;
1388 }
1389
1390 static void
1391 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1392 {
1393 struct knote *kn;
1394 filedesc_t *fdp;
1395
1396 fdp = kq->kq_fdp;
1397
1398 KASSERT(mutex_owned(&fdp->fd_lock));
1399
1400 for (kn = SLIST_FIRST(list); kn != NULL;) {
1401 if (kq != kn->kn_kq) {
1402 kn = SLIST_NEXT(kn, kn_link);
1403 continue;
1404 }
1405 knote_detach(kn, fdp, true);
1406 mutex_enter(&fdp->fd_lock);
1407 kn = SLIST_FIRST(list);
1408 }
1409 }
1410
1411
1412 /*
1413 * fileops close method for a kqueue descriptor.
1414 */
1415 static int
1416 kqueue_close(file_t *fp)
1417 {
1418 struct kqueue *kq;
1419 filedesc_t *fdp;
1420 fdfile_t *ff;
1421 int i;
1422
1423 kq = fp->f_data;
1424 fdp = curlwp->l_fd;
1425
1426 mutex_enter(&fdp->fd_lock);
1427 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1428 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1429 continue;
1430 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1431 }
1432 if (fdp->fd_knhashmask != 0) {
1433 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1434 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1435 }
1436 }
1437 mutex_exit(&fdp->fd_lock);
1438
1439 KASSERT(kq->kq_count == 0);
1440 mutex_destroy(&kq->kq_lock);
1441 cv_destroy(&kq->kq_cv);
1442 seldestroy(&kq->kq_sel);
1443 kmem_free(kq, sizeof(*kq));
1444 fp->f_data = NULL;
1445
1446 return (0);
1447 }
1448
1449 /*
1450 * struct fileops kqfilter method for a kqueue descriptor.
1451 * Event triggered when monitored kqueue changes.
1452 */
1453 static int
1454 kqueue_kqfilter(file_t *fp, struct knote *kn)
1455 {
1456 struct kqueue *kq;
1457 filedesc_t *fdp;
1458
1459 kq = ((file_t *)kn->kn_obj)->f_data;
1460
1461 KASSERT(fp == kn->kn_obj);
1462
1463 if (kn->kn_filter != EVFILT_READ)
1464 return 1;
1465
1466 kn->kn_fop = &kqread_filtops;
1467 fdp = curlwp->l_fd;
1468 mutex_enter(&kq->kq_lock);
1469 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1470 mutex_exit(&kq->kq_lock);
1471
1472 return 0;
1473 }
1474
1475
1476 /*
1477 * Walk down a list of knotes, activating them if their event has
1478 * triggered. The caller's object lock (e.g. device driver lock)
1479 * must be held.
1480 */
1481 void
1482 knote(struct klist *list, long hint)
1483 {
1484 struct knote *kn, *tmpkn;
1485
1486 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1487 if ((*kn->kn_fop->f_event)(kn, hint))
1488 knote_activate(kn);
1489 }
1490 }
1491
1492 /*
1493 * Remove all knotes referencing a specified fd
1494 */
1495 void
1496 knote_fdclose(int fd)
1497 {
1498 struct klist *list;
1499 struct knote *kn;
1500 filedesc_t *fdp;
1501
1502 fdp = curlwp->l_fd;
1503 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1504 mutex_enter(&fdp->fd_lock);
1505 while ((kn = SLIST_FIRST(list)) != NULL) {
1506 knote_detach(kn, fdp, true);
1507 mutex_enter(&fdp->fd_lock);
1508 }
1509 mutex_exit(&fdp->fd_lock);
1510 }
1511
1512 /*
1513 * Drop knote. Called with fdp->fd_lock held, and will drop before
1514 * returning.
1515 */
1516 static void
1517 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1518 {
1519 struct klist *list;
1520 struct kqueue *kq;
1521
1522 kq = kn->kn_kq;
1523
1524 KASSERT((kn->kn_status & KN_MARKER) == 0);
1525 KASSERT(mutex_owned(&fdp->fd_lock));
1526
1527 /* Remove from monitored object. */
1528 if (dofop) {
1529 KERNEL_LOCK(1, NULL); /* XXXSMP */
1530 (*kn->kn_fop->f_detach)(kn);
1531 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1532 }
1533
1534 /* Remove from descriptor table. */
1535 if (kn->kn_fop->f_isfd)
1536 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1537 else
1538 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1539
1540 SLIST_REMOVE(list, kn, knote, kn_link);
1541
1542 /* Remove from kqueue. */
1543 /* XXXAD should verify not in use by kqueue_scan. */
1544 mutex_spin_enter(&kq->kq_lock);
1545 if ((kn->kn_status & KN_QUEUED) != 0) {
1546 kq_check(kq);
1547 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1548 kn->kn_status &= ~KN_QUEUED;
1549 kq->kq_count--;
1550 kq_check(kq);
1551 }
1552 mutex_spin_exit(&kq->kq_lock);
1553
1554 mutex_exit(&fdp->fd_lock);
1555 if (kn->kn_fop->f_isfd)
1556 fd_putfile(kn->kn_id);
1557 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1558 kmem_free(kn, sizeof(*kn));
1559 }
1560
1561 /*
1562 * Queue new event for knote.
1563 */
1564 static void
1565 knote_enqueue(struct knote *kn)
1566 {
1567 struct kqueue *kq;
1568
1569 KASSERT((kn->kn_status & KN_MARKER) == 0);
1570
1571 kq = kn->kn_kq;
1572
1573 mutex_spin_enter(&kq->kq_lock);
1574 if ((kn->kn_status & KN_DISABLED) != 0) {
1575 kn->kn_status &= ~KN_DISABLED;
1576 }
1577 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1578 kq_check(kq);
1579 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1580 kn->kn_status |= KN_QUEUED;
1581 kq->kq_count++;
1582 kq_check(kq);
1583 cv_broadcast(&kq->kq_cv);
1584 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1585 }
1586 mutex_spin_exit(&kq->kq_lock);
1587 }
1588 /*
1589 * Queue new event for knote.
1590 */
1591 static void
1592 knote_activate(struct knote *kn)
1593 {
1594 struct kqueue *kq;
1595
1596 KASSERT((kn->kn_status & KN_MARKER) == 0);
1597
1598 kq = kn->kn_kq;
1599
1600 mutex_spin_enter(&kq->kq_lock);
1601 kn->kn_status |= KN_ACTIVE;
1602 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1603 kq_check(kq);
1604 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1605 kn->kn_status |= KN_QUEUED;
1606 kq->kq_count++;
1607 kq_check(kq);
1608 cv_broadcast(&kq->kq_cv);
1609 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1610 }
1611 mutex_spin_exit(&kq->kq_lock);
1612 }
1613