kern_event.c revision 1.76.2.1 1 /* $NetBSD: kern_event.c,v 1.76.2.1 2012/11/20 03:02:42 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.76.2.1 2012/11/20 03:02:42 tls Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/proc.h>
67 #include <sys/file.h>
68 #include <sys/select.h>
69 #include <sys/queue.h>
70 #include <sys/event.h>
71 #include <sys/eventvar.h>
72 #include <sys/poll.h>
73 #include <sys/kmem.h>
74 #include <sys/stat.h>
75 #include <sys/filedesc.h>
76 #include <sys/syscallargs.h>
77 #include <sys/kauth.h>
78 #include <sys/conf.h>
79 #include <sys/atomic.h>
80
81 static int kqueue_scan(file_t *, size_t, struct kevent *,
82 const struct timespec *, register_t *,
83 const struct kevent_ops *, struct kevent *,
84 size_t);
85 static int kqueue_ioctl(file_t *, u_long, void *);
86 static int kqueue_fcntl(file_t *, u_int, void *);
87 static int kqueue_poll(file_t *, int);
88 static int kqueue_kqfilter(file_t *, struct knote *);
89 static int kqueue_stat(file_t *, struct stat *);
90 static int kqueue_close(file_t *);
91 static int kqueue_register(struct kqueue *, struct kevent *);
92 static void kqueue_doclose(struct kqueue *, struct klist *, int);
93
94 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
95 static void knote_enqueue(struct knote *);
96 static void knote_activate(struct knote *);
97
98 static void filt_kqdetach(struct knote *);
99 static int filt_kqueue(struct knote *, long hint);
100 static int filt_procattach(struct knote *);
101 static void filt_procdetach(struct knote *);
102 static int filt_proc(struct knote *, long hint);
103 static int filt_fileattach(struct knote *);
104 static void filt_timerexpire(void *x);
105 static int filt_timerattach(struct knote *);
106 static void filt_timerdetach(struct knote *);
107 static int filt_timer(struct knote *, long hint);
108
109 static const struct fileops kqueueops = {
110 .fo_read = (void *)enxio,
111 .fo_write = (void *)enxio,
112 .fo_ioctl = kqueue_ioctl,
113 .fo_fcntl = kqueue_fcntl,
114 .fo_poll = kqueue_poll,
115 .fo_stat = kqueue_stat,
116 .fo_close = kqueue_close,
117 .fo_kqfilter = kqueue_kqfilter,
118 .fo_restart = fnullop_restart,
119 };
120
121 static const struct filterops kqread_filtops =
122 { 1, NULL, filt_kqdetach, filt_kqueue };
123 static const struct filterops proc_filtops =
124 { 0, filt_procattach, filt_procdetach, filt_proc };
125 static const struct filterops file_filtops =
126 { 1, filt_fileattach, NULL, NULL };
127 static const struct filterops timer_filtops =
128 { 0, filt_timerattach, filt_timerdetach, filt_timer };
129
130 static u_int kq_ncallouts = 0;
131 static int kq_calloutmax = (4 * 1024);
132
133 #define KN_HASHSIZE 64 /* XXX should be tunable */
134 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
135
136 extern const struct filterops sig_filtops;
137
138 /*
139 * Table for for all system-defined filters.
140 * These should be listed in the numeric order of the EVFILT_* defines.
141 * If filtops is NULL, the filter isn't implemented in NetBSD.
142 * End of list is when name is NULL.
143 *
144 * Note that 'refcnt' is meaningless for built-in filters.
145 */
146 struct kfilter {
147 const char *name; /* name of filter */
148 uint32_t filter; /* id of filter */
149 unsigned refcnt; /* reference count */
150 const struct filterops *filtops;/* operations for filter */
151 size_t namelen; /* length of name string */
152 };
153
154 /* System defined filters */
155 static struct kfilter sys_kfilters[] = {
156 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
157 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
158 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
159 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
160 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
161 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
162 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
163 { NULL, 0, 0, NULL, 0 },
164 };
165
166 /* User defined kfilters */
167 static struct kfilter *user_kfilters; /* array */
168 static int user_kfilterc; /* current offset */
169 static int user_kfiltermaxc; /* max size so far */
170 static size_t user_kfiltersz; /* size of allocated memory */
171
172 /* Locks */
173 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
174 static kmutex_t kqueue_misc_lock; /* miscellaneous */
175
176 static kauth_listener_t kqueue_listener;
177
178 static int
179 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
180 void *arg0, void *arg1, void *arg2, void *arg3)
181 {
182 struct proc *p;
183 int result;
184
185 result = KAUTH_RESULT_DEFER;
186 p = arg0;
187
188 if (action != KAUTH_PROCESS_KEVENT_FILTER)
189 return result;
190
191 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
192 ISSET(p->p_flag, PK_SUGID)))
193 return result;
194
195 result = KAUTH_RESULT_ALLOW;
196
197 return result;
198 }
199
200 /*
201 * Initialize the kqueue subsystem.
202 */
203 void
204 kqueue_init(void)
205 {
206
207 rw_init(&kqueue_filter_lock);
208 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
209
210 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
211 kqueue_listener_cb, NULL);
212 }
213
214 /*
215 * Find kfilter entry by name, or NULL if not found.
216 */
217 static struct kfilter *
218 kfilter_byname_sys(const char *name)
219 {
220 int i;
221
222 KASSERT(rw_lock_held(&kqueue_filter_lock));
223
224 for (i = 0; sys_kfilters[i].name != NULL; i++) {
225 if (strcmp(name, sys_kfilters[i].name) == 0)
226 return &sys_kfilters[i];
227 }
228 return NULL;
229 }
230
231 static struct kfilter *
232 kfilter_byname_user(const char *name)
233 {
234 int i;
235
236 KASSERT(rw_lock_held(&kqueue_filter_lock));
237
238 /* user filter slots have a NULL name if previously deregistered */
239 for (i = 0; i < user_kfilterc ; i++) {
240 if (user_kfilters[i].name != NULL &&
241 strcmp(name, user_kfilters[i].name) == 0)
242 return &user_kfilters[i];
243 }
244 return NULL;
245 }
246
247 static struct kfilter *
248 kfilter_byname(const char *name)
249 {
250 struct kfilter *kfilter;
251
252 KASSERT(rw_lock_held(&kqueue_filter_lock));
253
254 if ((kfilter = kfilter_byname_sys(name)) != NULL)
255 return kfilter;
256
257 return kfilter_byname_user(name);
258 }
259
260 /*
261 * Find kfilter entry by filter id, or NULL if not found.
262 * Assumes entries are indexed in filter id order, for speed.
263 */
264 static struct kfilter *
265 kfilter_byfilter(uint32_t filter)
266 {
267 struct kfilter *kfilter;
268
269 KASSERT(rw_lock_held(&kqueue_filter_lock));
270
271 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
272 kfilter = &sys_kfilters[filter];
273 else if (user_kfilters != NULL &&
274 filter < EVFILT_SYSCOUNT + user_kfilterc)
275 /* it's a user filter */
276 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
277 else
278 return (NULL); /* out of range */
279 KASSERT(kfilter->filter == filter); /* sanity check! */
280 return (kfilter);
281 }
282
283 /*
284 * Register a new kfilter. Stores the entry in user_kfilters.
285 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286 * If retfilter != NULL, the new filterid is returned in it.
287 */
288 int
289 kfilter_register(const char *name, const struct filterops *filtops,
290 int *retfilter)
291 {
292 struct kfilter *kfilter;
293 size_t len;
294 int i;
295
296 if (name == NULL || name[0] == '\0' || filtops == NULL)
297 return (EINVAL); /* invalid args */
298
299 rw_enter(&kqueue_filter_lock, RW_WRITER);
300 if (kfilter_byname(name) != NULL) {
301 rw_exit(&kqueue_filter_lock);
302 return (EEXIST); /* already exists */
303 }
304 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
305 rw_exit(&kqueue_filter_lock);
306 return (EINVAL); /* too many */
307 }
308
309 for (i = 0; i < user_kfilterc; i++) {
310 kfilter = &user_kfilters[i];
311 if (kfilter->name == NULL) {
312 /* Previously deregistered slot. Reuse. */
313 goto reuse;
314 }
315 }
316
317 /* check if need to grow user_kfilters */
318 if (user_kfilterc + 1 > user_kfiltermaxc) {
319 /* Grow in KFILTER_EXTENT chunks. */
320 user_kfiltermaxc += KFILTER_EXTENT;
321 len = user_kfiltermaxc * sizeof(*kfilter);
322 kfilter = kmem_alloc(len, KM_SLEEP);
323 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
324 if (user_kfilters != NULL) {
325 memcpy(kfilter, user_kfilters, user_kfiltersz);
326 kmem_free(user_kfilters, user_kfiltersz);
327 }
328 user_kfiltersz = len;
329 user_kfilters = kfilter;
330 }
331 /* Adding new slot */
332 kfilter = &user_kfilters[user_kfilterc++];
333 reuse:
334 kfilter->namelen = strlen(name) + 1;
335 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
336 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
337
338 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
339
340 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
341 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
342
343 if (retfilter != NULL)
344 *retfilter = kfilter->filter;
345 rw_exit(&kqueue_filter_lock);
346
347 return (0);
348 }
349
350 /*
351 * Unregister a kfilter previously registered with kfilter_register.
352 * This retains the filter id, but clears the name and frees filtops (filter
353 * operations), so that the number isn't reused during a boot.
354 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
355 */
356 int
357 kfilter_unregister(const char *name)
358 {
359 struct kfilter *kfilter;
360
361 if (name == NULL || name[0] == '\0')
362 return (EINVAL); /* invalid name */
363
364 rw_enter(&kqueue_filter_lock, RW_WRITER);
365 if (kfilter_byname_sys(name) != NULL) {
366 rw_exit(&kqueue_filter_lock);
367 return (EINVAL); /* can't detach system filters */
368 }
369
370 kfilter = kfilter_byname_user(name);
371 if (kfilter == NULL) {
372 rw_exit(&kqueue_filter_lock);
373 return (ENOENT);
374 }
375 if (kfilter->refcnt != 0) {
376 rw_exit(&kqueue_filter_lock);
377 return (EBUSY);
378 }
379
380 /* Cast away const (but we know it's safe. */
381 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
382 kfilter->name = NULL; /* mark as `not implemented' */
383
384 if (kfilter->filtops != NULL) {
385 /* Cast away const (but we know it's safe. */
386 kmem_free(__UNCONST(kfilter->filtops),
387 sizeof(*kfilter->filtops));
388 kfilter->filtops = NULL; /* mark as `not implemented' */
389 }
390 rw_exit(&kqueue_filter_lock);
391
392 return (0);
393 }
394
395
396 /*
397 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
398 * descriptors. Calls fileops kqfilter method for given file descriptor.
399 */
400 static int
401 filt_fileattach(struct knote *kn)
402 {
403 file_t *fp;
404
405 fp = kn->kn_obj;
406
407 return (*fp->f_ops->fo_kqfilter)(fp, kn);
408 }
409
410 /*
411 * Filter detach method for EVFILT_READ on kqueue descriptor.
412 */
413 static void
414 filt_kqdetach(struct knote *kn)
415 {
416 struct kqueue *kq;
417
418 kq = ((file_t *)kn->kn_obj)->f_data;
419
420 mutex_spin_enter(&kq->kq_lock);
421 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
422 mutex_spin_exit(&kq->kq_lock);
423 }
424
425 /*
426 * Filter event method for EVFILT_READ on kqueue descriptor.
427 */
428 /*ARGSUSED*/
429 static int
430 filt_kqueue(struct knote *kn, long hint)
431 {
432 struct kqueue *kq;
433 int rv;
434
435 kq = ((file_t *)kn->kn_obj)->f_data;
436
437 if (hint != NOTE_SUBMIT)
438 mutex_spin_enter(&kq->kq_lock);
439 kn->kn_data = kq->kq_count;
440 rv = (kn->kn_data > 0);
441 if (hint != NOTE_SUBMIT)
442 mutex_spin_exit(&kq->kq_lock);
443
444 return rv;
445 }
446
447 /*
448 * Filter attach method for EVFILT_PROC.
449 */
450 static int
451 filt_procattach(struct knote *kn)
452 {
453 struct proc *p;
454 struct lwp *curl;
455
456 curl = curlwp;
457
458 mutex_enter(proc_lock);
459 if (kn->kn_flags & EV_FLAG1) {
460 /*
461 * NOTE_TRACK attaches to the child process too early
462 * for proc_find, so do a raw look up and check the state
463 * explicitly.
464 */
465 p = proc_find_raw(kn->kn_id);
466 if (p != NULL && p->p_stat != SIDL)
467 p = NULL;
468 } else {
469 p = proc_find(kn->kn_id);
470 }
471
472 if (p == NULL) {
473 mutex_exit(proc_lock);
474 return ESRCH;
475 }
476
477 /*
478 * Fail if it's not owned by you, or the last exec gave us
479 * setuid/setgid privs (unless you're root).
480 */
481 mutex_enter(p->p_lock);
482 mutex_exit(proc_lock);
483 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
484 p, NULL, NULL, NULL) != 0) {
485 mutex_exit(p->p_lock);
486 return EACCES;
487 }
488
489 kn->kn_obj = p;
490 kn->kn_flags |= EV_CLEAR; /* automatically set */
491
492 /*
493 * internal flag indicating registration done by kernel
494 */
495 if (kn->kn_flags & EV_FLAG1) {
496 kn->kn_data = kn->kn_sdata; /* ppid */
497 kn->kn_fflags = NOTE_CHILD;
498 kn->kn_flags &= ~EV_FLAG1;
499 }
500 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
501 mutex_exit(p->p_lock);
502
503 return 0;
504 }
505
506 /*
507 * Filter detach method for EVFILT_PROC.
508 *
509 * The knote may be attached to a different process, which may exit,
510 * leaving nothing for the knote to be attached to. So when the process
511 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
512 * it will be deleted when read out. However, as part of the knote deletion,
513 * this routine is called, so a check is needed to avoid actually performing
514 * a detach, because the original process might not exist any more.
515 */
516 static void
517 filt_procdetach(struct knote *kn)
518 {
519 struct proc *p;
520
521 if (kn->kn_status & KN_DETACHED)
522 return;
523
524 p = kn->kn_obj;
525
526 mutex_enter(p->p_lock);
527 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
528 mutex_exit(p->p_lock);
529 }
530
531 /*
532 * Filter event method for EVFILT_PROC.
533 */
534 static int
535 filt_proc(struct knote *kn, long hint)
536 {
537 u_int event, fflag;
538 struct kevent kev;
539 struct kqueue *kq;
540 int error;
541
542 event = (u_int)hint & NOTE_PCTRLMASK;
543 kq = kn->kn_kq;
544 fflag = 0;
545
546 /* If the user is interested in this event, record it. */
547 if (kn->kn_sfflags & event)
548 fflag |= event;
549
550 if (event == NOTE_EXIT) {
551 /*
552 * Process is gone, so flag the event as finished.
553 *
554 * Detach the knote from watched process and mark
555 * it as such. We can't leave this to kqueue_scan(),
556 * since the process might not exist by then. And we
557 * have to do this now, since psignal KNOTE() is called
558 * also for zombies and we might end up reading freed
559 * memory if the kevent would already be picked up
560 * and knote g/c'ed.
561 */
562 filt_procdetach(kn);
563
564 mutex_spin_enter(&kq->kq_lock);
565 kn->kn_status |= KN_DETACHED;
566 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
567 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
568 kn->kn_fflags |= fflag;
569 mutex_spin_exit(&kq->kq_lock);
570
571 return 1;
572 }
573
574 mutex_spin_enter(&kq->kq_lock);
575 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
576 /*
577 * Process forked, and user wants to track the new process,
578 * so attach a new knote to it, and immediately report an
579 * event with the parent's pid. Register knote with new
580 * process.
581 */
582 kev.ident = hint & NOTE_PDATAMASK; /* pid */
583 kev.filter = kn->kn_filter;
584 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
585 kev.fflags = kn->kn_sfflags;
586 kev.data = kn->kn_id; /* parent */
587 kev.udata = kn->kn_kevent.udata; /* preserve udata */
588 mutex_spin_exit(&kq->kq_lock);
589 error = kqueue_register(kq, &kev);
590 mutex_spin_enter(&kq->kq_lock);
591 if (error != 0)
592 kn->kn_fflags |= NOTE_TRACKERR;
593 }
594 kn->kn_fflags |= fflag;
595 fflag = kn->kn_fflags;
596 mutex_spin_exit(&kq->kq_lock);
597
598 return fflag != 0;
599 }
600
601 static void
602 filt_timerexpire(void *knx)
603 {
604 struct knote *kn = knx;
605 int tticks;
606
607 mutex_enter(&kqueue_misc_lock);
608 kn->kn_data++;
609 knote_activate(kn);
610 if ((kn->kn_flags & EV_ONESHOT) == 0) {
611 tticks = mstohz(kn->kn_sdata);
612 if (tticks <= 0)
613 tticks = 1;
614 callout_schedule((callout_t *)kn->kn_hook, tticks);
615 }
616 mutex_exit(&kqueue_misc_lock);
617 }
618
619 /*
620 * data contains amount of time to sleep, in milliseconds
621 */
622 static int
623 filt_timerattach(struct knote *kn)
624 {
625 callout_t *calloutp;
626 struct kqueue *kq;
627 int tticks;
628
629 tticks = mstohz(kn->kn_sdata);
630
631 /* if the supplied value is under our resolution, use 1 tick */
632 if (tticks == 0) {
633 if (kn->kn_sdata == 0)
634 return EINVAL;
635 tticks = 1;
636 }
637
638 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
639 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
640 atomic_dec_uint(&kq_ncallouts);
641 return ENOMEM;
642 }
643 callout_init(calloutp, CALLOUT_MPSAFE);
644
645 kq = kn->kn_kq;
646 mutex_spin_enter(&kq->kq_lock);
647 kn->kn_flags |= EV_CLEAR; /* automatically set */
648 kn->kn_hook = calloutp;
649 mutex_spin_exit(&kq->kq_lock);
650
651 callout_reset(calloutp, tticks, filt_timerexpire, kn);
652
653 return (0);
654 }
655
656 static void
657 filt_timerdetach(struct knote *kn)
658 {
659 callout_t *calloutp;
660
661 calloutp = (callout_t *)kn->kn_hook;
662 callout_halt(calloutp, NULL);
663 callout_destroy(calloutp);
664 kmem_free(calloutp, sizeof(*calloutp));
665 atomic_dec_uint(&kq_ncallouts);
666 }
667
668 static int
669 filt_timer(struct knote *kn, long hint)
670 {
671 int rv;
672
673 mutex_enter(&kqueue_misc_lock);
674 rv = (kn->kn_data != 0);
675 mutex_exit(&kqueue_misc_lock);
676
677 return rv;
678 }
679
680 /*
681 * filt_seltrue:
682 *
683 * This filter "event" routine simulates seltrue().
684 */
685 int
686 filt_seltrue(struct knote *kn, long hint)
687 {
688
689 /*
690 * We don't know how much data can be read/written,
691 * but we know that it *can* be. This is about as
692 * good as select/poll does as well.
693 */
694 kn->kn_data = 0;
695 return (1);
696 }
697
698 /*
699 * This provides full kqfilter entry for device switch tables, which
700 * has same effect as filter using filt_seltrue() as filter method.
701 */
702 static void
703 filt_seltruedetach(struct knote *kn)
704 {
705 /* Nothing to do */
706 }
707
708 const struct filterops seltrue_filtops =
709 { 1, NULL, filt_seltruedetach, filt_seltrue };
710
711 int
712 seltrue_kqfilter(dev_t dev, struct knote *kn)
713 {
714 switch (kn->kn_filter) {
715 case EVFILT_READ:
716 case EVFILT_WRITE:
717 kn->kn_fop = &seltrue_filtops;
718 break;
719 default:
720 return (EINVAL);
721 }
722
723 /* Nothing more to do */
724 return (0);
725 }
726
727 /*
728 * kqueue(2) system call.
729 */
730 static int
731 kqueue1(struct lwp *l, int flags, register_t *retval)
732 {
733 struct kqueue *kq;
734 file_t *fp;
735 int fd, error;
736
737 if ((error = fd_allocfile(&fp, &fd)) != 0)
738 return error;
739 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
740 fp->f_type = DTYPE_KQUEUE;
741 fp->f_ops = &kqueueops;
742 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
743 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
744 cv_init(&kq->kq_cv, "kqueue");
745 selinit(&kq->kq_sel);
746 TAILQ_INIT(&kq->kq_head);
747 fp->f_data = kq;
748 *retval = fd;
749 kq->kq_fdp = curlwp->l_fd;
750 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
751 fd_affix(curproc, fp, fd);
752 return error;
753 }
754
755 /*
756 * kqueue(2) system call.
757 */
758 int
759 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
760 {
761 return kqueue1(l, 0, retval);
762 }
763
764 int
765 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
766 register_t *retval)
767 {
768 /* {
769 syscallarg(int) flags;
770 } */
771 return kqueue1(l, SCARG(uap, flags), retval);
772 }
773
774 /*
775 * kevent(2) system call.
776 */
777 int
778 kevent_fetch_changes(void *private, const struct kevent *changelist,
779 struct kevent *changes, size_t index, int n)
780 {
781
782 return copyin(changelist + index, changes, n * sizeof(*changes));
783 }
784
785 int
786 kevent_put_events(void *private, struct kevent *events,
787 struct kevent *eventlist, size_t index, int n)
788 {
789
790 return copyout(events, eventlist + index, n * sizeof(*events));
791 }
792
793 static const struct kevent_ops kevent_native_ops = {
794 .keo_private = NULL,
795 .keo_fetch_timeout = copyin,
796 .keo_fetch_changes = kevent_fetch_changes,
797 .keo_put_events = kevent_put_events,
798 };
799
800 int
801 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
802 register_t *retval)
803 {
804 /* {
805 syscallarg(int) fd;
806 syscallarg(const struct kevent *) changelist;
807 syscallarg(size_t) nchanges;
808 syscallarg(struct kevent *) eventlist;
809 syscallarg(size_t) nevents;
810 syscallarg(const struct timespec *) timeout;
811 } */
812
813 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
814 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
815 SCARG(uap, timeout), &kevent_native_ops);
816 }
817
818 int
819 kevent1(register_t *retval, int fd,
820 const struct kevent *changelist, size_t nchanges,
821 struct kevent *eventlist, size_t nevents,
822 const struct timespec *timeout,
823 const struct kevent_ops *keops)
824 {
825 struct kevent *kevp;
826 struct kqueue *kq;
827 struct timespec ts;
828 size_t i, n, ichange;
829 int nerrors, error;
830 struct kevent kevbuf[8]; /* approx 300 bytes on 64-bit */
831 file_t *fp;
832
833 /* check that we're dealing with a kq */
834 fp = fd_getfile(fd);
835 if (fp == NULL)
836 return (EBADF);
837
838 if (fp->f_type != DTYPE_KQUEUE) {
839 fd_putfile(fd);
840 return (EBADF);
841 }
842
843 if (timeout != NULL) {
844 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
845 if (error)
846 goto done;
847 timeout = &ts;
848 }
849
850 kq = (struct kqueue *)fp->f_data;
851 nerrors = 0;
852 ichange = 0;
853
854 /* traverse list of events to register */
855 while (nchanges > 0) {
856 n = MIN(nchanges, __arraycount(kevbuf));
857 error = (*keops->keo_fetch_changes)(keops->keo_private,
858 changelist, kevbuf, ichange, n);
859 if (error)
860 goto done;
861 for (i = 0; i < n; i++) {
862 kevp = &kevbuf[i];
863 kevp->flags &= ~EV_SYSFLAGS;
864 /* register each knote */
865 error = kqueue_register(kq, kevp);
866 if (error) {
867 if (nevents != 0) {
868 kevp->flags = EV_ERROR;
869 kevp->data = error;
870 error = (*keops->keo_put_events)
871 (keops->keo_private, kevp,
872 eventlist, nerrors, 1);
873 if (error)
874 goto done;
875 nevents--;
876 nerrors++;
877 } else {
878 goto done;
879 }
880 }
881 }
882 nchanges -= n; /* update the results */
883 ichange += n;
884 }
885 if (nerrors) {
886 *retval = nerrors;
887 error = 0;
888 goto done;
889 }
890
891 /* actually scan through the events */
892 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
893 kevbuf, __arraycount(kevbuf));
894 done:
895 fd_putfile(fd);
896 return (error);
897 }
898
899 /*
900 * Register a given kevent kev onto the kqueue
901 */
902 static int
903 kqueue_register(struct kqueue *kq, struct kevent *kev)
904 {
905 struct kfilter *kfilter;
906 filedesc_t *fdp;
907 file_t *fp;
908 fdfile_t *ff;
909 struct knote *kn, *newkn;
910 struct klist *list;
911 int error, fd, rv;
912
913 fdp = kq->kq_fdp;
914 fp = NULL;
915 kn = NULL;
916 error = 0;
917 fd = 0;
918
919 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
920
921 rw_enter(&kqueue_filter_lock, RW_READER);
922 kfilter = kfilter_byfilter(kev->filter);
923 if (kfilter == NULL || kfilter->filtops == NULL) {
924 /* filter not found nor implemented */
925 rw_exit(&kqueue_filter_lock);
926 kmem_free(newkn, sizeof(*newkn));
927 return (EINVAL);
928 }
929
930 /* search if knote already exists */
931 if (kfilter->filtops->f_isfd) {
932 /* monitoring a file descriptor */
933 fd = kev->ident;
934 if ((fp = fd_getfile(fd)) == NULL) {
935 rw_exit(&kqueue_filter_lock);
936 kmem_free(newkn, sizeof(*newkn));
937 return EBADF;
938 }
939 mutex_enter(&fdp->fd_lock);
940 ff = fdp->fd_dt->dt_ff[fd];
941 if (fd <= fdp->fd_lastkqfile) {
942 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
943 if (kq == kn->kn_kq &&
944 kev->filter == kn->kn_filter)
945 break;
946 }
947 }
948 } else {
949 /*
950 * not monitoring a file descriptor, so
951 * lookup knotes in internal hash table
952 */
953 mutex_enter(&fdp->fd_lock);
954 if (fdp->fd_knhashmask != 0) {
955 list = &fdp->fd_knhash[
956 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
957 SLIST_FOREACH(kn, list, kn_link) {
958 if (kev->ident == kn->kn_id &&
959 kq == kn->kn_kq &&
960 kev->filter == kn->kn_filter)
961 break;
962 }
963 }
964 }
965
966 /*
967 * kn now contains the matching knote, or NULL if no match
968 */
969 if (kev->flags & EV_ADD) {
970 if (kn == NULL) {
971 /* create new knote */
972 kn = newkn;
973 newkn = NULL;
974 kn->kn_obj = fp;
975 kn->kn_kq = kq;
976 kn->kn_fop = kfilter->filtops;
977 kn->kn_kfilter = kfilter;
978 kn->kn_sfflags = kev->fflags;
979 kn->kn_sdata = kev->data;
980 kev->fflags = 0;
981 kev->data = 0;
982 kn->kn_kevent = *kev;
983
984 /*
985 * apply reference count to knote structure, and
986 * do not release it at the end of this routine.
987 */
988 fp = NULL;
989
990 if (!kn->kn_fop->f_isfd) {
991 /*
992 * If knote is not on an fd, store on
993 * internal hash table.
994 */
995 if (fdp->fd_knhashmask == 0) {
996 /* XXXAD can block with fd_lock held */
997 fdp->fd_knhash = hashinit(KN_HASHSIZE,
998 HASH_LIST, true,
999 &fdp->fd_knhashmask);
1000 }
1001 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1002 fdp->fd_knhashmask)];
1003 } else {
1004 /* Otherwise, knote is on an fd. */
1005 list = (struct klist *)
1006 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1007 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1008 fdp->fd_lastkqfile = kn->kn_id;
1009 }
1010 SLIST_INSERT_HEAD(list, kn, kn_link);
1011
1012 KERNEL_LOCK(1, NULL); /* XXXSMP */
1013 error = (*kfilter->filtops->f_attach)(kn);
1014 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1015 if (error != 0) {
1016 /* knote_detach() drops fdp->fd_lock */
1017 knote_detach(kn, fdp, false);
1018 goto done;
1019 }
1020 atomic_inc_uint(&kfilter->refcnt);
1021 } else {
1022 /*
1023 * The user may change some filter values after the
1024 * initial EV_ADD, but doing so will not reset any
1025 * filter which have already been triggered.
1026 */
1027 kn->kn_sfflags = kev->fflags;
1028 kn->kn_sdata = kev->data;
1029 kn->kn_kevent.udata = kev->udata;
1030 }
1031 KERNEL_LOCK(1, NULL); /* XXXSMP */
1032 rv = (*kn->kn_fop->f_event)(kn, 0);
1033 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1034 if (rv)
1035 knote_activate(kn);
1036 } else {
1037 if (kn == NULL) {
1038 error = ENOENT;
1039 mutex_exit(&fdp->fd_lock);
1040 goto done;
1041 }
1042 if (kev->flags & EV_DELETE) {
1043 /* knote_detach() drops fdp->fd_lock */
1044 knote_detach(kn, fdp, true);
1045 goto done;
1046 }
1047 }
1048
1049 /* disable knote */
1050 if ((kev->flags & EV_DISABLE)) {
1051 mutex_spin_enter(&kq->kq_lock);
1052 if ((kn->kn_status & KN_DISABLED) == 0)
1053 kn->kn_status |= KN_DISABLED;
1054 mutex_spin_exit(&kq->kq_lock);
1055 }
1056
1057 /* enable knote */
1058 if ((kev->flags & EV_ENABLE)) {
1059 knote_enqueue(kn);
1060 }
1061 mutex_exit(&fdp->fd_lock);
1062 done:
1063 rw_exit(&kqueue_filter_lock);
1064 if (newkn != NULL)
1065 kmem_free(newkn, sizeof(*newkn));
1066 if (fp != NULL)
1067 fd_putfile(fd);
1068 return (error);
1069 }
1070
1071 #if defined(DEBUG)
1072 static void
1073 kq_check(struct kqueue *kq)
1074 {
1075 const struct knote *kn;
1076 int count;
1077 int nmarker;
1078
1079 KASSERT(mutex_owned(&kq->kq_lock));
1080 KASSERT(kq->kq_count >= 0);
1081
1082 count = 0;
1083 nmarker = 0;
1084 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1085 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1086 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1087 }
1088 if ((kn->kn_status & KN_MARKER) == 0) {
1089 if (kn->kn_kq != kq) {
1090 panic("%s: kq=%p kn=%p inconsist 2",
1091 __func__, kq, kn);
1092 }
1093 if ((kn->kn_status & KN_ACTIVE) == 0) {
1094 panic("%s: kq=%p kn=%p: not active",
1095 __func__, kq, kn);
1096 }
1097 count++;
1098 if (count > kq->kq_count) {
1099 goto bad;
1100 }
1101 } else {
1102 nmarker++;
1103 #if 0
1104 if (nmarker > 10000) {
1105 panic("%s: kq=%p too many markers: %d != %d, "
1106 "nmarker=%d",
1107 __func__, kq, kq->kq_count, count, nmarker);
1108 }
1109 #endif
1110 }
1111 }
1112 if (kq->kq_count != count) {
1113 bad:
1114 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1115 __func__, kq, kq->kq_count, count, nmarker);
1116 }
1117 }
1118 #else /* defined(DEBUG) */
1119 #define kq_check(a) /* nothing */
1120 #endif /* defined(DEBUG) */
1121
1122 /*
1123 * Scan through the list of events on fp (for a maximum of maxevents),
1124 * returning the results in to ulistp. Timeout is determined by tsp; if
1125 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1126 * as appropriate.
1127 */
1128 static int
1129 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1130 const struct timespec *tsp, register_t *retval,
1131 const struct kevent_ops *keops, struct kevent *kevbuf,
1132 size_t kevcnt)
1133 {
1134 struct kqueue *kq;
1135 struct kevent *kevp;
1136 struct timespec ats, sleepts;
1137 struct knote *kn, *marker;
1138 size_t count, nkev, nevents;
1139 int timeout, error, rv;
1140 filedesc_t *fdp;
1141
1142 fdp = curlwp->l_fd;
1143 kq = fp->f_data;
1144 count = maxevents;
1145 nkev = nevents = error = 0;
1146 if (count == 0) {
1147 *retval = 0;
1148 return 0;
1149 }
1150
1151 if (tsp) { /* timeout supplied */
1152 ats = *tsp;
1153 if (inittimeleft(&ats, &sleepts) == -1) {
1154 *retval = maxevents;
1155 return EINVAL;
1156 }
1157 timeout = tstohz(&ats);
1158 if (timeout <= 0)
1159 timeout = -1; /* do poll */
1160 } else {
1161 /* no timeout, wait forever */
1162 timeout = 0;
1163 }
1164
1165 marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1166 marker->kn_status = KN_MARKER;
1167 mutex_spin_enter(&kq->kq_lock);
1168 retry:
1169 kevp = kevbuf;
1170 if (kq->kq_count == 0) {
1171 if (timeout >= 0) {
1172 error = cv_timedwait_sig(&kq->kq_cv,
1173 &kq->kq_lock, timeout);
1174 if (error == 0) {
1175 if (tsp == NULL || (timeout =
1176 gettimeleft(&ats, &sleepts)) > 0)
1177 goto retry;
1178 } else {
1179 /* don't restart after signals... */
1180 if (error == ERESTART)
1181 error = EINTR;
1182 if (error == EWOULDBLOCK)
1183 error = 0;
1184 }
1185 }
1186 } else {
1187 /* mark end of knote list */
1188 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1189
1190 while (count != 0) {
1191 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1192 while ((kn->kn_status & KN_MARKER) != 0) {
1193 if (kn == marker) {
1194 /* it's our marker, stop */
1195 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1196 if (count < maxevents || (tsp != NULL &&
1197 (timeout = gettimeleft(&ats,
1198 &sleepts)) <= 0))
1199 goto done;
1200 goto retry;
1201 }
1202 /* someone else's marker. */
1203 kn = TAILQ_NEXT(kn, kn_tqe);
1204 }
1205 kq_check(kq);
1206 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1207 kq->kq_count--;
1208 kn->kn_status &= ~KN_QUEUED;
1209 kq_check(kq);
1210 if (kn->kn_status & KN_DISABLED) {
1211 /* don't want disabled events */
1212 continue;
1213 }
1214 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1215 mutex_spin_exit(&kq->kq_lock);
1216 KERNEL_LOCK(1, NULL); /* XXXSMP */
1217 rv = (*kn->kn_fop->f_event)(kn, 0);
1218 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1219 mutex_spin_enter(&kq->kq_lock);
1220 /* Re-poll if note was re-enqueued. */
1221 if ((kn->kn_status & KN_QUEUED) != 0)
1222 continue;
1223 if (rv == 0) {
1224 /*
1225 * non-ONESHOT event that hasn't
1226 * triggered again, so de-queue.
1227 */
1228 kn->kn_status &= ~KN_ACTIVE;
1229 continue;
1230 }
1231 }
1232 /* XXXAD should be got from f_event if !oneshot. */
1233 *kevp++ = kn->kn_kevent;
1234 nkev++;
1235 if (kn->kn_flags & EV_ONESHOT) {
1236 /* delete ONESHOT events after retrieval */
1237 mutex_spin_exit(&kq->kq_lock);
1238 mutex_enter(&fdp->fd_lock);
1239 knote_detach(kn, fdp, true);
1240 mutex_spin_enter(&kq->kq_lock);
1241 } else if (kn->kn_flags & EV_CLEAR) {
1242 /* clear state after retrieval */
1243 kn->kn_data = 0;
1244 kn->kn_fflags = 0;
1245 kn->kn_status &= ~KN_ACTIVE;
1246 } else {
1247 /* add event back on list */
1248 kq_check(kq);
1249 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1250 kq->kq_count++;
1251 kn->kn_status |= KN_QUEUED;
1252 kq_check(kq);
1253 }
1254 if (nkev == kevcnt) {
1255 /* do copyouts in kevcnt chunks */
1256 mutex_spin_exit(&kq->kq_lock);
1257 error = (*keops->keo_put_events)
1258 (keops->keo_private,
1259 kevbuf, ulistp, nevents, nkev);
1260 mutex_spin_enter(&kq->kq_lock);
1261 nevents += nkev;
1262 nkev = 0;
1263 kevp = kevbuf;
1264 }
1265 count--;
1266 if (error != 0 || count == 0) {
1267 /* remove marker */
1268 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1269 break;
1270 }
1271 }
1272 }
1273 done:
1274 mutex_spin_exit(&kq->kq_lock);
1275 if (marker != NULL)
1276 kmem_free(marker, sizeof(*marker));
1277 if (nkev != 0) {
1278 /* copyout remaining events */
1279 error = (*keops->keo_put_events)(keops->keo_private,
1280 kevbuf, ulistp, nevents, nkev);
1281 }
1282 *retval = maxevents - count;
1283
1284 return error;
1285 }
1286
1287 /*
1288 * fileops ioctl method for a kqueue descriptor.
1289 *
1290 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1291 * KFILTER_BYNAME find name for filter, and return result in
1292 * name, which is of size len.
1293 * KFILTER_BYFILTER find filter for name. len is ignored.
1294 */
1295 /*ARGSUSED*/
1296 static int
1297 kqueue_ioctl(file_t *fp, u_long com, void *data)
1298 {
1299 struct kfilter_mapping *km;
1300 const struct kfilter *kfilter;
1301 char *name;
1302 int error;
1303
1304 km = data;
1305 error = 0;
1306 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1307
1308 switch (com) {
1309 case KFILTER_BYFILTER: /* convert filter -> name */
1310 rw_enter(&kqueue_filter_lock, RW_READER);
1311 kfilter = kfilter_byfilter(km->filter);
1312 if (kfilter != NULL) {
1313 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1314 rw_exit(&kqueue_filter_lock);
1315 error = copyoutstr(name, km->name, km->len, NULL);
1316 } else {
1317 rw_exit(&kqueue_filter_lock);
1318 error = ENOENT;
1319 }
1320 break;
1321
1322 case KFILTER_BYNAME: /* convert name -> filter */
1323 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1324 if (error) {
1325 break;
1326 }
1327 rw_enter(&kqueue_filter_lock, RW_READER);
1328 kfilter = kfilter_byname(name);
1329 if (kfilter != NULL)
1330 km->filter = kfilter->filter;
1331 else
1332 error = ENOENT;
1333 rw_exit(&kqueue_filter_lock);
1334 break;
1335
1336 default:
1337 error = ENOTTY;
1338 break;
1339
1340 }
1341 kmem_free(name, KFILTER_MAXNAME);
1342 return (error);
1343 }
1344
1345 /*
1346 * fileops fcntl method for a kqueue descriptor.
1347 */
1348 static int
1349 kqueue_fcntl(file_t *fp, u_int com, void *data)
1350 {
1351
1352 return (ENOTTY);
1353 }
1354
1355 /*
1356 * fileops poll method for a kqueue descriptor.
1357 * Determine if kqueue has events pending.
1358 */
1359 static int
1360 kqueue_poll(file_t *fp, int events)
1361 {
1362 struct kqueue *kq;
1363 int revents;
1364
1365 kq = fp->f_data;
1366
1367 revents = 0;
1368 if (events & (POLLIN | POLLRDNORM)) {
1369 mutex_spin_enter(&kq->kq_lock);
1370 if (kq->kq_count != 0) {
1371 revents |= events & (POLLIN | POLLRDNORM);
1372 } else {
1373 selrecord(curlwp, &kq->kq_sel);
1374 }
1375 kq_check(kq);
1376 mutex_spin_exit(&kq->kq_lock);
1377 }
1378
1379 return revents;
1380 }
1381
1382 /*
1383 * fileops stat method for a kqueue descriptor.
1384 * Returns dummy info, with st_size being number of events pending.
1385 */
1386 static int
1387 kqueue_stat(file_t *fp, struct stat *st)
1388 {
1389 struct kqueue *kq;
1390
1391 kq = fp->f_data;
1392
1393 memset(st, 0, sizeof(*st));
1394 st->st_size = kq->kq_count;
1395 st->st_blksize = sizeof(struct kevent);
1396 st->st_mode = S_IFIFO;
1397
1398 return 0;
1399 }
1400
1401 static void
1402 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1403 {
1404 struct knote *kn;
1405 filedesc_t *fdp;
1406
1407 fdp = kq->kq_fdp;
1408
1409 KASSERT(mutex_owned(&fdp->fd_lock));
1410
1411 for (kn = SLIST_FIRST(list); kn != NULL;) {
1412 if (kq != kn->kn_kq) {
1413 kn = SLIST_NEXT(kn, kn_link);
1414 continue;
1415 }
1416 knote_detach(kn, fdp, true);
1417 mutex_enter(&fdp->fd_lock);
1418 kn = SLIST_FIRST(list);
1419 }
1420 }
1421
1422
1423 /*
1424 * fileops close method for a kqueue descriptor.
1425 */
1426 static int
1427 kqueue_close(file_t *fp)
1428 {
1429 struct kqueue *kq;
1430 filedesc_t *fdp;
1431 fdfile_t *ff;
1432 int i;
1433
1434 kq = fp->f_data;
1435 fdp = curlwp->l_fd;
1436
1437 mutex_enter(&fdp->fd_lock);
1438 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1439 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1440 continue;
1441 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1442 }
1443 if (fdp->fd_knhashmask != 0) {
1444 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1445 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1446 }
1447 }
1448 mutex_exit(&fdp->fd_lock);
1449
1450 KASSERT(kq->kq_count == 0);
1451 mutex_destroy(&kq->kq_lock);
1452 cv_destroy(&kq->kq_cv);
1453 seldestroy(&kq->kq_sel);
1454 kmem_free(kq, sizeof(*kq));
1455 fp->f_data = NULL;
1456
1457 return (0);
1458 }
1459
1460 /*
1461 * struct fileops kqfilter method for a kqueue descriptor.
1462 * Event triggered when monitored kqueue changes.
1463 */
1464 static int
1465 kqueue_kqfilter(file_t *fp, struct knote *kn)
1466 {
1467 struct kqueue *kq;
1468
1469 kq = ((file_t *)kn->kn_obj)->f_data;
1470
1471 KASSERT(fp == kn->kn_obj);
1472
1473 if (kn->kn_filter != EVFILT_READ)
1474 return 1;
1475
1476 kn->kn_fop = &kqread_filtops;
1477 mutex_enter(&kq->kq_lock);
1478 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1479 mutex_exit(&kq->kq_lock);
1480
1481 return 0;
1482 }
1483
1484
1485 /*
1486 * Walk down a list of knotes, activating them if their event has
1487 * triggered. The caller's object lock (e.g. device driver lock)
1488 * must be held.
1489 */
1490 void
1491 knote(struct klist *list, long hint)
1492 {
1493 struct knote *kn, *tmpkn;
1494
1495 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1496 if ((*kn->kn_fop->f_event)(kn, hint))
1497 knote_activate(kn);
1498 }
1499 }
1500
1501 /*
1502 * Remove all knotes referencing a specified fd
1503 */
1504 void
1505 knote_fdclose(int fd)
1506 {
1507 struct klist *list;
1508 struct knote *kn;
1509 filedesc_t *fdp;
1510
1511 fdp = curlwp->l_fd;
1512 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1513 mutex_enter(&fdp->fd_lock);
1514 while ((kn = SLIST_FIRST(list)) != NULL) {
1515 knote_detach(kn, fdp, true);
1516 mutex_enter(&fdp->fd_lock);
1517 }
1518 mutex_exit(&fdp->fd_lock);
1519 }
1520
1521 /*
1522 * Drop knote. Called with fdp->fd_lock held, and will drop before
1523 * returning.
1524 */
1525 static void
1526 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1527 {
1528 struct klist *list;
1529 struct kqueue *kq;
1530
1531 kq = kn->kn_kq;
1532
1533 KASSERT((kn->kn_status & KN_MARKER) == 0);
1534 KASSERT(mutex_owned(&fdp->fd_lock));
1535
1536 /* Remove from monitored object. */
1537 if (dofop) {
1538 KERNEL_LOCK(1, NULL); /* XXXSMP */
1539 (*kn->kn_fop->f_detach)(kn);
1540 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1541 }
1542
1543 /* Remove from descriptor table. */
1544 if (kn->kn_fop->f_isfd)
1545 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1546 else
1547 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1548
1549 SLIST_REMOVE(list, kn, knote, kn_link);
1550
1551 /* Remove from kqueue. */
1552 /* XXXAD should verify not in use by kqueue_scan. */
1553 mutex_spin_enter(&kq->kq_lock);
1554 if ((kn->kn_status & KN_QUEUED) != 0) {
1555 kq_check(kq);
1556 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1557 kn->kn_status &= ~KN_QUEUED;
1558 kq->kq_count--;
1559 kq_check(kq);
1560 }
1561 mutex_spin_exit(&kq->kq_lock);
1562
1563 mutex_exit(&fdp->fd_lock);
1564 if (kn->kn_fop->f_isfd)
1565 fd_putfile(kn->kn_id);
1566 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1567 kmem_free(kn, sizeof(*kn));
1568 }
1569
1570 /*
1571 * Queue new event for knote.
1572 */
1573 static void
1574 knote_enqueue(struct knote *kn)
1575 {
1576 struct kqueue *kq;
1577
1578 KASSERT((kn->kn_status & KN_MARKER) == 0);
1579
1580 kq = kn->kn_kq;
1581
1582 mutex_spin_enter(&kq->kq_lock);
1583 if ((kn->kn_status & KN_DISABLED) != 0) {
1584 kn->kn_status &= ~KN_DISABLED;
1585 }
1586 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1587 kq_check(kq);
1588 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1589 kn->kn_status |= KN_QUEUED;
1590 kq->kq_count++;
1591 kq_check(kq);
1592 cv_broadcast(&kq->kq_cv);
1593 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1594 }
1595 mutex_spin_exit(&kq->kq_lock);
1596 }
1597 /*
1598 * Queue new event for knote.
1599 */
1600 static void
1601 knote_activate(struct knote *kn)
1602 {
1603 struct kqueue *kq;
1604
1605 KASSERT((kn->kn_status & KN_MARKER) == 0);
1606
1607 kq = kn->kn_kq;
1608
1609 mutex_spin_enter(&kq->kq_lock);
1610 kn->kn_status |= KN_ACTIVE;
1611 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1612 kq_check(kq);
1613 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1614 kn->kn_status |= KN_QUEUED;
1615 kq->kq_count++;
1616 kq_check(kq);
1617 cv_broadcast(&kq->kq_cv);
1618 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1619 }
1620 mutex_spin_exit(&kq->kq_lock);
1621 }
1622