kern_event.c revision 1.80.2.3 1 /* $NetBSD: kern_event.c,v 1.80.2.3 2018/11/21 12:12:15 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.80.2.3 2018/11/21 12:12:15 martin Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/wait.h>
67 #include <sys/proc.h>
68 #include <sys/file.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/poll.h>
74 #include <sys/kmem.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/syscallargs.h>
78 #include <sys/kauth.h>
79 #include <sys/conf.h>
80 #include <sys/atomic.h>
81
82 static int kqueue_scan(file_t *, size_t, struct kevent *,
83 const struct timespec *, register_t *,
84 const struct kevent_ops *, struct kevent *,
85 size_t);
86 static int kqueue_ioctl(file_t *, u_long, void *);
87 static int kqueue_fcntl(file_t *, u_int, void *);
88 static int kqueue_poll(file_t *, int);
89 static int kqueue_kqfilter(file_t *, struct knote *);
90 static int kqueue_stat(file_t *, struct stat *);
91 static int kqueue_close(file_t *);
92 static int kqueue_register(struct kqueue *, struct kevent *);
93 static void kqueue_doclose(struct kqueue *, struct klist *, int);
94
95 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
96 static void knote_enqueue(struct knote *);
97 static void knote_activate(struct knote *);
98
99 static void filt_kqdetach(struct knote *);
100 static int filt_kqueue(struct knote *, long hint);
101 static int filt_procattach(struct knote *);
102 static void filt_procdetach(struct knote *);
103 static int filt_proc(struct knote *, long hint);
104 static int filt_fileattach(struct knote *);
105 static void filt_timerexpire(void *x);
106 static int filt_timerattach(struct knote *);
107 static void filt_timerdetach(struct knote *);
108 static int filt_timer(struct knote *, long hint);
109
110 static const struct fileops kqueueops = {
111 .fo_read = (void *)enxio,
112 .fo_write = (void *)enxio,
113 .fo_ioctl = kqueue_ioctl,
114 .fo_fcntl = kqueue_fcntl,
115 .fo_poll = kqueue_poll,
116 .fo_stat = kqueue_stat,
117 .fo_close = kqueue_close,
118 .fo_kqfilter = kqueue_kqfilter,
119 .fo_restart = fnullop_restart,
120 };
121
122 static const struct filterops kqread_filtops =
123 { 1, NULL, filt_kqdetach, filt_kqueue };
124 static const struct filterops proc_filtops =
125 { 0, filt_procattach, filt_procdetach, filt_proc };
126 static const struct filterops file_filtops =
127 { 1, filt_fileattach, NULL, NULL };
128 static const struct filterops timer_filtops =
129 { 0, filt_timerattach, filt_timerdetach, filt_timer };
130
131 static u_int kq_ncallouts = 0;
132 static int kq_calloutmax = (4 * 1024);
133
134 #define KN_HASHSIZE 64 /* XXX should be tunable */
135 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
136
137 extern const struct filterops sig_filtops;
138
139 /*
140 * Table for for all system-defined filters.
141 * These should be listed in the numeric order of the EVFILT_* defines.
142 * If filtops is NULL, the filter isn't implemented in NetBSD.
143 * End of list is when name is NULL.
144 *
145 * Note that 'refcnt' is meaningless for built-in filters.
146 */
147 struct kfilter {
148 const char *name; /* name of filter */
149 uint32_t filter; /* id of filter */
150 unsigned refcnt; /* reference count */
151 const struct filterops *filtops;/* operations for filter */
152 size_t namelen; /* length of name string */
153 };
154
155 /* System defined filters */
156 static struct kfilter sys_kfilters[] = {
157 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
158 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
159 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
160 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
161 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
162 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
163 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
164 { NULL, 0, 0, NULL, 0 },
165 };
166
167 /* User defined kfilters */
168 static struct kfilter *user_kfilters; /* array */
169 static int user_kfilterc; /* current offset */
170 static int user_kfiltermaxc; /* max size so far */
171 static size_t user_kfiltersz; /* size of allocated memory */
172
173 /* Locks */
174 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
175 static kmutex_t kqueue_misc_lock; /* miscellaneous */
176
177 static kauth_listener_t kqueue_listener;
178
179 static int
180 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
181 void *arg0, void *arg1, void *arg2, void *arg3)
182 {
183 struct proc *p;
184 int result;
185
186 result = KAUTH_RESULT_DEFER;
187 p = arg0;
188
189 if (action != KAUTH_PROCESS_KEVENT_FILTER)
190 return result;
191
192 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
193 ISSET(p->p_flag, PK_SUGID)))
194 return result;
195
196 result = KAUTH_RESULT_ALLOW;
197
198 return result;
199 }
200
201 /*
202 * Initialize the kqueue subsystem.
203 */
204 void
205 kqueue_init(void)
206 {
207
208 rw_init(&kqueue_filter_lock);
209 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
210
211 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
212 kqueue_listener_cb, NULL);
213 }
214
215 /*
216 * Find kfilter entry by name, or NULL if not found.
217 */
218 static struct kfilter *
219 kfilter_byname_sys(const char *name)
220 {
221 int i;
222
223 KASSERT(rw_lock_held(&kqueue_filter_lock));
224
225 for (i = 0; sys_kfilters[i].name != NULL; i++) {
226 if (strcmp(name, sys_kfilters[i].name) == 0)
227 return &sys_kfilters[i];
228 }
229 return NULL;
230 }
231
232 static struct kfilter *
233 kfilter_byname_user(const char *name)
234 {
235 int i;
236
237 KASSERT(rw_lock_held(&kqueue_filter_lock));
238
239 /* user filter slots have a NULL name if previously deregistered */
240 for (i = 0; i < user_kfilterc ; i++) {
241 if (user_kfilters[i].name != NULL &&
242 strcmp(name, user_kfilters[i].name) == 0)
243 return &user_kfilters[i];
244 }
245 return NULL;
246 }
247
248 static struct kfilter *
249 kfilter_byname(const char *name)
250 {
251 struct kfilter *kfilter;
252
253 KASSERT(rw_lock_held(&kqueue_filter_lock));
254
255 if ((kfilter = kfilter_byname_sys(name)) != NULL)
256 return kfilter;
257
258 return kfilter_byname_user(name);
259 }
260
261 /*
262 * Find kfilter entry by filter id, or NULL if not found.
263 * Assumes entries are indexed in filter id order, for speed.
264 */
265 static struct kfilter *
266 kfilter_byfilter(uint32_t filter)
267 {
268 struct kfilter *kfilter;
269
270 KASSERT(rw_lock_held(&kqueue_filter_lock));
271
272 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
273 kfilter = &sys_kfilters[filter];
274 else if (user_kfilters != NULL &&
275 filter < EVFILT_SYSCOUNT + user_kfilterc)
276 /* it's a user filter */
277 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
278 else
279 return (NULL); /* out of range */
280 KASSERT(kfilter->filter == filter); /* sanity check! */
281 return (kfilter);
282 }
283
284 /*
285 * Register a new kfilter. Stores the entry in user_kfilters.
286 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
287 * If retfilter != NULL, the new filterid is returned in it.
288 */
289 int
290 kfilter_register(const char *name, const struct filterops *filtops,
291 int *retfilter)
292 {
293 struct kfilter *kfilter;
294 size_t len;
295 int i;
296
297 if (name == NULL || name[0] == '\0' || filtops == NULL)
298 return (EINVAL); /* invalid args */
299
300 rw_enter(&kqueue_filter_lock, RW_WRITER);
301 if (kfilter_byname(name) != NULL) {
302 rw_exit(&kqueue_filter_lock);
303 return (EEXIST); /* already exists */
304 }
305 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
306 rw_exit(&kqueue_filter_lock);
307 return (EINVAL); /* too many */
308 }
309
310 for (i = 0; i < user_kfilterc; i++) {
311 kfilter = &user_kfilters[i];
312 if (kfilter->name == NULL) {
313 /* Previously deregistered slot. Reuse. */
314 goto reuse;
315 }
316 }
317
318 /* check if need to grow user_kfilters */
319 if (user_kfilterc + 1 > user_kfiltermaxc) {
320 /* Grow in KFILTER_EXTENT chunks. */
321 user_kfiltermaxc += KFILTER_EXTENT;
322 len = user_kfiltermaxc * sizeof(*kfilter);
323 kfilter = kmem_alloc(len, KM_SLEEP);
324 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
325 if (user_kfilters != NULL) {
326 memcpy(kfilter, user_kfilters, user_kfiltersz);
327 kmem_free(user_kfilters, user_kfiltersz);
328 }
329 user_kfiltersz = len;
330 user_kfilters = kfilter;
331 }
332 /* Adding new slot */
333 kfilter = &user_kfilters[user_kfilterc++];
334 reuse:
335 kfilter->namelen = strlen(name) + 1;
336 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
337 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
338
339 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
340
341 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
342 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
343
344 if (retfilter != NULL)
345 *retfilter = kfilter->filter;
346 rw_exit(&kqueue_filter_lock);
347
348 return (0);
349 }
350
351 /*
352 * Unregister a kfilter previously registered with kfilter_register.
353 * This retains the filter id, but clears the name and frees filtops (filter
354 * operations), so that the number isn't reused during a boot.
355 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
356 */
357 int
358 kfilter_unregister(const char *name)
359 {
360 struct kfilter *kfilter;
361
362 if (name == NULL || name[0] == '\0')
363 return (EINVAL); /* invalid name */
364
365 rw_enter(&kqueue_filter_lock, RW_WRITER);
366 if (kfilter_byname_sys(name) != NULL) {
367 rw_exit(&kqueue_filter_lock);
368 return (EINVAL); /* can't detach system filters */
369 }
370
371 kfilter = kfilter_byname_user(name);
372 if (kfilter == NULL) {
373 rw_exit(&kqueue_filter_lock);
374 return (ENOENT);
375 }
376 if (kfilter->refcnt != 0) {
377 rw_exit(&kqueue_filter_lock);
378 return (EBUSY);
379 }
380
381 /* Cast away const (but we know it's safe. */
382 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
383 kfilter->name = NULL; /* mark as `not implemented' */
384
385 if (kfilter->filtops != NULL) {
386 /* Cast away const (but we know it's safe. */
387 kmem_free(__UNCONST(kfilter->filtops),
388 sizeof(*kfilter->filtops));
389 kfilter->filtops = NULL; /* mark as `not implemented' */
390 }
391 rw_exit(&kqueue_filter_lock);
392
393 return (0);
394 }
395
396
397 /*
398 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
399 * descriptors. Calls fileops kqfilter method for given file descriptor.
400 */
401 static int
402 filt_fileattach(struct knote *kn)
403 {
404 file_t *fp;
405
406 fp = kn->kn_obj;
407
408 return (*fp->f_ops->fo_kqfilter)(fp, kn);
409 }
410
411 /*
412 * Filter detach method for EVFILT_READ on kqueue descriptor.
413 */
414 static void
415 filt_kqdetach(struct knote *kn)
416 {
417 struct kqueue *kq;
418
419 kq = ((file_t *)kn->kn_obj)->f_data;
420
421 mutex_spin_enter(&kq->kq_lock);
422 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
423 mutex_spin_exit(&kq->kq_lock);
424 }
425
426 /*
427 * Filter event method for EVFILT_READ on kqueue descriptor.
428 */
429 /*ARGSUSED*/
430 static int
431 filt_kqueue(struct knote *kn, long hint)
432 {
433 struct kqueue *kq;
434 int rv;
435
436 kq = ((file_t *)kn->kn_obj)->f_data;
437
438 if (hint != NOTE_SUBMIT)
439 mutex_spin_enter(&kq->kq_lock);
440 kn->kn_data = kq->kq_count;
441 rv = (kn->kn_data > 0);
442 if (hint != NOTE_SUBMIT)
443 mutex_spin_exit(&kq->kq_lock);
444
445 return rv;
446 }
447
448 /*
449 * Filter attach method for EVFILT_PROC.
450 */
451 static int
452 filt_procattach(struct knote *kn)
453 {
454 struct proc *p;
455 struct lwp *curl;
456
457 curl = curlwp;
458
459 mutex_enter(proc_lock);
460 if (kn->kn_flags & EV_FLAG1) {
461 /*
462 * NOTE_TRACK attaches to the child process too early
463 * for proc_find, so do a raw look up and check the state
464 * explicitly.
465 */
466 p = proc_find_raw(kn->kn_id);
467 if (p != NULL && p->p_stat != SIDL)
468 p = NULL;
469 } else {
470 p = proc_find(kn->kn_id);
471 }
472
473 if (p == NULL) {
474 mutex_exit(proc_lock);
475 return ESRCH;
476 }
477
478 /*
479 * Fail if it's not owned by you, or the last exec gave us
480 * setuid/setgid privs (unless you're root).
481 */
482 mutex_enter(p->p_lock);
483 mutex_exit(proc_lock);
484 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
485 p, NULL, NULL, NULL) != 0) {
486 mutex_exit(p->p_lock);
487 return EACCES;
488 }
489
490 kn->kn_obj = p;
491 kn->kn_flags |= EV_CLEAR; /* automatically set */
492
493 /*
494 * internal flag indicating registration done by kernel
495 */
496 if (kn->kn_flags & EV_FLAG1) {
497 kn->kn_data = kn->kn_sdata; /* ppid */
498 kn->kn_fflags = NOTE_CHILD;
499 kn->kn_flags &= ~EV_FLAG1;
500 }
501 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
502 mutex_exit(p->p_lock);
503
504 return 0;
505 }
506
507 /*
508 * Filter detach method for EVFILT_PROC.
509 *
510 * The knote may be attached to a different process, which may exit,
511 * leaving nothing for the knote to be attached to. So when the process
512 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
513 * it will be deleted when read out. However, as part of the knote deletion,
514 * this routine is called, so a check is needed to avoid actually performing
515 * a detach, because the original process might not exist any more.
516 */
517 static void
518 filt_procdetach(struct knote *kn)
519 {
520 struct proc *p;
521
522 if (kn->kn_status & KN_DETACHED)
523 return;
524
525 p = kn->kn_obj;
526
527 mutex_enter(p->p_lock);
528 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
529 mutex_exit(p->p_lock);
530 }
531
532 /*
533 * Filter event method for EVFILT_PROC.
534 */
535 static int
536 filt_proc(struct knote *kn, long hint)
537 {
538 u_int event, fflag;
539 struct kevent kev;
540 struct kqueue *kq;
541 int error;
542
543 event = (u_int)hint & NOTE_PCTRLMASK;
544 kq = kn->kn_kq;
545 fflag = 0;
546
547 /* If the user is interested in this event, record it. */
548 if (kn->kn_sfflags & event)
549 fflag |= event;
550
551 if (event == NOTE_EXIT) {
552 struct proc *p = kn->kn_obj;
553
554 if (p != NULL)
555 kn->kn_data = p->p_xstat;
556 /*
557 * Process is gone, so flag the event as finished.
558 *
559 * Detach the knote from watched process and mark
560 * it as such. We can't leave this to kqueue_scan(),
561 * since the process might not exist by then. And we
562 * have to do this now, since psignal KNOTE() is called
563 * also for zombies and we might end up reading freed
564 * memory if the kevent would already be picked up
565 * and knote g/c'ed.
566 */
567 filt_procdetach(kn);
568
569 mutex_spin_enter(&kq->kq_lock);
570 kn->kn_status |= KN_DETACHED;
571 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
572 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
573 kn->kn_fflags |= fflag;
574 mutex_spin_exit(&kq->kq_lock);
575
576 return 1;
577 }
578
579 mutex_spin_enter(&kq->kq_lock);
580 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
581 /*
582 * Process forked, and user wants to track the new process,
583 * so attach a new knote to it, and immediately report an
584 * event with the parent's pid. Register knote with new
585 * process.
586 */
587 memset(&kev, 0, sizeof(kev));
588 kev.ident = hint & NOTE_PDATAMASK; /* pid */
589 kev.filter = kn->kn_filter;
590 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
591 kev.fflags = kn->kn_sfflags;
592 kev.data = kn->kn_id; /* parent */
593 kev.udata = kn->kn_kevent.udata; /* preserve udata */
594 mutex_spin_exit(&kq->kq_lock);
595 error = kqueue_register(kq, &kev);
596 mutex_spin_enter(&kq->kq_lock);
597 if (error != 0)
598 kn->kn_fflags |= NOTE_TRACKERR;
599 }
600 kn->kn_fflags |= fflag;
601 fflag = kn->kn_fflags;
602 mutex_spin_exit(&kq->kq_lock);
603
604 return fflag != 0;
605 }
606
607 static void
608 filt_timerexpire(void *knx)
609 {
610 struct knote *kn = knx;
611 int tticks;
612
613 mutex_enter(&kqueue_misc_lock);
614 kn->kn_data++;
615 knote_activate(kn);
616 if ((kn->kn_flags & EV_ONESHOT) == 0) {
617 tticks = mstohz(kn->kn_sdata);
618 if (tticks <= 0)
619 tticks = 1;
620 callout_schedule((callout_t *)kn->kn_hook, tticks);
621 }
622 mutex_exit(&kqueue_misc_lock);
623 }
624
625 /*
626 * data contains amount of time to sleep, in milliseconds
627 */
628 static int
629 filt_timerattach(struct knote *kn)
630 {
631 callout_t *calloutp;
632 struct kqueue *kq;
633 int tticks;
634
635 tticks = mstohz(kn->kn_sdata);
636
637 /* if the supplied value is under our resolution, use 1 tick */
638 if (tticks == 0) {
639 if (kn->kn_sdata == 0)
640 return EINVAL;
641 tticks = 1;
642 }
643
644 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
645 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
646 atomic_dec_uint(&kq_ncallouts);
647 return ENOMEM;
648 }
649 callout_init(calloutp, CALLOUT_MPSAFE);
650
651 kq = kn->kn_kq;
652 mutex_spin_enter(&kq->kq_lock);
653 kn->kn_flags |= EV_CLEAR; /* automatically set */
654 kn->kn_hook = calloutp;
655 mutex_spin_exit(&kq->kq_lock);
656
657 callout_reset(calloutp, tticks, filt_timerexpire, kn);
658
659 return (0);
660 }
661
662 static void
663 filt_timerdetach(struct knote *kn)
664 {
665 callout_t *calloutp;
666
667 calloutp = (callout_t *)kn->kn_hook;
668 callout_halt(calloutp, NULL);
669 callout_destroy(calloutp);
670 kmem_free(calloutp, sizeof(*calloutp));
671 atomic_dec_uint(&kq_ncallouts);
672 }
673
674 static int
675 filt_timer(struct knote *kn, long hint)
676 {
677 int rv;
678
679 mutex_enter(&kqueue_misc_lock);
680 rv = (kn->kn_data != 0);
681 mutex_exit(&kqueue_misc_lock);
682
683 return rv;
684 }
685
686 /*
687 * filt_seltrue:
688 *
689 * This filter "event" routine simulates seltrue().
690 */
691 int
692 filt_seltrue(struct knote *kn, long hint)
693 {
694
695 /*
696 * We don't know how much data can be read/written,
697 * but we know that it *can* be. This is about as
698 * good as select/poll does as well.
699 */
700 kn->kn_data = 0;
701 return (1);
702 }
703
704 /*
705 * This provides full kqfilter entry for device switch tables, which
706 * has same effect as filter using filt_seltrue() as filter method.
707 */
708 static void
709 filt_seltruedetach(struct knote *kn)
710 {
711 /* Nothing to do */
712 }
713
714 const struct filterops seltrue_filtops =
715 { 1, NULL, filt_seltruedetach, filt_seltrue };
716
717 int
718 seltrue_kqfilter(dev_t dev, struct knote *kn)
719 {
720 switch (kn->kn_filter) {
721 case EVFILT_READ:
722 case EVFILT_WRITE:
723 kn->kn_fop = &seltrue_filtops;
724 break;
725 default:
726 return (EINVAL);
727 }
728
729 /* Nothing more to do */
730 return (0);
731 }
732
733 /*
734 * kqueue(2) system call.
735 */
736 static int
737 kqueue1(struct lwp *l, int flags, register_t *retval)
738 {
739 struct kqueue *kq;
740 file_t *fp;
741 int fd, error;
742
743 if ((error = fd_allocfile(&fp, &fd)) != 0)
744 return error;
745 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
746 fp->f_type = DTYPE_KQUEUE;
747 fp->f_ops = &kqueueops;
748 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
749 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
750 cv_init(&kq->kq_cv, "kqueue");
751 selinit(&kq->kq_sel);
752 TAILQ_INIT(&kq->kq_head);
753 fp->f_data = kq;
754 *retval = fd;
755 kq->kq_fdp = curlwp->l_fd;
756 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
757 fd_affix(curproc, fp, fd);
758 return error;
759 }
760
761 /*
762 * kqueue(2) system call.
763 */
764 int
765 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
766 {
767 return kqueue1(l, 0, retval);
768 }
769
770 int
771 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
772 register_t *retval)
773 {
774 /* {
775 syscallarg(int) flags;
776 } */
777 return kqueue1(l, SCARG(uap, flags), retval);
778 }
779
780 /*
781 * kevent(2) system call.
782 */
783 int
784 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
785 struct kevent *changes, size_t index, int n)
786 {
787
788 return copyin(changelist + index, changes, n * sizeof(*changes));
789 }
790
791 int
792 kevent_put_events(void *ctx, struct kevent *events,
793 struct kevent *eventlist, size_t index, int n)
794 {
795
796 return copyout(events, eventlist + index, n * sizeof(*events));
797 }
798
799 static const struct kevent_ops kevent_native_ops = {
800 .keo_private = NULL,
801 .keo_fetch_timeout = copyin,
802 .keo_fetch_changes = kevent_fetch_changes,
803 .keo_put_events = kevent_put_events,
804 };
805
806 int
807 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
808 register_t *retval)
809 {
810 /* {
811 syscallarg(int) fd;
812 syscallarg(const struct kevent *) changelist;
813 syscallarg(size_t) nchanges;
814 syscallarg(struct kevent *) eventlist;
815 syscallarg(size_t) nevents;
816 syscallarg(const struct timespec *) timeout;
817 } */
818
819 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
820 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
821 SCARG(uap, timeout), &kevent_native_ops);
822 }
823
824 int
825 kevent1(register_t *retval, int fd,
826 const struct kevent *changelist, size_t nchanges,
827 struct kevent *eventlist, size_t nevents,
828 const struct timespec *timeout,
829 const struct kevent_ops *keops)
830 {
831 struct kevent *kevp;
832 struct kqueue *kq;
833 struct timespec ts;
834 size_t i, n, ichange;
835 int nerrors, error;
836 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
837 file_t *fp;
838
839 /* check that we're dealing with a kq */
840 fp = fd_getfile(fd);
841 if (fp == NULL)
842 return (EBADF);
843
844 if (fp->f_type != DTYPE_KQUEUE) {
845 fd_putfile(fd);
846 return (EBADF);
847 }
848
849 if (timeout != NULL) {
850 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
851 if (error)
852 goto done;
853 timeout = &ts;
854 }
855
856 kq = fp->f_data;
857 nerrors = 0;
858 ichange = 0;
859
860 /* traverse list of events to register */
861 while (nchanges > 0) {
862 n = MIN(nchanges, __arraycount(kevbuf));
863 error = (*keops->keo_fetch_changes)(keops->keo_private,
864 changelist, kevbuf, ichange, n);
865 if (error)
866 goto done;
867 for (i = 0; i < n; i++) {
868 kevp = &kevbuf[i];
869 kevp->flags &= ~EV_SYSFLAGS;
870 /* register each knote */
871 error = kqueue_register(kq, kevp);
872 if (!error && !(kevp->flags & EV_RECEIPT))
873 continue;
874 if (nevents == 0)
875 goto done;
876 kevp->flags = EV_ERROR;
877 kevp->data = error;
878 error = (*keops->keo_put_events)
879 (keops->keo_private, kevp,
880 eventlist, nerrors, 1);
881 if (error)
882 goto done;
883 nevents--;
884 nerrors++;
885 }
886 nchanges -= n; /* update the results */
887 ichange += n;
888 }
889 if (nerrors) {
890 *retval = nerrors;
891 error = 0;
892 goto done;
893 }
894
895 /* actually scan through the events */
896 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
897 kevbuf, __arraycount(kevbuf));
898 done:
899 fd_putfile(fd);
900 return (error);
901 }
902
903 /*
904 * Register a given kevent kev onto the kqueue
905 */
906 static int
907 kqueue_register(struct kqueue *kq, struct kevent *kev)
908 {
909 struct kfilter *kfilter;
910 filedesc_t *fdp;
911 file_t *fp;
912 fdfile_t *ff;
913 struct knote *kn, *newkn;
914 struct klist *list;
915 int error, fd, rv;
916
917 fdp = kq->kq_fdp;
918 fp = NULL;
919 kn = NULL;
920 error = 0;
921 fd = 0;
922
923 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
924
925 rw_enter(&kqueue_filter_lock, RW_READER);
926 kfilter = kfilter_byfilter(kev->filter);
927 if (kfilter == NULL || kfilter->filtops == NULL) {
928 /* filter not found nor implemented */
929 rw_exit(&kqueue_filter_lock);
930 kmem_free(newkn, sizeof(*newkn));
931 return (EINVAL);
932 }
933
934 /* search if knote already exists */
935 if (kfilter->filtops->f_isfd) {
936 /* monitoring a file descriptor */
937 /* validate descriptor */
938 if (kev->ident > INT_MAX
939 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
940 rw_exit(&kqueue_filter_lock);
941 kmem_free(newkn, sizeof(*newkn));
942 return EBADF;
943 }
944 mutex_enter(&fdp->fd_lock);
945 ff = fdp->fd_dt->dt_ff[fd];
946 if (fd <= fdp->fd_lastkqfile) {
947 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
948 if (kq == kn->kn_kq &&
949 kev->filter == kn->kn_filter)
950 break;
951 }
952 }
953 } else {
954 /*
955 * not monitoring a file descriptor, so
956 * lookup knotes in internal hash table
957 */
958 mutex_enter(&fdp->fd_lock);
959 if (fdp->fd_knhashmask != 0) {
960 list = &fdp->fd_knhash[
961 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
962 SLIST_FOREACH(kn, list, kn_link) {
963 if (kev->ident == kn->kn_id &&
964 kq == kn->kn_kq &&
965 kev->filter == kn->kn_filter)
966 break;
967 }
968 }
969 }
970
971 /*
972 * kn now contains the matching knote, or NULL if no match
973 */
974 if (kev->flags & EV_ADD) {
975 if (kn == NULL) {
976 /* create new knote */
977 kn = newkn;
978 newkn = NULL;
979 kn->kn_obj = fp;
980 kn->kn_id = kev->ident;
981 kn->kn_kq = kq;
982 kn->kn_fop = kfilter->filtops;
983 kn->kn_kfilter = kfilter;
984 kn->kn_sfflags = kev->fflags;
985 kn->kn_sdata = kev->data;
986 kev->fflags = 0;
987 kev->data = 0;
988 kn->kn_kevent = *kev;
989
990 KASSERT(kn->kn_fop != NULL);
991 /*
992 * apply reference count to knote structure, and
993 * do not release it at the end of this routine.
994 */
995 fp = NULL;
996
997 if (!kn->kn_fop->f_isfd) {
998 /*
999 * If knote is not on an fd, store on
1000 * internal hash table.
1001 */
1002 if (fdp->fd_knhashmask == 0) {
1003 /* XXXAD can block with fd_lock held */
1004 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1005 HASH_LIST, true,
1006 &fdp->fd_knhashmask);
1007 }
1008 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1009 fdp->fd_knhashmask)];
1010 } else {
1011 /* Otherwise, knote is on an fd. */
1012 list = (struct klist *)
1013 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1014 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1015 fdp->fd_lastkqfile = kn->kn_id;
1016 }
1017 SLIST_INSERT_HEAD(list, kn, kn_link);
1018
1019 KERNEL_LOCK(1, NULL); /* XXXSMP */
1020 error = (*kfilter->filtops->f_attach)(kn);
1021 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1022 if (error != 0) {
1023 #ifdef DIAGNOSTIC
1024
1025 printf("%s: event type %d not supported for "
1026 "file type %d (error %d)\n", __func__,
1027 kn->kn_filter, kn->kn_obj ?
1028 ((file_t *)kn->kn_obj)->f_type : -1, error);
1029 #endif
1030 /* knote_detach() drops fdp->fd_lock */
1031 knote_detach(kn, fdp, false);
1032 goto done;
1033 }
1034 atomic_inc_uint(&kfilter->refcnt);
1035 } else {
1036 /*
1037 * The user may change some filter values after the
1038 * initial EV_ADD, but doing so will not reset any
1039 * filter which have already been triggered.
1040 */
1041 kn->kn_sfflags = kev->fflags;
1042 kn->kn_sdata = kev->data;
1043 kn->kn_kevent.udata = kev->udata;
1044 }
1045 /*
1046 * We can get here if we are trying to attach
1047 * an event to a file descriptor that does not
1048 * support events, and the attach routine is
1049 * broken and does not return an error.
1050 */
1051 KASSERT(kn->kn_fop != NULL);
1052 KASSERT(kn->kn_fop->f_event != NULL);
1053 KERNEL_LOCK(1, NULL); /* XXXSMP */
1054 rv = (*kn->kn_fop->f_event)(kn, 0);
1055 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1056 if (rv)
1057 knote_activate(kn);
1058 } else {
1059 if (kn == NULL) {
1060 error = ENOENT;
1061 mutex_exit(&fdp->fd_lock);
1062 goto done;
1063 }
1064 if (kev->flags & EV_DELETE) {
1065 /* knote_detach() drops fdp->fd_lock */
1066 knote_detach(kn, fdp, true);
1067 goto done;
1068 }
1069 }
1070
1071 /* disable knote */
1072 if ((kev->flags & EV_DISABLE)) {
1073 mutex_spin_enter(&kq->kq_lock);
1074 if ((kn->kn_status & KN_DISABLED) == 0)
1075 kn->kn_status |= KN_DISABLED;
1076 mutex_spin_exit(&kq->kq_lock);
1077 }
1078
1079 /* enable knote */
1080 if ((kev->flags & EV_ENABLE)) {
1081 knote_enqueue(kn);
1082 }
1083 mutex_exit(&fdp->fd_lock);
1084 done:
1085 rw_exit(&kqueue_filter_lock);
1086 if (newkn != NULL)
1087 kmem_free(newkn, sizeof(*newkn));
1088 if (fp != NULL)
1089 fd_putfile(fd);
1090 return (error);
1091 }
1092
1093 #if defined(DEBUG)
1094 static void
1095 kq_check(struct kqueue *kq)
1096 {
1097 const struct knote *kn;
1098 int count;
1099 int nmarker;
1100
1101 KASSERT(mutex_owned(&kq->kq_lock));
1102 KASSERT(kq->kq_count >= 0);
1103
1104 count = 0;
1105 nmarker = 0;
1106 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1107 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1108 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1109 }
1110 if ((kn->kn_status & KN_MARKER) == 0) {
1111 if (kn->kn_kq != kq) {
1112 panic("%s: kq=%p kn=%p inconsist 2",
1113 __func__, kq, kn);
1114 }
1115 if ((kn->kn_status & KN_ACTIVE) == 0) {
1116 panic("%s: kq=%p kn=%p: not active",
1117 __func__, kq, kn);
1118 }
1119 count++;
1120 if (count > kq->kq_count) {
1121 goto bad;
1122 }
1123 } else {
1124 nmarker++;
1125 #if 0
1126 if (nmarker > 10000) {
1127 panic("%s: kq=%p too many markers: %d != %d, "
1128 "nmarker=%d",
1129 __func__, kq, kq->kq_count, count, nmarker);
1130 }
1131 #endif
1132 }
1133 }
1134 if (kq->kq_count != count) {
1135 bad:
1136 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1137 __func__, kq, kq->kq_count, count, nmarker);
1138 }
1139 }
1140 #else /* defined(DEBUG) */
1141 #define kq_check(a) /* nothing */
1142 #endif /* defined(DEBUG) */
1143
1144 /*
1145 * Scan through the list of events on fp (for a maximum of maxevents),
1146 * returning the results in to ulistp. Timeout is determined by tsp; if
1147 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1148 * as appropriate.
1149 */
1150 static int
1151 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1152 const struct timespec *tsp, register_t *retval,
1153 const struct kevent_ops *keops, struct kevent *kevbuf,
1154 size_t kevcnt)
1155 {
1156 struct kqueue *kq;
1157 struct kevent *kevp;
1158 struct timespec ats, sleepts;
1159 struct knote *kn, *marker, morker;
1160 size_t count, nkev, nevents;
1161 int timeout, error, rv;
1162 filedesc_t *fdp;
1163
1164 fdp = curlwp->l_fd;
1165 kq = fp->f_data;
1166 count = maxevents;
1167 nkev = nevents = error = 0;
1168 if (count == 0) {
1169 *retval = 0;
1170 return 0;
1171 }
1172
1173 if (tsp) { /* timeout supplied */
1174 ats = *tsp;
1175 if (inittimeleft(&ats, &sleepts) == -1) {
1176 *retval = maxevents;
1177 return EINVAL;
1178 }
1179 timeout = tstohz(&ats);
1180 if (timeout <= 0)
1181 timeout = -1; /* do poll */
1182 } else {
1183 /* no timeout, wait forever */
1184 timeout = 0;
1185 }
1186
1187 memset(&morker, 0, sizeof(morker));
1188 marker = &morker;
1189 marker->kn_status = KN_MARKER;
1190 mutex_spin_enter(&kq->kq_lock);
1191 retry:
1192 kevp = kevbuf;
1193 if (kq->kq_count == 0) {
1194 if (timeout >= 0) {
1195 error = cv_timedwait_sig(&kq->kq_cv,
1196 &kq->kq_lock, timeout);
1197 if (error == 0) {
1198 if (tsp == NULL || (timeout =
1199 gettimeleft(&ats, &sleepts)) > 0)
1200 goto retry;
1201 } else {
1202 /* don't restart after signals... */
1203 if (error == ERESTART)
1204 error = EINTR;
1205 if (error == EWOULDBLOCK)
1206 error = 0;
1207 }
1208 }
1209 mutex_spin_exit(&kq->kq_lock);
1210 } else {
1211 /* mark end of knote list */
1212 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1213
1214 /*
1215 * Acquire the fdp->fd_lock interlock to avoid races with
1216 * file creation/destruction from other threads.
1217 */
1218 mutex_spin_exit(&kq->kq_lock);
1219 mutex_enter(&fdp->fd_lock);
1220 mutex_spin_enter(&kq->kq_lock);
1221
1222 while (count != 0) {
1223 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1224 while ((kn->kn_status & KN_MARKER) != 0) {
1225 if (kn == marker) {
1226 /* it's our marker, stop */
1227 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1228 if (count < maxevents || (tsp != NULL &&
1229 (timeout = gettimeleft(&ats,
1230 &sleepts)) <= 0))
1231 goto done;
1232 mutex_exit(&fdp->fd_lock);
1233 goto retry;
1234 }
1235 /* someone else's marker. */
1236 kn = TAILQ_NEXT(kn, kn_tqe);
1237 }
1238 kq_check(kq);
1239 kq->kq_count--;
1240 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1241 kn->kn_status &= ~KN_QUEUED;
1242 kn->kn_status |= KN_BUSY;
1243 kq_check(kq);
1244 if (kn->kn_status & KN_DISABLED) {
1245 kn->kn_status &= ~KN_BUSY;
1246 /* don't want disabled events */
1247 continue;
1248 }
1249 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1250 mutex_spin_exit(&kq->kq_lock);
1251 KASSERT(kn->kn_fop != NULL);
1252 KASSERT(kn->kn_fop->f_event != NULL);
1253 KERNEL_LOCK(1, NULL); /* XXXSMP */
1254 KASSERT(mutex_owned(&fdp->fd_lock));
1255 rv = (*kn->kn_fop->f_event)(kn, 0);
1256 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1257 mutex_spin_enter(&kq->kq_lock);
1258 /* Re-poll if note was re-enqueued. */
1259 if ((kn->kn_status & KN_QUEUED) != 0) {
1260 kn->kn_status &= ~KN_BUSY;
1261 continue;
1262 }
1263 if (rv == 0) {
1264 /*
1265 * non-ONESHOT event that hasn't
1266 * triggered again, so de-queue.
1267 */
1268 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1269 continue;
1270 }
1271 }
1272 /* XXXAD should be got from f_event if !oneshot. */
1273 *kevp++ = kn->kn_kevent;
1274 nkev++;
1275 if (kn->kn_flags & EV_ONESHOT) {
1276 /* delete ONESHOT events after retrieval */
1277 kn->kn_status &= ~KN_BUSY;
1278 mutex_spin_exit(&kq->kq_lock);
1279 knote_detach(kn, fdp, true);
1280 mutex_enter(&fdp->fd_lock);
1281 mutex_spin_enter(&kq->kq_lock);
1282 } else if (kn->kn_flags & EV_CLEAR) {
1283 /* clear state after retrieval */
1284 kn->kn_data = 0;
1285 kn->kn_fflags = 0;
1286 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1287 } else if (kn->kn_flags & EV_DISPATCH) {
1288 kn->kn_status |= KN_DISABLED;
1289 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1290 } else {
1291 /* add event back on list */
1292 kq_check(kq);
1293 kn->kn_status |= KN_QUEUED;
1294 kn->kn_status &= ~KN_BUSY;
1295 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1296 kq->kq_count++;
1297 kq_check(kq);
1298 }
1299 if (nkev == kevcnt) {
1300 /* do copyouts in kevcnt chunks */
1301 mutex_spin_exit(&kq->kq_lock);
1302 mutex_exit(&fdp->fd_lock);
1303 error = (*keops->keo_put_events)
1304 (keops->keo_private,
1305 kevbuf, ulistp, nevents, nkev);
1306 mutex_enter(&fdp->fd_lock);
1307 mutex_spin_enter(&kq->kq_lock);
1308 nevents += nkev;
1309 nkev = 0;
1310 kevp = kevbuf;
1311 }
1312 count--;
1313 if (error != 0 || count == 0) {
1314 /* remove marker */
1315 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1316 break;
1317 }
1318 }
1319 done:
1320 mutex_spin_exit(&kq->kq_lock);
1321 mutex_exit(&fdp->fd_lock);
1322 }
1323 if (nkev != 0) {
1324 /* copyout remaining events */
1325 error = (*keops->keo_put_events)(keops->keo_private,
1326 kevbuf, ulistp, nevents, nkev);
1327 }
1328 *retval = maxevents - count;
1329
1330 return error;
1331 }
1332
1333 /*
1334 * fileops ioctl method for a kqueue descriptor.
1335 *
1336 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1337 * KFILTER_BYNAME find name for filter, and return result in
1338 * name, which is of size len.
1339 * KFILTER_BYFILTER find filter for name. len is ignored.
1340 */
1341 /*ARGSUSED*/
1342 static int
1343 kqueue_ioctl(file_t *fp, u_long com, void *data)
1344 {
1345 struct kfilter_mapping *km;
1346 const struct kfilter *kfilter;
1347 char *name;
1348 int error;
1349
1350 km = data;
1351 error = 0;
1352 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1353
1354 switch (com) {
1355 case KFILTER_BYFILTER: /* convert filter -> name */
1356 rw_enter(&kqueue_filter_lock, RW_READER);
1357 kfilter = kfilter_byfilter(km->filter);
1358 if (kfilter != NULL) {
1359 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1360 rw_exit(&kqueue_filter_lock);
1361 error = copyoutstr(name, km->name, km->len, NULL);
1362 } else {
1363 rw_exit(&kqueue_filter_lock);
1364 error = ENOENT;
1365 }
1366 break;
1367
1368 case KFILTER_BYNAME: /* convert name -> filter */
1369 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1370 if (error) {
1371 break;
1372 }
1373 rw_enter(&kqueue_filter_lock, RW_READER);
1374 kfilter = kfilter_byname(name);
1375 if (kfilter != NULL)
1376 km->filter = kfilter->filter;
1377 else
1378 error = ENOENT;
1379 rw_exit(&kqueue_filter_lock);
1380 break;
1381
1382 default:
1383 error = ENOTTY;
1384 break;
1385
1386 }
1387 kmem_free(name, KFILTER_MAXNAME);
1388 return (error);
1389 }
1390
1391 /*
1392 * fileops fcntl method for a kqueue descriptor.
1393 */
1394 static int
1395 kqueue_fcntl(file_t *fp, u_int com, void *data)
1396 {
1397
1398 return (ENOTTY);
1399 }
1400
1401 /*
1402 * fileops poll method for a kqueue descriptor.
1403 * Determine if kqueue has events pending.
1404 */
1405 static int
1406 kqueue_poll(file_t *fp, int events)
1407 {
1408 struct kqueue *kq;
1409 int revents;
1410
1411 kq = fp->f_data;
1412
1413 revents = 0;
1414 if (events & (POLLIN | POLLRDNORM)) {
1415 mutex_spin_enter(&kq->kq_lock);
1416 if (kq->kq_count != 0) {
1417 revents |= events & (POLLIN | POLLRDNORM);
1418 } else {
1419 selrecord(curlwp, &kq->kq_sel);
1420 }
1421 kq_check(kq);
1422 mutex_spin_exit(&kq->kq_lock);
1423 }
1424
1425 return revents;
1426 }
1427
1428 /*
1429 * fileops stat method for a kqueue descriptor.
1430 * Returns dummy info, with st_size being number of events pending.
1431 */
1432 static int
1433 kqueue_stat(file_t *fp, struct stat *st)
1434 {
1435 struct kqueue *kq;
1436
1437 kq = fp->f_data;
1438
1439 memset(st, 0, sizeof(*st));
1440 st->st_size = kq->kq_count;
1441 st->st_blksize = sizeof(struct kevent);
1442 st->st_mode = S_IFIFO;
1443
1444 return 0;
1445 }
1446
1447 static void
1448 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1449 {
1450 struct knote *kn;
1451 filedesc_t *fdp;
1452
1453 fdp = kq->kq_fdp;
1454
1455 KASSERT(mutex_owned(&fdp->fd_lock));
1456
1457 for (kn = SLIST_FIRST(list); kn != NULL;) {
1458 if (kq != kn->kn_kq) {
1459 kn = SLIST_NEXT(kn, kn_link);
1460 continue;
1461 }
1462 knote_detach(kn, fdp, true);
1463 mutex_enter(&fdp->fd_lock);
1464 kn = SLIST_FIRST(list);
1465 }
1466 }
1467
1468
1469 /*
1470 * fileops close method for a kqueue descriptor.
1471 */
1472 static int
1473 kqueue_close(file_t *fp)
1474 {
1475 struct kqueue *kq;
1476 filedesc_t *fdp;
1477 fdfile_t *ff;
1478 int i;
1479
1480 kq = fp->f_data;
1481 fp->f_data = NULL;
1482 fp->f_type = 0;
1483 fdp = curlwp->l_fd;
1484
1485 mutex_enter(&fdp->fd_lock);
1486 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1487 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1488 continue;
1489 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1490 }
1491 if (fdp->fd_knhashmask != 0) {
1492 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1493 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1494 }
1495 }
1496 mutex_exit(&fdp->fd_lock);
1497
1498 KASSERT(kq->kq_count == 0);
1499 mutex_destroy(&kq->kq_lock);
1500 cv_destroy(&kq->kq_cv);
1501 seldestroy(&kq->kq_sel);
1502 kmem_free(kq, sizeof(*kq));
1503
1504 return (0);
1505 }
1506
1507 /*
1508 * struct fileops kqfilter method for a kqueue descriptor.
1509 * Event triggered when monitored kqueue changes.
1510 */
1511 static int
1512 kqueue_kqfilter(file_t *fp, struct knote *kn)
1513 {
1514 struct kqueue *kq;
1515
1516 kq = ((file_t *)kn->kn_obj)->f_data;
1517
1518 KASSERT(fp == kn->kn_obj);
1519
1520 if (kn->kn_filter != EVFILT_READ)
1521 return 1;
1522
1523 kn->kn_fop = &kqread_filtops;
1524 mutex_enter(&kq->kq_lock);
1525 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1526 mutex_exit(&kq->kq_lock);
1527
1528 return 0;
1529 }
1530
1531
1532 /*
1533 * Walk down a list of knotes, activating them if their event has
1534 * triggered. The caller's object lock (e.g. device driver lock)
1535 * must be held.
1536 */
1537 void
1538 knote(struct klist *list, long hint)
1539 {
1540 struct knote *kn, *tmpkn;
1541
1542 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1543 KASSERT(kn->kn_fop != NULL);
1544 KASSERT(kn->kn_fop->f_event != NULL);
1545 if ((*kn->kn_fop->f_event)(kn, hint))
1546 knote_activate(kn);
1547 }
1548 }
1549
1550 /*
1551 * Remove all knotes referencing a specified fd
1552 */
1553 void
1554 knote_fdclose(int fd)
1555 {
1556 struct klist *list;
1557 struct knote *kn;
1558 filedesc_t *fdp;
1559
1560 fdp = curlwp->l_fd;
1561 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1562 mutex_enter(&fdp->fd_lock);
1563 while ((kn = SLIST_FIRST(list)) != NULL) {
1564 knote_detach(kn, fdp, true);
1565 mutex_enter(&fdp->fd_lock);
1566 }
1567 mutex_exit(&fdp->fd_lock);
1568 }
1569
1570 /*
1571 * Drop knote. Called with fdp->fd_lock held, and will drop before
1572 * returning.
1573 */
1574 static void
1575 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1576 {
1577 struct klist *list;
1578 struct kqueue *kq;
1579
1580 kq = kn->kn_kq;
1581
1582 KASSERT((kn->kn_status & KN_MARKER) == 0);
1583 KASSERT(mutex_owned(&fdp->fd_lock));
1584
1585 KASSERT(kn->kn_fop != NULL);
1586 /* Remove from monitored object. */
1587 if (dofop) {
1588 KASSERT(kn->kn_fop->f_detach != NULL);
1589 KERNEL_LOCK(1, NULL); /* XXXSMP */
1590 (*kn->kn_fop->f_detach)(kn);
1591 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1592 }
1593
1594 /* Remove from descriptor table. */
1595 if (kn->kn_fop->f_isfd)
1596 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1597 else
1598 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1599
1600 SLIST_REMOVE(list, kn, knote, kn_link);
1601
1602 /* Remove from kqueue. */
1603 again:
1604 mutex_spin_enter(&kq->kq_lock);
1605 if ((kn->kn_status & KN_QUEUED) != 0) {
1606 kq_check(kq);
1607 kq->kq_count--;
1608 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1609 kn->kn_status &= ~KN_QUEUED;
1610 kq_check(kq);
1611 } else if (kn->kn_status & KN_BUSY) {
1612 mutex_spin_exit(&kq->kq_lock);
1613 goto again;
1614 }
1615 mutex_spin_exit(&kq->kq_lock);
1616
1617 mutex_exit(&fdp->fd_lock);
1618 if (kn->kn_fop->f_isfd)
1619 fd_putfile(kn->kn_id);
1620 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1621 kmem_free(kn, sizeof(*kn));
1622 }
1623
1624 /*
1625 * Queue new event for knote.
1626 */
1627 static void
1628 knote_enqueue(struct knote *kn)
1629 {
1630 struct kqueue *kq;
1631
1632 KASSERT((kn->kn_status & KN_MARKER) == 0);
1633
1634 kq = kn->kn_kq;
1635
1636 mutex_spin_enter(&kq->kq_lock);
1637 if ((kn->kn_status & KN_DISABLED) != 0) {
1638 kn->kn_status &= ~KN_DISABLED;
1639 }
1640 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1641 kq_check(kq);
1642 kn->kn_status |= KN_QUEUED;
1643 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1644 kq->kq_count++;
1645 kq_check(kq);
1646 cv_broadcast(&kq->kq_cv);
1647 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1648 }
1649 mutex_spin_exit(&kq->kq_lock);
1650 }
1651 /*
1652 * Queue new event for knote.
1653 */
1654 static void
1655 knote_activate(struct knote *kn)
1656 {
1657 struct kqueue *kq;
1658
1659 KASSERT((kn->kn_status & KN_MARKER) == 0);
1660
1661 kq = kn->kn_kq;
1662
1663 mutex_spin_enter(&kq->kq_lock);
1664 kn->kn_status |= KN_ACTIVE;
1665 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1666 kq_check(kq);
1667 kn->kn_status |= KN_QUEUED;
1668 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1669 kq->kq_count++;
1670 kq_check(kq);
1671 cv_broadcast(&kq->kq_cv);
1672 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1673 }
1674 mutex_spin_exit(&kq->kq_lock);
1675 }
1676