kern_event.c revision 1.82.2.1 1 /* $NetBSD: kern_event.c,v 1.82.2.1 2015/04/06 15:18:20 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.82.2.1 2015/04/06 15:18:20 skrll Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/proc.h>
67 #include <sys/file.h>
68 #include <sys/select.h>
69 #include <sys/queue.h>
70 #include <sys/event.h>
71 #include <sys/eventvar.h>
72 #include <sys/poll.h>
73 #include <sys/kmem.h>
74 #include <sys/stat.h>
75 #include <sys/filedesc.h>
76 #include <sys/syscallargs.h>
77 #include <sys/kauth.h>
78 #include <sys/conf.h>
79 #include <sys/atomic.h>
80
81 static int kqueue_scan(file_t *, size_t, struct kevent *,
82 const struct timespec *, register_t *,
83 const struct kevent_ops *, struct kevent *,
84 size_t);
85 static int kqueue_ioctl(file_t *, u_long, void *);
86 static int kqueue_fcntl(file_t *, u_int, void *);
87 static int kqueue_poll(file_t *, int);
88 static int kqueue_kqfilter(file_t *, struct knote *);
89 static int kqueue_stat(file_t *, struct stat *);
90 static int kqueue_close(file_t *);
91 static int kqueue_register(struct kqueue *, struct kevent *);
92 static void kqueue_doclose(struct kqueue *, struct klist *, int);
93
94 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
95 static void knote_enqueue(struct knote *);
96 static void knote_activate(struct knote *);
97
98 static void filt_kqdetach(struct knote *);
99 static int filt_kqueue(struct knote *, long hint);
100 static int filt_procattach(struct knote *);
101 static void filt_procdetach(struct knote *);
102 static int filt_proc(struct knote *, long hint);
103 static int filt_fileattach(struct knote *);
104 static void filt_timerexpire(void *x);
105 static int filt_timerattach(struct knote *);
106 static void filt_timerdetach(struct knote *);
107 static int filt_timer(struct knote *, long hint);
108
109 static const struct fileops kqueueops = {
110 .fo_read = (void *)enxio,
111 .fo_write = (void *)enxio,
112 .fo_ioctl = kqueue_ioctl,
113 .fo_fcntl = kqueue_fcntl,
114 .fo_poll = kqueue_poll,
115 .fo_stat = kqueue_stat,
116 .fo_close = kqueue_close,
117 .fo_kqfilter = kqueue_kqfilter,
118 .fo_restart = fnullop_restart,
119 };
120
121 static const struct filterops kqread_filtops =
122 { 1, NULL, filt_kqdetach, filt_kqueue };
123 static const struct filterops proc_filtops =
124 { 0, filt_procattach, filt_procdetach, filt_proc };
125 static const struct filterops file_filtops =
126 { 1, filt_fileattach, NULL, NULL };
127 static const struct filterops timer_filtops =
128 { 0, filt_timerattach, filt_timerdetach, filt_timer };
129
130 static u_int kq_ncallouts = 0;
131 static int kq_calloutmax = (4 * 1024);
132
133 #define KN_HASHSIZE 64 /* XXX should be tunable */
134 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
135
136 extern const struct filterops sig_filtops;
137
138 /*
139 * Table for for all system-defined filters.
140 * These should be listed in the numeric order of the EVFILT_* defines.
141 * If filtops is NULL, the filter isn't implemented in NetBSD.
142 * End of list is when name is NULL.
143 *
144 * Note that 'refcnt' is meaningless for built-in filters.
145 */
146 struct kfilter {
147 const char *name; /* name of filter */
148 uint32_t filter; /* id of filter */
149 unsigned refcnt; /* reference count */
150 const struct filterops *filtops;/* operations for filter */
151 size_t namelen; /* length of name string */
152 };
153
154 /* System defined filters */
155 static struct kfilter sys_kfilters[] = {
156 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
157 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
158 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
159 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
160 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
161 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
162 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
163 { NULL, 0, 0, NULL, 0 },
164 };
165
166 /* User defined kfilters */
167 static struct kfilter *user_kfilters; /* array */
168 static int user_kfilterc; /* current offset */
169 static int user_kfiltermaxc; /* max size so far */
170 static size_t user_kfiltersz; /* size of allocated memory */
171
172 /* Locks */
173 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
174 static kmutex_t kqueue_misc_lock; /* miscellaneous */
175
176 static kauth_listener_t kqueue_listener;
177
178 static int
179 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
180 void *arg0, void *arg1, void *arg2, void *arg3)
181 {
182 struct proc *p;
183 int result;
184
185 result = KAUTH_RESULT_DEFER;
186 p = arg0;
187
188 if (action != KAUTH_PROCESS_KEVENT_FILTER)
189 return result;
190
191 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
192 ISSET(p->p_flag, PK_SUGID)))
193 return result;
194
195 result = KAUTH_RESULT_ALLOW;
196
197 return result;
198 }
199
200 /*
201 * Initialize the kqueue subsystem.
202 */
203 void
204 kqueue_init(void)
205 {
206
207 rw_init(&kqueue_filter_lock);
208 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
209
210 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
211 kqueue_listener_cb, NULL);
212 }
213
214 /*
215 * Find kfilter entry by name, or NULL if not found.
216 */
217 static struct kfilter *
218 kfilter_byname_sys(const char *name)
219 {
220 int i;
221
222 KASSERT(rw_lock_held(&kqueue_filter_lock));
223
224 for (i = 0; sys_kfilters[i].name != NULL; i++) {
225 if (strcmp(name, sys_kfilters[i].name) == 0)
226 return &sys_kfilters[i];
227 }
228 return NULL;
229 }
230
231 static struct kfilter *
232 kfilter_byname_user(const char *name)
233 {
234 int i;
235
236 KASSERT(rw_lock_held(&kqueue_filter_lock));
237
238 /* user filter slots have a NULL name if previously deregistered */
239 for (i = 0; i < user_kfilterc ; i++) {
240 if (user_kfilters[i].name != NULL &&
241 strcmp(name, user_kfilters[i].name) == 0)
242 return &user_kfilters[i];
243 }
244 return NULL;
245 }
246
247 static struct kfilter *
248 kfilter_byname(const char *name)
249 {
250 struct kfilter *kfilter;
251
252 KASSERT(rw_lock_held(&kqueue_filter_lock));
253
254 if ((kfilter = kfilter_byname_sys(name)) != NULL)
255 return kfilter;
256
257 return kfilter_byname_user(name);
258 }
259
260 /*
261 * Find kfilter entry by filter id, or NULL if not found.
262 * Assumes entries are indexed in filter id order, for speed.
263 */
264 static struct kfilter *
265 kfilter_byfilter(uint32_t filter)
266 {
267 struct kfilter *kfilter;
268
269 KASSERT(rw_lock_held(&kqueue_filter_lock));
270
271 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
272 kfilter = &sys_kfilters[filter];
273 else if (user_kfilters != NULL &&
274 filter < EVFILT_SYSCOUNT + user_kfilterc)
275 /* it's a user filter */
276 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
277 else
278 return (NULL); /* out of range */
279 KASSERT(kfilter->filter == filter); /* sanity check! */
280 return (kfilter);
281 }
282
283 /*
284 * Register a new kfilter. Stores the entry in user_kfilters.
285 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286 * If retfilter != NULL, the new filterid is returned in it.
287 */
288 int
289 kfilter_register(const char *name, const struct filterops *filtops,
290 int *retfilter)
291 {
292 struct kfilter *kfilter;
293 size_t len;
294 int i;
295
296 if (name == NULL || name[0] == '\0' || filtops == NULL)
297 return (EINVAL); /* invalid args */
298
299 rw_enter(&kqueue_filter_lock, RW_WRITER);
300 if (kfilter_byname(name) != NULL) {
301 rw_exit(&kqueue_filter_lock);
302 return (EEXIST); /* already exists */
303 }
304 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
305 rw_exit(&kqueue_filter_lock);
306 return (EINVAL); /* too many */
307 }
308
309 for (i = 0; i < user_kfilterc; i++) {
310 kfilter = &user_kfilters[i];
311 if (kfilter->name == NULL) {
312 /* Previously deregistered slot. Reuse. */
313 goto reuse;
314 }
315 }
316
317 /* check if need to grow user_kfilters */
318 if (user_kfilterc + 1 > user_kfiltermaxc) {
319 /* Grow in KFILTER_EXTENT chunks. */
320 user_kfiltermaxc += KFILTER_EXTENT;
321 len = user_kfiltermaxc * sizeof(*kfilter);
322 kfilter = kmem_alloc(len, KM_SLEEP);
323 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
324 if (user_kfilters != NULL) {
325 memcpy(kfilter, user_kfilters, user_kfiltersz);
326 kmem_free(user_kfilters, user_kfiltersz);
327 }
328 user_kfiltersz = len;
329 user_kfilters = kfilter;
330 }
331 /* Adding new slot */
332 kfilter = &user_kfilters[user_kfilterc++];
333 reuse:
334 kfilter->namelen = strlen(name) + 1;
335 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
336 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
337
338 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
339
340 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
341 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
342
343 if (retfilter != NULL)
344 *retfilter = kfilter->filter;
345 rw_exit(&kqueue_filter_lock);
346
347 return (0);
348 }
349
350 /*
351 * Unregister a kfilter previously registered with kfilter_register.
352 * This retains the filter id, but clears the name and frees filtops (filter
353 * operations), so that the number isn't reused during a boot.
354 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
355 */
356 int
357 kfilter_unregister(const char *name)
358 {
359 struct kfilter *kfilter;
360
361 if (name == NULL || name[0] == '\0')
362 return (EINVAL); /* invalid name */
363
364 rw_enter(&kqueue_filter_lock, RW_WRITER);
365 if (kfilter_byname_sys(name) != NULL) {
366 rw_exit(&kqueue_filter_lock);
367 return (EINVAL); /* can't detach system filters */
368 }
369
370 kfilter = kfilter_byname_user(name);
371 if (kfilter == NULL) {
372 rw_exit(&kqueue_filter_lock);
373 return (ENOENT);
374 }
375 if (kfilter->refcnt != 0) {
376 rw_exit(&kqueue_filter_lock);
377 return (EBUSY);
378 }
379
380 /* Cast away const (but we know it's safe. */
381 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
382 kfilter->name = NULL; /* mark as `not implemented' */
383
384 if (kfilter->filtops != NULL) {
385 /* Cast away const (but we know it's safe. */
386 kmem_free(__UNCONST(kfilter->filtops),
387 sizeof(*kfilter->filtops));
388 kfilter->filtops = NULL; /* mark as `not implemented' */
389 }
390 rw_exit(&kqueue_filter_lock);
391
392 return (0);
393 }
394
395
396 /*
397 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
398 * descriptors. Calls fileops kqfilter method for given file descriptor.
399 */
400 static int
401 filt_fileattach(struct knote *kn)
402 {
403 file_t *fp;
404
405 fp = kn->kn_obj;
406
407 return (*fp->f_ops->fo_kqfilter)(fp, kn);
408 }
409
410 /*
411 * Filter detach method for EVFILT_READ on kqueue descriptor.
412 */
413 static void
414 filt_kqdetach(struct knote *kn)
415 {
416 struct kqueue *kq;
417
418 kq = ((file_t *)kn->kn_obj)->f_kqueue;
419
420 mutex_spin_enter(&kq->kq_lock);
421 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
422 mutex_spin_exit(&kq->kq_lock);
423 }
424
425 /*
426 * Filter event method for EVFILT_READ on kqueue descriptor.
427 */
428 /*ARGSUSED*/
429 static int
430 filt_kqueue(struct knote *kn, long hint)
431 {
432 struct kqueue *kq;
433 int rv;
434
435 kq = ((file_t *)kn->kn_obj)->f_kqueue;
436
437 if (hint != NOTE_SUBMIT)
438 mutex_spin_enter(&kq->kq_lock);
439 kn->kn_data = kq->kq_count;
440 rv = (kn->kn_data > 0);
441 if (hint != NOTE_SUBMIT)
442 mutex_spin_exit(&kq->kq_lock);
443
444 return rv;
445 }
446
447 /*
448 * Filter attach method for EVFILT_PROC.
449 */
450 static int
451 filt_procattach(struct knote *kn)
452 {
453 struct proc *p;
454 struct lwp *curl;
455
456 curl = curlwp;
457
458 mutex_enter(proc_lock);
459 if (kn->kn_flags & EV_FLAG1) {
460 /*
461 * NOTE_TRACK attaches to the child process too early
462 * for proc_find, so do a raw look up and check the state
463 * explicitly.
464 */
465 p = proc_find_raw(kn->kn_id);
466 if (p != NULL && p->p_stat != SIDL)
467 p = NULL;
468 } else {
469 p = proc_find(kn->kn_id);
470 }
471
472 if (p == NULL) {
473 mutex_exit(proc_lock);
474 return ESRCH;
475 }
476
477 /*
478 * Fail if it's not owned by you, or the last exec gave us
479 * setuid/setgid privs (unless you're root).
480 */
481 mutex_enter(p->p_lock);
482 mutex_exit(proc_lock);
483 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
484 p, NULL, NULL, NULL) != 0) {
485 mutex_exit(p->p_lock);
486 return EACCES;
487 }
488
489 kn->kn_obj = p;
490 kn->kn_flags |= EV_CLEAR; /* automatically set */
491
492 /*
493 * internal flag indicating registration done by kernel
494 */
495 if (kn->kn_flags & EV_FLAG1) {
496 kn->kn_data = kn->kn_sdata; /* ppid */
497 kn->kn_fflags = NOTE_CHILD;
498 kn->kn_flags &= ~EV_FLAG1;
499 }
500 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
501 mutex_exit(p->p_lock);
502
503 return 0;
504 }
505
506 /*
507 * Filter detach method for EVFILT_PROC.
508 *
509 * The knote may be attached to a different process, which may exit,
510 * leaving nothing for the knote to be attached to. So when the process
511 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
512 * it will be deleted when read out. However, as part of the knote deletion,
513 * this routine is called, so a check is needed to avoid actually performing
514 * a detach, because the original process might not exist any more.
515 */
516 static void
517 filt_procdetach(struct knote *kn)
518 {
519 struct proc *p;
520
521 if (kn->kn_status & KN_DETACHED)
522 return;
523
524 p = kn->kn_obj;
525
526 mutex_enter(p->p_lock);
527 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
528 mutex_exit(p->p_lock);
529 }
530
531 /*
532 * Filter event method for EVFILT_PROC.
533 */
534 static int
535 filt_proc(struct knote *kn, long hint)
536 {
537 u_int event, fflag;
538 struct kevent kev;
539 struct kqueue *kq;
540 int error;
541
542 event = (u_int)hint & NOTE_PCTRLMASK;
543 kq = kn->kn_kq;
544 fflag = 0;
545
546 /* If the user is interested in this event, record it. */
547 if (kn->kn_sfflags & event)
548 fflag |= event;
549
550 if (event == NOTE_EXIT) {
551 struct proc *p = kn->kn_obj;
552
553 if (p != NULL)
554 kn->kn_data = p->p_xstat;
555 /*
556 * Process is gone, so flag the event as finished.
557 *
558 * Detach the knote from watched process and mark
559 * it as such. We can't leave this to kqueue_scan(),
560 * since the process might not exist by then. And we
561 * have to do this now, since psignal KNOTE() is called
562 * also for zombies and we might end up reading freed
563 * memory if the kevent would already be picked up
564 * and knote g/c'ed.
565 */
566 filt_procdetach(kn);
567
568 mutex_spin_enter(&kq->kq_lock);
569 kn->kn_status |= KN_DETACHED;
570 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
571 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
572 kn->kn_fflags |= fflag;
573 mutex_spin_exit(&kq->kq_lock);
574
575 return 1;
576 }
577
578 mutex_spin_enter(&kq->kq_lock);
579 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
580 /*
581 * Process forked, and user wants to track the new process,
582 * so attach a new knote to it, and immediately report an
583 * event with the parent's pid. Register knote with new
584 * process.
585 */
586 kev.ident = hint & NOTE_PDATAMASK; /* pid */
587 kev.filter = kn->kn_filter;
588 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
589 kev.fflags = kn->kn_sfflags;
590 kev.data = kn->kn_id; /* parent */
591 kev.udata = kn->kn_kevent.udata; /* preserve udata */
592 mutex_spin_exit(&kq->kq_lock);
593 error = kqueue_register(kq, &kev);
594 mutex_spin_enter(&kq->kq_lock);
595 if (error != 0)
596 kn->kn_fflags |= NOTE_TRACKERR;
597 }
598 kn->kn_fflags |= fflag;
599 fflag = kn->kn_fflags;
600 mutex_spin_exit(&kq->kq_lock);
601
602 return fflag != 0;
603 }
604
605 static void
606 filt_timerexpire(void *knx)
607 {
608 struct knote *kn = knx;
609 int tticks;
610
611 mutex_enter(&kqueue_misc_lock);
612 kn->kn_data++;
613 knote_activate(kn);
614 if ((kn->kn_flags & EV_ONESHOT) == 0) {
615 tticks = mstohz(kn->kn_sdata);
616 if (tticks <= 0)
617 tticks = 1;
618 callout_schedule((callout_t *)kn->kn_hook, tticks);
619 }
620 mutex_exit(&kqueue_misc_lock);
621 }
622
623 /*
624 * data contains amount of time to sleep, in milliseconds
625 */
626 static int
627 filt_timerattach(struct knote *kn)
628 {
629 callout_t *calloutp;
630 struct kqueue *kq;
631 int tticks;
632
633 tticks = mstohz(kn->kn_sdata);
634
635 /* if the supplied value is under our resolution, use 1 tick */
636 if (tticks == 0) {
637 if (kn->kn_sdata == 0)
638 return EINVAL;
639 tticks = 1;
640 }
641
642 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
643 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
644 atomic_dec_uint(&kq_ncallouts);
645 return ENOMEM;
646 }
647 callout_init(calloutp, CALLOUT_MPSAFE);
648
649 kq = kn->kn_kq;
650 mutex_spin_enter(&kq->kq_lock);
651 kn->kn_flags |= EV_CLEAR; /* automatically set */
652 kn->kn_hook = calloutp;
653 mutex_spin_exit(&kq->kq_lock);
654
655 callout_reset(calloutp, tticks, filt_timerexpire, kn);
656
657 return (0);
658 }
659
660 static void
661 filt_timerdetach(struct knote *kn)
662 {
663 callout_t *calloutp;
664
665 calloutp = (callout_t *)kn->kn_hook;
666 callout_halt(calloutp, NULL);
667 callout_destroy(calloutp);
668 kmem_free(calloutp, sizeof(*calloutp));
669 atomic_dec_uint(&kq_ncallouts);
670 }
671
672 static int
673 filt_timer(struct knote *kn, long hint)
674 {
675 int rv;
676
677 mutex_enter(&kqueue_misc_lock);
678 rv = (kn->kn_data != 0);
679 mutex_exit(&kqueue_misc_lock);
680
681 return rv;
682 }
683
684 /*
685 * filt_seltrue:
686 *
687 * This filter "event" routine simulates seltrue().
688 */
689 int
690 filt_seltrue(struct knote *kn, long hint)
691 {
692
693 /*
694 * We don't know how much data can be read/written,
695 * but we know that it *can* be. This is about as
696 * good as select/poll does as well.
697 */
698 kn->kn_data = 0;
699 return (1);
700 }
701
702 /*
703 * This provides full kqfilter entry for device switch tables, which
704 * has same effect as filter using filt_seltrue() as filter method.
705 */
706 static void
707 filt_seltruedetach(struct knote *kn)
708 {
709 /* Nothing to do */
710 }
711
712 const struct filterops seltrue_filtops =
713 { 1, NULL, filt_seltruedetach, filt_seltrue };
714
715 int
716 seltrue_kqfilter(dev_t dev, struct knote *kn)
717 {
718 switch (kn->kn_filter) {
719 case EVFILT_READ:
720 case EVFILT_WRITE:
721 kn->kn_fop = &seltrue_filtops;
722 break;
723 default:
724 return (EINVAL);
725 }
726
727 /* Nothing more to do */
728 return (0);
729 }
730
731 /*
732 * kqueue(2) system call.
733 */
734 static int
735 kqueue1(struct lwp *l, int flags, register_t *retval)
736 {
737 struct kqueue *kq;
738 file_t *fp;
739 int fd, error;
740
741 if ((error = fd_allocfile(&fp, &fd)) != 0)
742 return error;
743 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
744 fp->f_type = DTYPE_KQUEUE;
745 fp->f_ops = &kqueueops;
746 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
747 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
748 cv_init(&kq->kq_cv, "kqueue");
749 selinit(&kq->kq_sel);
750 TAILQ_INIT(&kq->kq_head);
751 fp->f_kqueue = kq;
752 *retval = fd;
753 kq->kq_fdp = curlwp->l_fd;
754 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
755 fd_affix(curproc, fp, fd);
756 return error;
757 }
758
759 /*
760 * kqueue(2) system call.
761 */
762 int
763 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
764 {
765 return kqueue1(l, 0, retval);
766 }
767
768 int
769 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
770 register_t *retval)
771 {
772 /* {
773 syscallarg(int) flags;
774 } */
775 return kqueue1(l, SCARG(uap, flags), retval);
776 }
777
778 /*
779 * kevent(2) system call.
780 */
781 int
782 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
783 struct kevent *changes, size_t index, int n)
784 {
785
786 return copyin(changelist + index, changes, n * sizeof(*changes));
787 }
788
789 int
790 kevent_put_events(void *ctx, struct kevent *events,
791 struct kevent *eventlist, size_t index, int n)
792 {
793
794 return copyout(events, eventlist + index, n * sizeof(*events));
795 }
796
797 static const struct kevent_ops kevent_native_ops = {
798 .keo_private = NULL,
799 .keo_fetch_timeout = copyin,
800 .keo_fetch_changes = kevent_fetch_changes,
801 .keo_put_events = kevent_put_events,
802 };
803
804 int
805 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
806 register_t *retval)
807 {
808 /* {
809 syscallarg(int) fd;
810 syscallarg(const struct kevent *) changelist;
811 syscallarg(size_t) nchanges;
812 syscallarg(struct kevent *) eventlist;
813 syscallarg(size_t) nevents;
814 syscallarg(const struct timespec *) timeout;
815 } */
816
817 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
818 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
819 SCARG(uap, timeout), &kevent_native_ops);
820 }
821
822 int
823 kevent1(register_t *retval, int fd,
824 const struct kevent *changelist, size_t nchanges,
825 struct kevent *eventlist, size_t nevents,
826 const struct timespec *timeout,
827 const struct kevent_ops *keops)
828 {
829 struct kevent *kevp;
830 struct kqueue *kq;
831 struct timespec ts;
832 size_t i, n, ichange;
833 int nerrors, error;
834 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
835 file_t *fp;
836
837 /* check that we're dealing with a kq */
838 fp = fd_getfile(fd);
839 if (fp == NULL)
840 return (EBADF);
841
842 if (fp->f_type != DTYPE_KQUEUE) {
843 fd_putfile(fd);
844 return (EBADF);
845 }
846
847 if (timeout != NULL) {
848 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
849 if (error)
850 goto done;
851 timeout = &ts;
852 }
853
854 kq = fp->f_kqueue;
855 nerrors = 0;
856 ichange = 0;
857
858 /* traverse list of events to register */
859 while (nchanges > 0) {
860 n = MIN(nchanges, __arraycount(kevbuf));
861 error = (*keops->keo_fetch_changes)(keops->keo_private,
862 changelist, kevbuf, ichange, n);
863 if (error)
864 goto done;
865 for (i = 0; i < n; i++) {
866 kevp = &kevbuf[i];
867 kevp->flags &= ~EV_SYSFLAGS;
868 /* register each knote */
869 error = kqueue_register(kq, kevp);
870 if (error) {
871 if (nevents != 0) {
872 kevp->flags = EV_ERROR;
873 kevp->data = error;
874 error = (*keops->keo_put_events)
875 (keops->keo_private, kevp,
876 eventlist, nerrors, 1);
877 if (error)
878 goto done;
879 nevents--;
880 nerrors++;
881 } else {
882 goto done;
883 }
884 }
885 }
886 nchanges -= n; /* update the results */
887 ichange += n;
888 }
889 if (nerrors) {
890 *retval = nerrors;
891 error = 0;
892 goto done;
893 }
894
895 /* actually scan through the events */
896 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
897 kevbuf, __arraycount(kevbuf));
898 done:
899 fd_putfile(fd);
900 return (error);
901 }
902
903 /*
904 * Register a given kevent kev onto the kqueue
905 */
906 static int
907 kqueue_register(struct kqueue *kq, struct kevent *kev)
908 {
909 struct kfilter *kfilter;
910 filedesc_t *fdp;
911 file_t *fp;
912 fdfile_t *ff;
913 struct knote *kn, *newkn;
914 struct klist *list;
915 int error, fd, rv;
916
917 fdp = kq->kq_fdp;
918 fp = NULL;
919 kn = NULL;
920 error = 0;
921 fd = 0;
922
923 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
924
925 rw_enter(&kqueue_filter_lock, RW_READER);
926 kfilter = kfilter_byfilter(kev->filter);
927 if (kfilter == NULL || kfilter->filtops == NULL) {
928 /* filter not found nor implemented */
929 rw_exit(&kqueue_filter_lock);
930 kmem_free(newkn, sizeof(*newkn));
931 return (EINVAL);
932 }
933
934 /* search if knote already exists */
935 if (kfilter->filtops->f_isfd) {
936 /* monitoring a file descriptor */
937 fd = kev->ident;
938 if ((fp = fd_getfile(fd)) == NULL) {
939 rw_exit(&kqueue_filter_lock);
940 kmem_free(newkn, sizeof(*newkn));
941 return EBADF;
942 }
943 mutex_enter(&fdp->fd_lock);
944 ff = fdp->fd_dt->dt_ff[fd];
945 if (fd <= fdp->fd_lastkqfile) {
946 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
947 if (kq == kn->kn_kq &&
948 kev->filter == kn->kn_filter)
949 break;
950 }
951 }
952 } else {
953 /*
954 * not monitoring a file descriptor, so
955 * lookup knotes in internal hash table
956 */
957 mutex_enter(&fdp->fd_lock);
958 if (fdp->fd_knhashmask != 0) {
959 list = &fdp->fd_knhash[
960 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
961 SLIST_FOREACH(kn, list, kn_link) {
962 if (kev->ident == kn->kn_id &&
963 kq == kn->kn_kq &&
964 kev->filter == kn->kn_filter)
965 break;
966 }
967 }
968 }
969
970 /*
971 * kn now contains the matching knote, or NULL if no match
972 */
973 if (kev->flags & EV_ADD) {
974 if (kn == NULL) {
975 /* create new knote */
976 kn = newkn;
977 newkn = NULL;
978 kn->kn_obj = fp;
979 kn->kn_id = kev->ident;
980 kn->kn_kq = kq;
981 kn->kn_fop = kfilter->filtops;
982 kn->kn_kfilter = kfilter;
983 kn->kn_sfflags = kev->fflags;
984 kn->kn_sdata = kev->data;
985 kev->fflags = 0;
986 kev->data = 0;
987 kn->kn_kevent = *kev;
988
989 /*
990 * apply reference count to knote structure, and
991 * do not release it at the end of this routine.
992 */
993 fp = NULL;
994
995 if (!kn->kn_fop->f_isfd) {
996 /*
997 * If knote is not on an fd, store on
998 * internal hash table.
999 */
1000 if (fdp->fd_knhashmask == 0) {
1001 /* XXXAD can block with fd_lock held */
1002 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1003 HASH_LIST, true,
1004 &fdp->fd_knhashmask);
1005 }
1006 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1007 fdp->fd_knhashmask)];
1008 } else {
1009 /* Otherwise, knote is on an fd. */
1010 list = (struct klist *)
1011 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1012 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1013 fdp->fd_lastkqfile = kn->kn_id;
1014 }
1015 SLIST_INSERT_HEAD(list, kn, kn_link);
1016
1017 KERNEL_LOCK(1, NULL); /* XXXSMP */
1018 error = (*kfilter->filtops->f_attach)(kn);
1019 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1020 if (error != 0) {
1021 #ifdef DIAGNOSTIC
1022 printf("%s: event not supported for file type"
1023 " %d\n", __func__, fp ? fp->f_type : -1);
1024 #endif
1025 /* knote_detach() drops fdp->fd_lock */
1026 knote_detach(kn, fdp, false);
1027 goto done;
1028 }
1029 atomic_inc_uint(&kfilter->refcnt);
1030 } else {
1031 /*
1032 * The user may change some filter values after the
1033 * initial EV_ADD, but doing so will not reset any
1034 * filter which have already been triggered.
1035 */
1036 kn->kn_sfflags = kev->fflags;
1037 kn->kn_sdata = kev->data;
1038 kn->kn_kevent.udata = kev->udata;
1039 }
1040 /*
1041 * We can get here if we are trying to attach
1042 * an event to a file descriptor that does not
1043 * support events, and the attach routine is
1044 * broken and does not return an error.
1045 */
1046 KASSERT(kn->kn_fop->f_event != NULL);
1047 KERNEL_LOCK(1, NULL); /* XXXSMP */
1048 rv = (*kn->kn_fop->f_event)(kn, 0);
1049 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1050 if (rv)
1051 knote_activate(kn);
1052 } else {
1053 if (kn == NULL) {
1054 error = ENOENT;
1055 mutex_exit(&fdp->fd_lock);
1056 goto done;
1057 }
1058 if (kev->flags & EV_DELETE) {
1059 /* knote_detach() drops fdp->fd_lock */
1060 knote_detach(kn, fdp, true);
1061 goto done;
1062 }
1063 }
1064
1065 /* disable knote */
1066 if ((kev->flags & EV_DISABLE)) {
1067 mutex_spin_enter(&kq->kq_lock);
1068 if ((kn->kn_status & KN_DISABLED) == 0)
1069 kn->kn_status |= KN_DISABLED;
1070 mutex_spin_exit(&kq->kq_lock);
1071 }
1072
1073 /* enable knote */
1074 if ((kev->flags & EV_ENABLE)) {
1075 knote_enqueue(kn);
1076 }
1077 mutex_exit(&fdp->fd_lock);
1078 done:
1079 rw_exit(&kqueue_filter_lock);
1080 if (newkn != NULL)
1081 kmem_free(newkn, sizeof(*newkn));
1082 if (fp != NULL)
1083 fd_putfile(fd);
1084 return (error);
1085 }
1086
1087 #if defined(DEBUG)
1088 static void
1089 kq_check(struct kqueue *kq)
1090 {
1091 const struct knote *kn;
1092 int count;
1093 int nmarker;
1094
1095 KASSERT(mutex_owned(&kq->kq_lock));
1096 KASSERT(kq->kq_count >= 0);
1097
1098 count = 0;
1099 nmarker = 0;
1100 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1101 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1102 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1103 }
1104 if ((kn->kn_status & KN_MARKER) == 0) {
1105 if (kn->kn_kq != kq) {
1106 panic("%s: kq=%p kn=%p inconsist 2",
1107 __func__, kq, kn);
1108 }
1109 if ((kn->kn_status & KN_ACTIVE) == 0) {
1110 panic("%s: kq=%p kn=%p: not active",
1111 __func__, kq, kn);
1112 }
1113 count++;
1114 if (count > kq->kq_count) {
1115 goto bad;
1116 }
1117 } else {
1118 nmarker++;
1119 #if 0
1120 if (nmarker > 10000) {
1121 panic("%s: kq=%p too many markers: %d != %d, "
1122 "nmarker=%d",
1123 __func__, kq, kq->kq_count, count, nmarker);
1124 }
1125 #endif
1126 }
1127 }
1128 if (kq->kq_count != count) {
1129 bad:
1130 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1131 __func__, kq, kq->kq_count, count, nmarker);
1132 }
1133 }
1134 #else /* defined(DEBUG) */
1135 #define kq_check(a) /* nothing */
1136 #endif /* defined(DEBUG) */
1137
1138 /*
1139 * Scan through the list of events on fp (for a maximum of maxevents),
1140 * returning the results in to ulistp. Timeout is determined by tsp; if
1141 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1142 * as appropriate.
1143 */
1144 static int
1145 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1146 const struct timespec *tsp, register_t *retval,
1147 const struct kevent_ops *keops, struct kevent *kevbuf,
1148 size_t kevcnt)
1149 {
1150 struct kqueue *kq;
1151 struct kevent *kevp;
1152 struct timespec ats, sleepts;
1153 struct knote *kn, *marker;
1154 size_t count, nkev, nevents;
1155 int timeout, error, rv;
1156 filedesc_t *fdp;
1157
1158 fdp = curlwp->l_fd;
1159 kq = fp->f_kqueue;
1160 count = maxevents;
1161 nkev = nevents = error = 0;
1162 if (count == 0) {
1163 *retval = 0;
1164 return 0;
1165 }
1166
1167 if (tsp) { /* timeout supplied */
1168 ats = *tsp;
1169 if (inittimeleft(&ats, &sleepts) == -1) {
1170 *retval = maxevents;
1171 return EINVAL;
1172 }
1173 timeout = tstohz(&ats);
1174 if (timeout <= 0)
1175 timeout = -1; /* do poll */
1176 } else {
1177 /* no timeout, wait forever */
1178 timeout = 0;
1179 }
1180
1181 marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1182 marker->kn_status = KN_MARKER;
1183 mutex_spin_enter(&kq->kq_lock);
1184 retry:
1185 kevp = kevbuf;
1186 if (kq->kq_count == 0) {
1187 if (timeout >= 0) {
1188 error = cv_timedwait_sig(&kq->kq_cv,
1189 &kq->kq_lock, timeout);
1190 if (error == 0) {
1191 if (tsp == NULL || (timeout =
1192 gettimeleft(&ats, &sleepts)) > 0)
1193 goto retry;
1194 } else {
1195 /* don't restart after signals... */
1196 if (error == ERESTART)
1197 error = EINTR;
1198 if (error == EWOULDBLOCK)
1199 error = 0;
1200 }
1201 }
1202 } else {
1203 /* mark end of knote list */
1204 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1205
1206 while (count != 0) {
1207 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1208 while ((kn->kn_status & KN_MARKER) != 0) {
1209 if (kn == marker) {
1210 /* it's our marker, stop */
1211 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1212 if (count < maxevents || (tsp != NULL &&
1213 (timeout = gettimeleft(&ats,
1214 &sleepts)) <= 0))
1215 goto done;
1216 goto retry;
1217 }
1218 /* someone else's marker. */
1219 kn = TAILQ_NEXT(kn, kn_tqe);
1220 }
1221 kq_check(kq);
1222 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1223 kq->kq_count--;
1224 kn->kn_status &= ~KN_QUEUED;
1225 kq_check(kq);
1226 if (kn->kn_status & KN_DISABLED) {
1227 /* don't want disabled events */
1228 continue;
1229 }
1230 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1231 mutex_spin_exit(&kq->kq_lock);
1232 KERNEL_LOCK(1, NULL); /* XXXSMP */
1233 rv = (*kn->kn_fop->f_event)(kn, 0);
1234 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1235 mutex_spin_enter(&kq->kq_lock);
1236 /* Re-poll if note was re-enqueued. */
1237 if ((kn->kn_status & KN_QUEUED) != 0)
1238 continue;
1239 if (rv == 0) {
1240 /*
1241 * non-ONESHOT event that hasn't
1242 * triggered again, so de-queue.
1243 */
1244 kn->kn_status &= ~KN_ACTIVE;
1245 continue;
1246 }
1247 }
1248 /* XXXAD should be got from f_event if !oneshot. */
1249 *kevp++ = kn->kn_kevent;
1250 nkev++;
1251 if (kn->kn_flags & EV_ONESHOT) {
1252 /* delete ONESHOT events after retrieval */
1253 mutex_spin_exit(&kq->kq_lock);
1254 mutex_enter(&fdp->fd_lock);
1255 knote_detach(kn, fdp, true);
1256 mutex_spin_enter(&kq->kq_lock);
1257 } else if (kn->kn_flags & EV_CLEAR) {
1258 /* clear state after retrieval */
1259 kn->kn_data = 0;
1260 kn->kn_fflags = 0;
1261 kn->kn_status &= ~KN_ACTIVE;
1262 } else {
1263 /* add event back on list */
1264 kq_check(kq);
1265 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1266 kq->kq_count++;
1267 kn->kn_status |= KN_QUEUED;
1268 kq_check(kq);
1269 }
1270 if (nkev == kevcnt) {
1271 /* do copyouts in kevcnt chunks */
1272 mutex_spin_exit(&kq->kq_lock);
1273 error = (*keops->keo_put_events)
1274 (keops->keo_private,
1275 kevbuf, ulistp, nevents, nkev);
1276 mutex_spin_enter(&kq->kq_lock);
1277 nevents += nkev;
1278 nkev = 0;
1279 kevp = kevbuf;
1280 }
1281 count--;
1282 if (error != 0 || count == 0) {
1283 /* remove marker */
1284 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1285 break;
1286 }
1287 }
1288 }
1289 done:
1290 mutex_spin_exit(&kq->kq_lock);
1291 if (marker != NULL)
1292 kmem_free(marker, sizeof(*marker));
1293 if (nkev != 0) {
1294 /* copyout remaining events */
1295 error = (*keops->keo_put_events)(keops->keo_private,
1296 kevbuf, ulistp, nevents, nkev);
1297 }
1298 *retval = maxevents - count;
1299
1300 return error;
1301 }
1302
1303 /*
1304 * fileops ioctl method for a kqueue descriptor.
1305 *
1306 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1307 * KFILTER_BYNAME find name for filter, and return result in
1308 * name, which is of size len.
1309 * KFILTER_BYFILTER find filter for name. len is ignored.
1310 */
1311 /*ARGSUSED*/
1312 static int
1313 kqueue_ioctl(file_t *fp, u_long com, void *data)
1314 {
1315 struct kfilter_mapping *km;
1316 const struct kfilter *kfilter;
1317 char *name;
1318 int error;
1319
1320 km = data;
1321 error = 0;
1322 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1323
1324 switch (com) {
1325 case KFILTER_BYFILTER: /* convert filter -> name */
1326 rw_enter(&kqueue_filter_lock, RW_READER);
1327 kfilter = kfilter_byfilter(km->filter);
1328 if (kfilter != NULL) {
1329 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1330 rw_exit(&kqueue_filter_lock);
1331 error = copyoutstr(name, km->name, km->len, NULL);
1332 } else {
1333 rw_exit(&kqueue_filter_lock);
1334 error = ENOENT;
1335 }
1336 break;
1337
1338 case KFILTER_BYNAME: /* convert name -> filter */
1339 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1340 if (error) {
1341 break;
1342 }
1343 rw_enter(&kqueue_filter_lock, RW_READER);
1344 kfilter = kfilter_byname(name);
1345 if (kfilter != NULL)
1346 km->filter = kfilter->filter;
1347 else
1348 error = ENOENT;
1349 rw_exit(&kqueue_filter_lock);
1350 break;
1351
1352 default:
1353 error = ENOTTY;
1354 break;
1355
1356 }
1357 kmem_free(name, KFILTER_MAXNAME);
1358 return (error);
1359 }
1360
1361 /*
1362 * fileops fcntl method for a kqueue descriptor.
1363 */
1364 static int
1365 kqueue_fcntl(file_t *fp, u_int com, void *data)
1366 {
1367
1368 return (ENOTTY);
1369 }
1370
1371 /*
1372 * fileops poll method for a kqueue descriptor.
1373 * Determine if kqueue has events pending.
1374 */
1375 static int
1376 kqueue_poll(file_t *fp, int events)
1377 {
1378 struct kqueue *kq;
1379 int revents;
1380
1381 kq = fp->f_kqueue;
1382
1383 revents = 0;
1384 if (events & (POLLIN | POLLRDNORM)) {
1385 mutex_spin_enter(&kq->kq_lock);
1386 if (kq->kq_count != 0) {
1387 revents |= events & (POLLIN | POLLRDNORM);
1388 } else {
1389 selrecord(curlwp, &kq->kq_sel);
1390 }
1391 kq_check(kq);
1392 mutex_spin_exit(&kq->kq_lock);
1393 }
1394
1395 return revents;
1396 }
1397
1398 /*
1399 * fileops stat method for a kqueue descriptor.
1400 * Returns dummy info, with st_size being number of events pending.
1401 */
1402 static int
1403 kqueue_stat(file_t *fp, struct stat *st)
1404 {
1405 struct kqueue *kq;
1406
1407 kq = fp->f_kqueue;
1408
1409 memset(st, 0, sizeof(*st));
1410 st->st_size = kq->kq_count;
1411 st->st_blksize = sizeof(struct kevent);
1412 st->st_mode = S_IFIFO;
1413
1414 return 0;
1415 }
1416
1417 static void
1418 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1419 {
1420 struct knote *kn;
1421 filedesc_t *fdp;
1422
1423 fdp = kq->kq_fdp;
1424
1425 KASSERT(mutex_owned(&fdp->fd_lock));
1426
1427 for (kn = SLIST_FIRST(list); kn != NULL;) {
1428 if (kq != kn->kn_kq) {
1429 kn = SLIST_NEXT(kn, kn_link);
1430 continue;
1431 }
1432 knote_detach(kn, fdp, true);
1433 mutex_enter(&fdp->fd_lock);
1434 kn = SLIST_FIRST(list);
1435 }
1436 }
1437
1438
1439 /*
1440 * fileops close method for a kqueue descriptor.
1441 */
1442 static int
1443 kqueue_close(file_t *fp)
1444 {
1445 struct kqueue *kq;
1446 filedesc_t *fdp;
1447 fdfile_t *ff;
1448 int i;
1449
1450 kq = fp->f_kqueue;
1451 fp->f_kqueue = NULL;
1452 fp->f_type = 0;
1453 fdp = curlwp->l_fd;
1454
1455 mutex_enter(&fdp->fd_lock);
1456 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1457 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1458 continue;
1459 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1460 }
1461 if (fdp->fd_knhashmask != 0) {
1462 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1463 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1464 }
1465 }
1466 mutex_exit(&fdp->fd_lock);
1467
1468 KASSERT(kq->kq_count == 0);
1469 mutex_destroy(&kq->kq_lock);
1470 cv_destroy(&kq->kq_cv);
1471 seldestroy(&kq->kq_sel);
1472 kmem_free(kq, sizeof(*kq));
1473
1474 return (0);
1475 }
1476
1477 /*
1478 * struct fileops kqfilter method for a kqueue descriptor.
1479 * Event triggered when monitored kqueue changes.
1480 */
1481 static int
1482 kqueue_kqfilter(file_t *fp, struct knote *kn)
1483 {
1484 struct kqueue *kq;
1485
1486 kq = ((file_t *)kn->kn_obj)->f_kqueue;
1487
1488 KASSERT(fp == kn->kn_obj);
1489
1490 if (kn->kn_filter != EVFILT_READ)
1491 return 1;
1492
1493 kn->kn_fop = &kqread_filtops;
1494 mutex_enter(&kq->kq_lock);
1495 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1496 mutex_exit(&kq->kq_lock);
1497
1498 return 0;
1499 }
1500
1501
1502 /*
1503 * Walk down a list of knotes, activating them if their event has
1504 * triggered. The caller's object lock (e.g. device driver lock)
1505 * must be held.
1506 */
1507 void
1508 knote(struct klist *list, long hint)
1509 {
1510 struct knote *kn, *tmpkn;
1511
1512 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1513 if ((*kn->kn_fop->f_event)(kn, hint))
1514 knote_activate(kn);
1515 }
1516 }
1517
1518 /*
1519 * Remove all knotes referencing a specified fd
1520 */
1521 void
1522 knote_fdclose(int fd)
1523 {
1524 struct klist *list;
1525 struct knote *kn;
1526 filedesc_t *fdp;
1527
1528 fdp = curlwp->l_fd;
1529 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1530 mutex_enter(&fdp->fd_lock);
1531 while ((kn = SLIST_FIRST(list)) != NULL) {
1532 knote_detach(kn, fdp, true);
1533 mutex_enter(&fdp->fd_lock);
1534 }
1535 mutex_exit(&fdp->fd_lock);
1536 }
1537
1538 /*
1539 * Drop knote. Called with fdp->fd_lock held, and will drop before
1540 * returning.
1541 */
1542 static void
1543 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1544 {
1545 struct klist *list;
1546 struct kqueue *kq;
1547
1548 kq = kn->kn_kq;
1549
1550 KASSERT((kn->kn_status & KN_MARKER) == 0);
1551 KASSERT(mutex_owned(&fdp->fd_lock));
1552
1553 /* Remove from monitored object. */
1554 if (dofop) {
1555 KERNEL_LOCK(1, NULL); /* XXXSMP */
1556 (*kn->kn_fop->f_detach)(kn);
1557 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1558 }
1559
1560 /* Remove from descriptor table. */
1561 if (kn->kn_fop->f_isfd)
1562 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1563 else
1564 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1565
1566 SLIST_REMOVE(list, kn, knote, kn_link);
1567
1568 /* Remove from kqueue. */
1569 /* XXXAD should verify not in use by kqueue_scan. */
1570 mutex_spin_enter(&kq->kq_lock);
1571 if ((kn->kn_status & KN_QUEUED) != 0) {
1572 kq_check(kq);
1573 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1574 kn->kn_status &= ~KN_QUEUED;
1575 kq->kq_count--;
1576 kq_check(kq);
1577 }
1578 mutex_spin_exit(&kq->kq_lock);
1579
1580 mutex_exit(&fdp->fd_lock);
1581 if (kn->kn_fop->f_isfd)
1582 fd_putfile(kn->kn_id);
1583 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1584 kmem_free(kn, sizeof(*kn));
1585 }
1586
1587 /*
1588 * Queue new event for knote.
1589 */
1590 static void
1591 knote_enqueue(struct knote *kn)
1592 {
1593 struct kqueue *kq;
1594
1595 KASSERT((kn->kn_status & KN_MARKER) == 0);
1596
1597 kq = kn->kn_kq;
1598
1599 mutex_spin_enter(&kq->kq_lock);
1600 if ((kn->kn_status & KN_DISABLED) != 0) {
1601 kn->kn_status &= ~KN_DISABLED;
1602 }
1603 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1604 kq_check(kq);
1605 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1606 kn->kn_status |= KN_QUEUED;
1607 kq->kq_count++;
1608 kq_check(kq);
1609 cv_broadcast(&kq->kq_cv);
1610 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1611 }
1612 mutex_spin_exit(&kq->kq_lock);
1613 }
1614 /*
1615 * Queue new event for knote.
1616 */
1617 static void
1618 knote_activate(struct knote *kn)
1619 {
1620 struct kqueue *kq;
1621
1622 KASSERT((kn->kn_status & KN_MARKER) == 0);
1623
1624 kq = kn->kn_kq;
1625
1626 mutex_spin_enter(&kq->kq_lock);
1627 kn->kn_status |= KN_ACTIVE;
1628 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1629 kq_check(kq);
1630 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1631 kn->kn_status |= KN_QUEUED;
1632 kq->kq_count++;
1633 kq_check(kq);
1634 cv_broadcast(&kq->kq_cv);
1635 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1636 }
1637 mutex_spin_exit(&kq->kq_lock);
1638 }
1639