Home | History | Annotate | Line # | Download | only in kern
kern_event.c revision 1.82.2.3
      1 /*	$NetBSD: kern_event.c,v 1.82.2.3 2016/03/19 11:30:31 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.82.2.3 2016/03/19 11:30:31 skrll Exp $");
     62 
     63 #include <sys/param.h>
     64 #include <sys/systm.h>
     65 #include <sys/kernel.h>
     66 #include <sys/proc.h>
     67 #include <sys/file.h>
     68 #include <sys/select.h>
     69 #include <sys/queue.h>
     70 #include <sys/event.h>
     71 #include <sys/eventvar.h>
     72 #include <sys/poll.h>
     73 #include <sys/kmem.h>
     74 #include <sys/stat.h>
     75 #include <sys/filedesc.h>
     76 #include <sys/syscallargs.h>
     77 #include <sys/kauth.h>
     78 #include <sys/conf.h>
     79 #include <sys/atomic.h>
     80 
     81 static int	kqueue_scan(file_t *, size_t, struct kevent *,
     82 			    const struct timespec *, register_t *,
     83 			    const struct kevent_ops *, struct kevent *,
     84 			    size_t);
     85 static int	kqueue_ioctl(file_t *, u_long, void *);
     86 static int	kqueue_fcntl(file_t *, u_int, void *);
     87 static int	kqueue_poll(file_t *, int);
     88 static int	kqueue_kqfilter(file_t *, struct knote *);
     89 static int	kqueue_stat(file_t *, struct stat *);
     90 static int	kqueue_close(file_t *);
     91 static int	kqueue_register(struct kqueue *, struct kevent *);
     92 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
     93 
     94 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
     95 static void	knote_enqueue(struct knote *);
     96 static void	knote_activate(struct knote *);
     97 
     98 static void	filt_kqdetach(struct knote *);
     99 static int	filt_kqueue(struct knote *, long hint);
    100 static int	filt_procattach(struct knote *);
    101 static void	filt_procdetach(struct knote *);
    102 static int	filt_proc(struct knote *, long hint);
    103 static int	filt_fileattach(struct knote *);
    104 static void	filt_timerexpire(void *x);
    105 static int	filt_timerattach(struct knote *);
    106 static void	filt_timerdetach(struct knote *);
    107 static int	filt_timer(struct knote *, long hint);
    108 
    109 static const struct fileops kqueueops = {
    110 	.fo_read = (void *)enxio,
    111 	.fo_write = (void *)enxio,
    112 	.fo_ioctl = kqueue_ioctl,
    113 	.fo_fcntl = kqueue_fcntl,
    114 	.fo_poll = kqueue_poll,
    115 	.fo_stat = kqueue_stat,
    116 	.fo_close = kqueue_close,
    117 	.fo_kqfilter = kqueue_kqfilter,
    118 	.fo_restart = fnullop_restart,
    119 };
    120 
    121 static const struct filterops kqread_filtops =
    122 	{ 1, NULL, filt_kqdetach, filt_kqueue };
    123 static const struct filterops proc_filtops =
    124 	{ 0, filt_procattach, filt_procdetach, filt_proc };
    125 static const struct filterops file_filtops =
    126 	{ 1, filt_fileattach, NULL, NULL };
    127 static const struct filterops timer_filtops =
    128 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
    129 
    130 static u_int	kq_ncallouts = 0;
    131 static int	kq_calloutmax = (4 * 1024);
    132 
    133 #define	KN_HASHSIZE		64		/* XXX should be tunable */
    134 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
    135 
    136 extern const struct filterops sig_filtops;
    137 
    138 /*
    139  * Table for for all system-defined filters.
    140  * These should be listed in the numeric order of the EVFILT_* defines.
    141  * If filtops is NULL, the filter isn't implemented in NetBSD.
    142  * End of list is when name is NULL.
    143  *
    144  * Note that 'refcnt' is meaningless for built-in filters.
    145  */
    146 struct kfilter {
    147 	const char	*name;		/* name of filter */
    148 	uint32_t	filter;		/* id of filter */
    149 	unsigned	refcnt;		/* reference count */
    150 	const struct filterops *filtops;/* operations for filter */
    151 	size_t		namelen;	/* length of name string */
    152 };
    153 
    154 /* System defined filters */
    155 static struct kfilter sys_kfilters[] = {
    156 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
    157 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
    158 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
    159 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
    160 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
    161 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
    162 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
    163 	{ NULL,			0,		0, NULL, 0 },
    164 };
    165 
    166 /* User defined kfilters */
    167 static struct kfilter	*user_kfilters;		/* array */
    168 static int		user_kfilterc;		/* current offset */
    169 static int		user_kfiltermaxc;	/* max size so far */
    170 static size_t		user_kfiltersz;		/* size of allocated memory */
    171 
    172 /* Locks */
    173 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
    174 static kmutex_t		kqueue_misc_lock;	/* miscellaneous */
    175 
    176 static kauth_listener_t	kqueue_listener;
    177 
    178 static int
    179 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    180     void *arg0, void *arg1, void *arg2, void *arg3)
    181 {
    182 	struct proc *p;
    183 	int result;
    184 
    185 	result = KAUTH_RESULT_DEFER;
    186 	p = arg0;
    187 
    188 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
    189 		return result;
    190 
    191 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
    192 	    ISSET(p->p_flag, PK_SUGID)))
    193 		return result;
    194 
    195 	result = KAUTH_RESULT_ALLOW;
    196 
    197 	return result;
    198 }
    199 
    200 /*
    201  * Initialize the kqueue subsystem.
    202  */
    203 void
    204 kqueue_init(void)
    205 {
    206 
    207 	rw_init(&kqueue_filter_lock);
    208 	mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    209 
    210 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
    211 	    kqueue_listener_cb, NULL);
    212 }
    213 
    214 /*
    215  * Find kfilter entry by name, or NULL if not found.
    216  */
    217 static struct kfilter *
    218 kfilter_byname_sys(const char *name)
    219 {
    220 	int i;
    221 
    222 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    223 
    224 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
    225 		if (strcmp(name, sys_kfilters[i].name) == 0)
    226 			return &sys_kfilters[i];
    227 	}
    228 	return NULL;
    229 }
    230 
    231 static struct kfilter *
    232 kfilter_byname_user(const char *name)
    233 {
    234 	int i;
    235 
    236 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    237 
    238 	/* user filter slots have a NULL name if previously deregistered */
    239 	for (i = 0; i < user_kfilterc ; i++) {
    240 		if (user_kfilters[i].name != NULL &&
    241 		    strcmp(name, user_kfilters[i].name) == 0)
    242 			return &user_kfilters[i];
    243 	}
    244 	return NULL;
    245 }
    246 
    247 static struct kfilter *
    248 kfilter_byname(const char *name)
    249 {
    250 	struct kfilter *kfilter;
    251 
    252 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    253 
    254 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
    255 		return kfilter;
    256 
    257 	return kfilter_byname_user(name);
    258 }
    259 
    260 /*
    261  * Find kfilter entry by filter id, or NULL if not found.
    262  * Assumes entries are indexed in filter id order, for speed.
    263  */
    264 static struct kfilter *
    265 kfilter_byfilter(uint32_t filter)
    266 {
    267 	struct kfilter *kfilter;
    268 
    269 	KASSERT(rw_lock_held(&kqueue_filter_lock));
    270 
    271 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
    272 		kfilter = &sys_kfilters[filter];
    273 	else if (user_kfilters != NULL &&
    274 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
    275 					/* it's a user filter */
    276 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
    277 	else
    278 		return (NULL);		/* out of range */
    279 	KASSERT(kfilter->filter == filter);	/* sanity check! */
    280 	return (kfilter);
    281 }
    282 
    283 /*
    284  * Register a new kfilter. Stores the entry in user_kfilters.
    285  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    286  * If retfilter != NULL, the new filterid is returned in it.
    287  */
    288 int
    289 kfilter_register(const char *name, const struct filterops *filtops,
    290 		 int *retfilter)
    291 {
    292 	struct kfilter *kfilter;
    293 	size_t len;
    294 	int i;
    295 
    296 	if (name == NULL || name[0] == '\0' || filtops == NULL)
    297 		return (EINVAL);	/* invalid args */
    298 
    299 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    300 	if (kfilter_byname(name) != NULL) {
    301 		rw_exit(&kqueue_filter_lock);
    302 		return (EEXIST);	/* already exists */
    303 	}
    304 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
    305 		rw_exit(&kqueue_filter_lock);
    306 		return (EINVAL);	/* too many */
    307 	}
    308 
    309 	for (i = 0; i < user_kfilterc; i++) {
    310 		kfilter = &user_kfilters[i];
    311 		if (kfilter->name == NULL) {
    312 			/* Previously deregistered slot.  Reuse. */
    313 			goto reuse;
    314 		}
    315 	}
    316 
    317 	/* check if need to grow user_kfilters */
    318 	if (user_kfilterc + 1 > user_kfiltermaxc) {
    319 		/* Grow in KFILTER_EXTENT chunks. */
    320 		user_kfiltermaxc += KFILTER_EXTENT;
    321 		len = user_kfiltermaxc * sizeof(*kfilter);
    322 		kfilter = kmem_alloc(len, KM_SLEEP);
    323 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
    324 		if (user_kfilters != NULL) {
    325 			memcpy(kfilter, user_kfilters, user_kfiltersz);
    326 			kmem_free(user_kfilters, user_kfiltersz);
    327 		}
    328 		user_kfiltersz = len;
    329 		user_kfilters = kfilter;
    330 	}
    331 	/* Adding new slot */
    332 	kfilter = &user_kfilters[user_kfilterc++];
    333 reuse:
    334 	kfilter->namelen = strlen(name) + 1;
    335 	kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
    336 	memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
    337 
    338 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
    339 
    340 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
    341 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
    342 
    343 	if (retfilter != NULL)
    344 		*retfilter = kfilter->filter;
    345 	rw_exit(&kqueue_filter_lock);
    346 
    347 	return (0);
    348 }
    349 
    350 /*
    351  * Unregister a kfilter previously registered with kfilter_register.
    352  * This retains the filter id, but clears the name and frees filtops (filter
    353  * operations), so that the number isn't reused during a boot.
    354  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
    355  */
    356 int
    357 kfilter_unregister(const char *name)
    358 {
    359 	struct kfilter *kfilter;
    360 
    361 	if (name == NULL || name[0] == '\0')
    362 		return (EINVAL);	/* invalid name */
    363 
    364 	rw_enter(&kqueue_filter_lock, RW_WRITER);
    365 	if (kfilter_byname_sys(name) != NULL) {
    366 		rw_exit(&kqueue_filter_lock);
    367 		return (EINVAL);	/* can't detach system filters */
    368 	}
    369 
    370 	kfilter = kfilter_byname_user(name);
    371 	if (kfilter == NULL) {
    372 		rw_exit(&kqueue_filter_lock);
    373 		return (ENOENT);
    374 	}
    375 	if (kfilter->refcnt != 0) {
    376 		rw_exit(&kqueue_filter_lock);
    377 		return (EBUSY);
    378 	}
    379 
    380 	/* Cast away const (but we know it's safe. */
    381 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
    382 	kfilter->name = NULL;	/* mark as `not implemented' */
    383 
    384 	if (kfilter->filtops != NULL) {
    385 		/* Cast away const (but we know it's safe. */
    386 		kmem_free(__UNCONST(kfilter->filtops),
    387 		    sizeof(*kfilter->filtops));
    388 		kfilter->filtops = NULL; /* mark as `not implemented' */
    389 	}
    390 	rw_exit(&kqueue_filter_lock);
    391 
    392 	return (0);
    393 }
    394 
    395 
    396 /*
    397  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
    398  * descriptors. Calls fileops kqfilter method for given file descriptor.
    399  */
    400 static int
    401 filt_fileattach(struct knote *kn)
    402 {
    403 	file_t *fp;
    404 
    405 	fp = kn->kn_obj;
    406 
    407 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
    408 }
    409 
    410 /*
    411  * Filter detach method for EVFILT_READ on kqueue descriptor.
    412  */
    413 static void
    414 filt_kqdetach(struct knote *kn)
    415 {
    416 	struct kqueue *kq;
    417 
    418 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    419 
    420 	mutex_spin_enter(&kq->kq_lock);
    421 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
    422 	mutex_spin_exit(&kq->kq_lock);
    423 }
    424 
    425 /*
    426  * Filter event method for EVFILT_READ on kqueue descriptor.
    427  */
    428 /*ARGSUSED*/
    429 static int
    430 filt_kqueue(struct knote *kn, long hint)
    431 {
    432 	struct kqueue *kq;
    433 	int rv;
    434 
    435 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
    436 
    437 	if (hint != NOTE_SUBMIT)
    438 		mutex_spin_enter(&kq->kq_lock);
    439 	kn->kn_data = kq->kq_count;
    440 	rv = (kn->kn_data > 0);
    441 	if (hint != NOTE_SUBMIT)
    442 		mutex_spin_exit(&kq->kq_lock);
    443 
    444 	return rv;
    445 }
    446 
    447 /*
    448  * Filter attach method for EVFILT_PROC.
    449  */
    450 static int
    451 filt_procattach(struct knote *kn)
    452 {
    453 	struct proc *p;
    454 	struct lwp *curl;
    455 
    456 	curl = curlwp;
    457 
    458 	mutex_enter(proc_lock);
    459 	if (kn->kn_flags & EV_FLAG1) {
    460 		/*
    461 		 * NOTE_TRACK attaches to the child process too early
    462 		 * for proc_find, so do a raw look up and check the state
    463 		 * explicitly.
    464 		 */
    465 		p = proc_find_raw(kn->kn_id);
    466 		if (p != NULL && p->p_stat != SIDL)
    467 			p = NULL;
    468 	} else {
    469 		p = proc_find(kn->kn_id);
    470 	}
    471 
    472 	if (p == NULL) {
    473 		mutex_exit(proc_lock);
    474 		return ESRCH;
    475 	}
    476 
    477 	/*
    478 	 * Fail if it's not owned by you, or the last exec gave us
    479 	 * setuid/setgid privs (unless you're root).
    480 	 */
    481 	mutex_enter(p->p_lock);
    482 	mutex_exit(proc_lock);
    483 	if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
    484 	    p, NULL, NULL, NULL) != 0) {
    485 	    	mutex_exit(p->p_lock);
    486 		return EACCES;
    487 	}
    488 
    489 	kn->kn_obj = p;
    490 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
    491 
    492 	/*
    493 	 * internal flag indicating registration done by kernel
    494 	 */
    495 	if (kn->kn_flags & EV_FLAG1) {
    496 		kn->kn_data = kn->kn_sdata;	/* ppid */
    497 		kn->kn_fflags = NOTE_CHILD;
    498 		kn->kn_flags &= ~EV_FLAG1;
    499 	}
    500 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    501     	mutex_exit(p->p_lock);
    502 
    503 	return 0;
    504 }
    505 
    506 /*
    507  * Filter detach method for EVFILT_PROC.
    508  *
    509  * The knote may be attached to a different process, which may exit,
    510  * leaving nothing for the knote to be attached to.  So when the process
    511  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
    512  * it will be deleted when read out.  However, as part of the knote deletion,
    513  * this routine is called, so a check is needed to avoid actually performing
    514  * a detach, because the original process might not exist any more.
    515  */
    516 static void
    517 filt_procdetach(struct knote *kn)
    518 {
    519 	struct proc *p;
    520 
    521 	if (kn->kn_status & KN_DETACHED)
    522 		return;
    523 
    524 	p = kn->kn_obj;
    525 
    526 	mutex_enter(p->p_lock);
    527 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
    528 	mutex_exit(p->p_lock);
    529 }
    530 
    531 /*
    532  * Filter event method for EVFILT_PROC.
    533  */
    534 static int
    535 filt_proc(struct knote *kn, long hint)
    536 {
    537 	u_int event, fflag;
    538 	struct kevent kev;
    539 	struct kqueue *kq;
    540 	int error;
    541 
    542 	event = (u_int)hint & NOTE_PCTRLMASK;
    543 	kq = kn->kn_kq;
    544 	fflag = 0;
    545 
    546 	/* If the user is interested in this event, record it. */
    547 	if (kn->kn_sfflags & event)
    548 		fflag |= event;
    549 
    550 	if (event == NOTE_EXIT) {
    551 		struct proc *p = kn->kn_obj;
    552 
    553 		if (p != NULL)
    554 			kn->kn_data = p->p_xstat;
    555 		/*
    556 		 * Process is gone, so flag the event as finished.
    557 		 *
    558 		 * Detach the knote from watched process and mark
    559 		 * it as such. We can't leave this to kqueue_scan(),
    560 		 * since the process might not exist by then. And we
    561 		 * have to do this now, since psignal KNOTE() is called
    562 		 * also for zombies and we might end up reading freed
    563 		 * memory if the kevent would already be picked up
    564 		 * and knote g/c'ed.
    565 		 */
    566 		filt_procdetach(kn);
    567 
    568 		mutex_spin_enter(&kq->kq_lock);
    569 		kn->kn_status |= KN_DETACHED;
    570 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
    571 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
    572 		kn->kn_fflags |= fflag;
    573 		mutex_spin_exit(&kq->kq_lock);
    574 
    575 		return 1;
    576 	}
    577 
    578 	mutex_spin_enter(&kq->kq_lock);
    579 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
    580 		/*
    581 		 * Process forked, and user wants to track the new process,
    582 		 * so attach a new knote to it, and immediately report an
    583 		 * event with the parent's pid.  Register knote with new
    584 		 * process.
    585 		 */
    586 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
    587 		kev.filter = kn->kn_filter;
    588 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
    589 		kev.fflags = kn->kn_sfflags;
    590 		kev.data = kn->kn_id;			/* parent */
    591 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
    592 		mutex_spin_exit(&kq->kq_lock);
    593 		error = kqueue_register(kq, &kev);
    594 		mutex_spin_enter(&kq->kq_lock);
    595 		if (error != 0)
    596 			kn->kn_fflags |= NOTE_TRACKERR;
    597 	}
    598 	kn->kn_fflags |= fflag;
    599 	fflag = kn->kn_fflags;
    600 	mutex_spin_exit(&kq->kq_lock);
    601 
    602 	return fflag != 0;
    603 }
    604 
    605 static void
    606 filt_timerexpire(void *knx)
    607 {
    608 	struct knote *kn = knx;
    609 	int tticks;
    610 
    611 	mutex_enter(&kqueue_misc_lock);
    612 	kn->kn_data++;
    613 	knote_activate(kn);
    614 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
    615 		tticks = mstohz(kn->kn_sdata);
    616 		if (tticks <= 0)
    617 			tticks = 1;
    618 		callout_schedule((callout_t *)kn->kn_hook, tticks);
    619 	}
    620 	mutex_exit(&kqueue_misc_lock);
    621 }
    622 
    623 /*
    624  * data contains amount of time to sleep, in milliseconds
    625  */
    626 static int
    627 filt_timerattach(struct knote *kn)
    628 {
    629 	callout_t *calloutp;
    630 	struct kqueue *kq;
    631 	int tticks;
    632 
    633 	tticks = mstohz(kn->kn_sdata);
    634 
    635 	/* if the supplied value is under our resolution, use 1 tick */
    636 	if (tticks == 0) {
    637 		if (kn->kn_sdata == 0)
    638 			return EINVAL;
    639 		tticks = 1;
    640 	}
    641 
    642 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
    643 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
    644 		atomic_dec_uint(&kq_ncallouts);
    645 		return ENOMEM;
    646 	}
    647 	callout_init(calloutp, CALLOUT_MPSAFE);
    648 
    649 	kq = kn->kn_kq;
    650 	mutex_spin_enter(&kq->kq_lock);
    651 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
    652 	kn->kn_hook = calloutp;
    653 	mutex_spin_exit(&kq->kq_lock);
    654 
    655 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
    656 
    657 	return (0);
    658 }
    659 
    660 static void
    661 filt_timerdetach(struct knote *kn)
    662 {
    663 	callout_t *calloutp;
    664 
    665 	calloutp = (callout_t *)kn->kn_hook;
    666 	callout_halt(calloutp, NULL);
    667 	callout_destroy(calloutp);
    668 	kmem_free(calloutp, sizeof(*calloutp));
    669 	atomic_dec_uint(&kq_ncallouts);
    670 }
    671 
    672 static int
    673 filt_timer(struct knote *kn, long hint)
    674 {
    675 	int rv;
    676 
    677 	mutex_enter(&kqueue_misc_lock);
    678 	rv = (kn->kn_data != 0);
    679 	mutex_exit(&kqueue_misc_lock);
    680 
    681 	return rv;
    682 }
    683 
    684 /*
    685  * filt_seltrue:
    686  *
    687  *	This filter "event" routine simulates seltrue().
    688  */
    689 int
    690 filt_seltrue(struct knote *kn, long hint)
    691 {
    692 
    693 	/*
    694 	 * We don't know how much data can be read/written,
    695 	 * but we know that it *can* be.  This is about as
    696 	 * good as select/poll does as well.
    697 	 */
    698 	kn->kn_data = 0;
    699 	return (1);
    700 }
    701 
    702 /*
    703  * This provides full kqfilter entry for device switch tables, which
    704  * has same effect as filter using filt_seltrue() as filter method.
    705  */
    706 static void
    707 filt_seltruedetach(struct knote *kn)
    708 {
    709 	/* Nothing to do */
    710 }
    711 
    712 const struct filterops seltrue_filtops =
    713 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
    714 
    715 int
    716 seltrue_kqfilter(dev_t dev, struct knote *kn)
    717 {
    718 	switch (kn->kn_filter) {
    719 	case EVFILT_READ:
    720 	case EVFILT_WRITE:
    721 		kn->kn_fop = &seltrue_filtops;
    722 		break;
    723 	default:
    724 		return (EINVAL);
    725 	}
    726 
    727 	/* Nothing more to do */
    728 	return (0);
    729 }
    730 
    731 /*
    732  * kqueue(2) system call.
    733  */
    734 static int
    735 kqueue1(struct lwp *l, int flags, register_t *retval)
    736 {
    737 	struct kqueue *kq;
    738 	file_t *fp;
    739 	int fd, error;
    740 
    741 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    742 		return error;
    743 	fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
    744 	fp->f_type = DTYPE_KQUEUE;
    745 	fp->f_ops = &kqueueops;
    746 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
    747 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
    748 	cv_init(&kq->kq_cv, "kqueue");
    749 	selinit(&kq->kq_sel);
    750 	TAILQ_INIT(&kq->kq_head);
    751 	fp->f_kqueue = kq;
    752 	*retval = fd;
    753 	kq->kq_fdp = curlwp->l_fd;
    754 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
    755 	fd_affix(curproc, fp, fd);
    756 	return error;
    757 }
    758 
    759 /*
    760  * kqueue(2) system call.
    761  */
    762 int
    763 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
    764 {
    765 	return kqueue1(l, 0, retval);
    766 }
    767 
    768 int
    769 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
    770     register_t *retval)
    771 {
    772 	/* {
    773 		syscallarg(int) flags;
    774 	} */
    775 	return kqueue1(l, SCARG(uap, flags), retval);
    776 }
    777 
    778 /*
    779  * kevent(2) system call.
    780  */
    781 int
    782 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
    783     struct kevent *changes, size_t index, int n)
    784 {
    785 
    786 	return copyin(changelist + index, changes, n * sizeof(*changes));
    787 }
    788 
    789 int
    790 kevent_put_events(void *ctx, struct kevent *events,
    791     struct kevent *eventlist, size_t index, int n)
    792 {
    793 
    794 	return copyout(events, eventlist + index, n * sizeof(*events));
    795 }
    796 
    797 static const struct kevent_ops kevent_native_ops = {
    798 	.keo_private = NULL,
    799 	.keo_fetch_timeout = copyin,
    800 	.keo_fetch_changes = kevent_fetch_changes,
    801 	.keo_put_events = kevent_put_events,
    802 };
    803 
    804 int
    805 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
    806     register_t *retval)
    807 {
    808 	/* {
    809 		syscallarg(int) fd;
    810 		syscallarg(const struct kevent *) changelist;
    811 		syscallarg(size_t) nchanges;
    812 		syscallarg(struct kevent *) eventlist;
    813 		syscallarg(size_t) nevents;
    814 		syscallarg(const struct timespec *) timeout;
    815 	} */
    816 
    817 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
    818 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
    819 	    SCARG(uap, timeout), &kevent_native_ops);
    820 }
    821 
    822 int
    823 kevent1(register_t *retval, int fd,
    824 	const struct kevent *changelist, size_t nchanges,
    825 	struct kevent *eventlist, size_t nevents,
    826 	const struct timespec *timeout,
    827 	const struct kevent_ops *keops)
    828 {
    829 	struct kevent *kevp;
    830 	struct kqueue *kq;
    831 	struct timespec	ts;
    832 	size_t i, n, ichange;
    833 	int nerrors, error;
    834 	struct kevent kevbuf[KQ_NEVENTS];	/* approx 300 bytes on 64-bit */
    835 	file_t *fp;
    836 
    837 	/* check that we're dealing with a kq */
    838 	fp = fd_getfile(fd);
    839 	if (fp == NULL)
    840 		return (EBADF);
    841 
    842 	if (fp->f_type != DTYPE_KQUEUE) {
    843 		fd_putfile(fd);
    844 		return (EBADF);
    845 	}
    846 
    847 	if (timeout != NULL) {
    848 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
    849 		if (error)
    850 			goto done;
    851 		timeout = &ts;
    852 	}
    853 
    854 	kq = fp->f_kqueue;
    855 	nerrors = 0;
    856 	ichange = 0;
    857 
    858 	/* traverse list of events to register */
    859 	while (nchanges > 0) {
    860 		n = MIN(nchanges, __arraycount(kevbuf));
    861 		error = (*keops->keo_fetch_changes)(keops->keo_private,
    862 		    changelist, kevbuf, ichange, n);
    863 		if (error)
    864 			goto done;
    865 		for (i = 0; i < n; i++) {
    866 			kevp = &kevbuf[i];
    867 			kevp->flags &= ~EV_SYSFLAGS;
    868 			/* register each knote */
    869 			error = kqueue_register(kq, kevp);
    870 			if (error || (kevp->flags & EV_RECEIPT)) {
    871 				if (nevents != 0) {
    872 					kevp->flags = EV_ERROR;
    873 					kevp->data = error;
    874 					error = (*keops->keo_put_events)
    875 					    (keops->keo_private, kevp,
    876 					    eventlist, nerrors, 1);
    877 					if (error)
    878 						goto done;
    879 					nevents--;
    880 					nerrors++;
    881 				} else {
    882 					goto done;
    883 				}
    884 			}
    885 		}
    886 		nchanges -= n;	/* update the results */
    887 		ichange += n;
    888 	}
    889 	if (nerrors) {
    890 		*retval = nerrors;
    891 		error = 0;
    892 		goto done;
    893 	}
    894 
    895 	/* actually scan through the events */
    896 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
    897 	    kevbuf, __arraycount(kevbuf));
    898  done:
    899 	fd_putfile(fd);
    900 	return (error);
    901 }
    902 
    903 /*
    904  * Register a given kevent kev onto the kqueue
    905  */
    906 static int
    907 kqueue_register(struct kqueue *kq, struct kevent *kev)
    908 {
    909 	struct kfilter *kfilter;
    910 	filedesc_t *fdp;
    911 	file_t *fp;
    912 	fdfile_t *ff;
    913 	struct knote *kn, *newkn;
    914 	struct klist *list;
    915 	int error, fd, rv;
    916 
    917 	fdp = kq->kq_fdp;
    918 	fp = NULL;
    919 	kn = NULL;
    920 	error = 0;
    921 	fd = 0;
    922 
    923 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
    924 
    925 	rw_enter(&kqueue_filter_lock, RW_READER);
    926 	kfilter = kfilter_byfilter(kev->filter);
    927 	if (kfilter == NULL || kfilter->filtops == NULL) {
    928 		/* filter not found nor implemented */
    929 		rw_exit(&kqueue_filter_lock);
    930 		kmem_free(newkn, sizeof(*newkn));
    931 		return (EINVAL);
    932 	}
    933 
    934 	/* search if knote already exists */
    935 	if (kfilter->filtops->f_isfd) {
    936 		/* monitoring a file descriptor */
    937 		fd = kev->ident;
    938 		if ((fp = fd_getfile(fd)) == NULL) {
    939 			rw_exit(&kqueue_filter_lock);
    940 			kmem_free(newkn, sizeof(*newkn));
    941 			return EBADF;
    942 		}
    943 		mutex_enter(&fdp->fd_lock);
    944 		ff = fdp->fd_dt->dt_ff[fd];
    945 		if (fd <= fdp->fd_lastkqfile) {
    946 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
    947 				if (kq == kn->kn_kq &&
    948 				    kev->filter == kn->kn_filter)
    949 					break;
    950 			}
    951 		}
    952 	} else {
    953 		/*
    954 		 * not monitoring a file descriptor, so
    955 		 * lookup knotes in internal hash table
    956 		 */
    957 		mutex_enter(&fdp->fd_lock);
    958 		if (fdp->fd_knhashmask != 0) {
    959 			list = &fdp->fd_knhash[
    960 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
    961 			SLIST_FOREACH(kn, list, kn_link) {
    962 				if (kev->ident == kn->kn_id &&
    963 				    kq == kn->kn_kq &&
    964 				    kev->filter == kn->kn_filter)
    965 					break;
    966 			}
    967 		}
    968 	}
    969 
    970 	/*
    971 	 * kn now contains the matching knote, or NULL if no match
    972 	 */
    973 	if (kev->flags & EV_ADD) {
    974 		if (kn == NULL) {
    975 			/* create new knote */
    976 			kn = newkn;
    977 			newkn = NULL;
    978 			kn->kn_obj = fp;
    979 			kn->kn_id = kev->ident;
    980 			kn->kn_kq = kq;
    981 			kn->kn_fop = kfilter->filtops;
    982 			kn->kn_kfilter = kfilter;
    983 			kn->kn_sfflags = kev->fflags;
    984 			kn->kn_sdata = kev->data;
    985 			kev->fflags = 0;
    986 			kev->data = 0;
    987 			kn->kn_kevent = *kev;
    988 
    989 			KASSERT(kn->kn_fop != NULL);
    990 			/*
    991 			 * apply reference count to knote structure, and
    992 			 * do not release it at the end of this routine.
    993 			 */
    994 			fp = NULL;
    995 
    996 			if (!kn->kn_fop->f_isfd) {
    997 				/*
    998 				 * If knote is not on an fd, store on
    999 				 * internal hash table.
   1000 				 */
   1001 				if (fdp->fd_knhashmask == 0) {
   1002 					/* XXXAD can block with fd_lock held */
   1003 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
   1004 					    HASH_LIST, true,
   1005 					    &fdp->fd_knhashmask);
   1006 				}
   1007 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
   1008 				    fdp->fd_knhashmask)];
   1009 			} else {
   1010 				/* Otherwise, knote is on an fd. */
   1011 				list = (struct klist *)
   1012 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   1013 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
   1014 					fdp->fd_lastkqfile = kn->kn_id;
   1015 			}
   1016 			SLIST_INSERT_HEAD(list, kn, kn_link);
   1017 
   1018 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1019 			error = (*kfilter->filtops->f_attach)(kn);
   1020 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1021 			if (error != 0) {
   1022 #ifdef DIAGNOSTIC
   1023 				printf("%s: event not supported for file type"
   1024 				    " %d\n", __func__, fp ? fp->f_type : -1);
   1025 #endif
   1026 				/* knote_detach() drops fdp->fd_lock */
   1027 				knote_detach(kn, fdp, false);
   1028 				goto done;
   1029 			}
   1030 			atomic_inc_uint(&kfilter->refcnt);
   1031 		} else {
   1032 			/*
   1033 			 * The user may change some filter values after the
   1034 			 * initial EV_ADD, but doing so will not reset any
   1035 			 * filter which have already been triggered.
   1036 			 */
   1037 			kn->kn_sfflags = kev->fflags;
   1038 			kn->kn_sdata = kev->data;
   1039 			kn->kn_kevent.udata = kev->udata;
   1040 		}
   1041 		/*
   1042 		 * We can get here if we are trying to attach
   1043 		 * an event to a file descriptor that does not
   1044 		 * support events, and the attach routine is
   1045 		 * broken and does not return an error.
   1046 		 */
   1047 		KASSERT(kn->kn_fop != NULL);
   1048 		KASSERT(kn->kn_fop->f_event != NULL);
   1049 		KERNEL_LOCK(1, NULL);			/* XXXSMP */
   1050 		rv = (*kn->kn_fop->f_event)(kn, 0);
   1051 		KERNEL_UNLOCK_ONE(NULL);		/* XXXSMP */
   1052 		if (rv)
   1053 			knote_activate(kn);
   1054 	} else {
   1055 		if (kn == NULL) {
   1056 			error = ENOENT;
   1057 		 	mutex_exit(&fdp->fd_lock);
   1058 			goto done;
   1059 		}
   1060 		if (kev->flags & EV_DELETE) {
   1061 			/* knote_detach() drops fdp->fd_lock */
   1062 			knote_detach(kn, fdp, true);
   1063 			goto done;
   1064 		}
   1065 	}
   1066 
   1067 	/* disable knote */
   1068 	if ((kev->flags & EV_DISABLE)) {
   1069 		mutex_spin_enter(&kq->kq_lock);
   1070 		if ((kn->kn_status & KN_DISABLED) == 0)
   1071 			kn->kn_status |= KN_DISABLED;
   1072 		mutex_spin_exit(&kq->kq_lock);
   1073 	}
   1074 
   1075 	/* enable knote */
   1076 	if ((kev->flags & EV_ENABLE)) {
   1077 		knote_enqueue(kn);
   1078 	}
   1079 	mutex_exit(&fdp->fd_lock);
   1080  done:
   1081 	rw_exit(&kqueue_filter_lock);
   1082 	if (newkn != NULL)
   1083 		kmem_free(newkn, sizeof(*newkn));
   1084 	if (fp != NULL)
   1085 		fd_putfile(fd);
   1086 	return (error);
   1087 }
   1088 
   1089 #if defined(DEBUG)
   1090 static void
   1091 kq_check(struct kqueue *kq)
   1092 {
   1093 	const struct knote *kn;
   1094 	int count;
   1095 	int nmarker;
   1096 
   1097 	KASSERT(mutex_owned(&kq->kq_lock));
   1098 	KASSERT(kq->kq_count >= 0);
   1099 
   1100 	count = 0;
   1101 	nmarker = 0;
   1102 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
   1103 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
   1104 			panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
   1105 		}
   1106 		if ((kn->kn_status & KN_MARKER) == 0) {
   1107 			if (kn->kn_kq != kq) {
   1108 				panic("%s: kq=%p kn=%p inconsist 2",
   1109 				    __func__, kq, kn);
   1110 			}
   1111 			if ((kn->kn_status & KN_ACTIVE) == 0) {
   1112 				panic("%s: kq=%p kn=%p: not active",
   1113 				    __func__, kq, kn);
   1114 			}
   1115 			count++;
   1116 			if (count > kq->kq_count) {
   1117 				goto bad;
   1118 			}
   1119 		} else {
   1120 			nmarker++;
   1121 #if 0
   1122 			if (nmarker > 10000) {
   1123 				panic("%s: kq=%p too many markers: %d != %d, "
   1124 				    "nmarker=%d",
   1125 				    __func__, kq, kq->kq_count, count, nmarker);
   1126 			}
   1127 #endif
   1128 		}
   1129 	}
   1130 	if (kq->kq_count != count) {
   1131 bad:
   1132 		panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
   1133 		    __func__, kq, kq->kq_count, count, nmarker);
   1134 	}
   1135 }
   1136 #else /* defined(DEBUG) */
   1137 #define	kq_check(a)	/* nothing */
   1138 #endif /* defined(DEBUG) */
   1139 
   1140 /*
   1141  * Scan through the list of events on fp (for a maximum of maxevents),
   1142  * returning the results in to ulistp. Timeout is determined by tsp; if
   1143  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
   1144  * as appropriate.
   1145  */
   1146 static int
   1147 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
   1148 	    const struct timespec *tsp, register_t *retval,
   1149 	    const struct kevent_ops *keops, struct kevent *kevbuf,
   1150 	    size_t kevcnt)
   1151 {
   1152 	struct kqueue	*kq;
   1153 	struct kevent	*kevp;
   1154 	struct timespec	ats, sleepts;
   1155 	struct knote	*kn, *marker, morker;
   1156 	size_t		count, nkev, nevents;
   1157 	int		timeout, error, rv;
   1158 	filedesc_t	*fdp;
   1159 
   1160 	fdp = curlwp->l_fd;
   1161 	kq = fp->f_kqueue;
   1162 	count = maxevents;
   1163 	nkev = nevents = error = 0;
   1164 	if (count == 0) {
   1165 		*retval = 0;
   1166 		return 0;
   1167 	}
   1168 
   1169 	if (tsp) {				/* timeout supplied */
   1170 		ats = *tsp;
   1171 		if (inittimeleft(&ats, &sleepts) == -1) {
   1172 			*retval = maxevents;
   1173 			return EINVAL;
   1174 		}
   1175 		timeout = tstohz(&ats);
   1176 		if (timeout <= 0)
   1177 			timeout = -1;           /* do poll */
   1178 	} else {
   1179 		/* no timeout, wait forever */
   1180 		timeout = 0;
   1181 	}
   1182 
   1183 	memset(&morker, 0, sizeof(morker));
   1184 	marker = &morker;
   1185 	marker->kn_status = KN_MARKER;
   1186 	mutex_spin_enter(&kq->kq_lock);
   1187  retry:
   1188 	kevp = kevbuf;
   1189 	if (kq->kq_count == 0) {
   1190 		if (timeout >= 0) {
   1191 			error = cv_timedwait_sig(&kq->kq_cv,
   1192 			    &kq->kq_lock, timeout);
   1193 			if (error == 0) {
   1194 				 if (tsp == NULL || (timeout =
   1195 				     gettimeleft(&ats, &sleepts)) > 0)
   1196 					goto retry;
   1197 			} else {
   1198 				/* don't restart after signals... */
   1199 				if (error == ERESTART)
   1200 					error = EINTR;
   1201 				if (error == EWOULDBLOCK)
   1202 					error = 0;
   1203 			}
   1204 		}
   1205 	} else {
   1206 		/* mark end of knote list */
   1207 		TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
   1208 
   1209 		while (count != 0) {
   1210 			kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
   1211 			while ((kn->kn_status & KN_MARKER) != 0) {
   1212 				if (kn == marker) {
   1213 					/* it's our marker, stop */
   1214 					TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1215 					if (count < maxevents || (tsp != NULL &&
   1216 					    (timeout = gettimeleft(&ats,
   1217 					    &sleepts)) <= 0))
   1218 						goto done;
   1219 					goto retry;
   1220 				}
   1221 				/* someone else's marker. */
   1222 				kn = TAILQ_NEXT(kn, kn_tqe);
   1223 			}
   1224 			kq_check(kq);
   1225 			kq->kq_count--;
   1226 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1227 			kn->kn_status &= ~KN_QUEUED;
   1228 			kn->kn_status |= KN_BUSY;
   1229 			kq_check(kq);
   1230 			if (kn->kn_status & KN_DISABLED) {
   1231 				kn->kn_status &= ~KN_BUSY;
   1232 				/* don't want disabled events */
   1233 				continue;
   1234 			}
   1235 			if ((kn->kn_flags & EV_ONESHOT) == 0) {
   1236 				mutex_spin_exit(&kq->kq_lock);
   1237 				KASSERT(kn->kn_fop != NULL);
   1238 				KASSERT(kn->kn_fop->f_event != NULL);
   1239 				KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1240 				rv = (*kn->kn_fop->f_event)(kn, 0);
   1241 				KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1242 				mutex_spin_enter(&kq->kq_lock);
   1243 				/* Re-poll if note was re-enqueued. */
   1244 				if ((kn->kn_status & KN_QUEUED) != 0) {
   1245 					kn->kn_status &= ~KN_BUSY;
   1246 					continue;
   1247 				}
   1248 				if (rv == 0) {
   1249 					/*
   1250 					 * non-ONESHOT event that hasn't
   1251 					 * triggered again, so de-queue.
   1252 					 */
   1253 					kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
   1254 					continue;
   1255 				}
   1256 			}
   1257 			/* XXXAD should be got from f_event if !oneshot. */
   1258 			*kevp++ = kn->kn_kevent;
   1259 			nkev++;
   1260 			if (kn->kn_flags & EV_ONESHOT) {
   1261 				/* delete ONESHOT events after retrieval */
   1262 				mutex_spin_exit(&kq->kq_lock);
   1263 				mutex_enter(&fdp->fd_lock);
   1264 				kn->kn_status &= ~KN_BUSY;
   1265 				knote_detach(kn, fdp, true);
   1266 				mutex_spin_enter(&kq->kq_lock);
   1267 			} else if (kn->kn_flags & EV_CLEAR) {
   1268 				/* clear state after retrieval */
   1269 				kn->kn_data = 0;
   1270 				kn->kn_fflags = 0;
   1271 				kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
   1272 			} else if (kn->kn_flags & EV_DISPATCH) {
   1273 				kn->kn_status |= KN_DISABLED;
   1274 				kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
   1275 			} else {
   1276 				/* add event back on list */
   1277 				kq_check(kq);
   1278 				kn->kn_status |= KN_QUEUED;
   1279 				kn->kn_status &= ~KN_BUSY;
   1280 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1281 				kq->kq_count++;
   1282 				kq_check(kq);
   1283 			}
   1284 			if (nkev == kevcnt) {
   1285 				/* do copyouts in kevcnt chunks */
   1286 				mutex_spin_exit(&kq->kq_lock);
   1287 				error = (*keops->keo_put_events)
   1288 				    (keops->keo_private,
   1289 				    kevbuf, ulistp, nevents, nkev);
   1290 				mutex_spin_enter(&kq->kq_lock);
   1291 				nevents += nkev;
   1292 				nkev = 0;
   1293 				kevp = kevbuf;
   1294 			}
   1295 			count--;
   1296 			if (error != 0 || count == 0) {
   1297 				/* remove marker */
   1298 				TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
   1299 				break;
   1300 			}
   1301 		}
   1302 	}
   1303  done:
   1304  	mutex_spin_exit(&kq->kq_lock);
   1305 	if (nkev != 0) {
   1306 		/* copyout remaining events */
   1307 		error = (*keops->keo_put_events)(keops->keo_private,
   1308 		    kevbuf, ulistp, nevents, nkev);
   1309 	}
   1310 	*retval = maxevents - count;
   1311 
   1312 	return error;
   1313 }
   1314 
   1315 /*
   1316  * fileops ioctl method for a kqueue descriptor.
   1317  *
   1318  * Two ioctls are currently supported. They both use struct kfilter_mapping:
   1319  *	KFILTER_BYNAME		find name for filter, and return result in
   1320  *				name, which is of size len.
   1321  *	KFILTER_BYFILTER	find filter for name. len is ignored.
   1322  */
   1323 /*ARGSUSED*/
   1324 static int
   1325 kqueue_ioctl(file_t *fp, u_long com, void *data)
   1326 {
   1327 	struct kfilter_mapping	*km;
   1328 	const struct kfilter	*kfilter;
   1329 	char			*name;
   1330 	int			error;
   1331 
   1332 	km = data;
   1333 	error = 0;
   1334 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
   1335 
   1336 	switch (com) {
   1337 	case KFILTER_BYFILTER:	/* convert filter -> name */
   1338 		rw_enter(&kqueue_filter_lock, RW_READER);
   1339 		kfilter = kfilter_byfilter(km->filter);
   1340 		if (kfilter != NULL) {
   1341 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
   1342 			rw_exit(&kqueue_filter_lock);
   1343 			error = copyoutstr(name, km->name, km->len, NULL);
   1344 		} else {
   1345 			rw_exit(&kqueue_filter_lock);
   1346 			error = ENOENT;
   1347 		}
   1348 		break;
   1349 
   1350 	case KFILTER_BYNAME:	/* convert name -> filter */
   1351 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
   1352 		if (error) {
   1353 			break;
   1354 		}
   1355 		rw_enter(&kqueue_filter_lock, RW_READER);
   1356 		kfilter = kfilter_byname(name);
   1357 		if (kfilter != NULL)
   1358 			km->filter = kfilter->filter;
   1359 		else
   1360 			error = ENOENT;
   1361 		rw_exit(&kqueue_filter_lock);
   1362 		break;
   1363 
   1364 	default:
   1365 		error = ENOTTY;
   1366 		break;
   1367 
   1368 	}
   1369 	kmem_free(name, KFILTER_MAXNAME);
   1370 	return (error);
   1371 }
   1372 
   1373 /*
   1374  * fileops fcntl method for a kqueue descriptor.
   1375  */
   1376 static int
   1377 kqueue_fcntl(file_t *fp, u_int com, void *data)
   1378 {
   1379 
   1380 	return (ENOTTY);
   1381 }
   1382 
   1383 /*
   1384  * fileops poll method for a kqueue descriptor.
   1385  * Determine if kqueue has events pending.
   1386  */
   1387 static int
   1388 kqueue_poll(file_t *fp, int events)
   1389 {
   1390 	struct kqueue	*kq;
   1391 	int		revents;
   1392 
   1393 	kq = fp->f_kqueue;
   1394 
   1395 	revents = 0;
   1396 	if (events & (POLLIN | POLLRDNORM)) {
   1397 		mutex_spin_enter(&kq->kq_lock);
   1398 		if (kq->kq_count != 0) {
   1399 			revents |= events & (POLLIN | POLLRDNORM);
   1400 		} else {
   1401 			selrecord(curlwp, &kq->kq_sel);
   1402 		}
   1403 		kq_check(kq);
   1404 		mutex_spin_exit(&kq->kq_lock);
   1405 	}
   1406 
   1407 	return revents;
   1408 }
   1409 
   1410 /*
   1411  * fileops stat method for a kqueue descriptor.
   1412  * Returns dummy info, with st_size being number of events pending.
   1413  */
   1414 static int
   1415 kqueue_stat(file_t *fp, struct stat *st)
   1416 {
   1417 	struct kqueue *kq;
   1418 
   1419 	kq = fp->f_kqueue;
   1420 
   1421 	memset(st, 0, sizeof(*st));
   1422 	st->st_size = kq->kq_count;
   1423 	st->st_blksize = sizeof(struct kevent);
   1424 	st->st_mode = S_IFIFO;
   1425 
   1426 	return 0;
   1427 }
   1428 
   1429 static void
   1430 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
   1431 {
   1432 	struct knote *kn;
   1433 	filedesc_t *fdp;
   1434 
   1435 	fdp = kq->kq_fdp;
   1436 
   1437 	KASSERT(mutex_owned(&fdp->fd_lock));
   1438 
   1439 	for (kn = SLIST_FIRST(list); kn != NULL;) {
   1440 		if (kq != kn->kn_kq) {
   1441 			kn = SLIST_NEXT(kn, kn_link);
   1442 			continue;
   1443 		}
   1444 		knote_detach(kn, fdp, true);
   1445 		mutex_enter(&fdp->fd_lock);
   1446 		kn = SLIST_FIRST(list);
   1447 	}
   1448 }
   1449 
   1450 
   1451 /*
   1452  * fileops close method for a kqueue descriptor.
   1453  */
   1454 static int
   1455 kqueue_close(file_t *fp)
   1456 {
   1457 	struct kqueue *kq;
   1458 	filedesc_t *fdp;
   1459 	fdfile_t *ff;
   1460 	int i;
   1461 
   1462 	kq = fp->f_kqueue;
   1463 	fp->f_kqueue = NULL;
   1464 	fp->f_type = 0;
   1465 	fdp = curlwp->l_fd;
   1466 
   1467 	mutex_enter(&fdp->fd_lock);
   1468 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
   1469 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
   1470 			continue;
   1471 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
   1472 	}
   1473 	if (fdp->fd_knhashmask != 0) {
   1474 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
   1475 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
   1476 		}
   1477 	}
   1478 	mutex_exit(&fdp->fd_lock);
   1479 
   1480 	KASSERT(kq->kq_count == 0);
   1481 	mutex_destroy(&kq->kq_lock);
   1482 	cv_destroy(&kq->kq_cv);
   1483 	seldestroy(&kq->kq_sel);
   1484 	kmem_free(kq, sizeof(*kq));
   1485 
   1486 	return (0);
   1487 }
   1488 
   1489 /*
   1490  * struct fileops kqfilter method for a kqueue descriptor.
   1491  * Event triggered when monitored kqueue changes.
   1492  */
   1493 static int
   1494 kqueue_kqfilter(file_t *fp, struct knote *kn)
   1495 {
   1496 	struct kqueue *kq;
   1497 
   1498 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
   1499 
   1500 	KASSERT(fp == kn->kn_obj);
   1501 
   1502 	if (kn->kn_filter != EVFILT_READ)
   1503 		return 1;
   1504 
   1505 	kn->kn_fop = &kqread_filtops;
   1506 	mutex_enter(&kq->kq_lock);
   1507 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
   1508 	mutex_exit(&kq->kq_lock);
   1509 
   1510 	return 0;
   1511 }
   1512 
   1513 
   1514 /*
   1515  * Walk down a list of knotes, activating them if their event has
   1516  * triggered.  The caller's object lock (e.g. device driver lock)
   1517  * must be held.
   1518  */
   1519 void
   1520 knote(struct klist *list, long hint)
   1521 {
   1522 	struct knote *kn, *tmpkn;
   1523 
   1524 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
   1525 		KASSERT(kn->kn_fop != NULL);
   1526 		KASSERT(kn->kn_fop->f_event != NULL);
   1527 		if ((*kn->kn_fop->f_event)(kn, hint))
   1528 			knote_activate(kn);
   1529 	}
   1530 }
   1531 
   1532 /*
   1533  * Remove all knotes referencing a specified fd
   1534  */
   1535 void
   1536 knote_fdclose(int fd)
   1537 {
   1538 	struct klist *list;
   1539 	struct knote *kn;
   1540 	filedesc_t *fdp;
   1541 
   1542 	fdp = curlwp->l_fd;
   1543 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
   1544 	mutex_enter(&fdp->fd_lock);
   1545 	while ((kn = SLIST_FIRST(list)) != NULL) {
   1546 		knote_detach(kn, fdp, true);
   1547 		mutex_enter(&fdp->fd_lock);
   1548 	}
   1549 	mutex_exit(&fdp->fd_lock);
   1550 }
   1551 
   1552 /*
   1553  * Drop knote.  Called with fdp->fd_lock held, and will drop before
   1554  * returning.
   1555  */
   1556 static void
   1557 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
   1558 {
   1559 	struct klist *list;
   1560 	struct kqueue *kq;
   1561 
   1562 	kq = kn->kn_kq;
   1563 
   1564 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1565 	KASSERT(mutex_owned(&fdp->fd_lock));
   1566 
   1567 	KASSERT(kn->kn_fop != NULL);
   1568 	/* Remove from monitored object. */
   1569 	if (dofop) {
   1570 		KASSERT(kn->kn_fop->f_detach != NULL);
   1571 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
   1572 		(*kn->kn_fop->f_detach)(kn);
   1573 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
   1574 	}
   1575 
   1576 	/* Remove from descriptor table. */
   1577 	if (kn->kn_fop->f_isfd)
   1578 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
   1579 	else
   1580 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
   1581 
   1582 	SLIST_REMOVE(list, kn, knote, kn_link);
   1583 
   1584 	/* Remove from kqueue. */
   1585 again:
   1586 	mutex_spin_enter(&kq->kq_lock);
   1587 	if ((kn->kn_status & KN_QUEUED) != 0) {
   1588 		kq_check(kq);
   1589 		kq->kq_count--;
   1590 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
   1591 		kn->kn_status &= ~KN_QUEUED;
   1592 		kq_check(kq);
   1593 	} else if (kn->kn_status & KN_BUSY) {
   1594 		mutex_spin_exit(&kq->kq_lock);
   1595 		goto again;
   1596 	}
   1597 	mutex_spin_exit(&kq->kq_lock);
   1598 
   1599 	mutex_exit(&fdp->fd_lock);
   1600 	if (kn->kn_fop->f_isfd)
   1601 		fd_putfile(kn->kn_id);
   1602 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
   1603 	kmem_free(kn, sizeof(*kn));
   1604 }
   1605 
   1606 /*
   1607  * Queue new event for knote.
   1608  */
   1609 static void
   1610 knote_enqueue(struct knote *kn)
   1611 {
   1612 	struct kqueue *kq;
   1613 
   1614 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1615 
   1616 	kq = kn->kn_kq;
   1617 
   1618 	mutex_spin_enter(&kq->kq_lock);
   1619 	if ((kn->kn_status & KN_DISABLED) != 0) {
   1620 		kn->kn_status &= ~KN_DISABLED;
   1621 	}
   1622 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
   1623 		kq_check(kq);
   1624 		kn->kn_status |= KN_QUEUED;
   1625 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1626 		kq->kq_count++;
   1627 		kq_check(kq);
   1628 		cv_broadcast(&kq->kq_cv);
   1629 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1630 	}
   1631 	mutex_spin_exit(&kq->kq_lock);
   1632 }
   1633 /*
   1634  * Queue new event for knote.
   1635  */
   1636 static void
   1637 knote_activate(struct knote *kn)
   1638 {
   1639 	struct kqueue *kq;
   1640 
   1641 	KASSERT((kn->kn_status & KN_MARKER) == 0);
   1642 
   1643 	kq = kn->kn_kq;
   1644 
   1645 	mutex_spin_enter(&kq->kq_lock);
   1646 	kn->kn_status |= KN_ACTIVE;
   1647 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
   1648 		kq_check(kq);
   1649 		kn->kn_status |= KN_QUEUED;
   1650 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
   1651 		kq->kq_count++;
   1652 		kq_check(kq);
   1653 		cv_broadcast(&kq->kq_cv);
   1654 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
   1655 	}
   1656 	mutex_spin_exit(&kq->kq_lock);
   1657 }
   1658