kern_event.c revision 1.92 1 /* $NetBSD: kern_event.c,v 1.92 2017/07/01 20:08:56 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.92 2017/07/01 20:08:56 christos Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/wait.h>
67 #include <sys/proc.h>
68 #include <sys/file.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/poll.h>
74 #include <sys/kmem.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/syscallargs.h>
78 #include <sys/kauth.h>
79 #include <sys/conf.h>
80 #include <sys/atomic.h>
81
82 static int kqueue_scan(file_t *, size_t, struct kevent *,
83 const struct timespec *, register_t *,
84 const struct kevent_ops *, struct kevent *,
85 size_t);
86 static int kqueue_ioctl(file_t *, u_long, void *);
87 static int kqueue_fcntl(file_t *, u_int, void *);
88 static int kqueue_poll(file_t *, int);
89 static int kqueue_kqfilter(file_t *, struct knote *);
90 static int kqueue_stat(file_t *, struct stat *);
91 static int kqueue_close(file_t *);
92 static int kqueue_register(struct kqueue *, struct kevent *);
93 static void kqueue_doclose(struct kqueue *, struct klist *, int);
94
95 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
96 static void knote_enqueue(struct knote *);
97 static void knote_activate(struct knote *);
98
99 static void filt_kqdetach(struct knote *);
100 static int filt_kqueue(struct knote *, long hint);
101 static int filt_procattach(struct knote *);
102 static void filt_procdetach(struct knote *);
103 static int filt_proc(struct knote *, long hint);
104 static int filt_fileattach(struct knote *);
105 static void filt_timerexpire(void *x);
106 static int filt_timerattach(struct knote *);
107 static void filt_timerdetach(struct knote *);
108 static int filt_timer(struct knote *, long hint);
109
110 static const struct fileops kqueueops = {
111 .fo_read = (void *)enxio,
112 .fo_write = (void *)enxio,
113 .fo_ioctl = kqueue_ioctl,
114 .fo_fcntl = kqueue_fcntl,
115 .fo_poll = kqueue_poll,
116 .fo_stat = kqueue_stat,
117 .fo_close = kqueue_close,
118 .fo_kqfilter = kqueue_kqfilter,
119 .fo_restart = fnullop_restart,
120 };
121
122 static const struct filterops kqread_filtops =
123 { 1, NULL, filt_kqdetach, filt_kqueue };
124 static const struct filterops proc_filtops =
125 { 0, filt_procattach, filt_procdetach, filt_proc };
126 static const struct filterops file_filtops =
127 { 1, filt_fileattach, NULL, NULL };
128 static const struct filterops timer_filtops =
129 { 0, filt_timerattach, filt_timerdetach, filt_timer };
130
131 static u_int kq_ncallouts = 0;
132 static int kq_calloutmax = (4 * 1024);
133
134 #define KN_HASHSIZE 64 /* XXX should be tunable */
135 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
136
137 extern const struct filterops sig_filtops;
138
139 /*
140 * Table for for all system-defined filters.
141 * These should be listed in the numeric order of the EVFILT_* defines.
142 * If filtops is NULL, the filter isn't implemented in NetBSD.
143 * End of list is when name is NULL.
144 *
145 * Note that 'refcnt' is meaningless for built-in filters.
146 */
147 struct kfilter {
148 const char *name; /* name of filter */
149 uint32_t filter; /* id of filter */
150 unsigned refcnt; /* reference count */
151 const struct filterops *filtops;/* operations for filter */
152 size_t namelen; /* length of name string */
153 };
154
155 /* System defined filters */
156 static struct kfilter sys_kfilters[] = {
157 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
158 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
159 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
160 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
161 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
162 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
163 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
164 { NULL, 0, 0, NULL, 0 },
165 };
166
167 /* User defined kfilters */
168 static struct kfilter *user_kfilters; /* array */
169 static int user_kfilterc; /* current offset */
170 static int user_kfiltermaxc; /* max size so far */
171 static size_t user_kfiltersz; /* size of allocated memory */
172
173 /* Locks */
174 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
175 static kmutex_t kqueue_misc_lock; /* miscellaneous */
176
177 static kauth_listener_t kqueue_listener;
178
179 static int
180 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
181 void *arg0, void *arg1, void *arg2, void *arg3)
182 {
183 struct proc *p;
184 int result;
185
186 result = KAUTH_RESULT_DEFER;
187 p = arg0;
188
189 if (action != KAUTH_PROCESS_KEVENT_FILTER)
190 return result;
191
192 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
193 ISSET(p->p_flag, PK_SUGID)))
194 return result;
195
196 result = KAUTH_RESULT_ALLOW;
197
198 return result;
199 }
200
201 /*
202 * Initialize the kqueue subsystem.
203 */
204 void
205 kqueue_init(void)
206 {
207
208 rw_init(&kqueue_filter_lock);
209 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
210
211 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
212 kqueue_listener_cb, NULL);
213 }
214
215 /*
216 * Find kfilter entry by name, or NULL if not found.
217 */
218 static struct kfilter *
219 kfilter_byname_sys(const char *name)
220 {
221 int i;
222
223 KASSERT(rw_lock_held(&kqueue_filter_lock));
224
225 for (i = 0; sys_kfilters[i].name != NULL; i++) {
226 if (strcmp(name, sys_kfilters[i].name) == 0)
227 return &sys_kfilters[i];
228 }
229 return NULL;
230 }
231
232 static struct kfilter *
233 kfilter_byname_user(const char *name)
234 {
235 int i;
236
237 KASSERT(rw_lock_held(&kqueue_filter_lock));
238
239 /* user filter slots have a NULL name if previously deregistered */
240 for (i = 0; i < user_kfilterc ; i++) {
241 if (user_kfilters[i].name != NULL &&
242 strcmp(name, user_kfilters[i].name) == 0)
243 return &user_kfilters[i];
244 }
245 return NULL;
246 }
247
248 static struct kfilter *
249 kfilter_byname(const char *name)
250 {
251 struct kfilter *kfilter;
252
253 KASSERT(rw_lock_held(&kqueue_filter_lock));
254
255 if ((kfilter = kfilter_byname_sys(name)) != NULL)
256 return kfilter;
257
258 return kfilter_byname_user(name);
259 }
260
261 /*
262 * Find kfilter entry by filter id, or NULL if not found.
263 * Assumes entries are indexed in filter id order, for speed.
264 */
265 static struct kfilter *
266 kfilter_byfilter(uint32_t filter)
267 {
268 struct kfilter *kfilter;
269
270 KASSERT(rw_lock_held(&kqueue_filter_lock));
271
272 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
273 kfilter = &sys_kfilters[filter];
274 else if (user_kfilters != NULL &&
275 filter < EVFILT_SYSCOUNT + user_kfilterc)
276 /* it's a user filter */
277 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
278 else
279 return (NULL); /* out of range */
280 KASSERT(kfilter->filter == filter); /* sanity check! */
281 return (kfilter);
282 }
283
284 /*
285 * Register a new kfilter. Stores the entry in user_kfilters.
286 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
287 * If retfilter != NULL, the new filterid is returned in it.
288 */
289 int
290 kfilter_register(const char *name, const struct filterops *filtops,
291 int *retfilter)
292 {
293 struct kfilter *kfilter;
294 size_t len;
295 int i;
296
297 if (name == NULL || name[0] == '\0' || filtops == NULL)
298 return (EINVAL); /* invalid args */
299
300 rw_enter(&kqueue_filter_lock, RW_WRITER);
301 if (kfilter_byname(name) != NULL) {
302 rw_exit(&kqueue_filter_lock);
303 return (EEXIST); /* already exists */
304 }
305 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
306 rw_exit(&kqueue_filter_lock);
307 return (EINVAL); /* too many */
308 }
309
310 for (i = 0; i < user_kfilterc; i++) {
311 kfilter = &user_kfilters[i];
312 if (kfilter->name == NULL) {
313 /* Previously deregistered slot. Reuse. */
314 goto reuse;
315 }
316 }
317
318 /* check if need to grow user_kfilters */
319 if (user_kfilterc + 1 > user_kfiltermaxc) {
320 /* Grow in KFILTER_EXTENT chunks. */
321 user_kfiltermaxc += KFILTER_EXTENT;
322 len = user_kfiltermaxc * sizeof(*kfilter);
323 kfilter = kmem_alloc(len, KM_SLEEP);
324 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
325 if (user_kfilters != NULL) {
326 memcpy(kfilter, user_kfilters, user_kfiltersz);
327 kmem_free(user_kfilters, user_kfiltersz);
328 }
329 user_kfiltersz = len;
330 user_kfilters = kfilter;
331 }
332 /* Adding new slot */
333 kfilter = &user_kfilters[user_kfilterc++];
334 reuse:
335 kfilter->namelen = strlen(name) + 1;
336 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
337 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
338
339 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
340
341 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
342 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
343
344 if (retfilter != NULL)
345 *retfilter = kfilter->filter;
346 rw_exit(&kqueue_filter_lock);
347
348 return (0);
349 }
350
351 /*
352 * Unregister a kfilter previously registered with kfilter_register.
353 * This retains the filter id, but clears the name and frees filtops (filter
354 * operations), so that the number isn't reused during a boot.
355 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
356 */
357 int
358 kfilter_unregister(const char *name)
359 {
360 struct kfilter *kfilter;
361
362 if (name == NULL || name[0] == '\0')
363 return (EINVAL); /* invalid name */
364
365 rw_enter(&kqueue_filter_lock, RW_WRITER);
366 if (kfilter_byname_sys(name) != NULL) {
367 rw_exit(&kqueue_filter_lock);
368 return (EINVAL); /* can't detach system filters */
369 }
370
371 kfilter = kfilter_byname_user(name);
372 if (kfilter == NULL) {
373 rw_exit(&kqueue_filter_lock);
374 return (ENOENT);
375 }
376 if (kfilter->refcnt != 0) {
377 rw_exit(&kqueue_filter_lock);
378 return (EBUSY);
379 }
380
381 /* Cast away const (but we know it's safe. */
382 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
383 kfilter->name = NULL; /* mark as `not implemented' */
384
385 if (kfilter->filtops != NULL) {
386 /* Cast away const (but we know it's safe. */
387 kmem_free(__UNCONST(kfilter->filtops),
388 sizeof(*kfilter->filtops));
389 kfilter->filtops = NULL; /* mark as `not implemented' */
390 }
391 rw_exit(&kqueue_filter_lock);
392
393 return (0);
394 }
395
396
397 /*
398 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
399 * descriptors. Calls fileops kqfilter method for given file descriptor.
400 */
401 static int
402 filt_fileattach(struct knote *kn)
403 {
404 file_t *fp;
405
406 fp = kn->kn_obj;
407
408 return (*fp->f_ops->fo_kqfilter)(fp, kn);
409 }
410
411 /*
412 * Filter detach method for EVFILT_READ on kqueue descriptor.
413 */
414 static void
415 filt_kqdetach(struct knote *kn)
416 {
417 struct kqueue *kq;
418
419 kq = ((file_t *)kn->kn_obj)->f_kqueue;
420
421 mutex_spin_enter(&kq->kq_lock);
422 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
423 mutex_spin_exit(&kq->kq_lock);
424 }
425
426 /*
427 * Filter event method for EVFILT_READ on kqueue descriptor.
428 */
429 /*ARGSUSED*/
430 static int
431 filt_kqueue(struct knote *kn, long hint)
432 {
433 struct kqueue *kq;
434 int rv;
435
436 kq = ((file_t *)kn->kn_obj)->f_kqueue;
437
438 if (hint != NOTE_SUBMIT)
439 mutex_spin_enter(&kq->kq_lock);
440 kn->kn_data = kq->kq_count;
441 rv = (kn->kn_data > 0);
442 if (hint != NOTE_SUBMIT)
443 mutex_spin_exit(&kq->kq_lock);
444
445 return rv;
446 }
447
448 /*
449 * Filter attach method for EVFILT_PROC.
450 */
451 static int
452 filt_procattach(struct knote *kn)
453 {
454 struct proc *p;
455 struct lwp *curl;
456
457 curl = curlwp;
458
459 mutex_enter(proc_lock);
460 if (kn->kn_flags & EV_FLAG1) {
461 /*
462 * NOTE_TRACK attaches to the child process too early
463 * for proc_find, so do a raw look up and check the state
464 * explicitly.
465 */
466 p = proc_find_raw(kn->kn_id);
467 if (p != NULL && p->p_stat != SIDL)
468 p = NULL;
469 } else {
470 p = proc_find(kn->kn_id);
471 }
472
473 if (p == NULL) {
474 mutex_exit(proc_lock);
475 return ESRCH;
476 }
477
478 /*
479 * Fail if it's not owned by you, or the last exec gave us
480 * setuid/setgid privs (unless you're root).
481 */
482 mutex_enter(p->p_lock);
483 mutex_exit(proc_lock);
484 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
485 p, NULL, NULL, NULL) != 0) {
486 mutex_exit(p->p_lock);
487 return EACCES;
488 }
489
490 kn->kn_obj = p;
491 kn->kn_flags |= EV_CLEAR; /* automatically set */
492
493 /*
494 * internal flag indicating registration done by kernel
495 */
496 if (kn->kn_flags & EV_FLAG1) {
497 kn->kn_data = kn->kn_sdata; /* ppid */
498 kn->kn_fflags = NOTE_CHILD;
499 kn->kn_flags &= ~EV_FLAG1;
500 }
501 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
502 mutex_exit(p->p_lock);
503
504 return 0;
505 }
506
507 /*
508 * Filter detach method for EVFILT_PROC.
509 *
510 * The knote may be attached to a different process, which may exit,
511 * leaving nothing for the knote to be attached to. So when the process
512 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
513 * it will be deleted when read out. However, as part of the knote deletion,
514 * this routine is called, so a check is needed to avoid actually performing
515 * a detach, because the original process might not exist any more.
516 */
517 static void
518 filt_procdetach(struct knote *kn)
519 {
520 struct proc *p;
521
522 if (kn->kn_status & KN_DETACHED)
523 return;
524
525 p = kn->kn_obj;
526
527 mutex_enter(p->p_lock);
528 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
529 mutex_exit(p->p_lock);
530 }
531
532 /*
533 * Filter event method for EVFILT_PROC.
534 */
535 static int
536 filt_proc(struct knote *kn, long hint)
537 {
538 u_int event, fflag;
539 struct kevent kev;
540 struct kqueue *kq;
541 int error;
542
543 event = (u_int)hint & NOTE_PCTRLMASK;
544 kq = kn->kn_kq;
545 fflag = 0;
546
547 /* If the user is interested in this event, record it. */
548 if (kn->kn_sfflags & event)
549 fflag |= event;
550
551 if (event == NOTE_EXIT) {
552 struct proc *p = kn->kn_obj;
553
554 if (p != NULL)
555 kn->kn_data = P_WAITSTATUS(p);
556 /*
557 * Process is gone, so flag the event as finished.
558 *
559 * Detach the knote from watched process and mark
560 * it as such. We can't leave this to kqueue_scan(),
561 * since the process might not exist by then. And we
562 * have to do this now, since psignal KNOTE() is called
563 * also for zombies and we might end up reading freed
564 * memory if the kevent would already be picked up
565 * and knote g/c'ed.
566 */
567 filt_procdetach(kn);
568
569 mutex_spin_enter(&kq->kq_lock);
570 kn->kn_status |= KN_DETACHED;
571 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
572 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
573 kn->kn_fflags |= fflag;
574 mutex_spin_exit(&kq->kq_lock);
575
576 return 1;
577 }
578
579 mutex_spin_enter(&kq->kq_lock);
580 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
581 /*
582 * Process forked, and user wants to track the new process,
583 * so attach a new knote to it, and immediately report an
584 * event with the parent's pid. Register knote with new
585 * process.
586 */
587 kev.ident = hint & NOTE_PDATAMASK; /* pid */
588 kev.filter = kn->kn_filter;
589 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
590 kev.fflags = kn->kn_sfflags;
591 kev.data = kn->kn_id; /* parent */
592 kev.udata = kn->kn_kevent.udata; /* preserve udata */
593 mutex_spin_exit(&kq->kq_lock);
594 error = kqueue_register(kq, &kev);
595 mutex_spin_enter(&kq->kq_lock);
596 if (error != 0)
597 kn->kn_fflags |= NOTE_TRACKERR;
598 }
599 kn->kn_fflags |= fflag;
600 fflag = kn->kn_fflags;
601 mutex_spin_exit(&kq->kq_lock);
602
603 return fflag != 0;
604 }
605
606 static void
607 filt_timerexpire(void *knx)
608 {
609 struct knote *kn = knx;
610 int tticks;
611
612 mutex_enter(&kqueue_misc_lock);
613 kn->kn_data++;
614 knote_activate(kn);
615 if ((kn->kn_flags & EV_ONESHOT) == 0) {
616 tticks = mstohz(kn->kn_sdata);
617 if (tticks <= 0)
618 tticks = 1;
619 callout_schedule((callout_t *)kn->kn_hook, tticks);
620 }
621 mutex_exit(&kqueue_misc_lock);
622 }
623
624 /*
625 * data contains amount of time to sleep, in milliseconds
626 */
627 static int
628 filt_timerattach(struct knote *kn)
629 {
630 callout_t *calloutp;
631 struct kqueue *kq;
632 int tticks;
633
634 tticks = mstohz(kn->kn_sdata);
635
636 /* if the supplied value is under our resolution, use 1 tick */
637 if (tticks == 0) {
638 if (kn->kn_sdata == 0)
639 return EINVAL;
640 tticks = 1;
641 }
642
643 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
644 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
645 atomic_dec_uint(&kq_ncallouts);
646 return ENOMEM;
647 }
648 callout_init(calloutp, CALLOUT_MPSAFE);
649
650 kq = kn->kn_kq;
651 mutex_spin_enter(&kq->kq_lock);
652 kn->kn_flags |= EV_CLEAR; /* automatically set */
653 kn->kn_hook = calloutp;
654 mutex_spin_exit(&kq->kq_lock);
655
656 callout_reset(calloutp, tticks, filt_timerexpire, kn);
657
658 return (0);
659 }
660
661 static void
662 filt_timerdetach(struct knote *kn)
663 {
664 callout_t *calloutp;
665
666 calloutp = (callout_t *)kn->kn_hook;
667 callout_halt(calloutp, NULL);
668 callout_destroy(calloutp);
669 kmem_free(calloutp, sizeof(*calloutp));
670 atomic_dec_uint(&kq_ncallouts);
671 }
672
673 static int
674 filt_timer(struct knote *kn, long hint)
675 {
676 int rv;
677
678 mutex_enter(&kqueue_misc_lock);
679 rv = (kn->kn_data != 0);
680 mutex_exit(&kqueue_misc_lock);
681
682 return rv;
683 }
684
685 /*
686 * filt_seltrue:
687 *
688 * This filter "event" routine simulates seltrue().
689 */
690 int
691 filt_seltrue(struct knote *kn, long hint)
692 {
693
694 /*
695 * We don't know how much data can be read/written,
696 * but we know that it *can* be. This is about as
697 * good as select/poll does as well.
698 */
699 kn->kn_data = 0;
700 return (1);
701 }
702
703 /*
704 * This provides full kqfilter entry for device switch tables, which
705 * has same effect as filter using filt_seltrue() as filter method.
706 */
707 static void
708 filt_seltruedetach(struct knote *kn)
709 {
710 /* Nothing to do */
711 }
712
713 const struct filterops seltrue_filtops =
714 { 1, NULL, filt_seltruedetach, filt_seltrue };
715
716 int
717 seltrue_kqfilter(dev_t dev, struct knote *kn)
718 {
719 switch (kn->kn_filter) {
720 case EVFILT_READ:
721 case EVFILT_WRITE:
722 kn->kn_fop = &seltrue_filtops;
723 break;
724 default:
725 return (EINVAL);
726 }
727
728 /* Nothing more to do */
729 return (0);
730 }
731
732 /*
733 * kqueue(2) system call.
734 */
735 static int
736 kqueue1(struct lwp *l, int flags, register_t *retval)
737 {
738 struct kqueue *kq;
739 file_t *fp;
740 int fd, error;
741
742 if ((error = fd_allocfile(&fp, &fd)) != 0)
743 return error;
744 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
745 fp->f_type = DTYPE_KQUEUE;
746 fp->f_ops = &kqueueops;
747 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
748 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
749 cv_init(&kq->kq_cv, "kqueue");
750 selinit(&kq->kq_sel);
751 TAILQ_INIT(&kq->kq_head);
752 fp->f_kqueue = kq;
753 *retval = fd;
754 kq->kq_fdp = curlwp->l_fd;
755 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
756 fd_affix(curproc, fp, fd);
757 return error;
758 }
759
760 /*
761 * kqueue(2) system call.
762 */
763 int
764 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
765 {
766 return kqueue1(l, 0, retval);
767 }
768
769 int
770 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
771 register_t *retval)
772 {
773 /* {
774 syscallarg(int) flags;
775 } */
776 return kqueue1(l, SCARG(uap, flags), retval);
777 }
778
779 /*
780 * kevent(2) system call.
781 */
782 int
783 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
784 struct kevent *changes, size_t index, int n)
785 {
786
787 return copyin(changelist + index, changes, n * sizeof(*changes));
788 }
789
790 int
791 kevent_put_events(void *ctx, struct kevent *events,
792 struct kevent *eventlist, size_t index, int n)
793 {
794
795 return copyout(events, eventlist + index, n * sizeof(*events));
796 }
797
798 static const struct kevent_ops kevent_native_ops = {
799 .keo_private = NULL,
800 .keo_fetch_timeout = copyin,
801 .keo_fetch_changes = kevent_fetch_changes,
802 .keo_put_events = kevent_put_events,
803 };
804
805 int
806 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
807 register_t *retval)
808 {
809 /* {
810 syscallarg(int) fd;
811 syscallarg(const struct kevent *) changelist;
812 syscallarg(size_t) nchanges;
813 syscallarg(struct kevent *) eventlist;
814 syscallarg(size_t) nevents;
815 syscallarg(const struct timespec *) timeout;
816 } */
817
818 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
819 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
820 SCARG(uap, timeout), &kevent_native_ops);
821 }
822
823 int
824 kevent1(register_t *retval, int fd,
825 const struct kevent *changelist, size_t nchanges,
826 struct kevent *eventlist, size_t nevents,
827 const struct timespec *timeout,
828 const struct kevent_ops *keops)
829 {
830 struct kevent *kevp;
831 struct kqueue *kq;
832 struct timespec ts;
833 size_t i, n, ichange;
834 int nerrors, error;
835 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
836 file_t *fp;
837
838 /* check that we're dealing with a kq */
839 fp = fd_getfile(fd);
840 if (fp == NULL)
841 return (EBADF);
842
843 if (fp->f_type != DTYPE_KQUEUE) {
844 fd_putfile(fd);
845 return (EBADF);
846 }
847
848 if (timeout != NULL) {
849 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
850 if (error)
851 goto done;
852 timeout = &ts;
853 }
854
855 kq = fp->f_kqueue;
856 nerrors = 0;
857 ichange = 0;
858
859 /* traverse list of events to register */
860 while (nchanges > 0) {
861 n = MIN(nchanges, __arraycount(kevbuf));
862 error = (*keops->keo_fetch_changes)(keops->keo_private,
863 changelist, kevbuf, ichange, n);
864 if (error)
865 goto done;
866 for (i = 0; i < n; i++) {
867 kevp = &kevbuf[i];
868 kevp->flags &= ~EV_SYSFLAGS;
869 /* register each knote */
870 error = kqueue_register(kq, kevp);
871 if (!error && !(kevp->flags & EV_RECEIPT))
872 continue;
873 if (nevents == 0)
874 goto done;
875 kevp->flags = EV_ERROR;
876 kevp->data = error;
877 error = (*keops->keo_put_events)
878 (keops->keo_private, kevp,
879 eventlist, nerrors, 1);
880 if (error)
881 goto done;
882 nevents--;
883 nerrors++;
884 }
885 nchanges -= n; /* update the results */
886 ichange += n;
887 }
888 if (nerrors) {
889 *retval = nerrors;
890 error = 0;
891 goto done;
892 }
893
894 /* actually scan through the events */
895 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
896 kevbuf, __arraycount(kevbuf));
897 done:
898 fd_putfile(fd);
899 return (error);
900 }
901
902 /*
903 * Register a given kevent kev onto the kqueue
904 */
905 static int
906 kqueue_register(struct kqueue *kq, struct kevent *kev)
907 {
908 struct kfilter *kfilter;
909 filedesc_t *fdp;
910 file_t *fp;
911 fdfile_t *ff;
912 struct knote *kn, *newkn;
913 struct klist *list;
914 int error, fd, rv;
915
916 fdp = kq->kq_fdp;
917 fp = NULL;
918 kn = NULL;
919 error = 0;
920 fd = 0;
921
922 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
923
924 rw_enter(&kqueue_filter_lock, RW_READER);
925 kfilter = kfilter_byfilter(kev->filter);
926 if (kfilter == NULL || kfilter->filtops == NULL) {
927 /* filter not found nor implemented */
928 rw_exit(&kqueue_filter_lock);
929 kmem_free(newkn, sizeof(*newkn));
930 return (EINVAL);
931 }
932
933 /* search if knote already exists */
934 if (kfilter->filtops->f_isfd) {
935 /* monitoring a file descriptor */
936 /* validate descriptor */
937 if (kev->ident > INT_MAX
938 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
939 rw_exit(&kqueue_filter_lock);
940 kmem_free(newkn, sizeof(*newkn));
941 return EBADF;
942 }
943 mutex_enter(&fdp->fd_lock);
944 ff = fdp->fd_dt->dt_ff[fd];
945 if (fd <= fdp->fd_lastkqfile) {
946 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
947 if (kq == kn->kn_kq &&
948 kev->filter == kn->kn_filter)
949 break;
950 }
951 }
952 } else {
953 /*
954 * not monitoring a file descriptor, so
955 * lookup knotes in internal hash table
956 */
957 mutex_enter(&fdp->fd_lock);
958 if (fdp->fd_knhashmask != 0) {
959 list = &fdp->fd_knhash[
960 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
961 SLIST_FOREACH(kn, list, kn_link) {
962 if (kev->ident == kn->kn_id &&
963 kq == kn->kn_kq &&
964 kev->filter == kn->kn_filter)
965 break;
966 }
967 }
968 }
969
970 /*
971 * kn now contains the matching knote, or NULL if no match
972 */
973 if (kev->flags & EV_ADD) {
974 if (kn == NULL) {
975 /* create new knote */
976 kn = newkn;
977 newkn = NULL;
978 kn->kn_obj = fp;
979 kn->kn_id = kev->ident;
980 kn->kn_kq = kq;
981 kn->kn_fop = kfilter->filtops;
982 kn->kn_kfilter = kfilter;
983 kn->kn_sfflags = kev->fflags;
984 kn->kn_sdata = kev->data;
985 kev->fflags = 0;
986 kev->data = 0;
987 kn->kn_kevent = *kev;
988
989 KASSERT(kn->kn_fop != NULL);
990 /*
991 * apply reference count to knote structure, and
992 * do not release it at the end of this routine.
993 */
994 fp = NULL;
995
996 if (!kn->kn_fop->f_isfd) {
997 /*
998 * If knote is not on an fd, store on
999 * internal hash table.
1000 */
1001 if (fdp->fd_knhashmask == 0) {
1002 /* XXXAD can block with fd_lock held */
1003 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1004 HASH_LIST, true,
1005 &fdp->fd_knhashmask);
1006 }
1007 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1008 fdp->fd_knhashmask)];
1009 } else {
1010 /* Otherwise, knote is on an fd. */
1011 list = (struct klist *)
1012 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1013 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1014 fdp->fd_lastkqfile = kn->kn_id;
1015 }
1016 SLIST_INSERT_HEAD(list, kn, kn_link);
1017
1018 KERNEL_LOCK(1, NULL); /* XXXSMP */
1019 error = (*kfilter->filtops->f_attach)(kn);
1020 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1021 if (error != 0) {
1022 #ifdef DIAGNOSTIC
1023
1024 printf("%s: event type %d not supported for "
1025 "file type %d (error %d)\n", __func__,
1026 kn->kn_filter, kn->kn_obj ?
1027 ((file_t *)kn->kn_obj)->f_type : -1, error);
1028 #endif
1029 /* knote_detach() drops fdp->fd_lock */
1030 knote_detach(kn, fdp, false);
1031 goto done;
1032 }
1033 atomic_inc_uint(&kfilter->refcnt);
1034 } else {
1035 /*
1036 * The user may change some filter values after the
1037 * initial EV_ADD, but doing so will not reset any
1038 * filter which have already been triggered.
1039 */
1040 kn->kn_sfflags = kev->fflags;
1041 kn->kn_sdata = kev->data;
1042 kn->kn_kevent.udata = kev->udata;
1043 }
1044 /*
1045 * We can get here if we are trying to attach
1046 * an event to a file descriptor that does not
1047 * support events, and the attach routine is
1048 * broken and does not return an error.
1049 */
1050 KASSERT(kn->kn_fop != NULL);
1051 KASSERT(kn->kn_fop->f_event != NULL);
1052 KERNEL_LOCK(1, NULL); /* XXXSMP */
1053 rv = (*kn->kn_fop->f_event)(kn, 0);
1054 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1055 if (rv)
1056 knote_activate(kn);
1057 } else {
1058 if (kn == NULL) {
1059 error = ENOENT;
1060 mutex_exit(&fdp->fd_lock);
1061 goto done;
1062 }
1063 if (kev->flags & EV_DELETE) {
1064 /* knote_detach() drops fdp->fd_lock */
1065 knote_detach(kn, fdp, true);
1066 goto done;
1067 }
1068 }
1069
1070 /* disable knote */
1071 if ((kev->flags & EV_DISABLE)) {
1072 mutex_spin_enter(&kq->kq_lock);
1073 if ((kn->kn_status & KN_DISABLED) == 0)
1074 kn->kn_status |= KN_DISABLED;
1075 mutex_spin_exit(&kq->kq_lock);
1076 }
1077
1078 /* enable knote */
1079 if ((kev->flags & EV_ENABLE)) {
1080 knote_enqueue(kn);
1081 }
1082 mutex_exit(&fdp->fd_lock);
1083 done:
1084 rw_exit(&kqueue_filter_lock);
1085 if (newkn != NULL)
1086 kmem_free(newkn, sizeof(*newkn));
1087 if (fp != NULL)
1088 fd_putfile(fd);
1089 return (error);
1090 }
1091
1092 #if defined(DEBUG)
1093 static void
1094 kq_check(struct kqueue *kq)
1095 {
1096 const struct knote *kn;
1097 int count;
1098 int nmarker;
1099
1100 KASSERT(mutex_owned(&kq->kq_lock));
1101 KASSERT(kq->kq_count >= 0);
1102
1103 count = 0;
1104 nmarker = 0;
1105 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1106 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1107 panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1108 }
1109 if ((kn->kn_status & KN_MARKER) == 0) {
1110 if (kn->kn_kq != kq) {
1111 panic("%s: kq=%p kn=%p inconsist 2",
1112 __func__, kq, kn);
1113 }
1114 if ((kn->kn_status & KN_ACTIVE) == 0) {
1115 panic("%s: kq=%p kn=%p: not active",
1116 __func__, kq, kn);
1117 }
1118 count++;
1119 if (count > kq->kq_count) {
1120 goto bad;
1121 }
1122 } else {
1123 nmarker++;
1124 #if 0
1125 if (nmarker > 10000) {
1126 panic("%s: kq=%p too many markers: %d != %d, "
1127 "nmarker=%d",
1128 __func__, kq, kq->kq_count, count, nmarker);
1129 }
1130 #endif
1131 }
1132 }
1133 if (kq->kq_count != count) {
1134 bad:
1135 panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1136 __func__, kq, kq->kq_count, count, nmarker);
1137 }
1138 }
1139 #else /* defined(DEBUG) */
1140 #define kq_check(a) /* nothing */
1141 #endif /* defined(DEBUG) */
1142
1143 /*
1144 * Scan through the list of events on fp (for a maximum of maxevents),
1145 * returning the results in to ulistp. Timeout is determined by tsp; if
1146 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1147 * as appropriate.
1148 */
1149 static int
1150 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1151 const struct timespec *tsp, register_t *retval,
1152 const struct kevent_ops *keops, struct kevent *kevbuf,
1153 size_t kevcnt)
1154 {
1155 struct kqueue *kq;
1156 struct kevent *kevp;
1157 struct timespec ats, sleepts;
1158 struct knote *kn, *marker, morker;
1159 size_t count, nkev, nevents;
1160 int timeout, error, rv;
1161 filedesc_t *fdp;
1162
1163 fdp = curlwp->l_fd;
1164 kq = fp->f_kqueue;
1165 count = maxevents;
1166 nkev = nevents = error = 0;
1167 if (count == 0) {
1168 *retval = 0;
1169 return 0;
1170 }
1171
1172 if (tsp) { /* timeout supplied */
1173 ats = *tsp;
1174 if (inittimeleft(&ats, &sleepts) == -1) {
1175 *retval = maxevents;
1176 return EINVAL;
1177 }
1178 timeout = tstohz(&ats);
1179 if (timeout <= 0)
1180 timeout = -1; /* do poll */
1181 } else {
1182 /* no timeout, wait forever */
1183 timeout = 0;
1184 }
1185
1186 memset(&morker, 0, sizeof(morker));
1187 marker = &morker;
1188 marker->kn_status = KN_MARKER;
1189 mutex_spin_enter(&kq->kq_lock);
1190 retry:
1191 kevp = kevbuf;
1192 if (kq->kq_count == 0) {
1193 if (timeout >= 0) {
1194 error = cv_timedwait_sig(&kq->kq_cv,
1195 &kq->kq_lock, timeout);
1196 if (error == 0) {
1197 if (tsp == NULL || (timeout =
1198 gettimeleft(&ats, &sleepts)) > 0)
1199 goto retry;
1200 } else {
1201 /* don't restart after signals... */
1202 if (error == ERESTART)
1203 error = EINTR;
1204 if (error == EWOULDBLOCK)
1205 error = 0;
1206 }
1207 }
1208 mutex_spin_exit(&kq->kq_lock);
1209 } else {
1210 /* mark end of knote list */
1211 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1212
1213 /*
1214 * Acquire the fdp->fd_lock interlock to avoid races with
1215 * file creation/destruction from other threads.
1216 */
1217 mutex_spin_exit(&kq->kq_lock);
1218 mutex_enter(&fdp->fd_lock);
1219 mutex_spin_enter(&kq->kq_lock);
1220
1221 while (count != 0) {
1222 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1223 while ((kn->kn_status & KN_MARKER) != 0) {
1224 if (kn == marker) {
1225 /* it's our marker, stop */
1226 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1227 if (count < maxevents || (tsp != NULL &&
1228 (timeout = gettimeleft(&ats,
1229 &sleepts)) <= 0))
1230 goto done;
1231 mutex_exit(&fdp->fd_lock);
1232 goto retry;
1233 }
1234 /* someone else's marker. */
1235 kn = TAILQ_NEXT(kn, kn_tqe);
1236 }
1237 kq_check(kq);
1238 kq->kq_count--;
1239 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1240 kn->kn_status &= ~KN_QUEUED;
1241 kn->kn_status |= KN_BUSY;
1242 kq_check(kq);
1243 if (kn->kn_status & KN_DISABLED) {
1244 kn->kn_status &= ~KN_BUSY;
1245 /* don't want disabled events */
1246 continue;
1247 }
1248 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1249 mutex_spin_exit(&kq->kq_lock);
1250 KASSERT(kn->kn_fop != NULL);
1251 KASSERT(kn->kn_fop->f_event != NULL);
1252 KERNEL_LOCK(1, NULL); /* XXXSMP */
1253 KASSERT(mutex_owned(&fdp->fd_lock));
1254 rv = (*kn->kn_fop->f_event)(kn, 0);
1255 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1256 mutex_spin_enter(&kq->kq_lock);
1257 /* Re-poll if note was re-enqueued. */
1258 if ((kn->kn_status & KN_QUEUED) != 0) {
1259 kn->kn_status &= ~KN_BUSY;
1260 continue;
1261 }
1262 if (rv == 0) {
1263 /*
1264 * non-ONESHOT event that hasn't
1265 * triggered again, so de-queue.
1266 */
1267 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1268 continue;
1269 }
1270 }
1271 /* XXXAD should be got from f_event if !oneshot. */
1272 *kevp++ = kn->kn_kevent;
1273 nkev++;
1274 if (kn->kn_flags & EV_ONESHOT) {
1275 /* delete ONESHOT events after retrieval */
1276 kn->kn_status &= ~KN_BUSY;
1277 mutex_spin_exit(&kq->kq_lock);
1278 knote_detach(kn, fdp, true);
1279 mutex_enter(&fdp->fd_lock);
1280 mutex_spin_enter(&kq->kq_lock);
1281 } else if (kn->kn_flags & EV_CLEAR) {
1282 /* clear state after retrieval */
1283 kn->kn_data = 0;
1284 kn->kn_fflags = 0;
1285 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1286 } else if (kn->kn_flags & EV_DISPATCH) {
1287 kn->kn_status |= KN_DISABLED;
1288 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1289 } else {
1290 /* add event back on list */
1291 kq_check(kq);
1292 kn->kn_status |= KN_QUEUED;
1293 kn->kn_status &= ~KN_BUSY;
1294 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1295 kq->kq_count++;
1296 kq_check(kq);
1297 }
1298 if (nkev == kevcnt) {
1299 /* do copyouts in kevcnt chunks */
1300 mutex_spin_exit(&kq->kq_lock);
1301 mutex_exit(&fdp->fd_lock);
1302 error = (*keops->keo_put_events)
1303 (keops->keo_private,
1304 kevbuf, ulistp, nevents, nkev);
1305 mutex_enter(&fdp->fd_lock);
1306 mutex_spin_enter(&kq->kq_lock);
1307 nevents += nkev;
1308 nkev = 0;
1309 kevp = kevbuf;
1310 }
1311 count--;
1312 if (error != 0 || count == 0) {
1313 /* remove marker */
1314 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1315 break;
1316 }
1317 }
1318 done:
1319 mutex_spin_exit(&kq->kq_lock);
1320 mutex_exit(&fdp->fd_lock);
1321 }
1322 if (nkev != 0) {
1323 /* copyout remaining events */
1324 error = (*keops->keo_put_events)(keops->keo_private,
1325 kevbuf, ulistp, nevents, nkev);
1326 }
1327 *retval = maxevents - count;
1328
1329 return error;
1330 }
1331
1332 /*
1333 * fileops ioctl method for a kqueue descriptor.
1334 *
1335 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1336 * KFILTER_BYNAME find name for filter, and return result in
1337 * name, which is of size len.
1338 * KFILTER_BYFILTER find filter for name. len is ignored.
1339 */
1340 /*ARGSUSED*/
1341 static int
1342 kqueue_ioctl(file_t *fp, u_long com, void *data)
1343 {
1344 struct kfilter_mapping *km;
1345 const struct kfilter *kfilter;
1346 char *name;
1347 int error;
1348
1349 km = data;
1350 error = 0;
1351 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1352
1353 switch (com) {
1354 case KFILTER_BYFILTER: /* convert filter -> name */
1355 rw_enter(&kqueue_filter_lock, RW_READER);
1356 kfilter = kfilter_byfilter(km->filter);
1357 if (kfilter != NULL) {
1358 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1359 rw_exit(&kqueue_filter_lock);
1360 error = copyoutstr(name, km->name, km->len, NULL);
1361 } else {
1362 rw_exit(&kqueue_filter_lock);
1363 error = ENOENT;
1364 }
1365 break;
1366
1367 case KFILTER_BYNAME: /* convert name -> filter */
1368 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1369 if (error) {
1370 break;
1371 }
1372 rw_enter(&kqueue_filter_lock, RW_READER);
1373 kfilter = kfilter_byname(name);
1374 if (kfilter != NULL)
1375 km->filter = kfilter->filter;
1376 else
1377 error = ENOENT;
1378 rw_exit(&kqueue_filter_lock);
1379 break;
1380
1381 default:
1382 error = ENOTTY;
1383 break;
1384
1385 }
1386 kmem_free(name, KFILTER_MAXNAME);
1387 return (error);
1388 }
1389
1390 /*
1391 * fileops fcntl method for a kqueue descriptor.
1392 */
1393 static int
1394 kqueue_fcntl(file_t *fp, u_int com, void *data)
1395 {
1396
1397 return (ENOTTY);
1398 }
1399
1400 /*
1401 * fileops poll method for a kqueue descriptor.
1402 * Determine if kqueue has events pending.
1403 */
1404 static int
1405 kqueue_poll(file_t *fp, int events)
1406 {
1407 struct kqueue *kq;
1408 int revents;
1409
1410 kq = fp->f_kqueue;
1411
1412 revents = 0;
1413 if (events & (POLLIN | POLLRDNORM)) {
1414 mutex_spin_enter(&kq->kq_lock);
1415 if (kq->kq_count != 0) {
1416 revents |= events & (POLLIN | POLLRDNORM);
1417 } else {
1418 selrecord(curlwp, &kq->kq_sel);
1419 }
1420 kq_check(kq);
1421 mutex_spin_exit(&kq->kq_lock);
1422 }
1423
1424 return revents;
1425 }
1426
1427 /*
1428 * fileops stat method for a kqueue descriptor.
1429 * Returns dummy info, with st_size being number of events pending.
1430 */
1431 static int
1432 kqueue_stat(file_t *fp, struct stat *st)
1433 {
1434 struct kqueue *kq;
1435
1436 kq = fp->f_kqueue;
1437
1438 memset(st, 0, sizeof(*st));
1439 st->st_size = kq->kq_count;
1440 st->st_blksize = sizeof(struct kevent);
1441 st->st_mode = S_IFIFO;
1442
1443 return 0;
1444 }
1445
1446 static void
1447 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1448 {
1449 struct knote *kn;
1450 filedesc_t *fdp;
1451
1452 fdp = kq->kq_fdp;
1453
1454 KASSERT(mutex_owned(&fdp->fd_lock));
1455
1456 for (kn = SLIST_FIRST(list); kn != NULL;) {
1457 if (kq != kn->kn_kq) {
1458 kn = SLIST_NEXT(kn, kn_link);
1459 continue;
1460 }
1461 knote_detach(kn, fdp, true);
1462 mutex_enter(&fdp->fd_lock);
1463 kn = SLIST_FIRST(list);
1464 }
1465 }
1466
1467
1468 /*
1469 * fileops close method for a kqueue descriptor.
1470 */
1471 static int
1472 kqueue_close(file_t *fp)
1473 {
1474 struct kqueue *kq;
1475 filedesc_t *fdp;
1476 fdfile_t *ff;
1477 int i;
1478
1479 kq = fp->f_kqueue;
1480 fp->f_kqueue = NULL;
1481 fp->f_type = 0;
1482 fdp = curlwp->l_fd;
1483
1484 mutex_enter(&fdp->fd_lock);
1485 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1486 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1487 continue;
1488 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1489 }
1490 if (fdp->fd_knhashmask != 0) {
1491 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1492 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1493 }
1494 }
1495 mutex_exit(&fdp->fd_lock);
1496
1497 KASSERT(kq->kq_count == 0);
1498 mutex_destroy(&kq->kq_lock);
1499 cv_destroy(&kq->kq_cv);
1500 seldestroy(&kq->kq_sel);
1501 kmem_free(kq, sizeof(*kq));
1502
1503 return (0);
1504 }
1505
1506 /*
1507 * struct fileops kqfilter method for a kqueue descriptor.
1508 * Event triggered when monitored kqueue changes.
1509 */
1510 static int
1511 kqueue_kqfilter(file_t *fp, struct knote *kn)
1512 {
1513 struct kqueue *kq;
1514
1515 kq = ((file_t *)kn->kn_obj)->f_kqueue;
1516
1517 KASSERT(fp == kn->kn_obj);
1518
1519 if (kn->kn_filter != EVFILT_READ)
1520 return 1;
1521
1522 kn->kn_fop = &kqread_filtops;
1523 mutex_enter(&kq->kq_lock);
1524 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1525 mutex_exit(&kq->kq_lock);
1526
1527 return 0;
1528 }
1529
1530
1531 /*
1532 * Walk down a list of knotes, activating them if their event has
1533 * triggered. The caller's object lock (e.g. device driver lock)
1534 * must be held.
1535 */
1536 void
1537 knote(struct klist *list, long hint)
1538 {
1539 struct knote *kn, *tmpkn;
1540
1541 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1542 KASSERT(kn->kn_fop != NULL);
1543 KASSERT(kn->kn_fop->f_event != NULL);
1544 if ((*kn->kn_fop->f_event)(kn, hint))
1545 knote_activate(kn);
1546 }
1547 }
1548
1549 /*
1550 * Remove all knotes referencing a specified fd
1551 */
1552 void
1553 knote_fdclose(int fd)
1554 {
1555 struct klist *list;
1556 struct knote *kn;
1557 filedesc_t *fdp;
1558
1559 fdp = curlwp->l_fd;
1560 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1561 mutex_enter(&fdp->fd_lock);
1562 while ((kn = SLIST_FIRST(list)) != NULL) {
1563 knote_detach(kn, fdp, true);
1564 mutex_enter(&fdp->fd_lock);
1565 }
1566 mutex_exit(&fdp->fd_lock);
1567 }
1568
1569 /*
1570 * Drop knote. Called with fdp->fd_lock held, and will drop before
1571 * returning.
1572 */
1573 static void
1574 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1575 {
1576 struct klist *list;
1577 struct kqueue *kq;
1578
1579 kq = kn->kn_kq;
1580
1581 KASSERT((kn->kn_status & KN_MARKER) == 0);
1582 KASSERT(mutex_owned(&fdp->fd_lock));
1583
1584 KASSERT(kn->kn_fop != NULL);
1585 /* Remove from monitored object. */
1586 if (dofop) {
1587 KASSERT(kn->kn_fop->f_detach != NULL);
1588 KERNEL_LOCK(1, NULL); /* XXXSMP */
1589 (*kn->kn_fop->f_detach)(kn);
1590 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1591 }
1592
1593 /* Remove from descriptor table. */
1594 if (kn->kn_fop->f_isfd)
1595 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1596 else
1597 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1598
1599 SLIST_REMOVE(list, kn, knote, kn_link);
1600
1601 /* Remove from kqueue. */
1602 again:
1603 mutex_spin_enter(&kq->kq_lock);
1604 if ((kn->kn_status & KN_QUEUED) != 0) {
1605 kq_check(kq);
1606 kq->kq_count--;
1607 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1608 kn->kn_status &= ~KN_QUEUED;
1609 kq_check(kq);
1610 } else if (kn->kn_status & KN_BUSY) {
1611 mutex_spin_exit(&kq->kq_lock);
1612 goto again;
1613 }
1614 mutex_spin_exit(&kq->kq_lock);
1615
1616 mutex_exit(&fdp->fd_lock);
1617 if (kn->kn_fop->f_isfd)
1618 fd_putfile(kn->kn_id);
1619 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1620 kmem_free(kn, sizeof(*kn));
1621 }
1622
1623 /*
1624 * Queue new event for knote.
1625 */
1626 static void
1627 knote_enqueue(struct knote *kn)
1628 {
1629 struct kqueue *kq;
1630
1631 KASSERT((kn->kn_status & KN_MARKER) == 0);
1632
1633 kq = kn->kn_kq;
1634
1635 mutex_spin_enter(&kq->kq_lock);
1636 if ((kn->kn_status & KN_DISABLED) != 0) {
1637 kn->kn_status &= ~KN_DISABLED;
1638 }
1639 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1640 kq_check(kq);
1641 kn->kn_status |= KN_QUEUED;
1642 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1643 kq->kq_count++;
1644 kq_check(kq);
1645 cv_broadcast(&kq->kq_cv);
1646 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1647 }
1648 mutex_spin_exit(&kq->kq_lock);
1649 }
1650 /*
1651 * Queue new event for knote.
1652 */
1653 static void
1654 knote_activate(struct knote *kn)
1655 {
1656 struct kqueue *kq;
1657
1658 KASSERT((kn->kn_status & KN_MARKER) == 0);
1659
1660 kq = kn->kn_kq;
1661
1662 mutex_spin_enter(&kq->kq_lock);
1663 kn->kn_status |= KN_ACTIVE;
1664 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1665 kq_check(kq);
1666 kn->kn_status |= KN_QUEUED;
1667 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1668 kq->kq_count++;
1669 kq_check(kq);
1670 cv_broadcast(&kq->kq_cv);
1671 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1672 }
1673 mutex_spin_exit(&kq->kq_lock);
1674 }
1675