kern_event.c revision 1.96 1 /* $NetBSD: kern_event.c,v 1.96 2017/10/25 08:12:39 maya Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.96 2017/10/25 08:12:39 maya Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/wait.h>
67 #include <sys/proc.h>
68 #include <sys/file.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/poll.h>
74 #include <sys/kmem.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/syscallargs.h>
78 #include <sys/kauth.h>
79 #include <sys/conf.h>
80 #include <sys/atomic.h>
81
82 static int kqueue_scan(file_t *, size_t, struct kevent *,
83 const struct timespec *, register_t *,
84 const struct kevent_ops *, struct kevent *,
85 size_t);
86 static int kqueue_ioctl(file_t *, u_long, void *);
87 static int kqueue_fcntl(file_t *, u_int, void *);
88 static int kqueue_poll(file_t *, int);
89 static int kqueue_kqfilter(file_t *, struct knote *);
90 static int kqueue_stat(file_t *, struct stat *);
91 static int kqueue_close(file_t *);
92 static int kqueue_register(struct kqueue *, struct kevent *);
93 static void kqueue_doclose(struct kqueue *, struct klist *, int);
94
95 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
96 static void knote_enqueue(struct knote *);
97 static void knote_activate(struct knote *);
98
99 static void filt_kqdetach(struct knote *);
100 static int filt_kqueue(struct knote *, long hint);
101 static int filt_procattach(struct knote *);
102 static void filt_procdetach(struct knote *);
103 static int filt_proc(struct knote *, long hint);
104 static int filt_fileattach(struct knote *);
105 static void filt_timerexpire(void *x);
106 static int filt_timerattach(struct knote *);
107 static void filt_timerdetach(struct knote *);
108 static int filt_timer(struct knote *, long hint);
109
110 static const struct fileops kqueueops = {
111 .fo_read = (void *)enxio,
112 .fo_write = (void *)enxio,
113 .fo_ioctl = kqueue_ioctl,
114 .fo_fcntl = kqueue_fcntl,
115 .fo_poll = kqueue_poll,
116 .fo_stat = kqueue_stat,
117 .fo_close = kqueue_close,
118 .fo_kqfilter = kqueue_kqfilter,
119 .fo_restart = fnullop_restart,
120 };
121
122 static const struct filterops kqread_filtops = {
123 .f_isfd = 1,
124 .f_attach = NULL,
125 .f_detach = filt_kqdetach,
126 .f_event = filt_kqueue,
127 };
128
129 static const struct filterops proc_filtops = {
130 .f_isfd = 0,
131 .f_attach = filt_procattach,
132 .f_detach = filt_procdetach,
133 .f_event = filt_proc,
134 };
135
136 static const struct filterops file_filtops = {
137 .f_isfd = 1,
138 .f_attach = filt_fileattach,
139 .f_detach = NULL,
140 .f_event = NULL,
141 };
142
143 static const struct filterops timer_filtops = {
144 .f_isfd = 0,
145 .f_attach = filt_timerattach,
146 .f_detach = filt_timerdetach,
147 .f_event = filt_timer,
148 };
149
150 static u_int kq_ncallouts = 0;
151 static int kq_calloutmax = (4 * 1024);
152
153 #define KN_HASHSIZE 64 /* XXX should be tunable */
154 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
155
156 extern const struct filterops sig_filtops;
157
158 /*
159 * Table for for all system-defined filters.
160 * These should be listed in the numeric order of the EVFILT_* defines.
161 * If filtops is NULL, the filter isn't implemented in NetBSD.
162 * End of list is when name is NULL.
163 *
164 * Note that 'refcnt' is meaningless for built-in filters.
165 */
166 struct kfilter {
167 const char *name; /* name of filter */
168 uint32_t filter; /* id of filter */
169 unsigned refcnt; /* reference count */
170 const struct filterops *filtops;/* operations for filter */
171 size_t namelen; /* length of name string */
172 };
173
174 /* System defined filters */
175 static struct kfilter sys_kfilters[] = {
176 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
177 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
178 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
179 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
180 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
181 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
182 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
183 { NULL, 0, 0, NULL, 0 },
184 };
185
186 /* User defined kfilters */
187 static struct kfilter *user_kfilters; /* array */
188 static int user_kfilterc; /* current offset */
189 static int user_kfiltermaxc; /* max size so far */
190 static size_t user_kfiltersz; /* size of allocated memory */
191
192 /*
193 * Global Locks.
194 *
195 * Lock order:
196 *
197 * kqueue_filter_lock
198 * -> kn_kq->kq_fdp->fd_lock
199 * -> object lock (e.g., device driver lock, kqueue_misc_lock, &c.)
200 * -> kn_kq->kq_lock
201 *
202 * Locking rules:
203 *
204 * f_attach: fdp->fd_lock, KERNEL_LOCK
205 * f_detach: fdp->fd_lock, KERNEL_LOCK
206 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
207 * f_event via knote: whatever caller guarantees
208 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
209 * f_event(!NOTE_SUBMIT) via knote: nothing,
210 * acquires/releases object lock inside.
211 */
212 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
213 static kmutex_t kqueue_misc_lock; /* miscellaneous */
214
215 static kauth_listener_t kqueue_listener;
216
217 static int
218 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
219 void *arg0, void *arg1, void *arg2, void *arg3)
220 {
221 struct proc *p;
222 int result;
223
224 result = KAUTH_RESULT_DEFER;
225 p = arg0;
226
227 if (action != KAUTH_PROCESS_KEVENT_FILTER)
228 return result;
229
230 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
231 ISSET(p->p_flag, PK_SUGID)))
232 return result;
233
234 result = KAUTH_RESULT_ALLOW;
235
236 return result;
237 }
238
239 /*
240 * Initialize the kqueue subsystem.
241 */
242 void
243 kqueue_init(void)
244 {
245
246 rw_init(&kqueue_filter_lock);
247 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
248
249 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
250 kqueue_listener_cb, NULL);
251 }
252
253 /*
254 * Find kfilter entry by name, or NULL if not found.
255 */
256 static struct kfilter *
257 kfilter_byname_sys(const char *name)
258 {
259 int i;
260
261 KASSERT(rw_lock_held(&kqueue_filter_lock));
262
263 for (i = 0; sys_kfilters[i].name != NULL; i++) {
264 if (strcmp(name, sys_kfilters[i].name) == 0)
265 return &sys_kfilters[i];
266 }
267 return NULL;
268 }
269
270 static struct kfilter *
271 kfilter_byname_user(const char *name)
272 {
273 int i;
274
275 KASSERT(rw_lock_held(&kqueue_filter_lock));
276
277 /* user filter slots have a NULL name if previously deregistered */
278 for (i = 0; i < user_kfilterc ; i++) {
279 if (user_kfilters[i].name != NULL &&
280 strcmp(name, user_kfilters[i].name) == 0)
281 return &user_kfilters[i];
282 }
283 return NULL;
284 }
285
286 static struct kfilter *
287 kfilter_byname(const char *name)
288 {
289 struct kfilter *kfilter;
290
291 KASSERT(rw_lock_held(&kqueue_filter_lock));
292
293 if ((kfilter = kfilter_byname_sys(name)) != NULL)
294 return kfilter;
295
296 return kfilter_byname_user(name);
297 }
298
299 /*
300 * Find kfilter entry by filter id, or NULL if not found.
301 * Assumes entries are indexed in filter id order, for speed.
302 */
303 static struct kfilter *
304 kfilter_byfilter(uint32_t filter)
305 {
306 struct kfilter *kfilter;
307
308 KASSERT(rw_lock_held(&kqueue_filter_lock));
309
310 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
311 kfilter = &sys_kfilters[filter];
312 else if (user_kfilters != NULL &&
313 filter < EVFILT_SYSCOUNT + user_kfilterc)
314 /* it's a user filter */
315 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
316 else
317 return (NULL); /* out of range */
318 KASSERT(kfilter->filter == filter); /* sanity check! */
319 return (kfilter);
320 }
321
322 /*
323 * Register a new kfilter. Stores the entry in user_kfilters.
324 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
325 * If retfilter != NULL, the new filterid is returned in it.
326 */
327 int
328 kfilter_register(const char *name, const struct filterops *filtops,
329 int *retfilter)
330 {
331 struct kfilter *kfilter;
332 size_t len;
333 int i;
334
335 if (name == NULL || name[0] == '\0' || filtops == NULL)
336 return (EINVAL); /* invalid args */
337
338 rw_enter(&kqueue_filter_lock, RW_WRITER);
339 if (kfilter_byname(name) != NULL) {
340 rw_exit(&kqueue_filter_lock);
341 return (EEXIST); /* already exists */
342 }
343 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
344 rw_exit(&kqueue_filter_lock);
345 return (EINVAL); /* too many */
346 }
347
348 for (i = 0; i < user_kfilterc; i++) {
349 kfilter = &user_kfilters[i];
350 if (kfilter->name == NULL) {
351 /* Previously deregistered slot. Reuse. */
352 goto reuse;
353 }
354 }
355
356 /* check if need to grow user_kfilters */
357 if (user_kfilterc + 1 > user_kfiltermaxc) {
358 /* Grow in KFILTER_EXTENT chunks. */
359 user_kfiltermaxc += KFILTER_EXTENT;
360 len = user_kfiltermaxc * sizeof(*kfilter);
361 kfilter = kmem_alloc(len, KM_SLEEP);
362 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
363 if (user_kfilters != NULL) {
364 memcpy(kfilter, user_kfilters, user_kfiltersz);
365 kmem_free(user_kfilters, user_kfiltersz);
366 }
367 user_kfiltersz = len;
368 user_kfilters = kfilter;
369 }
370 /* Adding new slot */
371 kfilter = &user_kfilters[user_kfilterc++];
372 reuse:
373 kfilter->namelen = strlen(name) + 1;
374 kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
375 memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
376
377 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
378
379 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
380 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
381
382 if (retfilter != NULL)
383 *retfilter = kfilter->filter;
384 rw_exit(&kqueue_filter_lock);
385
386 return (0);
387 }
388
389 /*
390 * Unregister a kfilter previously registered with kfilter_register.
391 * This retains the filter id, but clears the name and frees filtops (filter
392 * operations), so that the number isn't reused during a boot.
393 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
394 */
395 int
396 kfilter_unregister(const char *name)
397 {
398 struct kfilter *kfilter;
399
400 if (name == NULL || name[0] == '\0')
401 return (EINVAL); /* invalid name */
402
403 rw_enter(&kqueue_filter_lock, RW_WRITER);
404 if (kfilter_byname_sys(name) != NULL) {
405 rw_exit(&kqueue_filter_lock);
406 return (EINVAL); /* can't detach system filters */
407 }
408
409 kfilter = kfilter_byname_user(name);
410 if (kfilter == NULL) {
411 rw_exit(&kqueue_filter_lock);
412 return (ENOENT);
413 }
414 if (kfilter->refcnt != 0) {
415 rw_exit(&kqueue_filter_lock);
416 return (EBUSY);
417 }
418
419 /* Cast away const (but we know it's safe. */
420 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
421 kfilter->name = NULL; /* mark as `not implemented' */
422
423 if (kfilter->filtops != NULL) {
424 /* Cast away const (but we know it's safe. */
425 kmem_free(__UNCONST(kfilter->filtops),
426 sizeof(*kfilter->filtops));
427 kfilter->filtops = NULL; /* mark as `not implemented' */
428 }
429 rw_exit(&kqueue_filter_lock);
430
431 return (0);
432 }
433
434
435 /*
436 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
437 * descriptors. Calls fileops kqfilter method for given file descriptor.
438 */
439 static int
440 filt_fileattach(struct knote *kn)
441 {
442 file_t *fp;
443
444 fp = kn->kn_obj;
445
446 return (*fp->f_ops->fo_kqfilter)(fp, kn);
447 }
448
449 /*
450 * Filter detach method for EVFILT_READ on kqueue descriptor.
451 */
452 static void
453 filt_kqdetach(struct knote *kn)
454 {
455 struct kqueue *kq;
456
457 kq = ((file_t *)kn->kn_obj)->f_kqueue;
458
459 mutex_spin_enter(&kq->kq_lock);
460 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
461 mutex_spin_exit(&kq->kq_lock);
462 }
463
464 /*
465 * Filter event method for EVFILT_READ on kqueue descriptor.
466 */
467 /*ARGSUSED*/
468 static int
469 filt_kqueue(struct knote *kn, long hint)
470 {
471 struct kqueue *kq;
472 int rv;
473
474 kq = ((file_t *)kn->kn_obj)->f_kqueue;
475
476 if (hint != NOTE_SUBMIT)
477 mutex_spin_enter(&kq->kq_lock);
478 kn->kn_data = kq->kq_count;
479 rv = (kn->kn_data > 0);
480 if (hint != NOTE_SUBMIT)
481 mutex_spin_exit(&kq->kq_lock);
482
483 return rv;
484 }
485
486 /*
487 * Filter attach method for EVFILT_PROC.
488 */
489 static int
490 filt_procattach(struct knote *kn)
491 {
492 struct proc *p;
493 struct lwp *curl;
494
495 curl = curlwp;
496
497 mutex_enter(proc_lock);
498 if (kn->kn_flags & EV_FLAG1) {
499 /*
500 * NOTE_TRACK attaches to the child process too early
501 * for proc_find, so do a raw look up and check the state
502 * explicitly.
503 */
504 p = proc_find_raw(kn->kn_id);
505 if (p != NULL && p->p_stat != SIDL)
506 p = NULL;
507 } else {
508 p = proc_find(kn->kn_id);
509 }
510
511 if (p == NULL) {
512 mutex_exit(proc_lock);
513 return ESRCH;
514 }
515
516 /*
517 * Fail if it's not owned by you, or the last exec gave us
518 * setuid/setgid privs (unless you're root).
519 */
520 mutex_enter(p->p_lock);
521 mutex_exit(proc_lock);
522 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
523 p, NULL, NULL, NULL) != 0) {
524 mutex_exit(p->p_lock);
525 return EACCES;
526 }
527
528 kn->kn_obj = p;
529 kn->kn_flags |= EV_CLEAR; /* automatically set */
530
531 /*
532 * internal flag indicating registration done by kernel
533 */
534 if (kn->kn_flags & EV_FLAG1) {
535 kn->kn_data = kn->kn_sdata; /* ppid */
536 kn->kn_fflags = NOTE_CHILD;
537 kn->kn_flags &= ~EV_FLAG1;
538 }
539 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
540 mutex_exit(p->p_lock);
541
542 return 0;
543 }
544
545 /*
546 * Filter detach method for EVFILT_PROC.
547 *
548 * The knote may be attached to a different process, which may exit,
549 * leaving nothing for the knote to be attached to. So when the process
550 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
551 * it will be deleted when read out. However, as part of the knote deletion,
552 * this routine is called, so a check is needed to avoid actually performing
553 * a detach, because the original process might not exist any more.
554 */
555 static void
556 filt_procdetach(struct knote *kn)
557 {
558 struct proc *p;
559
560 if (kn->kn_status & KN_DETACHED)
561 return;
562
563 p = kn->kn_obj;
564
565 mutex_enter(p->p_lock);
566 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
567 mutex_exit(p->p_lock);
568 }
569
570 /*
571 * Filter event method for EVFILT_PROC.
572 */
573 static int
574 filt_proc(struct knote *kn, long hint)
575 {
576 u_int event, fflag;
577 struct kevent kev;
578 struct kqueue *kq;
579 int error;
580
581 event = (u_int)hint & NOTE_PCTRLMASK;
582 kq = kn->kn_kq;
583 fflag = 0;
584
585 /* If the user is interested in this event, record it. */
586 if (kn->kn_sfflags & event)
587 fflag |= event;
588
589 if (event == NOTE_EXIT) {
590 struct proc *p = kn->kn_obj;
591
592 if (p != NULL)
593 kn->kn_data = P_WAITSTATUS(p);
594 /*
595 * Process is gone, so flag the event as finished.
596 *
597 * Detach the knote from watched process and mark
598 * it as such. We can't leave this to kqueue_scan(),
599 * since the process might not exist by then. And we
600 * have to do this now, since psignal KNOTE() is called
601 * also for zombies and we might end up reading freed
602 * memory if the kevent would already be picked up
603 * and knote g/c'ed.
604 */
605 filt_procdetach(kn);
606
607 mutex_spin_enter(&kq->kq_lock);
608 kn->kn_status |= KN_DETACHED;
609 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
610 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
611 kn->kn_fflags |= fflag;
612 mutex_spin_exit(&kq->kq_lock);
613
614 return 1;
615 }
616
617 mutex_spin_enter(&kq->kq_lock);
618 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
619 /*
620 * Process forked, and user wants to track the new process,
621 * so attach a new knote to it, and immediately report an
622 * event with the parent's pid. Register knote with new
623 * process.
624 */
625 kev.ident = hint & NOTE_PDATAMASK; /* pid */
626 kev.filter = kn->kn_filter;
627 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
628 kev.fflags = kn->kn_sfflags;
629 kev.data = kn->kn_id; /* parent */
630 kev.udata = kn->kn_kevent.udata; /* preserve udata */
631 mutex_spin_exit(&kq->kq_lock);
632 error = kqueue_register(kq, &kev);
633 mutex_spin_enter(&kq->kq_lock);
634 if (error != 0)
635 kn->kn_fflags |= NOTE_TRACKERR;
636 }
637 kn->kn_fflags |= fflag;
638 fflag = kn->kn_fflags;
639 mutex_spin_exit(&kq->kq_lock);
640
641 return fflag != 0;
642 }
643
644 static void
645 filt_timerexpire(void *knx)
646 {
647 struct knote *kn = knx;
648 int tticks;
649
650 mutex_enter(&kqueue_misc_lock);
651 kn->kn_data++;
652 knote_activate(kn);
653 if ((kn->kn_flags & EV_ONESHOT) == 0) {
654 tticks = mstohz(kn->kn_sdata);
655 if (tticks <= 0)
656 tticks = 1;
657 callout_schedule((callout_t *)kn->kn_hook, tticks);
658 }
659 mutex_exit(&kqueue_misc_lock);
660 }
661
662 /*
663 * data contains amount of time to sleep, in milliseconds
664 */
665 static int
666 filt_timerattach(struct knote *kn)
667 {
668 callout_t *calloutp;
669 struct kqueue *kq;
670 int tticks;
671
672 tticks = mstohz(kn->kn_sdata);
673
674 /* if the supplied value is under our resolution, use 1 tick */
675 if (tticks == 0) {
676 if (kn->kn_sdata == 0)
677 return EINVAL;
678 tticks = 1;
679 }
680
681 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
682 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
683 atomic_dec_uint(&kq_ncallouts);
684 return ENOMEM;
685 }
686 callout_init(calloutp, CALLOUT_MPSAFE);
687
688 kq = kn->kn_kq;
689 mutex_spin_enter(&kq->kq_lock);
690 kn->kn_flags |= EV_CLEAR; /* automatically set */
691 kn->kn_hook = calloutp;
692 mutex_spin_exit(&kq->kq_lock);
693
694 callout_reset(calloutp, tticks, filt_timerexpire, kn);
695
696 return (0);
697 }
698
699 static void
700 filt_timerdetach(struct knote *kn)
701 {
702 callout_t *calloutp;
703
704 calloutp = (callout_t *)kn->kn_hook;
705 callout_halt(calloutp, NULL);
706 callout_destroy(calloutp);
707 kmem_free(calloutp, sizeof(*calloutp));
708 atomic_dec_uint(&kq_ncallouts);
709 }
710
711 static int
712 filt_timer(struct knote *kn, long hint)
713 {
714 int rv;
715
716 mutex_enter(&kqueue_misc_lock);
717 rv = (kn->kn_data != 0);
718 mutex_exit(&kqueue_misc_lock);
719
720 return rv;
721 }
722
723 /*
724 * filt_seltrue:
725 *
726 * This filter "event" routine simulates seltrue().
727 */
728 int
729 filt_seltrue(struct knote *kn, long hint)
730 {
731
732 /*
733 * We don't know how much data can be read/written,
734 * but we know that it *can* be. This is about as
735 * good as select/poll does as well.
736 */
737 kn->kn_data = 0;
738 return (1);
739 }
740
741 /*
742 * This provides full kqfilter entry for device switch tables, which
743 * has same effect as filter using filt_seltrue() as filter method.
744 */
745 static void
746 filt_seltruedetach(struct knote *kn)
747 {
748 /* Nothing to do */
749 }
750
751 const struct filterops seltrue_filtops = {
752 .f_isfd = 1,
753 .f_attach = NULL,
754 .f_detach = filt_seltruedetach,
755 .f_event = filt_seltrue,
756 };
757
758 int
759 seltrue_kqfilter(dev_t dev, struct knote *kn)
760 {
761 switch (kn->kn_filter) {
762 case EVFILT_READ:
763 case EVFILT_WRITE:
764 kn->kn_fop = &seltrue_filtops;
765 break;
766 default:
767 return (EINVAL);
768 }
769
770 /* Nothing more to do */
771 return (0);
772 }
773
774 /*
775 * kqueue(2) system call.
776 */
777 static int
778 kqueue1(struct lwp *l, int flags, register_t *retval)
779 {
780 struct kqueue *kq;
781 file_t *fp;
782 int fd, error;
783
784 if ((error = fd_allocfile(&fp, &fd)) != 0)
785 return error;
786 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
787 fp->f_type = DTYPE_KQUEUE;
788 fp->f_ops = &kqueueops;
789 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
790 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
791 cv_init(&kq->kq_cv, "kqueue");
792 selinit(&kq->kq_sel);
793 TAILQ_INIT(&kq->kq_head);
794 fp->f_kqueue = kq;
795 *retval = fd;
796 kq->kq_fdp = curlwp->l_fd;
797 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
798 fd_affix(curproc, fp, fd);
799 return error;
800 }
801
802 /*
803 * kqueue(2) system call.
804 */
805 int
806 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
807 {
808 return kqueue1(l, 0, retval);
809 }
810
811 int
812 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
813 register_t *retval)
814 {
815 /* {
816 syscallarg(int) flags;
817 } */
818 return kqueue1(l, SCARG(uap, flags), retval);
819 }
820
821 /*
822 * kevent(2) system call.
823 */
824 int
825 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
826 struct kevent *changes, size_t index, int n)
827 {
828
829 return copyin(changelist + index, changes, n * sizeof(*changes));
830 }
831
832 int
833 kevent_put_events(void *ctx, struct kevent *events,
834 struct kevent *eventlist, size_t index, int n)
835 {
836
837 return copyout(events, eventlist + index, n * sizeof(*events));
838 }
839
840 static const struct kevent_ops kevent_native_ops = {
841 .keo_private = NULL,
842 .keo_fetch_timeout = copyin,
843 .keo_fetch_changes = kevent_fetch_changes,
844 .keo_put_events = kevent_put_events,
845 };
846
847 int
848 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
849 register_t *retval)
850 {
851 /* {
852 syscallarg(int) fd;
853 syscallarg(const struct kevent *) changelist;
854 syscallarg(size_t) nchanges;
855 syscallarg(struct kevent *) eventlist;
856 syscallarg(size_t) nevents;
857 syscallarg(const struct timespec *) timeout;
858 } */
859
860 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
861 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
862 SCARG(uap, timeout), &kevent_native_ops);
863 }
864
865 int
866 kevent1(register_t *retval, int fd,
867 const struct kevent *changelist, size_t nchanges,
868 struct kevent *eventlist, size_t nevents,
869 const struct timespec *timeout,
870 const struct kevent_ops *keops)
871 {
872 struct kevent *kevp;
873 struct kqueue *kq;
874 struct timespec ts;
875 size_t i, n, ichange;
876 int nerrors, error;
877 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
878 file_t *fp;
879
880 /* check that we're dealing with a kq */
881 fp = fd_getfile(fd);
882 if (fp == NULL)
883 return (EBADF);
884
885 if (fp->f_type != DTYPE_KQUEUE) {
886 fd_putfile(fd);
887 return (EBADF);
888 }
889
890 if (timeout != NULL) {
891 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
892 if (error)
893 goto done;
894 timeout = &ts;
895 }
896
897 kq = fp->f_kqueue;
898 nerrors = 0;
899 ichange = 0;
900
901 /* traverse list of events to register */
902 while (nchanges > 0) {
903 n = MIN(nchanges, __arraycount(kevbuf));
904 error = (*keops->keo_fetch_changes)(keops->keo_private,
905 changelist, kevbuf, ichange, n);
906 if (error)
907 goto done;
908 for (i = 0; i < n; i++) {
909 kevp = &kevbuf[i];
910 kevp->flags &= ~EV_SYSFLAGS;
911 /* register each knote */
912 error = kqueue_register(kq, kevp);
913 if (!error && !(kevp->flags & EV_RECEIPT))
914 continue;
915 if (nevents == 0)
916 goto done;
917 kevp->flags = EV_ERROR;
918 kevp->data = error;
919 error = (*keops->keo_put_events)
920 (keops->keo_private, kevp,
921 eventlist, nerrors, 1);
922 if (error)
923 goto done;
924 nevents--;
925 nerrors++;
926 }
927 nchanges -= n; /* update the results */
928 ichange += n;
929 }
930 if (nerrors) {
931 *retval = nerrors;
932 error = 0;
933 goto done;
934 }
935
936 /* actually scan through the events */
937 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
938 kevbuf, __arraycount(kevbuf));
939 done:
940 fd_putfile(fd);
941 return (error);
942 }
943
944 /*
945 * Register a given kevent kev onto the kqueue
946 */
947 static int
948 kqueue_register(struct kqueue *kq, struct kevent *kev)
949 {
950 struct kfilter *kfilter;
951 filedesc_t *fdp;
952 file_t *fp;
953 fdfile_t *ff;
954 struct knote *kn, *newkn;
955 struct klist *list;
956 int error, fd, rv;
957
958 fdp = kq->kq_fdp;
959 fp = NULL;
960 kn = NULL;
961 error = 0;
962 fd = 0;
963
964 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
965
966 rw_enter(&kqueue_filter_lock, RW_READER);
967 kfilter = kfilter_byfilter(kev->filter);
968 if (kfilter == NULL || kfilter->filtops == NULL) {
969 /* filter not found nor implemented */
970 rw_exit(&kqueue_filter_lock);
971 kmem_free(newkn, sizeof(*newkn));
972 return (EINVAL);
973 }
974
975 /* search if knote already exists */
976 if (kfilter->filtops->f_isfd) {
977 /* monitoring a file descriptor */
978 /* validate descriptor */
979 if (kev->ident > INT_MAX
980 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
981 rw_exit(&kqueue_filter_lock);
982 kmem_free(newkn, sizeof(*newkn));
983 return EBADF;
984 }
985 mutex_enter(&fdp->fd_lock);
986 ff = fdp->fd_dt->dt_ff[fd];
987 if (fd <= fdp->fd_lastkqfile) {
988 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
989 if (kq == kn->kn_kq &&
990 kev->filter == kn->kn_filter)
991 break;
992 }
993 }
994 } else {
995 /*
996 * not monitoring a file descriptor, so
997 * lookup knotes in internal hash table
998 */
999 mutex_enter(&fdp->fd_lock);
1000 if (fdp->fd_knhashmask != 0) {
1001 list = &fdp->fd_knhash[
1002 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1003 SLIST_FOREACH(kn, list, kn_link) {
1004 if (kev->ident == kn->kn_id &&
1005 kq == kn->kn_kq &&
1006 kev->filter == kn->kn_filter)
1007 break;
1008 }
1009 }
1010 }
1011
1012 /*
1013 * kn now contains the matching knote, or NULL if no match
1014 */
1015 if (kev->flags & EV_ADD) {
1016 if (kn == NULL) {
1017 /* create new knote */
1018 kn = newkn;
1019 newkn = NULL;
1020 kn->kn_obj = fp;
1021 kn->kn_id = kev->ident;
1022 kn->kn_kq = kq;
1023 kn->kn_fop = kfilter->filtops;
1024 kn->kn_kfilter = kfilter;
1025 kn->kn_sfflags = kev->fflags;
1026 kn->kn_sdata = kev->data;
1027 kev->fflags = 0;
1028 kev->data = 0;
1029 kn->kn_kevent = *kev;
1030
1031 KASSERT(kn->kn_fop != NULL);
1032 /*
1033 * apply reference count to knote structure, and
1034 * do not release it at the end of this routine.
1035 */
1036 fp = NULL;
1037
1038 if (!kn->kn_fop->f_isfd) {
1039 /*
1040 * If knote is not on an fd, store on
1041 * internal hash table.
1042 */
1043 if (fdp->fd_knhashmask == 0) {
1044 /* XXXAD can block with fd_lock held */
1045 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1046 HASH_LIST, true,
1047 &fdp->fd_knhashmask);
1048 }
1049 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1050 fdp->fd_knhashmask)];
1051 } else {
1052 /* Otherwise, knote is on an fd. */
1053 list = (struct klist *)
1054 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1055 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1056 fdp->fd_lastkqfile = kn->kn_id;
1057 }
1058 SLIST_INSERT_HEAD(list, kn, kn_link);
1059
1060 KERNEL_LOCK(1, NULL); /* XXXSMP */
1061 error = (*kfilter->filtops->f_attach)(kn);
1062 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1063 if (error != 0) {
1064 #ifdef DIAGNOSTIC
1065 printf("%s: event type %d not supported for "
1066 "file type %d (error %d)\n", __func__,
1067 kn->kn_filter, kn->kn_obj ?
1068 ((file_t *)kn->kn_obj)->f_type : -1, error);
1069 #endif
1070 /* knote_detach() drops fdp->fd_lock */
1071 knote_detach(kn, fdp, false);
1072 goto done;
1073 }
1074 atomic_inc_uint(&kfilter->refcnt);
1075 } else {
1076 /*
1077 * The user may change some filter values after the
1078 * initial EV_ADD, but doing so will not reset any
1079 * filter which have already been triggered.
1080 */
1081 kn->kn_sfflags = kev->fflags;
1082 kn->kn_sdata = kev->data;
1083 kn->kn_kevent.udata = kev->udata;
1084 }
1085 /*
1086 * We can get here if we are trying to attach
1087 * an event to a file descriptor that does not
1088 * support events, and the attach routine is
1089 * broken and does not return an error.
1090 */
1091 KASSERT(kn->kn_fop != NULL);
1092 KASSERT(kn->kn_fop->f_event != NULL);
1093 KERNEL_LOCK(1, NULL); /* XXXSMP */
1094 rv = (*kn->kn_fop->f_event)(kn, 0);
1095 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1096 if (rv)
1097 knote_activate(kn);
1098 } else {
1099 if (kn == NULL) {
1100 error = ENOENT;
1101 mutex_exit(&fdp->fd_lock);
1102 goto done;
1103 }
1104 if (kev->flags & EV_DELETE) {
1105 /* knote_detach() drops fdp->fd_lock */
1106 knote_detach(kn, fdp, true);
1107 goto done;
1108 }
1109 }
1110
1111 /* disable knote */
1112 if ((kev->flags & EV_DISABLE)) {
1113 mutex_spin_enter(&kq->kq_lock);
1114 if ((kn->kn_status & KN_DISABLED) == 0)
1115 kn->kn_status |= KN_DISABLED;
1116 mutex_spin_exit(&kq->kq_lock);
1117 }
1118
1119 /* enable knote */
1120 if ((kev->flags & EV_ENABLE)) {
1121 knote_enqueue(kn);
1122 }
1123 mutex_exit(&fdp->fd_lock);
1124 done:
1125 rw_exit(&kqueue_filter_lock);
1126 if (newkn != NULL)
1127 kmem_free(newkn, sizeof(*newkn));
1128 if (fp != NULL)
1129 fd_putfile(fd);
1130 return (error);
1131 }
1132
1133 #if defined(DEBUG)
1134 #define KN_FMT(buf, kn) \
1135 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1136
1137 static void
1138 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1139 {
1140 const struct knote *kn;
1141 int count;
1142 int nmarker;
1143 char buf[128];
1144
1145 KASSERT(mutex_owned(&kq->kq_lock));
1146 KASSERT(kq->kq_count >= 0);
1147
1148 count = 0;
1149 nmarker = 0;
1150 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1151 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1152 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1153 func, line, kq, kn, KN_FMT(buf, kn));
1154 }
1155 if ((kn->kn_status & KN_MARKER) == 0) {
1156 if (kn->kn_kq != kq) {
1157 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1158 func, line, kq, kn, kn->kn_kq,
1159 KN_FMT(buf, kn));
1160 }
1161 if ((kn->kn_status & KN_ACTIVE) == 0) {
1162 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1163 func, line, kq, kn, KN_FMT(buf, kn));
1164 }
1165 count++;
1166 if (count > kq->kq_count) {
1167 goto bad;
1168 }
1169 } else {
1170 nmarker++;
1171 #if 0
1172 if (nmarker > 10000) {
1173 panic("%s,%zu: kq=%p too many markers: "
1174 "%d != %d, nmarker=%d",
1175 func, line, kq, kq->kq_count, count,
1176 nmarker);
1177 }
1178 #endif
1179 }
1180 }
1181 if (kq->kq_count != count) {
1182 bad:
1183 panic("%s,%zu: kq=%p kq->kq_count(%d) != count(%d), nmarker=%d",
1184 func, line, kq, kq->kq_count, count, nmarker);
1185 }
1186 }
1187 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1188 #else /* defined(DEBUG) */
1189 #define kq_check(a) /* nothing */
1190 #endif /* defined(DEBUG) */
1191
1192 /*
1193 * Scan through the list of events on fp (for a maximum of maxevents),
1194 * returning the results in to ulistp. Timeout is determined by tsp; if
1195 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1196 * as appropriate.
1197 */
1198 static int
1199 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1200 const struct timespec *tsp, register_t *retval,
1201 const struct kevent_ops *keops, struct kevent *kevbuf,
1202 size_t kevcnt)
1203 {
1204 struct kqueue *kq;
1205 struct kevent *kevp;
1206 struct timespec ats, sleepts;
1207 struct knote *kn, *marker, morker;
1208 size_t count, nkev, nevents;
1209 int timeout, error, rv;
1210 filedesc_t *fdp;
1211
1212 fdp = curlwp->l_fd;
1213 kq = fp->f_kqueue;
1214 count = maxevents;
1215 nkev = nevents = error = 0;
1216 if (count == 0) {
1217 *retval = 0;
1218 return 0;
1219 }
1220
1221 if (tsp) { /* timeout supplied */
1222 ats = *tsp;
1223 if (inittimeleft(&ats, &sleepts) == -1) {
1224 *retval = maxevents;
1225 return EINVAL;
1226 }
1227 timeout = tstohz(&ats);
1228 if (timeout <= 0)
1229 timeout = -1; /* do poll */
1230 } else {
1231 /* no timeout, wait forever */
1232 timeout = 0;
1233 }
1234
1235 memset(&morker, 0, sizeof(morker));
1236 marker = &morker;
1237 marker->kn_status = KN_MARKER;
1238 mutex_spin_enter(&kq->kq_lock);
1239 retry:
1240 kevp = kevbuf;
1241 if (kq->kq_count == 0) {
1242 if (timeout >= 0) {
1243 error = cv_timedwait_sig(&kq->kq_cv,
1244 &kq->kq_lock, timeout);
1245 if (error == 0) {
1246 if (tsp == NULL || (timeout =
1247 gettimeleft(&ats, &sleepts)) > 0)
1248 goto retry;
1249 } else {
1250 /* don't restart after signals... */
1251 if (error == ERESTART)
1252 error = EINTR;
1253 if (error == EWOULDBLOCK)
1254 error = 0;
1255 }
1256 }
1257 mutex_spin_exit(&kq->kq_lock);
1258 } else {
1259 /* mark end of knote list */
1260 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1261
1262 /*
1263 * Acquire the fdp->fd_lock interlock to avoid races with
1264 * file creation/destruction from other threads.
1265 */
1266 mutex_spin_exit(&kq->kq_lock);
1267 mutex_enter(&fdp->fd_lock);
1268 mutex_spin_enter(&kq->kq_lock);
1269
1270 while (count != 0) {
1271 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1272 while ((kn->kn_status & KN_MARKER) != 0) {
1273 if (kn == marker) {
1274 /* it's our marker, stop */
1275 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1276 if (count < maxevents || (tsp != NULL &&
1277 (timeout = gettimeleft(&ats,
1278 &sleepts)) <= 0))
1279 goto done;
1280 mutex_exit(&fdp->fd_lock);
1281 goto retry;
1282 }
1283 /* someone else's marker. */
1284 kn = TAILQ_NEXT(kn, kn_tqe);
1285 }
1286 kq_check(kq);
1287 kq->kq_count--;
1288 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1289 kn->kn_status &= ~KN_QUEUED;
1290 kn->kn_status |= KN_BUSY;
1291 kq_check(kq);
1292 if (kn->kn_status & KN_DISABLED) {
1293 kn->kn_status &= ~KN_BUSY;
1294 /* don't want disabled events */
1295 continue;
1296 }
1297 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1298 mutex_spin_exit(&kq->kq_lock);
1299 KASSERT(kn->kn_fop != NULL);
1300 KASSERT(kn->kn_fop->f_event != NULL);
1301 KERNEL_LOCK(1, NULL); /* XXXSMP */
1302 KASSERT(mutex_owned(&fdp->fd_lock));
1303 rv = (*kn->kn_fop->f_event)(kn, 0);
1304 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1305 mutex_spin_enter(&kq->kq_lock);
1306 /* Re-poll if note was re-enqueued. */
1307 if ((kn->kn_status & KN_QUEUED) != 0) {
1308 kn->kn_status &= ~KN_BUSY;
1309 continue;
1310 }
1311 if (rv == 0) {
1312 /*
1313 * non-ONESHOT event that hasn't
1314 * triggered again, so de-queue.
1315 */
1316 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1317 continue;
1318 }
1319 }
1320 /* XXXAD should be got from f_event if !oneshot. */
1321 *kevp++ = kn->kn_kevent;
1322 nkev++;
1323 if (kn->kn_flags & EV_ONESHOT) {
1324 /* delete ONESHOT events after retrieval */
1325 kn->kn_status &= ~KN_BUSY;
1326 mutex_spin_exit(&kq->kq_lock);
1327 knote_detach(kn, fdp, true);
1328 mutex_enter(&fdp->fd_lock);
1329 mutex_spin_enter(&kq->kq_lock);
1330 } else if (kn->kn_flags & EV_CLEAR) {
1331 /* clear state after retrieval */
1332 kn->kn_data = 0;
1333 kn->kn_fflags = 0;
1334 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1335 } else if (kn->kn_flags & EV_DISPATCH) {
1336 kn->kn_status |= KN_DISABLED;
1337 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1338 } else {
1339 /* add event back on list */
1340 kq_check(kq);
1341 kn->kn_status |= KN_QUEUED;
1342 kn->kn_status &= ~KN_BUSY;
1343 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1344 kq->kq_count++;
1345 kq_check(kq);
1346 }
1347 if (nkev == kevcnt) {
1348 /* do copyouts in kevcnt chunks */
1349 mutex_spin_exit(&kq->kq_lock);
1350 mutex_exit(&fdp->fd_lock);
1351 error = (*keops->keo_put_events)
1352 (keops->keo_private,
1353 kevbuf, ulistp, nevents, nkev);
1354 mutex_enter(&fdp->fd_lock);
1355 mutex_spin_enter(&kq->kq_lock);
1356 nevents += nkev;
1357 nkev = 0;
1358 kevp = kevbuf;
1359 }
1360 count--;
1361 if (error != 0 || count == 0) {
1362 /* remove marker */
1363 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1364 break;
1365 }
1366 }
1367 done:
1368 mutex_spin_exit(&kq->kq_lock);
1369 mutex_exit(&fdp->fd_lock);
1370 }
1371 if (nkev != 0) {
1372 /* copyout remaining events */
1373 error = (*keops->keo_put_events)(keops->keo_private,
1374 kevbuf, ulistp, nevents, nkev);
1375 }
1376 *retval = maxevents - count;
1377
1378 return error;
1379 }
1380
1381 /*
1382 * fileops ioctl method for a kqueue descriptor.
1383 *
1384 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1385 * KFILTER_BYNAME find name for filter, and return result in
1386 * name, which is of size len.
1387 * KFILTER_BYFILTER find filter for name. len is ignored.
1388 */
1389 /*ARGSUSED*/
1390 static int
1391 kqueue_ioctl(file_t *fp, u_long com, void *data)
1392 {
1393 struct kfilter_mapping *km;
1394 const struct kfilter *kfilter;
1395 char *name;
1396 int error;
1397
1398 km = data;
1399 error = 0;
1400 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1401
1402 switch (com) {
1403 case KFILTER_BYFILTER: /* convert filter -> name */
1404 rw_enter(&kqueue_filter_lock, RW_READER);
1405 kfilter = kfilter_byfilter(km->filter);
1406 if (kfilter != NULL) {
1407 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1408 rw_exit(&kqueue_filter_lock);
1409 error = copyoutstr(name, km->name, km->len, NULL);
1410 } else {
1411 rw_exit(&kqueue_filter_lock);
1412 error = ENOENT;
1413 }
1414 break;
1415
1416 case KFILTER_BYNAME: /* convert name -> filter */
1417 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1418 if (error) {
1419 break;
1420 }
1421 rw_enter(&kqueue_filter_lock, RW_READER);
1422 kfilter = kfilter_byname(name);
1423 if (kfilter != NULL)
1424 km->filter = kfilter->filter;
1425 else
1426 error = ENOENT;
1427 rw_exit(&kqueue_filter_lock);
1428 break;
1429
1430 default:
1431 error = ENOTTY;
1432 break;
1433
1434 }
1435 kmem_free(name, KFILTER_MAXNAME);
1436 return (error);
1437 }
1438
1439 /*
1440 * fileops fcntl method for a kqueue descriptor.
1441 */
1442 static int
1443 kqueue_fcntl(file_t *fp, u_int com, void *data)
1444 {
1445
1446 return (ENOTTY);
1447 }
1448
1449 /*
1450 * fileops poll method for a kqueue descriptor.
1451 * Determine if kqueue has events pending.
1452 */
1453 static int
1454 kqueue_poll(file_t *fp, int events)
1455 {
1456 struct kqueue *kq;
1457 int revents;
1458
1459 kq = fp->f_kqueue;
1460
1461 revents = 0;
1462 if (events & (POLLIN | POLLRDNORM)) {
1463 mutex_spin_enter(&kq->kq_lock);
1464 if (kq->kq_count != 0) {
1465 revents |= events & (POLLIN | POLLRDNORM);
1466 } else {
1467 selrecord(curlwp, &kq->kq_sel);
1468 }
1469 kq_check(kq);
1470 mutex_spin_exit(&kq->kq_lock);
1471 }
1472
1473 return revents;
1474 }
1475
1476 /*
1477 * fileops stat method for a kqueue descriptor.
1478 * Returns dummy info, with st_size being number of events pending.
1479 */
1480 static int
1481 kqueue_stat(file_t *fp, struct stat *st)
1482 {
1483 struct kqueue *kq;
1484
1485 kq = fp->f_kqueue;
1486
1487 memset(st, 0, sizeof(*st));
1488 st->st_size = kq->kq_count;
1489 st->st_blksize = sizeof(struct kevent);
1490 st->st_mode = S_IFIFO;
1491
1492 return 0;
1493 }
1494
1495 static void
1496 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1497 {
1498 struct knote *kn;
1499 filedesc_t *fdp;
1500
1501 fdp = kq->kq_fdp;
1502
1503 KASSERT(mutex_owned(&fdp->fd_lock));
1504
1505 for (kn = SLIST_FIRST(list); kn != NULL;) {
1506 if (kq != kn->kn_kq) {
1507 kn = SLIST_NEXT(kn, kn_link);
1508 continue;
1509 }
1510 knote_detach(kn, fdp, true);
1511 mutex_enter(&fdp->fd_lock);
1512 kn = SLIST_FIRST(list);
1513 }
1514 }
1515
1516
1517 /*
1518 * fileops close method for a kqueue descriptor.
1519 */
1520 static int
1521 kqueue_close(file_t *fp)
1522 {
1523 struct kqueue *kq;
1524 filedesc_t *fdp;
1525 fdfile_t *ff;
1526 int i;
1527
1528 kq = fp->f_kqueue;
1529 fp->f_kqueue = NULL;
1530 fp->f_type = 0;
1531 fdp = curlwp->l_fd;
1532
1533 mutex_enter(&fdp->fd_lock);
1534 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1535 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1536 continue;
1537 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1538 }
1539 if (fdp->fd_knhashmask != 0) {
1540 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1541 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1542 }
1543 }
1544 mutex_exit(&fdp->fd_lock);
1545
1546 KASSERT(kq->kq_count == 0);
1547 mutex_destroy(&kq->kq_lock);
1548 cv_destroy(&kq->kq_cv);
1549 seldestroy(&kq->kq_sel);
1550 kmem_free(kq, sizeof(*kq));
1551
1552 return (0);
1553 }
1554
1555 /*
1556 * struct fileops kqfilter method for a kqueue descriptor.
1557 * Event triggered when monitored kqueue changes.
1558 */
1559 static int
1560 kqueue_kqfilter(file_t *fp, struct knote *kn)
1561 {
1562 struct kqueue *kq;
1563
1564 kq = ((file_t *)kn->kn_obj)->f_kqueue;
1565
1566 KASSERT(fp == kn->kn_obj);
1567
1568 if (kn->kn_filter != EVFILT_READ)
1569 return 1;
1570
1571 kn->kn_fop = &kqread_filtops;
1572 mutex_enter(&kq->kq_lock);
1573 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1574 mutex_exit(&kq->kq_lock);
1575
1576 return 0;
1577 }
1578
1579
1580 /*
1581 * Walk down a list of knotes, activating them if their event has
1582 * triggered. The caller's object lock (e.g. device driver lock)
1583 * must be held.
1584 */
1585 void
1586 knote(struct klist *list, long hint)
1587 {
1588 struct knote *kn, *tmpkn;
1589
1590 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1591 KASSERT(kn->kn_fop != NULL);
1592 KASSERT(kn->kn_fop->f_event != NULL);
1593 if ((*kn->kn_fop->f_event)(kn, hint))
1594 knote_activate(kn);
1595 }
1596 }
1597
1598 /*
1599 * Remove all knotes referencing a specified fd
1600 */
1601 void
1602 knote_fdclose(int fd)
1603 {
1604 struct klist *list;
1605 struct knote *kn;
1606 filedesc_t *fdp;
1607
1608 fdp = curlwp->l_fd;
1609 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1610 mutex_enter(&fdp->fd_lock);
1611 while ((kn = SLIST_FIRST(list)) != NULL) {
1612 knote_detach(kn, fdp, true);
1613 mutex_enter(&fdp->fd_lock);
1614 }
1615 mutex_exit(&fdp->fd_lock);
1616 }
1617
1618 /*
1619 * Drop knote. Called with fdp->fd_lock held, and will drop before
1620 * returning.
1621 */
1622 static void
1623 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1624 {
1625 struct klist *list;
1626 struct kqueue *kq;
1627
1628 kq = kn->kn_kq;
1629
1630 KASSERT((kn->kn_status & KN_MARKER) == 0);
1631 KASSERT(mutex_owned(&fdp->fd_lock));
1632
1633 KASSERT(kn->kn_fop != NULL);
1634 /* Remove from monitored object. */
1635 if (dofop) {
1636 KASSERT(kn->kn_fop->f_detach != NULL);
1637 KERNEL_LOCK(1, NULL); /* XXXSMP */
1638 (*kn->kn_fop->f_detach)(kn);
1639 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1640 }
1641
1642 /* Remove from descriptor table. */
1643 if (kn->kn_fop->f_isfd)
1644 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1645 else
1646 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1647
1648 SLIST_REMOVE(list, kn, knote, kn_link);
1649
1650 /* Remove from kqueue. */
1651 again:
1652 mutex_spin_enter(&kq->kq_lock);
1653 if ((kn->kn_status & KN_QUEUED) != 0) {
1654 kq_check(kq);
1655 kq->kq_count--;
1656 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1657 kn->kn_status &= ~KN_QUEUED;
1658 kq_check(kq);
1659 } else if (kn->kn_status & KN_BUSY) {
1660 mutex_spin_exit(&kq->kq_lock);
1661 goto again;
1662 }
1663 mutex_spin_exit(&kq->kq_lock);
1664
1665 mutex_exit(&fdp->fd_lock);
1666 if (kn->kn_fop->f_isfd)
1667 fd_putfile(kn->kn_id);
1668 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1669 kmem_free(kn, sizeof(*kn));
1670 }
1671
1672 /*
1673 * Queue new event for knote.
1674 */
1675 static void
1676 knote_enqueue(struct knote *kn)
1677 {
1678 struct kqueue *kq;
1679
1680 KASSERT((kn->kn_status & KN_MARKER) == 0);
1681
1682 kq = kn->kn_kq;
1683
1684 mutex_spin_enter(&kq->kq_lock);
1685 if ((kn->kn_status & KN_DISABLED) != 0) {
1686 kn->kn_status &= ~KN_DISABLED;
1687 }
1688 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1689 kq_check(kq);
1690 kn->kn_status |= KN_QUEUED;
1691 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1692 kq->kq_count++;
1693 kq_check(kq);
1694 cv_broadcast(&kq->kq_cv);
1695 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1696 }
1697 mutex_spin_exit(&kq->kq_lock);
1698 }
1699 /*
1700 * Queue new event for knote.
1701 */
1702 static void
1703 knote_activate(struct knote *kn)
1704 {
1705 struct kqueue *kq;
1706
1707 KASSERT((kn->kn_status & KN_MARKER) == 0);
1708
1709 kq = kn->kn_kq;
1710
1711 mutex_spin_enter(&kq->kq_lock);
1712 kn->kn_status |= KN_ACTIVE;
1713 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1714 kq_check(kq);
1715 kn->kn_status |= KN_QUEUED;
1716 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1717 kq->kq_count++;
1718 kq_check(kq);
1719 cv_broadcast(&kq->kq_cv);
1720 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1721 }
1722 mutex_spin_exit(&kq->kq_lock);
1723 }
1724