kern_event.c revision 1.97 1 /* $NetBSD: kern_event.c,v 1.97 2017/11/07 18:35:57 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org>
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.97 2017/11/07 18:35:57 christos Exp $");
62
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/wait.h>
67 #include <sys/proc.h>
68 #include <sys/file.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/poll.h>
74 #include <sys/kmem.h>
75 #include <sys/stat.h>
76 #include <sys/filedesc.h>
77 #include <sys/syscallargs.h>
78 #include <sys/kauth.h>
79 #include <sys/conf.h>
80 #include <sys/atomic.h>
81
82 static int kqueue_scan(file_t *, size_t, struct kevent *,
83 const struct timespec *, register_t *,
84 const struct kevent_ops *, struct kevent *,
85 size_t);
86 static int kqueue_ioctl(file_t *, u_long, void *);
87 static int kqueue_fcntl(file_t *, u_int, void *);
88 static int kqueue_poll(file_t *, int);
89 static int kqueue_kqfilter(file_t *, struct knote *);
90 static int kqueue_stat(file_t *, struct stat *);
91 static int kqueue_close(file_t *);
92 static int kqueue_register(struct kqueue *, struct kevent *);
93 static void kqueue_doclose(struct kqueue *, struct klist *, int);
94
95 static void knote_detach(struct knote *, filedesc_t *fdp, bool);
96 static void knote_enqueue(struct knote *);
97 static void knote_activate(struct knote *);
98
99 static void filt_kqdetach(struct knote *);
100 static int filt_kqueue(struct knote *, long hint);
101 static int filt_procattach(struct knote *);
102 static void filt_procdetach(struct knote *);
103 static int filt_proc(struct knote *, long hint);
104 static int filt_fileattach(struct knote *);
105 static void filt_timerexpire(void *x);
106 static int filt_timerattach(struct knote *);
107 static void filt_timerdetach(struct knote *);
108 static int filt_timer(struct knote *, long hint);
109
110 static const struct fileops kqueueops = {
111 .fo_read = (void *)enxio,
112 .fo_write = (void *)enxio,
113 .fo_ioctl = kqueue_ioctl,
114 .fo_fcntl = kqueue_fcntl,
115 .fo_poll = kqueue_poll,
116 .fo_stat = kqueue_stat,
117 .fo_close = kqueue_close,
118 .fo_kqfilter = kqueue_kqfilter,
119 .fo_restart = fnullop_restart,
120 };
121
122 static const struct filterops kqread_filtops = {
123 .f_isfd = 1,
124 .f_attach = NULL,
125 .f_detach = filt_kqdetach,
126 .f_event = filt_kqueue,
127 };
128
129 static const struct filterops proc_filtops = {
130 .f_isfd = 0,
131 .f_attach = filt_procattach,
132 .f_detach = filt_procdetach,
133 .f_event = filt_proc,
134 };
135
136 static const struct filterops file_filtops = {
137 .f_isfd = 1,
138 .f_attach = filt_fileattach,
139 .f_detach = NULL,
140 .f_event = NULL,
141 };
142
143 static const struct filterops timer_filtops = {
144 .f_isfd = 0,
145 .f_attach = filt_timerattach,
146 .f_detach = filt_timerdetach,
147 .f_event = filt_timer,
148 };
149
150 static u_int kq_ncallouts = 0;
151 static int kq_calloutmax = (4 * 1024);
152
153 #define KN_HASHSIZE 64 /* XXX should be tunable */
154 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
155
156 extern const struct filterops sig_filtops;
157
158 /*
159 * Table for for all system-defined filters.
160 * These should be listed in the numeric order of the EVFILT_* defines.
161 * If filtops is NULL, the filter isn't implemented in NetBSD.
162 * End of list is when name is NULL.
163 *
164 * Note that 'refcnt' is meaningless for built-in filters.
165 */
166 struct kfilter {
167 const char *name; /* name of filter */
168 uint32_t filter; /* id of filter */
169 unsigned refcnt; /* reference count */
170 const struct filterops *filtops;/* operations for filter */
171 size_t namelen; /* length of name string */
172 };
173
174 /* System defined filters */
175 static struct kfilter sys_kfilters[] = {
176 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
177 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
178 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
179 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
180 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
181 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
182 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
183 { NULL, 0, 0, NULL, 0 },
184 };
185
186 /* User defined kfilters */
187 static struct kfilter *user_kfilters; /* array */
188 static int user_kfilterc; /* current offset */
189 static int user_kfiltermaxc; /* max size so far */
190 static size_t user_kfiltersz; /* size of allocated memory */
191
192 /*
193 * Global Locks.
194 *
195 * Lock order:
196 *
197 * kqueue_filter_lock
198 * -> kn_kq->kq_fdp->fd_lock
199 * -> object lock (e.g., device driver lock, kqueue_misc_lock, &c.)
200 * -> kn_kq->kq_lock
201 *
202 * Locking rules:
203 *
204 * f_attach: fdp->fd_lock, KERNEL_LOCK
205 * f_detach: fdp->fd_lock, KERNEL_LOCK
206 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
207 * f_event via knote: whatever caller guarantees
208 * Typically, f_event(NOTE_SUBMIT) via knote: object lock
209 * f_event(!NOTE_SUBMIT) via knote: nothing,
210 * acquires/releases object lock inside.
211 */
212 static krwlock_t kqueue_filter_lock; /* lock on filter lists */
213 static kmutex_t kqueue_misc_lock; /* miscellaneous */
214
215 static kauth_listener_t kqueue_listener;
216
217 static int
218 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
219 void *arg0, void *arg1, void *arg2, void *arg3)
220 {
221 struct proc *p;
222 int result;
223
224 result = KAUTH_RESULT_DEFER;
225 p = arg0;
226
227 if (action != KAUTH_PROCESS_KEVENT_FILTER)
228 return result;
229
230 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
231 ISSET(p->p_flag, PK_SUGID)))
232 return result;
233
234 result = KAUTH_RESULT_ALLOW;
235
236 return result;
237 }
238
239 /*
240 * Initialize the kqueue subsystem.
241 */
242 void
243 kqueue_init(void)
244 {
245
246 rw_init(&kqueue_filter_lock);
247 mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
248
249 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
250 kqueue_listener_cb, NULL);
251 }
252
253 /*
254 * Find kfilter entry by name, or NULL if not found.
255 */
256 static struct kfilter *
257 kfilter_byname_sys(const char *name)
258 {
259 int i;
260
261 KASSERT(rw_lock_held(&kqueue_filter_lock));
262
263 for (i = 0; sys_kfilters[i].name != NULL; i++) {
264 if (strcmp(name, sys_kfilters[i].name) == 0)
265 return &sys_kfilters[i];
266 }
267 return NULL;
268 }
269
270 static struct kfilter *
271 kfilter_byname_user(const char *name)
272 {
273 int i;
274
275 KASSERT(rw_lock_held(&kqueue_filter_lock));
276
277 /* user filter slots have a NULL name if previously deregistered */
278 for (i = 0; i < user_kfilterc ; i++) {
279 if (user_kfilters[i].name != NULL &&
280 strcmp(name, user_kfilters[i].name) == 0)
281 return &user_kfilters[i];
282 }
283 return NULL;
284 }
285
286 static struct kfilter *
287 kfilter_byname(const char *name)
288 {
289 struct kfilter *kfilter;
290
291 KASSERT(rw_lock_held(&kqueue_filter_lock));
292
293 if ((kfilter = kfilter_byname_sys(name)) != NULL)
294 return kfilter;
295
296 return kfilter_byname_user(name);
297 }
298
299 /*
300 * Find kfilter entry by filter id, or NULL if not found.
301 * Assumes entries are indexed in filter id order, for speed.
302 */
303 static struct kfilter *
304 kfilter_byfilter(uint32_t filter)
305 {
306 struct kfilter *kfilter;
307
308 KASSERT(rw_lock_held(&kqueue_filter_lock));
309
310 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
311 kfilter = &sys_kfilters[filter];
312 else if (user_kfilters != NULL &&
313 filter < EVFILT_SYSCOUNT + user_kfilterc)
314 /* it's a user filter */
315 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
316 else
317 return (NULL); /* out of range */
318 KASSERT(kfilter->filter == filter); /* sanity check! */
319 return (kfilter);
320 }
321
322 /*
323 * Register a new kfilter. Stores the entry in user_kfilters.
324 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
325 * If retfilter != NULL, the new filterid is returned in it.
326 */
327 int
328 kfilter_register(const char *name, const struct filterops *filtops,
329 int *retfilter)
330 {
331 struct kfilter *kfilter;
332 size_t len;
333 int i;
334
335 if (name == NULL || name[0] == '\0' || filtops == NULL)
336 return (EINVAL); /* invalid args */
337
338 rw_enter(&kqueue_filter_lock, RW_WRITER);
339 if (kfilter_byname(name) != NULL) {
340 rw_exit(&kqueue_filter_lock);
341 return (EEXIST); /* already exists */
342 }
343 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
344 rw_exit(&kqueue_filter_lock);
345 return (EINVAL); /* too many */
346 }
347
348 for (i = 0; i < user_kfilterc; i++) {
349 kfilter = &user_kfilters[i];
350 if (kfilter->name == NULL) {
351 /* Previously deregistered slot. Reuse. */
352 goto reuse;
353 }
354 }
355
356 /* check if need to grow user_kfilters */
357 if (user_kfilterc + 1 > user_kfiltermaxc) {
358 /* Grow in KFILTER_EXTENT chunks. */
359 user_kfiltermaxc += KFILTER_EXTENT;
360 len = user_kfiltermaxc * sizeof(*kfilter);
361 kfilter = kmem_alloc(len, KM_SLEEP);
362 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
363 if (user_kfilters != NULL) {
364 memcpy(kfilter, user_kfilters, user_kfiltersz);
365 kmem_free(user_kfilters, user_kfiltersz);
366 }
367 user_kfiltersz = len;
368 user_kfilters = kfilter;
369 }
370 /* Adding new slot */
371 kfilter = &user_kfilters[user_kfilterc++];
372 reuse:
373 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
374
375 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
376
377 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
378 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
379
380 if (retfilter != NULL)
381 *retfilter = kfilter->filter;
382 rw_exit(&kqueue_filter_lock);
383
384 return (0);
385 }
386
387 /*
388 * Unregister a kfilter previously registered with kfilter_register.
389 * This retains the filter id, but clears the name and frees filtops (filter
390 * operations), so that the number isn't reused during a boot.
391 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
392 */
393 int
394 kfilter_unregister(const char *name)
395 {
396 struct kfilter *kfilter;
397
398 if (name == NULL || name[0] == '\0')
399 return (EINVAL); /* invalid name */
400
401 rw_enter(&kqueue_filter_lock, RW_WRITER);
402 if (kfilter_byname_sys(name) != NULL) {
403 rw_exit(&kqueue_filter_lock);
404 return (EINVAL); /* can't detach system filters */
405 }
406
407 kfilter = kfilter_byname_user(name);
408 if (kfilter == NULL) {
409 rw_exit(&kqueue_filter_lock);
410 return (ENOENT);
411 }
412 if (kfilter->refcnt != 0) {
413 rw_exit(&kqueue_filter_lock);
414 return (EBUSY);
415 }
416
417 /* Cast away const (but we know it's safe. */
418 kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
419 kfilter->name = NULL; /* mark as `not implemented' */
420
421 if (kfilter->filtops != NULL) {
422 /* Cast away const (but we know it's safe. */
423 kmem_free(__UNCONST(kfilter->filtops),
424 sizeof(*kfilter->filtops));
425 kfilter->filtops = NULL; /* mark as `not implemented' */
426 }
427 rw_exit(&kqueue_filter_lock);
428
429 return (0);
430 }
431
432
433 /*
434 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
435 * descriptors. Calls fileops kqfilter method for given file descriptor.
436 */
437 static int
438 filt_fileattach(struct knote *kn)
439 {
440 file_t *fp;
441
442 fp = kn->kn_obj;
443
444 return (*fp->f_ops->fo_kqfilter)(fp, kn);
445 }
446
447 /*
448 * Filter detach method for EVFILT_READ on kqueue descriptor.
449 */
450 static void
451 filt_kqdetach(struct knote *kn)
452 {
453 struct kqueue *kq;
454
455 kq = ((file_t *)kn->kn_obj)->f_kqueue;
456
457 mutex_spin_enter(&kq->kq_lock);
458 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
459 mutex_spin_exit(&kq->kq_lock);
460 }
461
462 /*
463 * Filter event method for EVFILT_READ on kqueue descriptor.
464 */
465 /*ARGSUSED*/
466 static int
467 filt_kqueue(struct knote *kn, long hint)
468 {
469 struct kqueue *kq;
470 int rv;
471
472 kq = ((file_t *)kn->kn_obj)->f_kqueue;
473
474 if (hint != NOTE_SUBMIT)
475 mutex_spin_enter(&kq->kq_lock);
476 kn->kn_data = kq->kq_count;
477 rv = (kn->kn_data > 0);
478 if (hint != NOTE_SUBMIT)
479 mutex_spin_exit(&kq->kq_lock);
480
481 return rv;
482 }
483
484 /*
485 * Filter attach method for EVFILT_PROC.
486 */
487 static int
488 filt_procattach(struct knote *kn)
489 {
490 struct proc *p;
491 struct lwp *curl;
492
493 curl = curlwp;
494
495 mutex_enter(proc_lock);
496 if (kn->kn_flags & EV_FLAG1) {
497 /*
498 * NOTE_TRACK attaches to the child process too early
499 * for proc_find, so do a raw look up and check the state
500 * explicitly.
501 */
502 p = proc_find_raw(kn->kn_id);
503 if (p != NULL && p->p_stat != SIDL)
504 p = NULL;
505 } else {
506 p = proc_find(kn->kn_id);
507 }
508
509 if (p == NULL) {
510 mutex_exit(proc_lock);
511 return ESRCH;
512 }
513
514 /*
515 * Fail if it's not owned by you, or the last exec gave us
516 * setuid/setgid privs (unless you're root).
517 */
518 mutex_enter(p->p_lock);
519 mutex_exit(proc_lock);
520 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
521 p, NULL, NULL, NULL) != 0) {
522 mutex_exit(p->p_lock);
523 return EACCES;
524 }
525
526 kn->kn_obj = p;
527 kn->kn_flags |= EV_CLEAR; /* automatically set */
528
529 /*
530 * internal flag indicating registration done by kernel
531 */
532 if (kn->kn_flags & EV_FLAG1) {
533 kn->kn_data = kn->kn_sdata; /* ppid */
534 kn->kn_fflags = NOTE_CHILD;
535 kn->kn_flags &= ~EV_FLAG1;
536 }
537 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
538 mutex_exit(p->p_lock);
539
540 return 0;
541 }
542
543 /*
544 * Filter detach method for EVFILT_PROC.
545 *
546 * The knote may be attached to a different process, which may exit,
547 * leaving nothing for the knote to be attached to. So when the process
548 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
549 * it will be deleted when read out. However, as part of the knote deletion,
550 * this routine is called, so a check is needed to avoid actually performing
551 * a detach, because the original process might not exist any more.
552 */
553 static void
554 filt_procdetach(struct knote *kn)
555 {
556 struct proc *p;
557
558 if (kn->kn_status & KN_DETACHED)
559 return;
560
561 p = kn->kn_obj;
562
563 mutex_enter(p->p_lock);
564 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
565 mutex_exit(p->p_lock);
566 }
567
568 /*
569 * Filter event method for EVFILT_PROC.
570 */
571 static int
572 filt_proc(struct knote *kn, long hint)
573 {
574 u_int event, fflag;
575 struct kevent kev;
576 struct kqueue *kq;
577 int error;
578
579 event = (u_int)hint & NOTE_PCTRLMASK;
580 kq = kn->kn_kq;
581 fflag = 0;
582
583 /* If the user is interested in this event, record it. */
584 if (kn->kn_sfflags & event)
585 fflag |= event;
586
587 if (event == NOTE_EXIT) {
588 struct proc *p = kn->kn_obj;
589
590 if (p != NULL)
591 kn->kn_data = P_WAITSTATUS(p);
592 /*
593 * Process is gone, so flag the event as finished.
594 *
595 * Detach the knote from watched process and mark
596 * it as such. We can't leave this to kqueue_scan(),
597 * since the process might not exist by then. And we
598 * have to do this now, since psignal KNOTE() is called
599 * also for zombies and we might end up reading freed
600 * memory if the kevent would already be picked up
601 * and knote g/c'ed.
602 */
603 filt_procdetach(kn);
604
605 mutex_spin_enter(&kq->kq_lock);
606 kn->kn_status |= KN_DETACHED;
607 /* Mark as ONESHOT, so that the knote it g/c'ed when read */
608 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
609 kn->kn_fflags |= fflag;
610 mutex_spin_exit(&kq->kq_lock);
611
612 return 1;
613 }
614
615 mutex_spin_enter(&kq->kq_lock);
616 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
617 /*
618 * Process forked, and user wants to track the new process,
619 * so attach a new knote to it, and immediately report an
620 * event with the parent's pid. Register knote with new
621 * process.
622 */
623 kev.ident = hint & NOTE_PDATAMASK; /* pid */
624 kev.filter = kn->kn_filter;
625 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
626 kev.fflags = kn->kn_sfflags;
627 kev.data = kn->kn_id; /* parent */
628 kev.udata = kn->kn_kevent.udata; /* preserve udata */
629 mutex_spin_exit(&kq->kq_lock);
630 error = kqueue_register(kq, &kev);
631 mutex_spin_enter(&kq->kq_lock);
632 if (error != 0)
633 kn->kn_fflags |= NOTE_TRACKERR;
634 }
635 kn->kn_fflags |= fflag;
636 fflag = kn->kn_fflags;
637 mutex_spin_exit(&kq->kq_lock);
638
639 return fflag != 0;
640 }
641
642 static void
643 filt_timerexpire(void *knx)
644 {
645 struct knote *kn = knx;
646 int tticks;
647
648 mutex_enter(&kqueue_misc_lock);
649 kn->kn_data++;
650 knote_activate(kn);
651 if ((kn->kn_flags & EV_ONESHOT) == 0) {
652 tticks = mstohz(kn->kn_sdata);
653 if (tticks <= 0)
654 tticks = 1;
655 callout_schedule((callout_t *)kn->kn_hook, tticks);
656 }
657 mutex_exit(&kqueue_misc_lock);
658 }
659
660 /*
661 * data contains amount of time to sleep, in milliseconds
662 */
663 static int
664 filt_timerattach(struct knote *kn)
665 {
666 callout_t *calloutp;
667 struct kqueue *kq;
668 int tticks;
669
670 tticks = mstohz(kn->kn_sdata);
671
672 /* if the supplied value is under our resolution, use 1 tick */
673 if (tticks == 0) {
674 if (kn->kn_sdata == 0)
675 return EINVAL;
676 tticks = 1;
677 }
678
679 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
680 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
681 atomic_dec_uint(&kq_ncallouts);
682 return ENOMEM;
683 }
684 callout_init(calloutp, CALLOUT_MPSAFE);
685
686 kq = kn->kn_kq;
687 mutex_spin_enter(&kq->kq_lock);
688 kn->kn_flags |= EV_CLEAR; /* automatically set */
689 kn->kn_hook = calloutp;
690 mutex_spin_exit(&kq->kq_lock);
691
692 callout_reset(calloutp, tticks, filt_timerexpire, kn);
693
694 return (0);
695 }
696
697 static void
698 filt_timerdetach(struct knote *kn)
699 {
700 callout_t *calloutp;
701
702 calloutp = (callout_t *)kn->kn_hook;
703 callout_halt(calloutp, NULL);
704 callout_destroy(calloutp);
705 kmem_free(calloutp, sizeof(*calloutp));
706 atomic_dec_uint(&kq_ncallouts);
707 }
708
709 static int
710 filt_timer(struct knote *kn, long hint)
711 {
712 int rv;
713
714 mutex_enter(&kqueue_misc_lock);
715 rv = (kn->kn_data != 0);
716 mutex_exit(&kqueue_misc_lock);
717
718 return rv;
719 }
720
721 /*
722 * filt_seltrue:
723 *
724 * This filter "event" routine simulates seltrue().
725 */
726 int
727 filt_seltrue(struct knote *kn, long hint)
728 {
729
730 /*
731 * We don't know how much data can be read/written,
732 * but we know that it *can* be. This is about as
733 * good as select/poll does as well.
734 */
735 kn->kn_data = 0;
736 return (1);
737 }
738
739 /*
740 * This provides full kqfilter entry for device switch tables, which
741 * has same effect as filter using filt_seltrue() as filter method.
742 */
743 static void
744 filt_seltruedetach(struct knote *kn)
745 {
746 /* Nothing to do */
747 }
748
749 const struct filterops seltrue_filtops = {
750 .f_isfd = 1,
751 .f_attach = NULL,
752 .f_detach = filt_seltruedetach,
753 .f_event = filt_seltrue,
754 };
755
756 int
757 seltrue_kqfilter(dev_t dev, struct knote *kn)
758 {
759 switch (kn->kn_filter) {
760 case EVFILT_READ:
761 case EVFILT_WRITE:
762 kn->kn_fop = &seltrue_filtops;
763 break;
764 default:
765 return (EINVAL);
766 }
767
768 /* Nothing more to do */
769 return (0);
770 }
771
772 /*
773 * kqueue(2) system call.
774 */
775 static int
776 kqueue1(struct lwp *l, int flags, register_t *retval)
777 {
778 struct kqueue *kq;
779 file_t *fp;
780 int fd, error;
781
782 if ((error = fd_allocfile(&fp, &fd)) != 0)
783 return error;
784 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
785 fp->f_type = DTYPE_KQUEUE;
786 fp->f_ops = &kqueueops;
787 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
788 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
789 cv_init(&kq->kq_cv, "kqueue");
790 selinit(&kq->kq_sel);
791 TAILQ_INIT(&kq->kq_head);
792 fp->f_kqueue = kq;
793 *retval = fd;
794 kq->kq_fdp = curlwp->l_fd;
795 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
796 fd_affix(curproc, fp, fd);
797 return error;
798 }
799
800 /*
801 * kqueue(2) system call.
802 */
803 int
804 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
805 {
806 return kqueue1(l, 0, retval);
807 }
808
809 int
810 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
811 register_t *retval)
812 {
813 /* {
814 syscallarg(int) flags;
815 } */
816 return kqueue1(l, SCARG(uap, flags), retval);
817 }
818
819 /*
820 * kevent(2) system call.
821 */
822 int
823 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
824 struct kevent *changes, size_t index, int n)
825 {
826
827 return copyin(changelist + index, changes, n * sizeof(*changes));
828 }
829
830 int
831 kevent_put_events(void *ctx, struct kevent *events,
832 struct kevent *eventlist, size_t index, int n)
833 {
834
835 return copyout(events, eventlist + index, n * sizeof(*events));
836 }
837
838 static const struct kevent_ops kevent_native_ops = {
839 .keo_private = NULL,
840 .keo_fetch_timeout = copyin,
841 .keo_fetch_changes = kevent_fetch_changes,
842 .keo_put_events = kevent_put_events,
843 };
844
845 int
846 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
847 register_t *retval)
848 {
849 /* {
850 syscallarg(int) fd;
851 syscallarg(const struct kevent *) changelist;
852 syscallarg(size_t) nchanges;
853 syscallarg(struct kevent *) eventlist;
854 syscallarg(size_t) nevents;
855 syscallarg(const struct timespec *) timeout;
856 } */
857
858 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
859 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
860 SCARG(uap, timeout), &kevent_native_ops);
861 }
862
863 int
864 kevent1(register_t *retval, int fd,
865 const struct kevent *changelist, size_t nchanges,
866 struct kevent *eventlist, size_t nevents,
867 const struct timespec *timeout,
868 const struct kevent_ops *keops)
869 {
870 struct kevent *kevp;
871 struct kqueue *kq;
872 struct timespec ts;
873 size_t i, n, ichange;
874 int nerrors, error;
875 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
876 file_t *fp;
877
878 /* check that we're dealing with a kq */
879 fp = fd_getfile(fd);
880 if (fp == NULL)
881 return (EBADF);
882
883 if (fp->f_type != DTYPE_KQUEUE) {
884 fd_putfile(fd);
885 return (EBADF);
886 }
887
888 if (timeout != NULL) {
889 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
890 if (error)
891 goto done;
892 timeout = &ts;
893 }
894
895 kq = fp->f_kqueue;
896 nerrors = 0;
897 ichange = 0;
898
899 /* traverse list of events to register */
900 while (nchanges > 0) {
901 n = MIN(nchanges, __arraycount(kevbuf));
902 error = (*keops->keo_fetch_changes)(keops->keo_private,
903 changelist, kevbuf, ichange, n);
904 if (error)
905 goto done;
906 for (i = 0; i < n; i++) {
907 kevp = &kevbuf[i];
908 kevp->flags &= ~EV_SYSFLAGS;
909 /* register each knote */
910 error = kqueue_register(kq, kevp);
911 if (!error && !(kevp->flags & EV_RECEIPT))
912 continue;
913 if (nevents == 0)
914 goto done;
915 kevp->flags = EV_ERROR;
916 kevp->data = error;
917 error = (*keops->keo_put_events)
918 (keops->keo_private, kevp,
919 eventlist, nerrors, 1);
920 if (error)
921 goto done;
922 nevents--;
923 nerrors++;
924 }
925 nchanges -= n; /* update the results */
926 ichange += n;
927 }
928 if (nerrors) {
929 *retval = nerrors;
930 error = 0;
931 goto done;
932 }
933
934 /* actually scan through the events */
935 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
936 kevbuf, __arraycount(kevbuf));
937 done:
938 fd_putfile(fd);
939 return (error);
940 }
941
942 /*
943 * Register a given kevent kev onto the kqueue
944 */
945 static int
946 kqueue_register(struct kqueue *kq, struct kevent *kev)
947 {
948 struct kfilter *kfilter;
949 filedesc_t *fdp;
950 file_t *fp;
951 fdfile_t *ff;
952 struct knote *kn, *newkn;
953 struct klist *list;
954 int error, fd, rv;
955
956 fdp = kq->kq_fdp;
957 fp = NULL;
958 kn = NULL;
959 error = 0;
960 fd = 0;
961
962 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
963
964 rw_enter(&kqueue_filter_lock, RW_READER);
965 kfilter = kfilter_byfilter(kev->filter);
966 if (kfilter == NULL || kfilter->filtops == NULL) {
967 /* filter not found nor implemented */
968 rw_exit(&kqueue_filter_lock);
969 kmem_free(newkn, sizeof(*newkn));
970 return (EINVAL);
971 }
972
973 /* search if knote already exists */
974 if (kfilter->filtops->f_isfd) {
975 /* monitoring a file descriptor */
976 /* validate descriptor */
977 if (kev->ident > INT_MAX
978 || (fp = fd_getfile(fd = kev->ident)) == NULL) {
979 rw_exit(&kqueue_filter_lock);
980 kmem_free(newkn, sizeof(*newkn));
981 return EBADF;
982 }
983 mutex_enter(&fdp->fd_lock);
984 ff = fdp->fd_dt->dt_ff[fd];
985 if (fd <= fdp->fd_lastkqfile) {
986 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
987 if (kq == kn->kn_kq &&
988 kev->filter == kn->kn_filter)
989 break;
990 }
991 }
992 } else {
993 /*
994 * not monitoring a file descriptor, so
995 * lookup knotes in internal hash table
996 */
997 mutex_enter(&fdp->fd_lock);
998 if (fdp->fd_knhashmask != 0) {
999 list = &fdp->fd_knhash[
1000 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1001 SLIST_FOREACH(kn, list, kn_link) {
1002 if (kev->ident == kn->kn_id &&
1003 kq == kn->kn_kq &&
1004 kev->filter == kn->kn_filter)
1005 break;
1006 }
1007 }
1008 }
1009
1010 /*
1011 * kn now contains the matching knote, or NULL if no match
1012 */
1013 if (kev->flags & EV_ADD) {
1014 if (kn == NULL) {
1015 /* create new knote */
1016 kn = newkn;
1017 newkn = NULL;
1018 kn->kn_obj = fp;
1019 kn->kn_id = kev->ident;
1020 kn->kn_kq = kq;
1021 kn->kn_fop = kfilter->filtops;
1022 kn->kn_kfilter = kfilter;
1023 kn->kn_sfflags = kev->fflags;
1024 kn->kn_sdata = kev->data;
1025 kev->fflags = 0;
1026 kev->data = 0;
1027 kn->kn_kevent = *kev;
1028
1029 KASSERT(kn->kn_fop != NULL);
1030 /*
1031 * apply reference count to knote structure, and
1032 * do not release it at the end of this routine.
1033 */
1034 fp = NULL;
1035
1036 if (!kn->kn_fop->f_isfd) {
1037 /*
1038 * If knote is not on an fd, store on
1039 * internal hash table.
1040 */
1041 if (fdp->fd_knhashmask == 0) {
1042 /* XXXAD can block with fd_lock held */
1043 fdp->fd_knhash = hashinit(KN_HASHSIZE,
1044 HASH_LIST, true,
1045 &fdp->fd_knhashmask);
1046 }
1047 list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1048 fdp->fd_knhashmask)];
1049 } else {
1050 /* Otherwise, knote is on an fd. */
1051 list = (struct klist *)
1052 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1053 if ((int)kn->kn_id > fdp->fd_lastkqfile)
1054 fdp->fd_lastkqfile = kn->kn_id;
1055 }
1056 SLIST_INSERT_HEAD(list, kn, kn_link);
1057
1058 KERNEL_LOCK(1, NULL); /* XXXSMP */
1059 error = (*kfilter->filtops->f_attach)(kn);
1060 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1061 if (error != 0) {
1062 #ifdef DIAGNOSTIC
1063 printf("%s: event type %d not supported for "
1064 "file type %d (error %d)\n", __func__,
1065 kn->kn_filter, kn->kn_obj ?
1066 ((file_t *)kn->kn_obj)->f_type : -1, error);
1067 #endif
1068 /* knote_detach() drops fdp->fd_lock */
1069 knote_detach(kn, fdp, false);
1070 goto done;
1071 }
1072 atomic_inc_uint(&kfilter->refcnt);
1073 } else {
1074 /*
1075 * The user may change some filter values after the
1076 * initial EV_ADD, but doing so will not reset any
1077 * filter which have already been triggered.
1078 */
1079 kn->kn_sfflags = kev->fflags;
1080 kn->kn_sdata = kev->data;
1081 kn->kn_kevent.udata = kev->udata;
1082 }
1083 /*
1084 * We can get here if we are trying to attach
1085 * an event to a file descriptor that does not
1086 * support events, and the attach routine is
1087 * broken and does not return an error.
1088 */
1089 KASSERT(kn->kn_fop != NULL);
1090 KASSERT(kn->kn_fop->f_event != NULL);
1091 KERNEL_LOCK(1, NULL); /* XXXSMP */
1092 rv = (*kn->kn_fop->f_event)(kn, 0);
1093 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1094 if (rv)
1095 knote_activate(kn);
1096 } else {
1097 if (kn == NULL) {
1098 error = ENOENT;
1099 mutex_exit(&fdp->fd_lock);
1100 goto done;
1101 }
1102 if (kev->flags & EV_DELETE) {
1103 /* knote_detach() drops fdp->fd_lock */
1104 knote_detach(kn, fdp, true);
1105 goto done;
1106 }
1107 }
1108
1109 /* disable knote */
1110 if ((kev->flags & EV_DISABLE)) {
1111 mutex_spin_enter(&kq->kq_lock);
1112 if ((kn->kn_status & KN_DISABLED) == 0)
1113 kn->kn_status |= KN_DISABLED;
1114 mutex_spin_exit(&kq->kq_lock);
1115 }
1116
1117 /* enable knote */
1118 if ((kev->flags & EV_ENABLE)) {
1119 knote_enqueue(kn);
1120 }
1121 mutex_exit(&fdp->fd_lock);
1122 done:
1123 rw_exit(&kqueue_filter_lock);
1124 if (newkn != NULL)
1125 kmem_free(newkn, sizeof(*newkn));
1126 if (fp != NULL)
1127 fd_putfile(fd);
1128 return (error);
1129 }
1130
1131 #if defined(DEBUG)
1132 #define KN_FMT(buf, kn) \
1133 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1134
1135 static void
1136 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
1137 {
1138 const struct knote *kn;
1139 int count;
1140 int nmarker;
1141 char buf[128];
1142
1143 KASSERT(mutex_owned(&kq->kq_lock));
1144 KASSERT(kq->kq_count >= 0);
1145
1146 count = 0;
1147 nmarker = 0;
1148 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1149 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1150 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
1151 func, line, kq, kn, KN_FMT(buf, kn));
1152 }
1153 if ((kn->kn_status & KN_MARKER) == 0) {
1154 if (kn->kn_kq != kq) {
1155 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
1156 func, line, kq, kn, kn->kn_kq,
1157 KN_FMT(buf, kn));
1158 }
1159 if ((kn->kn_status & KN_ACTIVE) == 0) {
1160 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
1161 func, line, kq, kn, KN_FMT(buf, kn));
1162 }
1163 count++;
1164 if (count > kq->kq_count) {
1165 goto bad;
1166 }
1167 } else {
1168 nmarker++;
1169 #if 0
1170 if (nmarker > 10000) {
1171 panic("%s,%zu: kq=%p too many markers: "
1172 "%d != %d, nmarker=%d",
1173 func, line, kq, kq->kq_count, count,
1174 nmarker);
1175 }
1176 #endif
1177 }
1178 }
1179 if (kq->kq_count != count) {
1180 bad:
1181 panic("%s,%zu: kq=%p kq->kq_count(%d) != count(%d), nmarker=%d",
1182 func, line, kq, kq->kq_count, count, nmarker);
1183 }
1184 }
1185 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
1186 #else /* defined(DEBUG) */
1187 #define kq_check(a) /* nothing */
1188 #endif /* defined(DEBUG) */
1189
1190 /*
1191 * Scan through the list of events on fp (for a maximum of maxevents),
1192 * returning the results in to ulistp. Timeout is determined by tsp; if
1193 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1194 * as appropriate.
1195 */
1196 static int
1197 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1198 const struct timespec *tsp, register_t *retval,
1199 const struct kevent_ops *keops, struct kevent *kevbuf,
1200 size_t kevcnt)
1201 {
1202 struct kqueue *kq;
1203 struct kevent *kevp;
1204 struct timespec ats, sleepts;
1205 struct knote *kn, *marker, morker;
1206 size_t count, nkev, nevents;
1207 int timeout, error, rv;
1208 filedesc_t *fdp;
1209
1210 fdp = curlwp->l_fd;
1211 kq = fp->f_kqueue;
1212 count = maxevents;
1213 nkev = nevents = error = 0;
1214 if (count == 0) {
1215 *retval = 0;
1216 return 0;
1217 }
1218
1219 if (tsp) { /* timeout supplied */
1220 ats = *tsp;
1221 if (inittimeleft(&ats, &sleepts) == -1) {
1222 *retval = maxevents;
1223 return EINVAL;
1224 }
1225 timeout = tstohz(&ats);
1226 if (timeout <= 0)
1227 timeout = -1; /* do poll */
1228 } else {
1229 /* no timeout, wait forever */
1230 timeout = 0;
1231 }
1232
1233 memset(&morker, 0, sizeof(morker));
1234 marker = &morker;
1235 marker->kn_status = KN_MARKER;
1236 mutex_spin_enter(&kq->kq_lock);
1237 retry:
1238 kevp = kevbuf;
1239 if (kq->kq_count == 0) {
1240 if (timeout >= 0) {
1241 error = cv_timedwait_sig(&kq->kq_cv,
1242 &kq->kq_lock, timeout);
1243 if (error == 0) {
1244 if (tsp == NULL || (timeout =
1245 gettimeleft(&ats, &sleepts)) > 0)
1246 goto retry;
1247 } else {
1248 /* don't restart after signals... */
1249 if (error == ERESTART)
1250 error = EINTR;
1251 if (error == EWOULDBLOCK)
1252 error = 0;
1253 }
1254 }
1255 mutex_spin_exit(&kq->kq_lock);
1256 } else {
1257 /* mark end of knote list */
1258 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1259
1260 /*
1261 * Acquire the fdp->fd_lock interlock to avoid races with
1262 * file creation/destruction from other threads.
1263 */
1264 mutex_spin_exit(&kq->kq_lock);
1265 mutex_enter(&fdp->fd_lock);
1266 mutex_spin_enter(&kq->kq_lock);
1267
1268 while (count != 0) {
1269 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */
1270 while ((kn->kn_status & KN_MARKER) != 0) {
1271 if (kn == marker) {
1272 /* it's our marker, stop */
1273 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1274 if (count < maxevents || (tsp != NULL &&
1275 (timeout = gettimeleft(&ats,
1276 &sleepts)) <= 0))
1277 goto done;
1278 mutex_exit(&fdp->fd_lock);
1279 goto retry;
1280 }
1281 /* someone else's marker. */
1282 kn = TAILQ_NEXT(kn, kn_tqe);
1283 }
1284 kq_check(kq);
1285 kq->kq_count--;
1286 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1287 kn->kn_status &= ~KN_QUEUED;
1288 kn->kn_status |= KN_BUSY;
1289 kq_check(kq);
1290 if (kn->kn_status & KN_DISABLED) {
1291 kn->kn_status &= ~KN_BUSY;
1292 /* don't want disabled events */
1293 continue;
1294 }
1295 if ((kn->kn_flags & EV_ONESHOT) == 0) {
1296 mutex_spin_exit(&kq->kq_lock);
1297 KASSERT(kn->kn_fop != NULL);
1298 KASSERT(kn->kn_fop->f_event != NULL);
1299 KERNEL_LOCK(1, NULL); /* XXXSMP */
1300 KASSERT(mutex_owned(&fdp->fd_lock));
1301 rv = (*kn->kn_fop->f_event)(kn, 0);
1302 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1303 mutex_spin_enter(&kq->kq_lock);
1304 /* Re-poll if note was re-enqueued. */
1305 if ((kn->kn_status & KN_QUEUED) != 0) {
1306 kn->kn_status &= ~KN_BUSY;
1307 continue;
1308 }
1309 if (rv == 0) {
1310 /*
1311 * non-ONESHOT event that hasn't
1312 * triggered again, so de-queue.
1313 */
1314 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
1315 continue;
1316 }
1317 }
1318 /* XXXAD should be got from f_event if !oneshot. */
1319 *kevp++ = kn->kn_kevent;
1320 nkev++;
1321 if (kn->kn_flags & EV_ONESHOT) {
1322 /* delete ONESHOT events after retrieval */
1323 kn->kn_status &= ~KN_BUSY;
1324 mutex_spin_exit(&kq->kq_lock);
1325 knote_detach(kn, fdp, true);
1326 mutex_enter(&fdp->fd_lock);
1327 mutex_spin_enter(&kq->kq_lock);
1328 } else if (kn->kn_flags & EV_CLEAR) {
1329 /* clear state after retrieval */
1330 kn->kn_data = 0;
1331 kn->kn_fflags = 0;
1332 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1333 } else if (kn->kn_flags & EV_DISPATCH) {
1334 kn->kn_status |= KN_DISABLED;
1335 kn->kn_status &= ~(KN_QUEUED|KN_ACTIVE|KN_BUSY);
1336 } else {
1337 /* add event back on list */
1338 kq_check(kq);
1339 kn->kn_status |= KN_QUEUED;
1340 kn->kn_status &= ~KN_BUSY;
1341 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1342 kq->kq_count++;
1343 kq_check(kq);
1344 }
1345 if (nkev == kevcnt) {
1346 /* do copyouts in kevcnt chunks */
1347 mutex_spin_exit(&kq->kq_lock);
1348 mutex_exit(&fdp->fd_lock);
1349 error = (*keops->keo_put_events)
1350 (keops->keo_private,
1351 kevbuf, ulistp, nevents, nkev);
1352 mutex_enter(&fdp->fd_lock);
1353 mutex_spin_enter(&kq->kq_lock);
1354 nevents += nkev;
1355 nkev = 0;
1356 kevp = kevbuf;
1357 }
1358 count--;
1359 if (error != 0 || count == 0) {
1360 /* remove marker */
1361 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1362 break;
1363 }
1364 }
1365 done:
1366 mutex_spin_exit(&kq->kq_lock);
1367 mutex_exit(&fdp->fd_lock);
1368 }
1369 if (nkev != 0) {
1370 /* copyout remaining events */
1371 error = (*keops->keo_put_events)(keops->keo_private,
1372 kevbuf, ulistp, nevents, nkev);
1373 }
1374 *retval = maxevents - count;
1375
1376 return error;
1377 }
1378
1379 /*
1380 * fileops ioctl method for a kqueue descriptor.
1381 *
1382 * Two ioctls are currently supported. They both use struct kfilter_mapping:
1383 * KFILTER_BYNAME find name for filter, and return result in
1384 * name, which is of size len.
1385 * KFILTER_BYFILTER find filter for name. len is ignored.
1386 */
1387 /*ARGSUSED*/
1388 static int
1389 kqueue_ioctl(file_t *fp, u_long com, void *data)
1390 {
1391 struct kfilter_mapping *km;
1392 const struct kfilter *kfilter;
1393 char *name;
1394 int error;
1395
1396 km = data;
1397 error = 0;
1398 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1399
1400 switch (com) {
1401 case KFILTER_BYFILTER: /* convert filter -> name */
1402 rw_enter(&kqueue_filter_lock, RW_READER);
1403 kfilter = kfilter_byfilter(km->filter);
1404 if (kfilter != NULL) {
1405 strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1406 rw_exit(&kqueue_filter_lock);
1407 error = copyoutstr(name, km->name, km->len, NULL);
1408 } else {
1409 rw_exit(&kqueue_filter_lock);
1410 error = ENOENT;
1411 }
1412 break;
1413
1414 case KFILTER_BYNAME: /* convert name -> filter */
1415 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1416 if (error) {
1417 break;
1418 }
1419 rw_enter(&kqueue_filter_lock, RW_READER);
1420 kfilter = kfilter_byname(name);
1421 if (kfilter != NULL)
1422 km->filter = kfilter->filter;
1423 else
1424 error = ENOENT;
1425 rw_exit(&kqueue_filter_lock);
1426 break;
1427
1428 default:
1429 error = ENOTTY;
1430 break;
1431
1432 }
1433 kmem_free(name, KFILTER_MAXNAME);
1434 return (error);
1435 }
1436
1437 /*
1438 * fileops fcntl method for a kqueue descriptor.
1439 */
1440 static int
1441 kqueue_fcntl(file_t *fp, u_int com, void *data)
1442 {
1443
1444 return (ENOTTY);
1445 }
1446
1447 /*
1448 * fileops poll method for a kqueue descriptor.
1449 * Determine if kqueue has events pending.
1450 */
1451 static int
1452 kqueue_poll(file_t *fp, int events)
1453 {
1454 struct kqueue *kq;
1455 int revents;
1456
1457 kq = fp->f_kqueue;
1458
1459 revents = 0;
1460 if (events & (POLLIN | POLLRDNORM)) {
1461 mutex_spin_enter(&kq->kq_lock);
1462 if (kq->kq_count != 0) {
1463 revents |= events & (POLLIN | POLLRDNORM);
1464 } else {
1465 selrecord(curlwp, &kq->kq_sel);
1466 }
1467 kq_check(kq);
1468 mutex_spin_exit(&kq->kq_lock);
1469 }
1470
1471 return revents;
1472 }
1473
1474 /*
1475 * fileops stat method for a kqueue descriptor.
1476 * Returns dummy info, with st_size being number of events pending.
1477 */
1478 static int
1479 kqueue_stat(file_t *fp, struct stat *st)
1480 {
1481 struct kqueue *kq;
1482
1483 kq = fp->f_kqueue;
1484
1485 memset(st, 0, sizeof(*st));
1486 st->st_size = kq->kq_count;
1487 st->st_blksize = sizeof(struct kevent);
1488 st->st_mode = S_IFIFO;
1489
1490 return 0;
1491 }
1492
1493 static void
1494 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1495 {
1496 struct knote *kn;
1497 filedesc_t *fdp;
1498
1499 fdp = kq->kq_fdp;
1500
1501 KASSERT(mutex_owned(&fdp->fd_lock));
1502
1503 for (kn = SLIST_FIRST(list); kn != NULL;) {
1504 if (kq != kn->kn_kq) {
1505 kn = SLIST_NEXT(kn, kn_link);
1506 continue;
1507 }
1508 knote_detach(kn, fdp, true);
1509 mutex_enter(&fdp->fd_lock);
1510 kn = SLIST_FIRST(list);
1511 }
1512 }
1513
1514
1515 /*
1516 * fileops close method for a kqueue descriptor.
1517 */
1518 static int
1519 kqueue_close(file_t *fp)
1520 {
1521 struct kqueue *kq;
1522 filedesc_t *fdp;
1523 fdfile_t *ff;
1524 int i;
1525
1526 kq = fp->f_kqueue;
1527 fp->f_kqueue = NULL;
1528 fp->f_type = 0;
1529 fdp = curlwp->l_fd;
1530
1531 mutex_enter(&fdp->fd_lock);
1532 for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1533 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1534 continue;
1535 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1536 }
1537 if (fdp->fd_knhashmask != 0) {
1538 for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1539 kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1540 }
1541 }
1542 mutex_exit(&fdp->fd_lock);
1543
1544 KASSERT(kq->kq_count == 0);
1545 mutex_destroy(&kq->kq_lock);
1546 cv_destroy(&kq->kq_cv);
1547 seldestroy(&kq->kq_sel);
1548 kmem_free(kq, sizeof(*kq));
1549
1550 return (0);
1551 }
1552
1553 /*
1554 * struct fileops kqfilter method for a kqueue descriptor.
1555 * Event triggered when monitored kqueue changes.
1556 */
1557 static int
1558 kqueue_kqfilter(file_t *fp, struct knote *kn)
1559 {
1560 struct kqueue *kq;
1561
1562 kq = ((file_t *)kn->kn_obj)->f_kqueue;
1563
1564 KASSERT(fp == kn->kn_obj);
1565
1566 if (kn->kn_filter != EVFILT_READ)
1567 return 1;
1568
1569 kn->kn_fop = &kqread_filtops;
1570 mutex_enter(&kq->kq_lock);
1571 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1572 mutex_exit(&kq->kq_lock);
1573
1574 return 0;
1575 }
1576
1577
1578 /*
1579 * Walk down a list of knotes, activating them if their event has
1580 * triggered. The caller's object lock (e.g. device driver lock)
1581 * must be held.
1582 */
1583 void
1584 knote(struct klist *list, long hint)
1585 {
1586 struct knote *kn, *tmpkn;
1587
1588 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1589 KASSERT(kn->kn_fop != NULL);
1590 KASSERT(kn->kn_fop->f_event != NULL);
1591 if ((*kn->kn_fop->f_event)(kn, hint))
1592 knote_activate(kn);
1593 }
1594 }
1595
1596 /*
1597 * Remove all knotes referencing a specified fd
1598 */
1599 void
1600 knote_fdclose(int fd)
1601 {
1602 struct klist *list;
1603 struct knote *kn;
1604 filedesc_t *fdp;
1605
1606 fdp = curlwp->l_fd;
1607 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1608 mutex_enter(&fdp->fd_lock);
1609 while ((kn = SLIST_FIRST(list)) != NULL) {
1610 knote_detach(kn, fdp, true);
1611 mutex_enter(&fdp->fd_lock);
1612 }
1613 mutex_exit(&fdp->fd_lock);
1614 }
1615
1616 /*
1617 * Drop knote. Called with fdp->fd_lock held, and will drop before
1618 * returning.
1619 */
1620 static void
1621 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1622 {
1623 struct klist *list;
1624 struct kqueue *kq;
1625
1626 kq = kn->kn_kq;
1627
1628 KASSERT((kn->kn_status & KN_MARKER) == 0);
1629 KASSERT(mutex_owned(&fdp->fd_lock));
1630
1631 KASSERT(kn->kn_fop != NULL);
1632 /* Remove from monitored object. */
1633 if (dofop) {
1634 KASSERT(kn->kn_fop->f_detach != NULL);
1635 KERNEL_LOCK(1, NULL); /* XXXSMP */
1636 (*kn->kn_fop->f_detach)(kn);
1637 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */
1638 }
1639
1640 /* Remove from descriptor table. */
1641 if (kn->kn_fop->f_isfd)
1642 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1643 else
1644 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1645
1646 SLIST_REMOVE(list, kn, knote, kn_link);
1647
1648 /* Remove from kqueue. */
1649 again:
1650 mutex_spin_enter(&kq->kq_lock);
1651 if ((kn->kn_status & KN_QUEUED) != 0) {
1652 kq_check(kq);
1653 kq->kq_count--;
1654 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1655 kn->kn_status &= ~KN_QUEUED;
1656 kq_check(kq);
1657 } else if (kn->kn_status & KN_BUSY) {
1658 mutex_spin_exit(&kq->kq_lock);
1659 goto again;
1660 }
1661 mutex_spin_exit(&kq->kq_lock);
1662
1663 mutex_exit(&fdp->fd_lock);
1664 if (kn->kn_fop->f_isfd)
1665 fd_putfile(kn->kn_id);
1666 atomic_dec_uint(&kn->kn_kfilter->refcnt);
1667 kmem_free(kn, sizeof(*kn));
1668 }
1669
1670 /*
1671 * Queue new event for knote.
1672 */
1673 static void
1674 knote_enqueue(struct knote *kn)
1675 {
1676 struct kqueue *kq;
1677
1678 KASSERT((kn->kn_status & KN_MARKER) == 0);
1679
1680 kq = kn->kn_kq;
1681
1682 mutex_spin_enter(&kq->kq_lock);
1683 if ((kn->kn_status & KN_DISABLED) != 0) {
1684 kn->kn_status &= ~KN_DISABLED;
1685 }
1686 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1687 kq_check(kq);
1688 kn->kn_status |= KN_QUEUED;
1689 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1690 kq->kq_count++;
1691 kq_check(kq);
1692 cv_broadcast(&kq->kq_cv);
1693 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1694 }
1695 mutex_spin_exit(&kq->kq_lock);
1696 }
1697 /*
1698 * Queue new event for knote.
1699 */
1700 static void
1701 knote_activate(struct knote *kn)
1702 {
1703 struct kqueue *kq;
1704
1705 KASSERT((kn->kn_status & KN_MARKER) == 0);
1706
1707 kq = kn->kn_kq;
1708
1709 mutex_spin_enter(&kq->kq_lock);
1710 kn->kn_status |= KN_ACTIVE;
1711 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1712 kq_check(kq);
1713 kn->kn_status |= KN_QUEUED;
1714 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1715 kq->kq_count++;
1716 kq_check(kq);
1717 cv_broadcast(&kq->kq_cv);
1718 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1719 }
1720 mutex_spin_exit(&kq->kq_lock);
1721 }
1722