kern_exec.c revision 1.247 1 /* $NetBSD: kern_exec.c,v 1.247 2007/08/15 12:07:32 ad Exp $ */
2
3 /*-
4 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
5 * Copyright (C) 1992 Wolfgang Solfrank.
6 * Copyright (C) 1992 TooLs GmbH.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by TooLs GmbH.
20 * 4. The name of TooLs GmbH may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
28 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
29 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
31 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
32 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.247 2007/08/15 12:07:32 ad Exp $");
37
38 #include "opt_ktrace.h"
39 #include "opt_syscall_debug.h"
40 #include "opt_compat_netbsd.h"
41 #include "veriexec.h"
42 #include "opt_pax.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/filedesc.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/mount.h>
50 #include <sys/malloc.h>
51 #include <sys/namei.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/acct.h>
55 #include <sys/exec.h>
56 #include <sys/ktrace.h>
57 #include <sys/resourcevar.h>
58 #include <sys/wait.h>
59 #include <sys/mman.h>
60 #include <sys/ras.h>
61 #include <sys/signalvar.h>
62 #include <sys/stat.h>
63 #include <sys/syscall.h>
64 #include <sys/kauth.h>
65
66 #include <sys/syscallargs.h>
67 #if NVERIEXEC > 0
68 #include <sys/verified_exec.h>
69 #endif /* NVERIEXEC > 0 */
70
71 #ifdef SYSTRACE
72 #include <sys/systrace.h>
73 #endif /* SYSTRACE */
74
75 #ifdef PAX_SEGVGUARD
76 #include <sys/pax.h>
77 #endif /* PAX_SEGVGUARD */
78
79 #include <uvm/uvm_extern.h>
80
81 #include <machine/cpu.h>
82 #include <machine/reg.h>
83
84 #include <compat/common/compat_util.h>
85
86 static int exec_sigcode_map(struct proc *, const struct emul *);
87
88 #ifdef DEBUG_EXEC
89 #define DPRINTF(a) uprintf a
90 #else
91 #define DPRINTF(a)
92 #endif /* DEBUG_EXEC */
93
94 MALLOC_DEFINE(M_EXEC, "exec", "argument lists & other mem used by exec");
95
96 /*
97 * Exec function switch:
98 *
99 * Note that each makecmds function is responsible for loading the
100 * exec package with the necessary functions for any exec-type-specific
101 * handling.
102 *
103 * Functions for specific exec types should be defined in their own
104 * header file.
105 */
106 extern const struct execsw execsw_builtin[];
107 extern int nexecs_builtin;
108 static const struct execsw **execsw = NULL;
109 static int nexecs;
110
111 u_int exec_maxhdrsz; /* must not be static - netbsd32 needs it */
112
113 #ifdef LKM
114 /* list of supported emulations */
115 static
116 LIST_HEAD(emlist_head, emul_entry) el_head = LIST_HEAD_INITIALIZER(el_head);
117 struct emul_entry {
118 LIST_ENTRY(emul_entry) el_list;
119 const struct emul *el_emul;
120 int ro_entry;
121 };
122
123 /* list of dynamically loaded execsw entries */
124 static
125 LIST_HEAD(execlist_head, exec_entry) ex_head = LIST_HEAD_INITIALIZER(ex_head);
126 struct exec_entry {
127 LIST_ENTRY(exec_entry) ex_list;
128 const struct execsw *es;
129 };
130
131 /* structure used for building execw[] */
132 struct execsw_entry {
133 struct execsw_entry *next;
134 const struct execsw *es;
135 };
136 #endif /* LKM */
137
138 #ifdef SYSCALL_DEBUG
139 extern const char * const syscallnames[];
140 #endif
141
142 #ifdef COMPAT_16
143 extern char sigcode[], esigcode[];
144 struct uvm_object *emul_netbsd_object;
145 #endif
146
147 #ifndef __HAVE_SYSCALL_INTERN
148 void syscall(void);
149 #endif
150
151 /* NetBSD emul struct */
152 const struct emul emul_netbsd = {
153 "netbsd",
154 NULL, /* emulation path */
155 #ifndef __HAVE_MINIMAL_EMUL
156 EMUL_HAS_SYS___syscall,
157 NULL,
158 SYS_syscall,
159 SYS_NSYSENT,
160 #endif
161 sysent,
162 #ifdef SYSCALL_DEBUG
163 syscallnames,
164 #else
165 NULL,
166 #endif
167 sendsig,
168 trapsignal,
169 NULL,
170 #ifdef COMPAT_16
171 sigcode,
172 esigcode,
173 &emul_netbsd_object,
174 #else
175 NULL,
176 NULL,
177 NULL,
178 #endif
179 setregs,
180 NULL,
181 NULL,
182 NULL,
183 NULL,
184 NULL,
185 #ifdef __HAVE_SYSCALL_INTERN
186 syscall_intern,
187 #else
188 syscall,
189 #endif
190 NULL,
191 NULL,
192
193 uvm_default_mapaddr,
194 NULL,
195 sizeof(ucontext_t),
196 startlwp,
197 };
198
199 #ifdef LKM
200 /*
201 * Exec lock. Used to control access to execsw[] structures.
202 * This must not be static so that netbsd32 can access it, too.
203 */
204 krwlock_t exec_lock;
205
206 static void link_es(struct execsw_entry **, const struct execsw *);
207 #endif /* LKM */
208
209 /*
210 * check exec:
211 * given an "executable" described in the exec package's namei info,
212 * see what we can do with it.
213 *
214 * ON ENTRY:
215 * exec package with appropriate namei info
216 * lwp pointer of exec'ing lwp
217 * NO SELF-LOCKED VNODES
218 *
219 * ON EXIT:
220 * error: nothing held, etc. exec header still allocated.
221 * ok: filled exec package, executable's vnode (unlocked).
222 *
223 * EXEC SWITCH ENTRY:
224 * Locked vnode to check, exec package, proc.
225 *
226 * EXEC SWITCH EXIT:
227 * ok: return 0, filled exec package, executable's vnode (unlocked).
228 * error: destructive:
229 * everything deallocated execept exec header.
230 * non-destructive:
231 * error code, executable's vnode (unlocked),
232 * exec header unmodified.
233 */
234 int
235 /*ARGSUSED*/
236 check_exec(struct lwp *l, struct exec_package *epp)
237 {
238 int error, i;
239 struct vnode *vp;
240 struct nameidata *ndp;
241 size_t resid;
242
243 ndp = epp->ep_ndp;
244 ndp->ni_cnd.cn_nameiop = LOOKUP;
245 ndp->ni_cnd.cn_flags = FOLLOW | LOCKLEAF | SAVENAME | TRYEMULROOT;
246 /* first get the vnode */
247 if ((error = namei(ndp)) != 0)
248 return error;
249 epp->ep_vp = vp = ndp->ni_vp;
250
251 /* check access and type */
252 if (vp->v_type != VREG) {
253 error = EACCES;
254 goto bad1;
255 }
256 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred, l)) != 0)
257 goto bad1;
258
259 /* get attributes */
260 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred, l)) != 0)
261 goto bad1;
262
263 /* Check mount point */
264 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
265 error = EACCES;
266 goto bad1;
267 }
268 if (vp->v_mount->mnt_flag & MNT_NOSUID)
269 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
270
271 /* try to open it */
272 if ((error = VOP_OPEN(vp, FREAD, l->l_cred, l)) != 0)
273 goto bad1;
274
275 /* unlock vp, since we need it unlocked from here on out. */
276 VOP_UNLOCK(vp, 0);
277
278 #if NVERIEXEC > 0
279 error = veriexec_verify(l, vp, ndp->ni_cnd.cn_pnbuf,
280 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
281 NULL);
282 if (error)
283 goto bad2;
284 #endif /* NVERIEXEC > 0 */
285
286 #ifdef PAX_SEGVGUARD
287 error = pax_segvguard(l, vp, ndp->ni_cnd.cn_pnbuf, false);
288 if (error)
289 goto bad2;
290 #endif /* PAX_SEGVGUARD */
291
292 /* now we have the file, get the exec header */
293 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
294 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
295 if (error)
296 goto bad2;
297 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
298
299 /*
300 * Set up default address space limits. Can be overridden
301 * by individual exec packages.
302 *
303 * XXX probably should be all done in the exec packages.
304 */
305 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
306 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
307 /*
308 * set up the vmcmds for creation of the process
309 * address space
310 */
311 error = ENOEXEC;
312 for (i = 0; i < nexecs; i++) {
313 int newerror;
314
315 epp->ep_esch = execsw[i];
316 newerror = (*execsw[i]->es_makecmds)(l, epp);
317
318 if (!newerror) {
319 /* Seems ok: check that entry point is sane */
320 if (epp->ep_entry > VM_MAXUSER_ADDRESS) {
321 error = ENOEXEC;
322 break;
323 }
324
325 /* check limits */
326 if ((epp->ep_tsize > MAXTSIZ) ||
327 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
328 [RLIMIT_DATA].rlim_cur)) {
329 error = ENOMEM;
330 break;
331 }
332 return 0;
333 }
334
335 if (epp->ep_emul_root != NULL) {
336 vrele(epp->ep_emul_root);
337 epp->ep_emul_root = NULL;
338 }
339 if (epp->ep_interp != NULL) {
340 vrele(epp->ep_interp);
341 epp->ep_interp = NULL;
342 }
343
344 /* make sure the first "interesting" error code is saved. */
345 if (error == ENOEXEC)
346 error = newerror;
347
348 if (epp->ep_flags & EXEC_DESTR)
349 /* Error from "#!" code, tidied up by recursive call */
350 return error;
351 }
352
353 /*
354 * free any vmspace-creation commands,
355 * and release their references
356 */
357 kill_vmcmds(&epp->ep_vmcmds);
358
359 bad2:
360 /*
361 * close and release the vnode, restore the old one, free the
362 * pathname buf, and punt.
363 */
364 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
365 VOP_CLOSE(vp, FREAD, l->l_cred, l);
366 vput(vp);
367 PNBUF_PUT(ndp->ni_cnd.cn_pnbuf);
368 return error;
369
370 bad1:
371 /*
372 * free the namei pathname buffer, and put the vnode
373 * (which we don't yet have open).
374 */
375 vput(vp); /* was still locked */
376 PNBUF_PUT(ndp->ni_cnd.cn_pnbuf);
377 return error;
378 }
379
380 #ifdef __MACHINE_STACK_GROWS_UP
381 #define STACK_PTHREADSPACE NBPG
382 #else
383 #define STACK_PTHREADSPACE 0
384 #endif
385
386 static int
387 execve_fetch_element(char * const *array, size_t index, char **value)
388 {
389 return copyin(array + index, value, sizeof(*value));
390 }
391
392 /*
393 * exec system call
394 */
395 /* ARGSUSED */
396 int
397 sys_execve(struct lwp *l, void *v, register_t *retval)
398 {
399 struct sys_execve_args /* {
400 syscallarg(const char *) path;
401 syscallarg(char * const *) argp;
402 syscallarg(char * const *) envp;
403 } */ *uap = v;
404
405 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
406 SCARG(uap, envp), execve_fetch_element);
407 }
408
409 int
410 execve1(struct lwp *l, const char *path, char * const *args,
411 char * const *envs, execve_fetch_element_t fetch_element)
412 {
413 int error;
414 u_int i;
415 struct exec_package pack;
416 struct nameidata nid;
417 struct vattr attr;
418 struct proc *p;
419 char *argp;
420 char *dp, *sp;
421 long argc, envc;
422 size_t len;
423 char *stack;
424 struct ps_strings arginfo;
425 struct ps_strings *aip = &arginfo;
426 struct vmspace *vm;
427 char **tmpfap;
428 int szsigcode;
429 struct exec_vmcmd *base_vcp;
430 ksiginfo_t ksi;
431 ksiginfoq_t kq;
432 #ifdef SYSTRACE
433 int wassugid = ISSET(p->p_flag, PK_SUGID);
434 char pathbuf[MAXPATHLEN];
435 size_t pathbuflen;
436 #endif /* SYSTRACE */
437
438 p = l->l_proc;
439
440 /*
441 * Drain existing references and forbid new ones. The process
442 * should be left alone until we're done here. This is necessary
443 * to avoid race conditions - e.g. in ptrace() - that might allow
444 * a local user to illicitly obtain elevated privileges.
445 */
446 mutex_enter(&p->p_mutex);
447 proc_drainrefs(p);
448 mutex_exit(&p->p_mutex);
449
450 base_vcp = NULL;
451 /*
452 * Init the namei data to point the file user's program name.
453 * This is done here rather than in check_exec(), so that it's
454 * possible to override this settings if any of makecmd/probe
455 * functions call check_exec() recursively - for example,
456 * see exec_script_makecmds().
457 */
458 #ifdef SYSTRACE
459 if (ISSET(p->p_flag, PK_SYSTRACE))
460 systrace_execve0(p);
461
462 error = copyinstr(path, pathbuf, sizeof(pathbuf),
463 &pathbuflen);
464 if (error)
465 goto clrflg;
466
467 NDINIT(&nid, LOOKUP, NOFOLLOW | TRYEMULROOT, UIO_SYSSPACE, pathbuf, l);
468 #else
469 NDINIT(&nid, LOOKUP, NOFOLLOW | TRYEMULROOT, UIO_USERSPACE, path, l);
470 #endif /* SYSTRACE */
471
472 /*
473 * initialize the fields of the exec package.
474 */
475 #ifdef SYSTRACE
476 pack.ep_name = pathbuf;
477 #else
478 pack.ep_name = path;
479 #endif /* SYSTRACE */
480 pack.ep_hdr = malloc(exec_maxhdrsz, M_EXEC, M_WAITOK);
481 pack.ep_hdrlen = exec_maxhdrsz;
482 pack.ep_hdrvalid = 0;
483 pack.ep_ndp = &nid;
484 pack.ep_emul_arg = NULL;
485 pack.ep_vmcmds.evs_cnt = 0;
486 pack.ep_vmcmds.evs_used = 0;
487 pack.ep_vap = &attr;
488 pack.ep_flags = 0;
489 pack.ep_emul_root = NULL;
490 pack.ep_interp = NULL;
491 pack.ep_esch = NULL;
492
493 #ifdef LKM
494 rw_enter(&exec_lock, RW_READER);
495 #endif
496
497 /* see if we can run it. */
498 if ((error = check_exec(l, &pack)) != 0)
499 goto freehdr;
500
501 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
502
503 /* allocate an argument buffer */
504 argp = (char *) uvm_km_alloc(exec_map, NCARGS, 0,
505 UVM_KMF_PAGEABLE|UVM_KMF_WAITVA);
506 #ifdef DIAGNOSTIC
507 if (argp == NULL)
508 panic("execve: argp == NULL");
509 #endif
510 dp = argp;
511 argc = 0;
512
513 /* copy the fake args list, if there's one, freeing it as we go */
514 if (pack.ep_flags & EXEC_HASARGL) {
515 tmpfap = pack.ep_fa;
516 while (*tmpfap != NULL) {
517 char *cp;
518
519 cp = *tmpfap;
520 while (*cp)
521 *dp++ = *cp++;
522 dp++;
523
524 FREE(*tmpfap, M_EXEC);
525 tmpfap++; argc++;
526 }
527 FREE(pack.ep_fa, M_EXEC);
528 pack.ep_flags &= ~EXEC_HASARGL;
529 }
530
531 /* Now get argv & environment */
532 if (args == NULL) {
533 error = EINVAL;
534 goto bad;
535 }
536 /* 'i' will index the argp/envp element to be retrieved */
537 i = 0;
538 if (pack.ep_flags & EXEC_SKIPARG)
539 i++;
540
541 while (1) {
542 len = argp + ARG_MAX - dp;
543 if ((error = (*fetch_element)(args, i, &sp)) != 0)
544 goto bad;
545 if (!sp)
546 break;
547 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
548 if (error == ENAMETOOLONG)
549 error = E2BIG;
550 goto bad;
551 }
552 ktrexecarg(dp, len - 1);
553 dp += len;
554 i++;
555 argc++;
556 }
557
558 envc = 0;
559 /* environment need not be there */
560 if (envs != NULL) {
561 i = 0;
562 while (1) {
563 len = argp + ARG_MAX - dp;
564 if ((error = (*fetch_element)(envs, i, &sp)) != 0)
565 goto bad;
566 if (!sp)
567 break;
568 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
569 if (error == ENAMETOOLONG)
570 error = E2BIG;
571 goto bad;
572 }
573 ktrexecenv(dp, len - 1);
574 dp += len;
575 i++;
576 envc++;
577 }
578 }
579
580 dp = (char *) ALIGN(dp);
581
582 szsigcode = pack.ep_esch->es_emul->e_esigcode -
583 pack.ep_esch->es_emul->e_sigcode;
584
585 /* Now check if args & environ fit into new stack */
586 if (pack.ep_flags & EXEC_32)
587 len = ((argc + envc + 2 + pack.ep_esch->es_arglen) *
588 sizeof(int) + sizeof(int) + dp + STACKGAPLEN +
589 szsigcode + sizeof(struct ps_strings) + STACK_PTHREADSPACE)
590 - argp;
591 else
592 len = ((argc + envc + 2 + pack.ep_esch->es_arglen) *
593 sizeof(char *) + sizeof(int) + dp + STACKGAPLEN +
594 szsigcode + sizeof(struct ps_strings) + STACK_PTHREADSPACE)
595 - argp;
596
597 #ifdef STACKLALIGN /* arm, etc. */
598 len = STACKALIGN(len); /* make the stack "safely" aligned */
599 #else
600 len = ALIGN(len); /* make the stack "safely" aligned */
601 #endif
602
603 if (len > pack.ep_ssize) { /* in effect, compare to initial limit */
604 error = ENOMEM;
605 goto bad;
606 }
607
608 /* Get rid of other LWPs. */
609 if (p->p_nlwps > 1) {
610 mutex_enter(&p->p_smutex);
611 exit_lwps(l);
612 mutex_exit(&p->p_smutex);
613 }
614 KDASSERT(p->p_nlwps == 1);
615
616 /* This is now LWP 1 */
617 l->l_lid = 1;
618 p->p_nlwpid = 1;
619
620 /* Remove POSIX timers */
621 timers_free(p, TIMERS_POSIX);
622
623 /* adjust "active stack depth" for process VSZ */
624 pack.ep_ssize = len; /* maybe should go elsewhere, but... */
625
626 /*
627 * Do whatever is necessary to prepare the address space
628 * for remapping. Note that this might replace the current
629 * vmspace with another!
630 */
631 uvmspace_exec(l, pack.ep_vm_minaddr, pack.ep_vm_maxaddr);
632
633 /* record proc's vnode, for use by procfs and others */
634 if (p->p_textvp)
635 vrele(p->p_textvp);
636 VREF(pack.ep_vp);
637 p->p_textvp = pack.ep_vp;
638
639 /* Now map address space */
640 vm = p->p_vmspace;
641 vm->vm_taddr = (void *)pack.ep_taddr;
642 vm->vm_tsize = btoc(pack.ep_tsize);
643 vm->vm_daddr = (void*)pack.ep_daddr;
644 vm->vm_dsize = btoc(pack.ep_dsize);
645 vm->vm_ssize = btoc(pack.ep_ssize);
646 vm->vm_maxsaddr = (void *)pack.ep_maxsaddr;
647 vm->vm_minsaddr = (void *)pack.ep_minsaddr;
648
649 /* create the new process's VM space by running the vmcmds */
650 #ifdef DIAGNOSTIC
651 if (pack.ep_vmcmds.evs_used == 0)
652 panic("execve: no vmcmds");
653 #endif
654 for (i = 0; i < pack.ep_vmcmds.evs_used && !error; i++) {
655 struct exec_vmcmd *vcp;
656
657 vcp = &pack.ep_vmcmds.evs_cmds[i];
658 if (vcp->ev_flags & VMCMD_RELATIVE) {
659 #ifdef DIAGNOSTIC
660 if (base_vcp == NULL)
661 panic("execve: relative vmcmd with no base");
662 if (vcp->ev_flags & VMCMD_BASE)
663 panic("execve: illegal base & relative vmcmd");
664 #endif
665 vcp->ev_addr += base_vcp->ev_addr;
666 }
667 error = (*vcp->ev_proc)(l, vcp);
668 #ifdef DEBUG_EXEC
669 if (error) {
670 int j;
671 struct exec_vmcmd *vp = &pack.ep_vmcmds.evs_cmds[0];
672 for (j = 0; j <= i; j++)
673 uprintf(
674 "vmcmd[%d] = %#lx/%#lx fd@%#lx prot=0%o flags=%d\n",
675 j, vp[j].ev_addr, vp[j].ev_len,
676 vp[j].ev_offset, vp[j].ev_prot,
677 vp[j].ev_flags);
678 }
679 #endif /* DEBUG_EXEC */
680 if (vcp->ev_flags & VMCMD_BASE)
681 base_vcp = vcp;
682 }
683
684 /* free the vmspace-creation commands, and release their references */
685 kill_vmcmds(&pack.ep_vmcmds);
686
687 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
688 VOP_CLOSE(pack.ep_vp, FREAD, l->l_cred, l);
689 vput(pack.ep_vp);
690
691 /* if an error happened, deallocate and punt */
692 if (error) {
693 DPRINTF(("execve: vmcmd %i failed: %d\n", i - 1, error));
694 goto exec_abort;
695 }
696
697 /* remember information about the process */
698 arginfo.ps_nargvstr = argc;
699 arginfo.ps_nenvstr = envc;
700
701 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
702 STACK_PTHREADSPACE + sizeof(struct ps_strings) + szsigcode),
703 len - (sizeof(struct ps_strings) + szsigcode));
704 #ifdef __MACHINE_STACK_GROWS_UP
705 /*
706 * The copyargs call always copies into lower addresses
707 * first, moving towards higher addresses, starting with
708 * the stack pointer that we give. When the stack grows
709 * down, this puts argc/argv/envp very shallow on the
710 * stack, right at the first user stack pointer, and puts
711 * STACKGAPLEN very deep in the stack. When the stack
712 * grows up, the situation is reversed.
713 *
714 * Normally, this is no big deal. But the ld_elf.so _rtld()
715 * function expects to be called with a single pointer to
716 * a region that has a few words it can stash values into,
717 * followed by argc/argv/envp. When the stack grows down,
718 * it's easy to decrement the stack pointer a little bit to
719 * allocate the space for these few words and pass the new
720 * stack pointer to _rtld. When the stack grows up, however,
721 * a few words before argc is part of the signal trampoline, XXX
722 * so we have a problem.
723 *
724 * Instead of changing how _rtld works, we take the easy way
725 * out and steal 32 bytes before we call copyargs. This
726 * space is effectively stolen from STACKGAPLEN.
727 */
728 stack += 32;
729 #endif /* __MACHINE_STACK_GROWS_UP */
730
731 /* Now copy argc, args & environ to new stack */
732 error = (*pack.ep_esch->es_copyargs)(l, &pack, &arginfo, &stack, argp);
733 if (error) {
734 DPRINTF(("execve: copyargs failed %d\n", error));
735 goto exec_abort;
736 }
737 /* Move the stack back to original point */
738 stack = (char *)STACK_GROW(vm->vm_minsaddr, len);
739
740 /* fill process ps_strings info */
741 p->p_psstr = (struct ps_strings *)
742 STACK_ALLOC(STACK_GROW(vm->vm_minsaddr, STACK_PTHREADSPACE),
743 sizeof(struct ps_strings));
744 p->p_psargv = offsetof(struct ps_strings, ps_argvstr);
745 p->p_psnargv = offsetof(struct ps_strings, ps_nargvstr);
746 p->p_psenv = offsetof(struct ps_strings, ps_envstr);
747 p->p_psnenv = offsetof(struct ps_strings, ps_nenvstr);
748
749 /* copy out the process's ps_strings structure */
750 if ((error = copyout(aip, (char *)p->p_psstr,
751 sizeof(arginfo))) != 0) {
752 DPRINTF(("execve: ps_strings copyout %p->%p size %ld failed\n",
753 aip, (char *)p->p_psstr, (long)sizeof(arginfo)));
754 goto exec_abort;
755 }
756
757 fdcloseexec(l); /* handle close on exec */
758 execsigs(p); /* reset catched signals */
759
760 l->l_ctxlink = NULL; /* reset ucontext link */
761
762 /* set command name & other accounting info */
763 len = min(nid.ni_cnd.cn_namelen, MAXCOMLEN);
764 memcpy(p->p_comm, nid.ni_cnd.cn_nameptr, len);
765 p->p_comm[len] = 0;
766 p->p_acflag &= ~AFORK;
767
768 p->p_flag |= PK_EXEC;
769
770 /*
771 * Stop profiling.
772 */
773 if ((p->p_stflag & PST_PROFIL) != 0) {
774 mutex_spin_enter(&p->p_stmutex);
775 stopprofclock(p);
776 mutex_spin_exit(&p->p_stmutex);
777 }
778
779 /*
780 * It's OK to test PS_PPWAIT unlocked here, as other LWPs have
781 * exited and exec()/exit() are the only places it will be cleared.
782 */
783 if ((p->p_sflag & PS_PPWAIT) != 0) {
784 mutex_enter(&proclist_lock);
785 mutex_enter(&p->p_smutex);
786 p->p_sflag &= ~PS_PPWAIT;
787 cv_broadcast(&p->p_pptr->p_waitcv);
788 mutex_exit(&p->p_smutex);
789 mutex_exit(&proclist_lock);
790 }
791
792 /*
793 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
794 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
795 * out additional references on the process for the moment.
796 */
797 if ((p->p_slflag & PSL_TRACED) == 0 &&
798
799 (((attr.va_mode & S_ISUID) != 0 &&
800 kauth_cred_geteuid(l->l_cred) != attr.va_uid) ||
801
802 ((attr.va_mode & S_ISGID) != 0 &&
803 kauth_cred_getegid(l->l_cred) != attr.va_gid))) {
804 /*
805 * Mark the process as SUGID before we do
806 * anything that might block.
807 */
808 proc_crmod_enter();
809 proc_crmod_leave(NULL, NULL, true);
810
811 /* Make sure file descriptors 0..2 are in use. */
812 if ((error = fdcheckstd(l)) != 0) {
813 DPRINTF(("execve: fdcheckstd failed %d\n", error));
814 goto exec_abort;
815 }
816
817 /*
818 * Copy the credential so other references don't see our
819 * changes.
820 */
821 l->l_cred = kauth_cred_copy(l->l_cred);
822 #ifdef KTRACE
823 /*
824 * If process is being ktraced, turn off - unless
825 * root set it.
826 */
827 if (p->p_tracep) {
828 mutex_enter(&ktrace_lock);
829 if (!(p->p_traceflag & KTRFAC_ROOT))
830 ktrderef(p);
831 mutex_exit(&ktrace_lock);
832 }
833 #endif
834 if (attr.va_mode & S_ISUID)
835 kauth_cred_seteuid(l->l_cred, attr.va_uid);
836 if (attr.va_mode & S_ISGID)
837 kauth_cred_setegid(l->l_cred, attr.va_gid);
838 } else {
839 if (kauth_cred_geteuid(l->l_cred) ==
840 kauth_cred_getuid(l->l_cred) &&
841 kauth_cred_getegid(l->l_cred) ==
842 kauth_cred_getgid(l->l_cred))
843 p->p_flag &= ~PK_SUGID;
844 }
845
846 /*
847 * Copy the credential so other references don't see our changes.
848 * Test to see if this is necessary first, since in the common case
849 * we won't need a private reference.
850 */
851 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
852 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
853 l->l_cred = kauth_cred_copy(l->l_cred);
854 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
855 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
856 }
857
858 /* Update the master credentials. */
859 if (l->l_cred != p->p_cred) {
860 kauth_cred_t ocred;
861
862 kauth_cred_hold(l->l_cred);
863 mutex_enter(&p->p_mutex);
864 ocred = p->p_cred;
865 p->p_cred = l->l_cred;
866 mutex_exit(&p->p_mutex);
867 kauth_cred_free(ocred);
868 }
869
870 #if defined(__HAVE_RAS)
871 /*
872 * Remove all RASs from the address space.
873 */
874 ras_purgeall(p);
875 #endif
876
877 doexechooks(p);
878
879 uvm_km_free(exec_map, (vaddr_t) argp, NCARGS, UVM_KMF_PAGEABLE);
880
881 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
882
883 /* notify others that we exec'd */
884 KNOTE(&p->p_klist, NOTE_EXEC);
885
886 /* setup new registers and do misc. setup. */
887 (*pack.ep_esch->es_emul->e_setregs)(l, &pack, (u_long) stack);
888 if (pack.ep_esch->es_setregs)
889 (*pack.ep_esch->es_setregs)(l, &pack, (u_long) stack);
890
891 /* map the process's signal trampoline code */
892 if (exec_sigcode_map(p, pack.ep_esch->es_emul)) {
893 DPRINTF(("execve: map sigcode failed %d\n", error));
894 goto exec_abort;
895 }
896
897 free(pack.ep_hdr, M_EXEC);
898
899 /* The emulation root will usually have been found when we looked
900 * for the elf interpreter (or similar), if not look now. */
901 if (pack.ep_esch->es_emul->e_path != NULL && pack.ep_emul_root == NULL)
902 emul_find_root(l, &pack);
903
904 /* Any old emulation root got removed by fdcloseexec */
905 p->p_cwdi->cwdi_edir = pack.ep_emul_root;
906 pack.ep_emul_root = NULL;
907 if (pack.ep_interp != NULL)
908 vrele(pack.ep_interp);
909
910 /*
911 * Call emulation specific exec hook. This can setup per-process
912 * p->p_emuldata or do any other per-process stuff an emulation needs.
913 *
914 * If we are executing process of different emulation than the
915 * original forked process, call e_proc_exit() of the old emulation
916 * first, then e_proc_exec() of new emulation. If the emulation is
917 * same, the exec hook code should deallocate any old emulation
918 * resources held previously by this process.
919 */
920 if (p->p_emul && p->p_emul->e_proc_exit
921 && p->p_emul != pack.ep_esch->es_emul)
922 (*p->p_emul->e_proc_exit)(p);
923
924 /*
925 * Call exec hook. Emulation code may NOT store reference to anything
926 * from &pack.
927 */
928 if (pack.ep_esch->es_emul->e_proc_exec)
929 (*pack.ep_esch->es_emul->e_proc_exec)(p, &pack);
930
931 /* update p_emul, the old value is no longer needed */
932 p->p_emul = pack.ep_esch->es_emul;
933
934 /* ...and the same for p_execsw */
935 p->p_execsw = pack.ep_esch;
936
937 #ifdef __HAVE_SYSCALL_INTERN
938 (*p->p_emul->e_syscall_intern)(p);
939 #endif
940 ktremul();
941
942 #ifdef LKM
943 rw_exit(&exec_lock);
944 #endif
945
946 mutex_enter(&proclist_mutex);
947
948 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
949 KSI_INIT_EMPTY(&ksi);
950 ksi.ksi_signo = SIGTRAP;
951 ksi.ksi_lid = l->l_lid;
952 kpsignal(p, &ksi, NULL);
953 }
954
955 if (p->p_sflag & PS_STOPEXEC) {
956 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
957 p->p_pptr->p_nstopchild++;
958 p->p_pptr->p_waited = 0;
959 mutex_enter(&p->p_smutex);
960 ksiginfo_queue_init(&kq);
961 sigclearall(p, &contsigmask, &kq);
962 lwp_lock(l);
963 p->p_refcnt = 1;
964 l->l_stat = LSSTOP;
965 p->p_stat = SSTOP;
966 p->p_nrlwps--;
967 mutex_exit(&p->p_smutex);
968 mutex_exit(&proclist_mutex);
969 mi_switch(l);
970 ksiginfo_queue_drain(&kq);
971 KERNEL_LOCK(l->l_biglocks, l);
972 } else {
973 mutex_exit(&proclist_mutex);
974
975 /* Unlock the process. */
976 mb_write();
977 p->p_refcnt = 1;
978 }
979
980 #ifdef SYSTRACE
981 /* XXXSMP */
982 if (ISSET(p->p_flag, PK_SYSTRACE) &&
983 wassugid && !ISSET(p->p_flag, PK_SUGID))
984 systrace_execve1(pathbuf, p);
985 #endif /* SYSTRACE */
986
987 return (EJUSTRETURN);
988
989 bad:
990 /* free the vmspace-creation commands, and release their references */
991 kill_vmcmds(&pack.ep_vmcmds);
992 /* kill any opened file descriptor, if necessary */
993 if (pack.ep_flags & EXEC_HASFD) {
994 pack.ep_flags &= ~EXEC_HASFD;
995 (void) fdrelease(l, pack.ep_fd);
996 }
997 /* close and put the exec'd file */
998 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
999 VOP_CLOSE(pack.ep_vp, FREAD, l->l_cred, l);
1000 vput(pack.ep_vp);
1001 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
1002 uvm_km_free(exec_map, (vaddr_t) argp, NCARGS, UVM_KMF_PAGEABLE);
1003
1004 freehdr:
1005 free(pack.ep_hdr, M_EXEC);
1006 if (pack.ep_emul_root != NULL)
1007 vrele(pack.ep_emul_root);
1008 if (pack.ep_interp != NULL)
1009 vrele(pack.ep_interp);
1010
1011 #ifdef SYSTRACE
1012 clrflg:
1013 #endif /* SYSTRACE */
1014 /* Unlock the process. */
1015 mb_write();
1016 p->p_refcnt = 1;
1017
1018 #ifdef LKM
1019 rw_exit(&exec_lock);
1020 #endif
1021
1022 return error;
1023
1024 exec_abort:
1025 #ifdef LKM
1026 rw_exit(&exec_lock);
1027 #endif
1028
1029 /*
1030 * the old process doesn't exist anymore. exit gracefully.
1031 * get rid of the (new) address space we have created, if any, get rid
1032 * of our namei data and vnode, and exit noting failure
1033 */
1034 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1035 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1036 if (pack.ep_emul_arg)
1037 FREE(pack.ep_emul_arg, M_TEMP);
1038 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
1039 uvm_km_free(exec_map, (vaddr_t) argp, NCARGS, UVM_KMF_PAGEABLE);
1040 free(pack.ep_hdr, M_EXEC);
1041 if (pack.ep_emul_root != NULL)
1042 vrele(pack.ep_emul_root);
1043 if (pack.ep_interp != NULL)
1044 vrele(pack.ep_interp);
1045
1046 /*
1047 * Acquire the sched-state mutex (exit1() will release it). Since
1048 * this is a failed exec and we are exiting, keep the process locked
1049 * (p->p_refcnt == 0) through exit1().
1050 */
1051 mutex_enter(&p->p_smutex);
1052 exit1(l, W_EXITCODE(error, SIGABRT));
1053
1054 /* NOTREACHED */
1055 return 0;
1056 }
1057
1058
1059 int
1060 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1061 char **stackp, void *argp)
1062 {
1063 char **cpp, *dp, *sp;
1064 size_t len;
1065 void *nullp;
1066 long argc, envc;
1067 int error;
1068
1069 cpp = (char **)*stackp;
1070 nullp = NULL;
1071 argc = arginfo->ps_nargvstr;
1072 envc = arginfo->ps_nenvstr;
1073 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0)
1074 return error;
1075
1076 dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1077 sp = argp;
1078
1079 /* XXX don't copy them out, remap them! */
1080 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1081
1082 for (; --argc >= 0; sp += len, dp += len)
1083 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0 ||
1084 (error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0)
1085 return error;
1086
1087 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0)
1088 return error;
1089
1090 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1091
1092 for (; --envc >= 0; sp += len, dp += len)
1093 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0 ||
1094 (error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0)
1095 return error;
1096
1097 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0)
1098 return error;
1099
1100 *stackp = (char *)cpp;
1101 return 0;
1102 }
1103
1104 #ifdef LKM
1105 /*
1106 * Find an emulation of given name in list of emulations.
1107 * Needs to be called with the exec_lock held.
1108 */
1109 const struct emul *
1110 emul_search(const char *name)
1111 {
1112 struct emul_entry *it;
1113
1114 LIST_FOREACH(it, &el_head, el_list) {
1115 if (strcmp(name, it->el_emul->e_name) == 0)
1116 return it->el_emul;
1117 }
1118
1119 return NULL;
1120 }
1121
1122 /*
1123 * Add an emulation to list, if it's not there already.
1124 */
1125 int
1126 emul_register(const struct emul *emul, int ro_entry)
1127 {
1128 struct emul_entry *ee;
1129 int error;
1130
1131 error = 0;
1132 rw_enter(&exec_lock, RW_WRITER);
1133
1134 if (emul_search(emul->e_name)) {
1135 error = EEXIST;
1136 goto out;
1137 }
1138
1139 MALLOC(ee, struct emul_entry *, sizeof(struct emul_entry),
1140 M_EXEC, M_WAITOK);
1141 ee->el_emul = emul;
1142 ee->ro_entry = ro_entry;
1143 LIST_INSERT_HEAD(&el_head, ee, el_list);
1144
1145 out:
1146 rw_exit(&exec_lock);
1147 return error;
1148 }
1149
1150 /*
1151 * Remove emulation with name 'name' from list of supported emulations.
1152 */
1153 int
1154 emul_unregister(const char *name)
1155 {
1156 const struct proclist_desc *pd;
1157 struct emul_entry *it;
1158 int i, error;
1159 struct proc *ptmp;
1160
1161 error = 0;
1162 rw_enter(&exec_lock, RW_WRITER);
1163
1164 LIST_FOREACH(it, &el_head, el_list) {
1165 if (strcmp(it->el_emul->e_name, name) == 0)
1166 break;
1167 }
1168
1169 if (!it) {
1170 error = ENOENT;
1171 goto out;
1172 }
1173
1174 if (it->ro_entry) {
1175 error = EBUSY;
1176 goto out;
1177 }
1178
1179 /* test if any execw[] entry is still using this */
1180 for(i=0; i < nexecs; i++) {
1181 if (execsw[i]->es_emul == it->el_emul) {
1182 error = EBUSY;
1183 goto out;
1184 }
1185 }
1186
1187 /*
1188 * Test if any process is running under this emulation - since
1189 * emul_unregister() is running quite sendomly, it's better
1190 * to do expensive check here than to use any locking.
1191 */
1192 mutex_enter(&proclist_lock);
1193 for (pd = proclists; pd->pd_list != NULL && !error; pd++) {
1194 PROCLIST_FOREACH(ptmp, pd->pd_list) {
1195 if (ptmp->p_emul == it->el_emul) {
1196 error = EBUSY;
1197 break;
1198 }
1199 }
1200 }
1201 mutex_exit(&proclist_lock);
1202
1203 if (error)
1204 goto out;
1205
1206
1207 /* entry is not used, remove it */
1208 LIST_REMOVE(it, el_list);
1209 FREE(it, M_EXEC);
1210
1211 out:
1212 rw_exit(&exec_lock);
1213 return error;
1214 }
1215
1216 /*
1217 * Add execsw[] entry.
1218 */
1219 int
1220 exec_add(struct execsw *esp, const char *e_name)
1221 {
1222 struct exec_entry *it;
1223 int error;
1224
1225 error = 0;
1226 rw_enter(&exec_lock, RW_WRITER);
1227
1228 if (!esp->es_emul) {
1229 esp->es_emul = emul_search(e_name);
1230 if (!esp->es_emul) {
1231 error = ENOENT;
1232 goto out;
1233 }
1234 }
1235
1236 LIST_FOREACH(it, &ex_head, ex_list) {
1237 /* assume tuple (makecmds, probe_func, emulation) is unique */
1238 if (it->es->es_makecmds == esp->es_makecmds
1239 && it->es->u.elf_probe_func == esp->u.elf_probe_func
1240 && it->es->es_emul == esp->es_emul) {
1241 error = EEXIST;
1242 goto out;
1243 }
1244 }
1245
1246 /* if we got here, the entry doesn't exist yet */
1247 MALLOC(it, struct exec_entry *, sizeof(struct exec_entry),
1248 M_EXEC, M_WAITOK);
1249 it->es = esp;
1250 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1251
1252 /* update execsw[] */
1253 exec_init(0);
1254
1255 out:
1256 rw_exit(&exec_lock);
1257 return error;
1258 }
1259
1260 /*
1261 * Remove execsw[] entry.
1262 */
1263 int
1264 exec_remove(const struct execsw *esp)
1265 {
1266 struct exec_entry *it;
1267 int error;
1268
1269 error = 0;
1270 rw_enter(&exec_lock, RW_WRITER);
1271
1272 LIST_FOREACH(it, &ex_head, ex_list) {
1273 /* assume tuple (makecmds, probe_func, emulation) is unique */
1274 if (it->es->es_makecmds == esp->es_makecmds
1275 && it->es->u.elf_probe_func == esp->u.elf_probe_func
1276 && it->es->es_emul == esp->es_emul)
1277 break;
1278 }
1279 if (!it) {
1280 error = ENOENT;
1281 goto out;
1282 }
1283
1284 /* remove item from list and free resources */
1285 LIST_REMOVE(it, ex_list);
1286 FREE(it, M_EXEC);
1287
1288 /* update execsw[] */
1289 exec_init(0);
1290
1291 out:
1292 rw_exit(&exec_lock);
1293 return error;
1294 }
1295
1296 static void
1297 link_es(struct execsw_entry **listp, const struct execsw *esp)
1298 {
1299 struct execsw_entry *et, *e1;
1300
1301 et = (struct execsw_entry *) malloc(sizeof(struct execsw_entry),
1302 M_TEMP, M_WAITOK);
1303 et->next = NULL;
1304 et->es = esp;
1305 if (*listp == NULL) {
1306 *listp = et;
1307 return;
1308 }
1309
1310 switch(et->es->es_prio) {
1311 case EXECSW_PRIO_FIRST:
1312 /* put new entry as the first */
1313 et->next = *listp;
1314 *listp = et;
1315 break;
1316 case EXECSW_PRIO_ANY:
1317 /* put new entry after all *_FIRST and *_ANY entries */
1318 for(e1 = *listp; e1->next
1319 && e1->next->es->es_prio != EXECSW_PRIO_LAST;
1320 e1 = e1->next);
1321 et->next = e1->next;
1322 e1->next = et;
1323 break;
1324 case EXECSW_PRIO_LAST:
1325 /* put new entry as the last one */
1326 for(e1 = *listp; e1->next; e1 = e1->next);
1327 e1->next = et;
1328 break;
1329 default:
1330 #ifdef DIAGNOSTIC
1331 panic("execw[] entry with unknown priority %d found",
1332 et->es->es_prio);
1333 #else
1334 free(et, M_TEMP);
1335 #endif
1336 break;
1337 }
1338 }
1339
1340 /*
1341 * Initialize exec structures. If init_boot is true, also does necessary
1342 * one-time initialization (it's called from main() that way).
1343 * Once system is multiuser, this should be called with exec_lock held,
1344 * i.e. via exec_{add|remove}().
1345 */
1346 int
1347 exec_init(int init_boot)
1348 {
1349 const struct execsw **new_es, * const *old_es;
1350 struct execsw_entry *list, *e1;
1351 struct exec_entry *e2;
1352 int i, es_sz;
1353
1354 if (init_boot) {
1355 /* do one-time initializations */
1356 rw_init(&exec_lock);
1357
1358 /* register compiled-in emulations */
1359 for(i=0; i < nexecs_builtin; i++) {
1360 if (execsw_builtin[i].es_emul)
1361 emul_register(execsw_builtin[i].es_emul, 1);
1362 }
1363 #ifdef DIAGNOSTIC
1364 if (i == 0)
1365 panic("no emulations found in execsw_builtin[]");
1366 #endif
1367 }
1368
1369 /*
1370 * Build execsw[] array from builtin entries and entries added
1371 * at runtime.
1372 */
1373 list = NULL;
1374 for(i=0; i < nexecs_builtin; i++)
1375 link_es(&list, &execsw_builtin[i]);
1376
1377 /* Add dynamically loaded entries */
1378 es_sz = nexecs_builtin;
1379 LIST_FOREACH(e2, &ex_head, ex_list) {
1380 link_es(&list, e2->es);
1381 es_sz++;
1382 }
1383
1384 /*
1385 * Now that we have sorted all execw entries, create new execsw[]
1386 * and free no longer needed memory in the process.
1387 */
1388 new_es = malloc(es_sz * sizeof(struct execsw *), M_EXEC, M_WAITOK);
1389 for(i=0; list; i++) {
1390 new_es[i] = list->es;
1391 e1 = list->next;
1392 free(list, M_TEMP);
1393 list = e1;
1394 }
1395
1396 /*
1397 * New execsw[] array built, now replace old execsw[] and free
1398 * used memory.
1399 */
1400 old_es = execsw;
1401 execsw = new_es;
1402 nexecs = es_sz;
1403 if (old_es)
1404 /*XXXUNCONST*/
1405 free(__UNCONST(old_es), M_EXEC);
1406
1407 /*
1408 * Figure out the maximum size of an exec header.
1409 */
1410 exec_maxhdrsz = 0;
1411 for (i = 0; i < nexecs; i++) {
1412 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1413 exec_maxhdrsz = execsw[i]->es_hdrsz;
1414 }
1415
1416 return 0;
1417 }
1418 #endif
1419
1420 #ifndef LKM
1421 /*
1422 * Simplified exec_init() for kernels without LKMs. Only initialize
1423 * exec_maxhdrsz and execsw[].
1424 */
1425 int
1426 exec_init(int init_boot)
1427 {
1428 int i;
1429
1430 #ifdef DIAGNOSTIC
1431 if (!init_boot)
1432 panic("exec_init(): called with init_boot == 0");
1433 #endif
1434
1435 /* do one-time initializations */
1436 nexecs = nexecs_builtin;
1437 execsw = malloc(nexecs*sizeof(struct execsw *), M_EXEC, M_WAITOK);
1438
1439 /*
1440 * Fill in execsw[] and figure out the maximum size of an exec header.
1441 */
1442 exec_maxhdrsz = 0;
1443 for(i=0; i < nexecs; i++) {
1444 execsw[i] = &execsw_builtin[i];
1445 if (execsw_builtin[i].es_hdrsz > exec_maxhdrsz)
1446 exec_maxhdrsz = execsw_builtin[i].es_hdrsz;
1447 }
1448
1449 return 0;
1450
1451 }
1452 #endif /* !LKM */
1453
1454 static int
1455 exec_sigcode_map(struct proc *p, const struct emul *e)
1456 {
1457 vaddr_t va;
1458 vsize_t sz;
1459 int error;
1460 struct uvm_object *uobj;
1461
1462 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1463
1464 if (e->e_sigobject == NULL || sz == 0) {
1465 return 0;
1466 }
1467
1468 /*
1469 * If we don't have a sigobject for this emulation, create one.
1470 *
1471 * sigobject is an anonymous memory object (just like SYSV shared
1472 * memory) that we keep a permanent reference to and that we map
1473 * in all processes that need this sigcode. The creation is simple,
1474 * we create an object, add a permanent reference to it, map it in
1475 * kernel space, copy out the sigcode to it and unmap it.
1476 * We map it with PROT_READ|PROT_EXEC into the process just
1477 * the way sys_mmap() would map it.
1478 */
1479
1480 uobj = *e->e_sigobject;
1481 if (uobj == NULL) {
1482 uobj = uao_create(sz, 0);
1483 (*uobj->pgops->pgo_reference)(uobj);
1484 va = vm_map_min(kernel_map);
1485 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1486 uobj, 0, 0,
1487 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1488 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1489 printf("kernel mapping failed %d\n", error);
1490 (*uobj->pgops->pgo_detach)(uobj);
1491 return (error);
1492 }
1493 memcpy((void *)va, e->e_sigcode, sz);
1494 #ifdef PMAP_NEED_PROCWR
1495 pmap_procwr(&proc0, va, sz);
1496 #endif
1497 uvm_unmap(kernel_map, va, va + round_page(sz));
1498 *e->e_sigobject = uobj;
1499 }
1500
1501 /* Just a hint to uvm_map where to put it. */
1502 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1503 round_page(sz));
1504
1505 #ifdef __alpha__
1506 /*
1507 * Tru64 puts /sbin/loader at the end of user virtual memory,
1508 * which causes the above calculation to put the sigcode at
1509 * an invalid address. Put it just below the text instead.
1510 */
1511 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1512 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1513 }
1514 #endif
1515
1516 (*uobj->pgops->pgo_reference)(uobj);
1517 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1518 uobj, 0, 0,
1519 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1520 UVM_ADV_RANDOM, 0));
1521 if (error) {
1522 (*uobj->pgops->pgo_detach)(uobj);
1523 return (error);
1524 }
1525 p->p_sigctx.ps_sigcode = (void *)va;
1526 return (0);
1527 }
1528