kern_exec.c revision 1.273 1 /* $NetBSD: kern_exec.c,v 1.273 2008/06/04 12:16:06 ad Exp $ */
2
3 /*-
4 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
5 * Copyright (C) 1992 Wolfgang Solfrank.
6 * Copyright (C) 1992 TooLs GmbH.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by TooLs GmbH.
20 * 4. The name of TooLs GmbH may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
28 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
29 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
31 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
32 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.273 2008/06/04 12:16:06 ad Exp $");
37
38 #include "opt_ktrace.h"
39 #include "opt_syscall_debug.h"
40 #include "opt_compat_netbsd.h"
41 #include "veriexec.h"
42 #include "opt_pax.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/filedesc.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/mount.h>
50 #include <sys/malloc.h>
51 #include <sys/kmem.h>
52 #include <sys/namei.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/acct.h>
56 #include <sys/exec.h>
57 #include <sys/ktrace.h>
58 #include <sys/resourcevar.h>
59 #include <sys/wait.h>
60 #include <sys/mman.h>
61 #include <sys/ras.h>
62 #include <sys/signalvar.h>
63 #include <sys/stat.h>
64 #include <sys/syscall.h>
65 #include <sys/kauth.h>
66 #include <sys/lwpctl.h>
67 #include <sys/pax.h>
68 #include <sys/cpu.h>
69
70 #include <sys/syscallargs.h>
71 #if NVERIEXEC > 0
72 #include <sys/verified_exec.h>
73 #endif /* NVERIEXEC > 0 */
74
75 #include <uvm/uvm_extern.h>
76
77 #include <machine/reg.h>
78
79 #include <compat/common/compat_util.h>
80
81 static int exec_sigcode_map(struct proc *, const struct emul *);
82
83 #ifdef DEBUG_EXEC
84 #define DPRINTF(a) uprintf a
85 #else
86 #define DPRINTF(a)
87 #endif /* DEBUG_EXEC */
88
89 /*
90 * Exec function switch:
91 *
92 * Note that each makecmds function is responsible for loading the
93 * exec package with the necessary functions for any exec-type-specific
94 * handling.
95 *
96 * Functions for specific exec types should be defined in their own
97 * header file.
98 */
99 extern const struct execsw execsw_builtin[];
100 extern int nexecs_builtin;
101 static const struct execsw **execsw = NULL;
102 static int nexecs;
103
104 u_int exec_maxhdrsz; /* must not be static - netbsd32 needs it */
105
106 #ifdef LKM
107 /* list of supported emulations */
108 static
109 LIST_HEAD(emlist_head, emul_entry) el_head = LIST_HEAD_INITIALIZER(el_head);
110 struct emul_entry {
111 LIST_ENTRY(emul_entry) el_list;
112 const struct emul *el_emul;
113 int ro_entry;
114 };
115
116 /* list of dynamically loaded execsw entries */
117 static
118 LIST_HEAD(execlist_head, exec_entry) ex_head = LIST_HEAD_INITIALIZER(ex_head);
119 struct exec_entry {
120 LIST_ENTRY(exec_entry) ex_list;
121 const struct execsw *es;
122 };
123
124 /* structure used for building execw[] */
125 struct execsw_entry {
126 struct execsw_entry *next;
127 const struct execsw *es;
128 };
129 #endif /* LKM */
130
131 #ifdef SYSCALL_DEBUG
132 extern const char * const syscallnames[];
133 #endif
134
135 #ifdef COMPAT_16
136 extern char sigcode[], esigcode[];
137 struct uvm_object *emul_netbsd_object;
138 #endif
139
140 #ifndef __HAVE_SYSCALL_INTERN
141 void syscall(void);
142 #endif
143
144 /* NetBSD emul struct */
145 const struct emul emul_netbsd = {
146 "netbsd",
147 NULL, /* emulation path */
148 #ifndef __HAVE_MINIMAL_EMUL
149 EMUL_HAS_SYS___syscall,
150 NULL,
151 SYS_syscall,
152 SYS_NSYSENT,
153 #endif
154 sysent,
155 #ifdef SYSCALL_DEBUG
156 syscallnames,
157 #else
158 NULL,
159 #endif
160 sendsig,
161 trapsignal,
162 NULL,
163 #ifdef COMPAT_16
164 sigcode,
165 esigcode,
166 &emul_netbsd_object,
167 #else
168 NULL,
169 NULL,
170 NULL,
171 #endif
172 setregs,
173 NULL,
174 NULL,
175 NULL,
176 NULL,
177 NULL,
178 #ifdef __HAVE_SYSCALL_INTERN
179 syscall_intern,
180 #else
181 syscall,
182 #endif
183 NULL,
184 NULL,
185
186 uvm_default_mapaddr,
187 NULL,
188 sizeof(ucontext_t),
189 startlwp,
190 };
191
192 #ifdef LKM
193 /*
194 * Exec lock. Used to control access to execsw[] structures.
195 * This must not be static so that netbsd32 can access it, too.
196 */
197 krwlock_t exec_lock;
198
199 static void link_es(struct execsw_entry **, const struct execsw *);
200 #endif /* LKM */
201
202 static kmutex_t sigobject_lock;
203
204 /*
205 * check exec:
206 * given an "executable" described in the exec package's namei info,
207 * see what we can do with it.
208 *
209 * ON ENTRY:
210 * exec package with appropriate namei info
211 * lwp pointer of exec'ing lwp
212 * NO SELF-LOCKED VNODES
213 *
214 * ON EXIT:
215 * error: nothing held, etc. exec header still allocated.
216 * ok: filled exec package, executable's vnode (unlocked).
217 *
218 * EXEC SWITCH ENTRY:
219 * Locked vnode to check, exec package, proc.
220 *
221 * EXEC SWITCH EXIT:
222 * ok: return 0, filled exec package, executable's vnode (unlocked).
223 * error: destructive:
224 * everything deallocated execept exec header.
225 * non-destructive:
226 * error code, executable's vnode (unlocked),
227 * exec header unmodified.
228 */
229 int
230 /*ARGSUSED*/
231 check_exec(struct lwp *l, struct exec_package *epp)
232 {
233 int error, i;
234 struct vnode *vp;
235 struct nameidata *ndp;
236 size_t resid;
237
238 ndp = epp->ep_ndp;
239 ndp->ni_cnd.cn_nameiop = LOOKUP;
240 ndp->ni_cnd.cn_flags = FOLLOW | LOCKLEAF | SAVENAME | TRYEMULROOT;
241 /* first get the vnode */
242 if ((error = namei(ndp)) != 0)
243 return error;
244 epp->ep_vp = vp = ndp->ni_vp;
245
246 /* check access and type */
247 if (vp->v_type != VREG) {
248 error = EACCES;
249 goto bad1;
250 }
251 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
252 goto bad1;
253
254 /* get attributes */
255 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
256 goto bad1;
257
258 /* Check mount point */
259 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
260 error = EACCES;
261 goto bad1;
262 }
263 if (vp->v_mount->mnt_flag & MNT_NOSUID)
264 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
265
266 /* try to open it */
267 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
268 goto bad1;
269
270 /* unlock vp, since we need it unlocked from here on out. */
271 VOP_UNLOCK(vp, 0);
272
273 #if NVERIEXEC > 0
274 error = veriexec_verify(l, vp, ndp->ni_cnd.cn_pnbuf,
275 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
276 NULL);
277 if (error)
278 goto bad2;
279 #endif /* NVERIEXEC > 0 */
280
281 #ifdef PAX_SEGVGUARD
282 error = pax_segvguard(l, vp, ndp->ni_cnd.cn_pnbuf, false);
283 if (error)
284 goto bad2;
285 #endif /* PAX_SEGVGUARD */
286
287 /* now we have the file, get the exec header */
288 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
289 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
290 if (error)
291 goto bad2;
292 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
293
294 /*
295 * Set up default address space limits. Can be overridden
296 * by individual exec packages.
297 *
298 * XXX probably should be all done in the exec packages.
299 */
300 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
301 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
302 /*
303 * set up the vmcmds for creation of the process
304 * address space
305 */
306 error = ENOEXEC;
307 for (i = 0; i < nexecs; i++) {
308 int newerror;
309
310 epp->ep_esch = execsw[i];
311 newerror = (*execsw[i]->es_makecmds)(l, epp);
312
313 if (!newerror) {
314 /* Seems ok: check that entry point is sane */
315 if (epp->ep_entry > VM_MAXUSER_ADDRESS) {
316 error = ENOEXEC;
317 break;
318 }
319
320 /* check limits */
321 if ((epp->ep_tsize > MAXTSIZ) ||
322 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
323 [RLIMIT_DATA].rlim_cur)) {
324 error = ENOMEM;
325 break;
326 }
327 return 0;
328 }
329
330 if (epp->ep_emul_root != NULL) {
331 vrele(epp->ep_emul_root);
332 epp->ep_emul_root = NULL;
333 }
334 if (epp->ep_interp != NULL) {
335 vrele(epp->ep_interp);
336 epp->ep_interp = NULL;
337 }
338
339 /* make sure the first "interesting" error code is saved. */
340 if (error == ENOEXEC)
341 error = newerror;
342
343 if (epp->ep_flags & EXEC_DESTR)
344 /* Error from "#!" code, tidied up by recursive call */
345 return error;
346 }
347
348 /* not found, error */
349
350 /*
351 * free any vmspace-creation commands,
352 * and release their references
353 */
354 kill_vmcmds(&epp->ep_vmcmds);
355
356 bad2:
357 /*
358 * close and release the vnode, restore the old one, free the
359 * pathname buf, and punt.
360 */
361 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
362 VOP_CLOSE(vp, FREAD, l->l_cred);
363 vput(vp);
364 PNBUF_PUT(ndp->ni_cnd.cn_pnbuf);
365 return error;
366
367 bad1:
368 /*
369 * free the namei pathname buffer, and put the vnode
370 * (which we don't yet have open).
371 */
372 vput(vp); /* was still locked */
373 PNBUF_PUT(ndp->ni_cnd.cn_pnbuf);
374 return error;
375 }
376
377 #ifdef __MACHINE_STACK_GROWS_UP
378 #define STACK_PTHREADSPACE NBPG
379 #else
380 #define STACK_PTHREADSPACE 0
381 #endif
382
383 static int
384 execve_fetch_element(char * const *array, size_t index, char **value)
385 {
386 return copyin(array + index, value, sizeof(*value));
387 }
388
389 /*
390 * exec system call
391 */
392 /* ARGSUSED */
393 int
394 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
395 {
396 /* {
397 syscallarg(const char *) path;
398 syscallarg(char * const *) argp;
399 syscallarg(char * const *) envp;
400 } */
401
402 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
403 SCARG(uap, envp), execve_fetch_element);
404 }
405
406 int
407 execve1(struct lwp *l, const char *path, char * const *args,
408 char * const *envs, execve_fetch_element_t fetch_element)
409 {
410 int error;
411 struct exec_package pack;
412 struct nameidata nid;
413 struct vattr attr;
414 struct proc *p;
415 char *argp;
416 char *dp, *sp;
417 long argc, envc;
418 size_t i, len;
419 char *stack;
420 struct ps_strings arginfo;
421 struct ps_strings *aip = &arginfo;
422 struct vmspace *vm;
423 struct exec_fakearg *tmpfap;
424 int szsigcode;
425 struct exec_vmcmd *base_vcp;
426 ksiginfo_t ksi;
427 ksiginfoq_t kq;
428 char *pathbuf;
429 size_t pathbuflen;
430
431 p = l->l_proc;
432
433 /*
434 * Check if we have exceeded our number of processes limit.
435 * This is so that we handle the case where a root daemon
436 * forked, ran setuid to become the desired user and is trying
437 * to exec. The obvious place to do the reference counting check
438 * is setuid(), but we don't do the reference counting check there
439 * like other OS's do because then all the programs that use setuid()
440 * must be modified to check the return code of setuid() and exit().
441 * It is dangerous to make setuid() fail, because it fails open and
442 * the program will continue to run as root. If we make it succeed
443 * and return an error code, again we are not enforcing the limit.
444 * The best place to enforce the limit is here, when the process tries
445 * to execute a new image, because eventually the process will need
446 * to call exec in order to do something useful.
447 */
448
449 if ((p->p_flag & PK_SUGID) &&
450 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
451 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
452 return EAGAIN;
453
454 /*
455 * Drain existing references and forbid new ones. The process
456 * should be left alone until we're done here. This is necessary
457 * to avoid race conditions - e.g. in ptrace() - that might allow
458 * a local user to illicitly obtain elevated privileges.
459 */
460 rw_enter(&p->p_reflock, RW_WRITER);
461
462 base_vcp = NULL;
463 /*
464 * Init the namei data to point the file user's program name.
465 * This is done here rather than in check_exec(), so that it's
466 * possible to override this settings if any of makecmd/probe
467 * functions call check_exec() recursively - for example,
468 * see exec_script_makecmds().
469 */
470 pathbuf = PNBUF_GET();
471 error = copyinstr(path, pathbuf, MAXPATHLEN, &pathbuflen);
472 if (error) {
473 DPRINTF(("execve: copyinstr path %d", error));
474 goto clrflg;
475 }
476
477 NDINIT(&nid, LOOKUP, NOFOLLOW | TRYEMULROOT, UIO_SYSSPACE, pathbuf);
478
479 /*
480 * initialize the fields of the exec package.
481 */
482 pack.ep_name = path;
483 pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
484 pack.ep_hdrlen = exec_maxhdrsz;
485 pack.ep_hdrvalid = 0;
486 pack.ep_ndp = &nid;
487 pack.ep_emul_arg = NULL;
488 pack.ep_vmcmds.evs_cnt = 0;
489 pack.ep_vmcmds.evs_used = 0;
490 pack.ep_vap = &attr;
491 pack.ep_flags = 0;
492 pack.ep_emul_root = NULL;
493 pack.ep_interp = NULL;
494 pack.ep_esch = NULL;
495 pack.ep_pax_flags = 0;
496
497 #ifdef LKM
498 rw_enter(&exec_lock, RW_READER);
499 #endif
500
501 /* see if we can run it. */
502 if ((error = check_exec(l, &pack)) != 0) {
503 if (error != ENOENT) {
504 DPRINTF(("execve: check exec failed %d\n", error));
505 }
506 goto freehdr;
507 }
508
509 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
510
511 /* allocate an argument buffer */
512 argp = (char *) uvm_km_alloc(exec_map, NCARGS, 0,
513 UVM_KMF_PAGEABLE|UVM_KMF_WAITVA);
514 #ifdef DIAGNOSTIC
515 if (argp == NULL)
516 panic("execve: argp == NULL");
517 #endif
518 dp = argp;
519 argc = 0;
520
521 /* copy the fake args list, if there's one, freeing it as we go */
522 if (pack.ep_flags & EXEC_HASARGL) {
523 tmpfap = pack.ep_fa;
524 while (tmpfap->fa_arg != NULL) {
525 const char *cp;
526
527 cp = tmpfap->fa_arg;
528 while (*cp)
529 *dp++ = *cp++;
530 dp++;
531
532 kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
533 tmpfap++; argc++;
534 }
535 kmem_free(pack.ep_fa, pack.ep_fa_len);
536 pack.ep_flags &= ~EXEC_HASARGL;
537 }
538
539 /* Now get argv & environment */
540 if (args == NULL) {
541 DPRINTF(("execve: null args\n"));
542 error = EINVAL;
543 goto bad;
544 }
545 /* 'i' will index the argp/envp element to be retrieved */
546 i = 0;
547 if (pack.ep_flags & EXEC_SKIPARG)
548 i++;
549
550 while (1) {
551 len = argp + ARG_MAX - dp;
552 if ((error = (*fetch_element)(args, i, &sp)) != 0) {
553 DPRINTF(("execve: fetch_element args %d\n", error));
554 goto bad;
555 }
556 if (!sp)
557 break;
558 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
559 DPRINTF(("execve: copyinstr args %d\n", error));
560 if (error == ENAMETOOLONG)
561 error = E2BIG;
562 goto bad;
563 }
564 ktrexecarg(dp, len - 1);
565 dp += len;
566 i++;
567 argc++;
568 }
569
570 envc = 0;
571 /* environment need not be there */
572 if (envs != NULL) {
573 i = 0;
574 while (1) {
575 len = argp + ARG_MAX - dp;
576 if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
577 DPRINTF(("execve: fetch_element env %d\n", error));
578 goto bad;
579 }
580 if (!sp)
581 break;
582 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
583 DPRINTF(("execve: copyinstr env %d\n", error));
584 if (error == ENAMETOOLONG)
585 error = E2BIG;
586 goto bad;
587 }
588 ktrexecenv(dp, len - 1);
589 dp += len;
590 i++;
591 envc++;
592 }
593 }
594
595 dp = (char *) ALIGN(dp);
596
597 szsigcode = pack.ep_esch->es_emul->e_esigcode -
598 pack.ep_esch->es_emul->e_sigcode;
599
600 #ifdef __MACHINE_STACK_GROWS_UP
601 /* See big comment lower down */
602 #define RTLD_GAP 32
603 #else
604 #define RTLD_GAP 0
605 #endif
606
607 /* Now check if args & environ fit into new stack */
608 if (pack.ep_flags & EXEC_32)
609 len = ((argc + envc + 2 + pack.ep_esch->es_arglen) *
610 sizeof(int) + sizeof(int) + dp + RTLD_GAP +
611 szsigcode + sizeof(struct ps_strings) + STACK_PTHREADSPACE)
612 - argp;
613 else
614 len = ((argc + envc + 2 + pack.ep_esch->es_arglen) *
615 sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
616 szsigcode + sizeof(struct ps_strings) + STACK_PTHREADSPACE)
617 - argp;
618
619 #ifdef PAX_ASLR
620 if (pax_aslr_active(l))
621 len += (arc4random() % PAGE_SIZE);
622 #endif /* PAX_ASLR */
623
624 #ifdef STACKLALIGN /* arm, etc. */
625 len = STACKALIGN(len); /* make the stack "safely" aligned */
626 #else
627 len = ALIGN(len); /* make the stack "safely" aligned */
628 #endif
629
630 if (len > pack.ep_ssize) { /* in effect, compare to initial limit */
631 DPRINTF(("execve: stack limit exceeded %zu\n", len));
632 error = ENOMEM;
633 goto bad;
634 }
635
636 /* Get rid of other LWPs. */
637 if (p->p_nlwps > 1) {
638 mutex_enter(p->p_lock);
639 exit_lwps(l);
640 mutex_exit(p->p_lock);
641 }
642 KDASSERT(p->p_nlwps == 1);
643
644 /* Destroy any lwpctl info. */
645 if (p->p_lwpctl != NULL)
646 lwp_ctl_exit();
647
648 /* This is now LWP 1 */
649 l->l_lid = 1;
650 p->p_nlwpid = 1;
651
652 /* Remove POSIX timers */
653 timers_free(p, TIMERS_POSIX);
654
655 /* adjust "active stack depth" for process VSZ */
656 pack.ep_ssize = len; /* maybe should go elsewhere, but... */
657
658 /*
659 * Do whatever is necessary to prepare the address space
660 * for remapping. Note that this might replace the current
661 * vmspace with another!
662 */
663 uvmspace_exec(l, pack.ep_vm_minaddr, pack.ep_vm_maxaddr);
664
665 /* record proc's vnode, for use by procfs and others */
666 if (p->p_textvp)
667 vrele(p->p_textvp);
668 VREF(pack.ep_vp);
669 p->p_textvp = pack.ep_vp;
670
671 /* Now map address space */
672 vm = p->p_vmspace;
673 vm->vm_taddr = (void *)pack.ep_taddr;
674 vm->vm_tsize = btoc(pack.ep_tsize);
675 vm->vm_daddr = (void*)pack.ep_daddr;
676 vm->vm_dsize = btoc(pack.ep_dsize);
677 vm->vm_ssize = btoc(pack.ep_ssize);
678 vm->vm_maxsaddr = (void *)pack.ep_maxsaddr;
679 vm->vm_minsaddr = (void *)pack.ep_minsaddr;
680
681 #ifdef PAX_ASLR
682 pax_aslr_init(l, vm);
683 #endif /* PAX_ASLR */
684
685 /* create the new process's VM space by running the vmcmds */
686 #ifdef DIAGNOSTIC
687 if (pack.ep_vmcmds.evs_used == 0)
688 panic("execve: no vmcmds");
689 #endif
690 for (i = 0; i < pack.ep_vmcmds.evs_used && !error; i++) {
691 struct exec_vmcmd *vcp;
692
693 vcp = &pack.ep_vmcmds.evs_cmds[i];
694 if (vcp->ev_flags & VMCMD_RELATIVE) {
695 #ifdef DIAGNOSTIC
696 if (base_vcp == NULL)
697 panic("execve: relative vmcmd with no base");
698 if (vcp->ev_flags & VMCMD_BASE)
699 panic("execve: illegal base & relative vmcmd");
700 #endif
701 vcp->ev_addr += base_vcp->ev_addr;
702 }
703 error = (*vcp->ev_proc)(l, vcp);
704 #ifdef DEBUG_EXEC
705 if (error) {
706 size_t j;
707 struct exec_vmcmd *vp = &pack.ep_vmcmds.evs_cmds[0];
708 for (j = 0; j <= i; j++)
709 uprintf(
710 "vmcmd[%zu] = %#lx/%#lx fd@%#lx prot=0%o flags=%d\n",
711 j, vp[j].ev_addr, vp[j].ev_len,
712 vp[j].ev_offset, vp[j].ev_prot,
713 vp[j].ev_flags);
714 }
715 #endif /* DEBUG_EXEC */
716 if (vcp->ev_flags & VMCMD_BASE)
717 base_vcp = vcp;
718 }
719
720 /* free the vmspace-creation commands, and release their references */
721 kill_vmcmds(&pack.ep_vmcmds);
722
723 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
724 VOP_CLOSE(pack.ep_vp, FREAD, l->l_cred);
725 vput(pack.ep_vp);
726
727 /* if an error happened, deallocate and punt */
728 if (error) {
729 DPRINTF(("execve: vmcmd %zu failed: %d\n", i - 1, error));
730 goto exec_abort;
731 }
732
733 /* remember information about the process */
734 arginfo.ps_nargvstr = argc;
735 arginfo.ps_nenvstr = envc;
736
737 /* set command name & other accounting info */
738 i = min(nid.ni_cnd.cn_namelen, MAXCOMLEN);
739 (void)memcpy(p->p_comm, nid.ni_cnd.cn_nameptr, i);
740 p->p_comm[i] = '\0';
741
742 dp = PNBUF_GET();
743 /*
744 * If the path starts with /, we don't need to do any work.
745 * This handles the majority of the cases.
746 * In the future perhaps we could canonicalize it?
747 */
748 if (pathbuf[0] == '/')
749 (void)strlcpy(pack.ep_path = dp, pathbuf, MAXPATHLEN);
750 #ifdef notyet
751 /*
752 * Although this works most of the time [since the entry was just
753 * entered in the cache] we don't use it because it theoretically
754 * can fail and it is not the cleanest interface, because there
755 * could be races. When the namei cache is re-written, this can
756 * be changed to use the appropriate function.
757 */
758 else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
759 pack.ep_path = dp;
760 #endif
761 else {
762 #ifdef notyet
763 printf("Cannot get path for pid %d [%s] (error %d)",
764 (int)p->p_pid, p->p_comm, error);
765 #endif
766 pack.ep_path = NULL;
767 PNBUF_PUT(dp);
768 }
769
770 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
771 STACK_PTHREADSPACE + sizeof(struct ps_strings) + szsigcode),
772 len - (sizeof(struct ps_strings) + szsigcode));
773
774 #ifdef __MACHINE_STACK_GROWS_UP
775 /*
776 * The copyargs call always copies into lower addresses
777 * first, moving towards higher addresses, starting with
778 * the stack pointer that we give. When the stack grows
779 * down, this puts argc/argv/envp very shallow on the
780 * stack, right at the first user stack pointer.
781 * When the stack grows up, the situation is reversed.
782 *
783 * Normally, this is no big deal. But the ld_elf.so _rtld()
784 * function expects to be called with a single pointer to
785 * a region that has a few words it can stash values into,
786 * followed by argc/argv/envp. When the stack grows down,
787 * it's easy to decrement the stack pointer a little bit to
788 * allocate the space for these few words and pass the new
789 * stack pointer to _rtld. When the stack grows up, however,
790 * a few words before argc is part of the signal trampoline, XXX
791 * so we have a problem.
792 *
793 * Instead of changing how _rtld works, we take the easy way
794 * out and steal 32 bytes before we call copyargs.
795 * This extra space was allowed for when 'len' was calculated.
796 */
797 stack += RTLD_GAP;
798 #endif /* __MACHINE_STACK_GROWS_UP */
799
800 /* Now copy argc, args & environ to new stack */
801 error = (*pack.ep_esch->es_copyargs)(l, &pack, &arginfo, &stack, argp);
802 if (pack.ep_path) {
803 PNBUF_PUT(pack.ep_path);
804 pack.ep_path = NULL;
805 }
806 if (error) {
807 DPRINTF(("execve: copyargs failed %d\n", error));
808 goto exec_abort;
809 }
810 /* Move the stack back to original point */
811 stack = (char *)STACK_GROW(vm->vm_minsaddr, len);
812
813 /* fill process ps_strings info */
814 p->p_psstr = (struct ps_strings *)
815 STACK_ALLOC(STACK_GROW(vm->vm_minsaddr, STACK_PTHREADSPACE),
816 sizeof(struct ps_strings));
817 p->p_psargv = offsetof(struct ps_strings, ps_argvstr);
818 p->p_psnargv = offsetof(struct ps_strings, ps_nargvstr);
819 p->p_psenv = offsetof(struct ps_strings, ps_envstr);
820 p->p_psnenv = offsetof(struct ps_strings, ps_nenvstr);
821
822 /* copy out the process's ps_strings structure */
823 if ((error = copyout(aip, (char *)p->p_psstr,
824 sizeof(arginfo))) != 0) {
825 DPRINTF(("execve: ps_strings copyout %p->%p size %ld failed\n",
826 aip, (char *)p->p_psstr, (long)sizeof(arginfo)));
827 goto exec_abort;
828 }
829
830 fd_closeexec(); /* handle close on exec */
831 execsigs(p); /* reset catched signals */
832
833 l->l_ctxlink = NULL; /* reset ucontext link */
834
835
836 p->p_acflag &= ~AFORK;
837 mutex_enter(p->p_lock);
838 p->p_flag |= PK_EXEC;
839 mutex_exit(p->p_lock);
840
841 /*
842 * Stop profiling.
843 */
844 if ((p->p_stflag & PST_PROFIL) != 0) {
845 mutex_spin_enter(&p->p_stmutex);
846 stopprofclock(p);
847 mutex_spin_exit(&p->p_stmutex);
848 }
849
850 /*
851 * It's OK to test PS_PPWAIT unlocked here, as other LWPs have
852 * exited and exec()/exit() are the only places it will be cleared.
853 */
854 if ((p->p_sflag & PS_PPWAIT) != 0) {
855 mutex_enter(proc_lock);
856 mutex_enter(p->p_lock);
857 p->p_sflag &= ~PS_PPWAIT;
858 cv_broadcast(&p->p_pptr->p_waitcv);
859 mutex_exit(p->p_lock);
860 mutex_exit(proc_lock);
861 }
862
863 /*
864 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
865 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
866 * out additional references on the process for the moment.
867 */
868 if ((p->p_slflag & PSL_TRACED) == 0 &&
869
870 (((attr.va_mode & S_ISUID) != 0 &&
871 kauth_cred_geteuid(l->l_cred) != attr.va_uid) ||
872
873 ((attr.va_mode & S_ISGID) != 0 &&
874 kauth_cred_getegid(l->l_cred) != attr.va_gid))) {
875 /*
876 * Mark the process as SUGID before we do
877 * anything that might block.
878 */
879 proc_crmod_enter();
880 proc_crmod_leave(NULL, NULL, true);
881
882 /* Make sure file descriptors 0..2 are in use. */
883 if ((error = fd_checkstd()) != 0) {
884 DPRINTF(("execve: fdcheckstd failed %d\n", error));
885 goto exec_abort;
886 }
887
888 /*
889 * Copy the credential so other references don't see our
890 * changes.
891 */
892 l->l_cred = kauth_cred_copy(l->l_cred);
893 #ifdef KTRACE
894 /*
895 * If the persistent trace flag isn't set, turn off.
896 */
897 if (p->p_tracep) {
898 mutex_enter(&ktrace_lock);
899 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
900 ktrderef(p);
901 mutex_exit(&ktrace_lock);
902 }
903 #endif
904 if (attr.va_mode & S_ISUID)
905 kauth_cred_seteuid(l->l_cred, attr.va_uid);
906 if (attr.va_mode & S_ISGID)
907 kauth_cred_setegid(l->l_cred, attr.va_gid);
908 } else {
909 if (kauth_cred_geteuid(l->l_cred) ==
910 kauth_cred_getuid(l->l_cred) &&
911 kauth_cred_getegid(l->l_cred) ==
912 kauth_cred_getgid(l->l_cred))
913 p->p_flag &= ~PK_SUGID;
914 }
915
916 /*
917 * Copy the credential so other references don't see our changes.
918 * Test to see if this is necessary first, since in the common case
919 * we won't need a private reference.
920 */
921 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
922 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
923 l->l_cred = kauth_cred_copy(l->l_cred);
924 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
925 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
926 }
927
928 /* Update the master credentials. */
929 if (l->l_cred != p->p_cred) {
930 kauth_cred_t ocred;
931
932 kauth_cred_hold(l->l_cred);
933 mutex_enter(p->p_lock);
934 ocred = p->p_cred;
935 p->p_cred = l->l_cred;
936 mutex_exit(p->p_lock);
937 kauth_cred_free(ocred);
938 }
939
940 #if defined(__HAVE_RAS)
941 /*
942 * Remove all RASs from the address space.
943 */
944 ras_purgeall();
945 #endif
946
947 doexechooks(p);
948
949 uvm_km_free(exec_map, (vaddr_t) argp, NCARGS, UVM_KMF_PAGEABLE);
950
951 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
952
953 /* notify others that we exec'd */
954 KNOTE(&p->p_klist, NOTE_EXEC);
955
956 /* setup new registers and do misc. setup. */
957 (*pack.ep_esch->es_emul->e_setregs)(l, &pack, (u_long) stack);
958 if (pack.ep_esch->es_setregs)
959 (*pack.ep_esch->es_setregs)(l, &pack, (u_long) stack);
960
961 /* map the process's signal trampoline code */
962 if (exec_sigcode_map(p, pack.ep_esch->es_emul)) {
963 DPRINTF(("execve: map sigcode failed %d\n", error));
964 goto exec_abort;
965 }
966
967 kmem_free(pack.ep_hdr, pack.ep_hdrlen);
968
969 /* The emulation root will usually have been found when we looked
970 * for the elf interpreter (or similar), if not look now. */
971 if (pack.ep_esch->es_emul->e_path != NULL && pack.ep_emul_root == NULL)
972 emul_find_root(l, &pack);
973
974 /* Any old emulation root got removed by fdcloseexec */
975 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
976 p->p_cwdi->cwdi_edir = pack.ep_emul_root;
977 rw_exit(&p->p_cwdi->cwdi_lock);
978 pack.ep_emul_root = NULL;
979 if (pack.ep_interp != NULL)
980 vrele(pack.ep_interp);
981
982 /*
983 * Call emulation specific exec hook. This can setup per-process
984 * p->p_emuldata or do any other per-process stuff an emulation needs.
985 *
986 * If we are executing process of different emulation than the
987 * original forked process, call e_proc_exit() of the old emulation
988 * first, then e_proc_exec() of new emulation. If the emulation is
989 * same, the exec hook code should deallocate any old emulation
990 * resources held previously by this process.
991 */
992 if (p->p_emul && p->p_emul->e_proc_exit
993 && p->p_emul != pack.ep_esch->es_emul)
994 (*p->p_emul->e_proc_exit)(p);
995
996 /*
997 * Call exec hook. Emulation code may NOT store reference to anything
998 * from &pack.
999 */
1000 if (pack.ep_esch->es_emul->e_proc_exec)
1001 (*pack.ep_esch->es_emul->e_proc_exec)(p, &pack);
1002
1003 /* update p_emul, the old value is no longer needed */
1004 p->p_emul = pack.ep_esch->es_emul;
1005
1006 /* ...and the same for p_execsw */
1007 p->p_execsw = pack.ep_esch;
1008
1009 #ifdef __HAVE_SYSCALL_INTERN
1010 (*p->p_emul->e_syscall_intern)(p);
1011 #endif
1012 ktremul();
1013
1014 /* Allow new references from the debugger/procfs. */
1015 rw_exit(&p->p_reflock);
1016 #ifdef LKM
1017 rw_exit(&exec_lock);
1018 #endif
1019
1020 mutex_enter(proc_lock);
1021
1022 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1023 KSI_INIT_EMPTY(&ksi);
1024 ksi.ksi_signo = SIGTRAP;
1025 ksi.ksi_lid = l->l_lid;
1026 kpsignal(p, &ksi, NULL);
1027 }
1028
1029 if (p->p_sflag & PS_STOPEXEC) {
1030 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1031 p->p_pptr->p_nstopchild++;
1032 p->p_pptr->p_waited = 0;
1033 mutex_enter(p->p_lock);
1034 ksiginfo_queue_init(&kq);
1035 sigclearall(p, &contsigmask, &kq);
1036 lwp_lock(l);
1037 l->l_stat = LSSTOP;
1038 p->p_stat = SSTOP;
1039 p->p_nrlwps--;
1040 mutex_exit(p->p_lock);
1041 mutex_exit(proc_lock);
1042 mi_switch(l);
1043 ksiginfo_queue_drain(&kq);
1044 KERNEL_LOCK(l->l_biglocks, l);
1045 } else {
1046 mutex_exit(proc_lock);
1047 }
1048
1049 PNBUF_PUT(pathbuf);
1050 return (EJUSTRETURN);
1051
1052 bad:
1053 /* free the vmspace-creation commands, and release their references */
1054 kill_vmcmds(&pack.ep_vmcmds);
1055 /* kill any opened file descriptor, if necessary */
1056 if (pack.ep_flags & EXEC_HASFD) {
1057 pack.ep_flags &= ~EXEC_HASFD;
1058 fd_close(pack.ep_fd);
1059 }
1060 /* close and put the exec'd file */
1061 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
1062 VOP_CLOSE(pack.ep_vp, FREAD, l->l_cred);
1063 vput(pack.ep_vp);
1064 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
1065 uvm_km_free(exec_map, (vaddr_t) argp, NCARGS, UVM_KMF_PAGEABLE);
1066
1067 freehdr:
1068 kmem_free(pack.ep_hdr, pack.ep_hdrlen);
1069 if (pack.ep_emul_root != NULL)
1070 vrele(pack.ep_emul_root);
1071 if (pack.ep_interp != NULL)
1072 vrele(pack.ep_interp);
1073
1074 clrflg:
1075 PNBUF_PUT(pathbuf);
1076 rw_exit(&p->p_reflock);
1077 #ifdef LKM
1078 rw_exit(&exec_lock);
1079 #endif
1080
1081 return error;
1082
1083 exec_abort:
1084 PNBUF_PUT(pathbuf);
1085 rw_exit(&p->p_reflock);
1086 #ifdef LKM
1087 rw_exit(&exec_lock);
1088 #endif
1089
1090 /*
1091 * the old process doesn't exist anymore. exit gracefully.
1092 * get rid of the (new) address space we have created, if any, get rid
1093 * of our namei data and vnode, and exit noting failure
1094 */
1095 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1096 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1097 if (pack.ep_emul_arg)
1098 FREE(pack.ep_emul_arg, M_TEMP);
1099 PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
1100 uvm_km_free(exec_map, (vaddr_t) argp, NCARGS, UVM_KMF_PAGEABLE);
1101 kmem_free(pack.ep_hdr, pack.ep_hdrlen);
1102 if (pack.ep_emul_root != NULL)
1103 vrele(pack.ep_emul_root);
1104 if (pack.ep_interp != NULL)
1105 vrele(pack.ep_interp);
1106
1107 /* Acquire the sched-state mutex (exit1() will release it). */
1108 mutex_enter(p->p_lock);
1109 exit1(l, W_EXITCODE(error, SIGABRT));
1110
1111 /* NOTREACHED */
1112 return 0;
1113 }
1114
1115
1116 int
1117 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1118 char **stackp, void *argp)
1119 {
1120 char **cpp, *dp, *sp;
1121 size_t len;
1122 void *nullp;
1123 long argc, envc;
1124 int error;
1125
1126 cpp = (char **)*stackp;
1127 nullp = NULL;
1128 argc = arginfo->ps_nargvstr;
1129 envc = arginfo->ps_nenvstr;
1130 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0)
1131 return error;
1132
1133 dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1134 sp = argp;
1135
1136 /* XXX don't copy them out, remap them! */
1137 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1138
1139 for (; --argc >= 0; sp += len, dp += len)
1140 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0 ||
1141 (error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0)
1142 return error;
1143
1144 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0)
1145 return error;
1146
1147 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1148
1149 for (; --envc >= 0; sp += len, dp += len)
1150 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0 ||
1151 (error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0)
1152 return error;
1153
1154 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0)
1155 return error;
1156
1157 *stackp = (char *)cpp;
1158 return 0;
1159 }
1160
1161 #ifdef LKM
1162 /*
1163 * Find an emulation of given name in list of emulations.
1164 * Needs to be called with the exec_lock held.
1165 */
1166 const struct emul *
1167 emul_search(const char *name)
1168 {
1169 struct emul_entry *it;
1170
1171 LIST_FOREACH(it, &el_head, el_list) {
1172 if (strcmp(name, it->el_emul->e_name) == 0)
1173 return it->el_emul;
1174 }
1175
1176 return NULL;
1177 }
1178
1179 /*
1180 * Add an emulation to list, if it's not there already.
1181 */
1182 int
1183 emul_register(const struct emul *emul, int ro_entry)
1184 {
1185 struct emul_entry *ee;
1186 int error;
1187
1188 error = 0;
1189 rw_enter(&exec_lock, RW_WRITER);
1190
1191 if (emul_search(emul->e_name)) {
1192 error = EEXIST;
1193 goto out;
1194 }
1195
1196 ee = kmem_alloc(sizeof(*ee), KM_SLEEP);
1197 ee->el_emul = emul;
1198 ee->ro_entry = ro_entry;
1199 LIST_INSERT_HEAD(&el_head, ee, el_list);
1200
1201 out:
1202 rw_exit(&exec_lock);
1203 return error;
1204 }
1205
1206 /*
1207 * Remove emulation with name 'name' from list of supported emulations.
1208 */
1209 int
1210 emul_unregister(const char *name)
1211 {
1212 const struct proclist_desc *pd;
1213 struct emul_entry *it;
1214 int i, error;
1215 struct proc *ptmp;
1216
1217 error = 0;
1218 rw_enter(&exec_lock, RW_WRITER);
1219
1220 LIST_FOREACH(it, &el_head, el_list) {
1221 if (strcmp(it->el_emul->e_name, name) == 0)
1222 break;
1223 }
1224
1225 if (!it) {
1226 error = ENOENT;
1227 goto out;
1228 }
1229
1230 if (it->ro_entry) {
1231 error = EBUSY;
1232 goto out;
1233 }
1234
1235 /* test if any execw[] entry is still using this */
1236 for(i=0; i < nexecs; i++) {
1237 if (execsw[i]->es_emul == it->el_emul) {
1238 error = EBUSY;
1239 goto out;
1240 }
1241 }
1242
1243 /*
1244 * Test if any process is running under this emulation - since
1245 * emul_unregister() is running quite sendomly, it's better
1246 * to do expensive check here than to use any locking.
1247 */
1248 mutex_enter(proc_lock);
1249 for (pd = proclists; pd->pd_list != NULL && !error; pd++) {
1250 PROCLIST_FOREACH(ptmp, pd->pd_list) {
1251 if (ptmp->p_emul == it->el_emul) {
1252 error = EBUSY;
1253 break;
1254 }
1255 }
1256 }
1257 mutex_exit(proc_lock);
1258
1259 if (error)
1260 goto out;
1261
1262
1263 /* entry is not used, remove it */
1264 LIST_REMOVE(it, el_list);
1265 kmem_free(it, sizeof(*it));
1266
1267 out:
1268 rw_exit(&exec_lock);
1269 return error;
1270 }
1271
1272 /*
1273 * Add execsw[] entry.
1274 */
1275 int
1276 exec_add(struct execsw *esp, const char *e_name)
1277 {
1278 struct exec_entry *it;
1279 int error;
1280
1281 error = 0;
1282 rw_enter(&exec_lock, RW_WRITER);
1283
1284 if (!esp->es_emul) {
1285 esp->es_emul = emul_search(e_name);
1286 if (!esp->es_emul) {
1287 error = ENOENT;
1288 goto out;
1289 }
1290 }
1291
1292 LIST_FOREACH(it, &ex_head, ex_list) {
1293 /* assume tuple (makecmds, probe_func, emulation) is unique */
1294 if (it->es->es_makecmds == esp->es_makecmds
1295 && it->es->u.elf_probe_func == esp->u.elf_probe_func
1296 && it->es->es_emul == esp->es_emul) {
1297 error = EEXIST;
1298 goto out;
1299 }
1300 }
1301
1302 /* if we got here, the entry doesn't exist yet */
1303 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1304 it->es = esp;
1305 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1306
1307 /* update execsw[] */
1308 exec_init(0);
1309
1310 out:
1311 rw_exit(&exec_lock);
1312 return error;
1313 }
1314
1315 /*
1316 * Remove execsw[] entry.
1317 */
1318 int
1319 exec_remove(const struct execsw *esp)
1320 {
1321 struct exec_entry *it;
1322 int error;
1323
1324 error = 0;
1325 rw_enter(&exec_lock, RW_WRITER);
1326
1327 LIST_FOREACH(it, &ex_head, ex_list) {
1328 /* assume tuple (makecmds, probe_func, emulation) is unique */
1329 if (it->es->es_makecmds == esp->es_makecmds
1330 && it->es->u.elf_probe_func == esp->u.elf_probe_func
1331 && it->es->es_emul == esp->es_emul)
1332 break;
1333 }
1334 if (!it) {
1335 error = ENOENT;
1336 goto out;
1337 }
1338
1339 /* remove item from list and free resources */
1340 LIST_REMOVE(it, ex_list);
1341 kmem_free(it, sizeof(*it));
1342
1343 /* update execsw[] */
1344 exec_init(0);
1345
1346 out:
1347 rw_exit(&exec_lock);
1348 return error;
1349 }
1350
1351 static void
1352 link_es(struct execsw_entry **listp, const struct execsw *esp)
1353 {
1354 struct execsw_entry *et, *e1;
1355
1356 et = (struct execsw_entry *) malloc(sizeof(struct execsw_entry),
1357 M_TEMP, M_WAITOK);
1358 et->next = NULL;
1359 et->es = esp;
1360 if (*listp == NULL) {
1361 *listp = et;
1362 return;
1363 }
1364
1365 switch(et->es->es_prio) {
1366 case EXECSW_PRIO_FIRST:
1367 /* put new entry as the first */
1368 et->next = *listp;
1369 *listp = et;
1370 break;
1371 case EXECSW_PRIO_ANY:
1372 /* put new entry after all *_FIRST and *_ANY entries */
1373 for(e1 = *listp; e1->next
1374 && e1->next->es->es_prio != EXECSW_PRIO_LAST;
1375 e1 = e1->next);
1376 et->next = e1->next;
1377 e1->next = et;
1378 break;
1379 case EXECSW_PRIO_LAST:
1380 /* put new entry as the last one */
1381 for(e1 = *listp; e1->next; e1 = e1->next);
1382 e1->next = et;
1383 break;
1384 default:
1385 #ifdef DIAGNOSTIC
1386 panic("execw[] entry with unknown priority %d found",
1387 et->es->es_prio);
1388 #else
1389 free(et, M_TEMP);
1390 #endif
1391 break;
1392 }
1393 }
1394
1395 /*
1396 * Initialize exec structures. If init_boot is true, also does necessary
1397 * one-time initialization (it's called from main() that way).
1398 * Once system is multiuser, this should be called with exec_lock held,
1399 * i.e. via exec_{add|remove}().
1400 */
1401 int
1402 exec_init(int init_boot)
1403 {
1404 const struct execsw **new_es, * const *old_es;
1405 struct execsw_entry *list, *e1;
1406 struct exec_entry *e2;
1407 int i, es_sz;
1408
1409 if (init_boot) {
1410 /* do one-time initializations */
1411 rw_init(&exec_lock);
1412 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1413
1414 /* register compiled-in emulations */
1415 for(i=0; i < nexecs_builtin; i++) {
1416 if (execsw_builtin[i].es_emul)
1417 emul_register(execsw_builtin[i].es_emul, 1);
1418 }
1419 #ifdef DIAGNOSTIC
1420 if (i == 0)
1421 panic("no emulations found in execsw_builtin[]");
1422 #endif
1423 }
1424
1425 /*
1426 * Build execsw[] array from builtin entries and entries added
1427 * at runtime.
1428 */
1429 list = NULL;
1430 for(i=0; i < nexecs_builtin; i++)
1431 link_es(&list, &execsw_builtin[i]);
1432
1433 /* Add dynamically loaded entries */
1434 es_sz = nexecs_builtin;
1435 LIST_FOREACH(e2, &ex_head, ex_list) {
1436 link_es(&list, e2->es);
1437 es_sz++;
1438 }
1439
1440 /*
1441 * Now that we have sorted all execw entries, create new execsw[]
1442 * and free no longer needed memory in the process.
1443 */
1444 new_es = kmem_alloc(es_sz * sizeof(struct execsw *), KM_SLEEP);
1445 for(i=0; list; i++) {
1446 new_es[i] = list->es;
1447 e1 = list->next;
1448 free(list, M_TEMP);
1449 list = e1;
1450 }
1451
1452 /*
1453 * New execsw[] array built, now replace old execsw[] and free
1454 * used memory.
1455 */
1456 old_es = execsw;
1457 if (old_es)
1458 /*XXXUNCONST*/
1459 kmem_free(__UNCONST(old_es), nexecs * sizeof(struct execsw *));
1460 execsw = new_es;
1461 nexecs = es_sz;
1462
1463 /*
1464 * Figure out the maximum size of an exec header.
1465 */
1466 exec_maxhdrsz = 0;
1467 for (i = 0; i < nexecs; i++) {
1468 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1469 exec_maxhdrsz = execsw[i]->es_hdrsz;
1470 }
1471
1472 return 0;
1473 }
1474 #endif
1475
1476 #ifndef LKM
1477 /*
1478 * Simplified exec_init() for kernels without LKMs. Only initialize
1479 * exec_maxhdrsz and execsw[].
1480 */
1481 int
1482 exec_init(int init_boot)
1483 {
1484 int i;
1485
1486 #ifdef DIAGNOSTIC
1487 if (!init_boot)
1488 panic("exec_init(): called with init_boot == 0");
1489 #endif
1490
1491 /* do one-time initializations */
1492 nexecs = nexecs_builtin;
1493 execsw = kmem_alloc(nexecs * sizeof(struct execsw *), KM_SLEEP);
1494
1495 /*
1496 * Fill in execsw[] and figure out the maximum size of an exec header.
1497 */
1498 exec_maxhdrsz = 0;
1499 for(i=0; i < nexecs; i++) {
1500 execsw[i] = &execsw_builtin[i];
1501 if (execsw_builtin[i].es_hdrsz > exec_maxhdrsz)
1502 exec_maxhdrsz = execsw_builtin[i].es_hdrsz;
1503 }
1504
1505 return 0;
1506
1507 }
1508 #endif /* !LKM */
1509
1510 static int
1511 exec_sigcode_map(struct proc *p, const struct emul *e)
1512 {
1513 vaddr_t va;
1514 vsize_t sz;
1515 int error;
1516 struct uvm_object *uobj;
1517
1518 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1519
1520 if (e->e_sigobject == NULL || sz == 0) {
1521 return 0;
1522 }
1523
1524 /*
1525 * If we don't have a sigobject for this emulation, create one.
1526 *
1527 * sigobject is an anonymous memory object (just like SYSV shared
1528 * memory) that we keep a permanent reference to and that we map
1529 * in all processes that need this sigcode. The creation is simple,
1530 * we create an object, add a permanent reference to it, map it in
1531 * kernel space, copy out the sigcode to it and unmap it.
1532 * We map it with PROT_READ|PROT_EXEC into the process just
1533 * the way sys_mmap() would map it.
1534 */
1535
1536 uobj = *e->e_sigobject;
1537 if (uobj == NULL) {
1538 mutex_enter(&sigobject_lock);
1539 if ((uobj = *e->e_sigobject) == NULL) {
1540 uobj = uao_create(sz, 0);
1541 (*uobj->pgops->pgo_reference)(uobj);
1542 va = vm_map_min(kernel_map);
1543 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1544 uobj, 0, 0,
1545 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1546 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1547 printf("kernel mapping failed %d\n", error);
1548 (*uobj->pgops->pgo_detach)(uobj);
1549 mutex_exit(&sigobject_lock);
1550 return (error);
1551 }
1552 memcpy((void *)va, e->e_sigcode, sz);
1553 #ifdef PMAP_NEED_PROCWR
1554 pmap_procwr(&proc0, va, sz);
1555 #endif
1556 uvm_unmap(kernel_map, va, va + round_page(sz));
1557 *e->e_sigobject = uobj;
1558 }
1559 mutex_exit(&sigobject_lock);
1560 }
1561
1562 /* Just a hint to uvm_map where to put it. */
1563 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1564 round_page(sz));
1565
1566 #ifdef __alpha__
1567 /*
1568 * Tru64 puts /sbin/loader at the end of user virtual memory,
1569 * which causes the above calculation to put the sigcode at
1570 * an invalid address. Put it just below the text instead.
1571 */
1572 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1573 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1574 }
1575 #endif
1576
1577 (*uobj->pgops->pgo_reference)(uobj);
1578 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1579 uobj, 0, 0,
1580 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1581 UVM_ADV_RANDOM, 0));
1582 if (error) {
1583 (*uobj->pgops->pgo_detach)(uobj);
1584 return (error);
1585 }
1586 p->p_sigctx.ps_sigcode = (void *)va;
1587 return (0);
1588 }
1589