kern_exec.c revision 1.298 1 /* $NetBSD: kern_exec.c,v 1.298 2010/06/24 13:03:11 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.298 2010/06/24 13:03:11 hannken Exp $");
63
64 #include "opt_ktrace.h"
65 #include "opt_modular.h"
66 #include "opt_syscall_debug.h"
67 #include "veriexec.h"
68 #include "opt_pax.h"
69 #include "opt_sa.h"
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/filedesc.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/mount.h>
77 #include <sys/malloc.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/acct.h>
83 #include <sys/exec.h>
84 #include <sys/ktrace.h>
85 #include <sys/uidinfo.h>
86 #include <sys/wait.h>
87 #include <sys/mman.h>
88 #include <sys/ras.h>
89 #include <sys/signalvar.h>
90 #include <sys/stat.h>
91 #include <sys/syscall.h>
92 #include <sys/kauth.h>
93 #include <sys/lwpctl.h>
94 #include <sys/pax.h>
95 #include <sys/cpu.h>
96 #include <sys/module.h>
97 #include <sys/sa.h>
98 #include <sys/savar.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105
106 #include <uvm/uvm_extern.h>
107
108 #include <machine/reg.h>
109
110 #include <compat/common/compat_util.h>
111
112 static int exec_sigcode_map(struct proc *, const struct emul *);
113
114 #ifdef DEBUG_EXEC
115 #define DPRINTF(a) uprintf a
116 #else
117 #define DPRINTF(a)
118 #endif /* DEBUG_EXEC */
119
120 /*
121 * DTrace SDT provider definitions
122 */
123 SDT_PROBE_DEFINE(proc,,,exec,
124 "char *", NULL,
125 NULL, NULL, NULL, NULL,
126 NULL, NULL, NULL, NULL);
127 SDT_PROBE_DEFINE(proc,,,exec_success,
128 "char *", NULL,
129 NULL, NULL, NULL, NULL,
130 NULL, NULL, NULL, NULL);
131 SDT_PROBE_DEFINE(proc,,,exec_failure,
132 "int", NULL,
133 NULL, NULL, NULL, NULL,
134 NULL, NULL, NULL, NULL);
135
136 /*
137 * Exec function switch:
138 *
139 * Note that each makecmds function is responsible for loading the
140 * exec package with the necessary functions for any exec-type-specific
141 * handling.
142 *
143 * Functions for specific exec types should be defined in their own
144 * header file.
145 */
146 static const struct execsw **execsw = NULL;
147 static int nexecs;
148
149 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
150
151 /* list of dynamically loaded execsw entries */
152 static LIST_HEAD(execlist_head, exec_entry) ex_head =
153 LIST_HEAD_INITIALIZER(ex_head);
154 struct exec_entry {
155 LIST_ENTRY(exec_entry) ex_list;
156 SLIST_ENTRY(exec_entry) ex_slist;
157 const struct execsw *ex_sw;
158 };
159
160 #ifndef __HAVE_SYSCALL_INTERN
161 void syscall(void);
162 #endif
163
164 #ifdef KERN_SA
165 static struct sa_emul saemul_netbsd = {
166 sizeof(ucontext_t),
167 sizeof(struct sa_t),
168 sizeof(struct sa_t *),
169 NULL,
170 NULL,
171 cpu_upcall,
172 (void (*)(struct lwp *, void *))getucontext_sa,
173 sa_ucsp
174 };
175 #endif /* KERN_SA */
176
177 /* NetBSD emul struct */
178 struct emul emul_netbsd = {
179 .e_name = "netbsd",
180 .e_path = NULL,
181 #ifndef __HAVE_MINIMAL_EMUL
182 .e_flags = EMUL_HAS_SYS___syscall,
183 .e_errno = NULL,
184 .e_nosys = SYS_syscall,
185 .e_nsysent = SYS_NSYSENT,
186 #endif
187 .e_sysent = sysent,
188 #ifdef SYSCALL_DEBUG
189 .e_syscallnames = syscallnames,
190 #else
191 .e_syscallnames = NULL,
192 #endif
193 .e_sendsig = sendsig,
194 .e_trapsignal = trapsignal,
195 .e_tracesig = NULL,
196 .e_sigcode = NULL,
197 .e_esigcode = NULL,
198 .e_sigobject = NULL,
199 .e_setregs = setregs,
200 .e_proc_exec = NULL,
201 .e_proc_fork = NULL,
202 .e_proc_exit = NULL,
203 .e_lwp_fork = NULL,
204 .e_lwp_exit = NULL,
205 #ifdef __HAVE_SYSCALL_INTERN
206 .e_syscall_intern = syscall_intern,
207 #else
208 .e_syscall = syscall,
209 #endif
210 .e_sysctlovly = NULL,
211 .e_fault = NULL,
212 .e_vm_default_addr = uvm_default_mapaddr,
213 .e_usertrap = NULL,
214 #ifdef KERN_SA
215 .e_sa = &saemul_netbsd,
216 #else
217 .e_sa = NULL,
218 #endif
219 .e_ucsize = sizeof(ucontext_t),
220 .e_startlwp = startlwp
221 };
222
223 /*
224 * Exec lock. Used to control access to execsw[] structures.
225 * This must not be static so that netbsd32 can access it, too.
226 */
227 krwlock_t exec_lock;
228
229 static kmutex_t sigobject_lock;
230
231 static void *
232 exec_pool_alloc(struct pool *pp, int flags)
233 {
234
235 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
236 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
237 }
238
239 static void
240 exec_pool_free(struct pool *pp, void *addr)
241 {
242
243 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
244 }
245
246 static struct pool exec_pool;
247
248 static struct pool_allocator exec_palloc = {
249 .pa_alloc = exec_pool_alloc,
250 .pa_free = exec_pool_free,
251 .pa_pagesz = NCARGS
252 };
253
254 /*
255 * check exec:
256 * given an "executable" described in the exec package's namei info,
257 * see what we can do with it.
258 *
259 * ON ENTRY:
260 * exec package with appropriate namei info
261 * lwp pointer of exec'ing lwp
262 * NO SELF-LOCKED VNODES
263 *
264 * ON EXIT:
265 * error: nothing held, etc. exec header still allocated.
266 * ok: filled exec package, executable's vnode (unlocked).
267 *
268 * EXEC SWITCH ENTRY:
269 * Locked vnode to check, exec package, proc.
270 *
271 * EXEC SWITCH EXIT:
272 * ok: return 0, filled exec package, executable's vnode (unlocked).
273 * error: destructive:
274 * everything deallocated execept exec header.
275 * non-destructive:
276 * error code, executable's vnode (unlocked),
277 * exec header unmodified.
278 */
279 int
280 /*ARGSUSED*/
281 check_exec(struct lwp *l, struct exec_package *epp, const char *kpath)
282 {
283 int error, i;
284 struct vnode *vp;
285 struct nameidata nd;
286 size_t resid;
287
288 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | SAVENAME | TRYEMULROOT,
289 UIO_SYSSPACE, kpath);
290
291 /* first get the vnode */
292 if ((error = namei(&nd)) != 0)
293 return error;
294 epp->ep_vp = vp = nd.ni_vp;
295 /* this cannot overflow as both are size PATH_MAX */
296 strcpy(epp->ep_resolvedname, nd.ni_cnd.cn_pnbuf);
297
298 /* dump this right away */
299 #ifdef DIAGNOSTIC
300 /* paranoia (take this out once namei stuff stabilizes) */
301 memset(nd.ni_cnd.cn_pnbuf, '~', PATH_MAX);
302 #endif
303 PNBUF_PUT(nd.ni_cnd.cn_pnbuf);
304
305 /* check access and type */
306 if (vp->v_type != VREG) {
307 error = EACCES;
308 goto bad1;
309 }
310 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
311 goto bad1;
312
313 /* get attributes */
314 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
315 goto bad1;
316
317 /* Check mount point */
318 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
319 error = EACCES;
320 goto bad1;
321 }
322 if (vp->v_mount->mnt_flag & MNT_NOSUID)
323 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
324
325 /* try to open it */
326 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
327 goto bad1;
328
329 /* unlock vp, since we need it unlocked from here on out. */
330 VOP_UNLOCK(vp);
331
332 #if NVERIEXEC > 0
333 error = veriexec_verify(l, vp, epp->ep_resolvedname,
334 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
335 NULL);
336 if (error)
337 goto bad2;
338 #endif /* NVERIEXEC > 0 */
339
340 #ifdef PAX_SEGVGUARD
341 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
342 if (error)
343 goto bad2;
344 #endif /* PAX_SEGVGUARD */
345
346 /* now we have the file, get the exec header */
347 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
348 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
349 if (error)
350 goto bad2;
351 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
352
353 /*
354 * Set up default address space limits. Can be overridden
355 * by individual exec packages.
356 *
357 * XXX probably should be all done in the exec packages.
358 */
359 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
360 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
361 /*
362 * set up the vmcmds for creation of the process
363 * address space
364 */
365 error = ENOEXEC;
366 for (i = 0; i < nexecs; i++) {
367 int newerror;
368
369 epp->ep_esch = execsw[i];
370 newerror = (*execsw[i]->es_makecmds)(l, epp);
371
372 if (!newerror) {
373 /* Seems ok: check that entry point is sane */
374 if (epp->ep_entry > VM_MAXUSER_ADDRESS) {
375 error = ENOEXEC;
376 break;
377 }
378
379 /* check limits */
380 if ((epp->ep_tsize > MAXTSIZ) ||
381 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
382 [RLIMIT_DATA].rlim_cur)) {
383 error = ENOMEM;
384 break;
385 }
386 return 0;
387 }
388
389 if (epp->ep_emul_root != NULL) {
390 vrele(epp->ep_emul_root);
391 epp->ep_emul_root = NULL;
392 }
393 if (epp->ep_interp != NULL) {
394 vrele(epp->ep_interp);
395 epp->ep_interp = NULL;
396 }
397
398 /* make sure the first "interesting" error code is saved. */
399 if (error == ENOEXEC)
400 error = newerror;
401
402 if (epp->ep_flags & EXEC_DESTR)
403 /* Error from "#!" code, tidied up by recursive call */
404 return error;
405 }
406
407 /* not found, error */
408
409 /*
410 * free any vmspace-creation commands,
411 * and release their references
412 */
413 kill_vmcmds(&epp->ep_vmcmds);
414
415 bad2:
416 /*
417 * close and release the vnode, restore the old one, free the
418 * pathname buf, and punt.
419 */
420 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
421 VOP_CLOSE(vp, FREAD, l->l_cred);
422 vput(vp);
423 return error;
424
425 bad1:
426 /*
427 * free the namei pathname buffer, and put the vnode
428 * (which we don't yet have open).
429 */
430 vput(vp); /* was still locked */
431 return error;
432 }
433
434 #ifdef __MACHINE_STACK_GROWS_UP
435 #define STACK_PTHREADSPACE NBPG
436 #else
437 #define STACK_PTHREADSPACE 0
438 #endif
439
440 static int
441 execve_fetch_element(char * const *array, size_t index, char **value)
442 {
443 return copyin(array + index, value, sizeof(*value));
444 }
445
446 /*
447 * exec system call
448 */
449 /* ARGSUSED */
450 int
451 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
452 {
453 /* {
454 syscallarg(const char *) path;
455 syscallarg(char * const *) argp;
456 syscallarg(char * const *) envp;
457 } */
458
459 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
460 SCARG(uap, envp), execve_fetch_element);
461 }
462
463 /*
464 * Load modules to try and execute an image that we do not understand.
465 * If no execsw entries are present, we load those likely to be needed
466 * in order to run native images only. Otherwise, we autoload all
467 * possible modules that could let us run the binary. XXX lame
468 */
469 static void
470 exec_autoload(void)
471 {
472 #ifdef MODULAR
473 static const char * const native[] = {
474 "exec_elf32",
475 "exec_elf64",
476 "exec_script",
477 NULL
478 };
479 static const char * const compat[] = {
480 "exec_elf32",
481 "exec_elf64",
482 "exec_script",
483 "exec_aout",
484 "exec_coff",
485 "exec_ecoff",
486 "compat_aoutm68k",
487 "compat_freebsd",
488 "compat_ibcs2",
489 "compat_irix",
490 "compat_linux",
491 "compat_linux32",
492 "compat_netbsd32",
493 "compat_sunos",
494 "compat_sunos32",
495 "compat_svr4",
496 "compat_svr4_32",
497 "compat_ultrix",
498 NULL
499 };
500 char const * const *list;
501 int i;
502
503 mutex_enter(&module_lock);
504 list = (nexecs == 0 ? native : compat);
505 for (i = 0; list[i] != NULL; i++) {
506 if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) {
507 continue;
508 }
509 mutex_exit(&module_lock);
510 yield();
511 mutex_enter(&module_lock);
512 }
513 mutex_exit(&module_lock);
514 #endif
515 }
516
517 int
518 execve1(struct lwp *l, const char *path, char * const *args,
519 char * const *envs, execve_fetch_element_t fetch_element)
520 {
521 int error;
522 struct exec_package pack;
523 struct vattr attr;
524 struct proc *p;
525 char *argp;
526 char *dp, *sp;
527 long argc, envc;
528 size_t i, len;
529 char *stack;
530 struct ps_strings arginfo;
531 struct ps_strings *aip = &arginfo;
532 struct vmspace *vm;
533 struct exec_fakearg *tmpfap;
534 int szsigcode;
535 struct exec_vmcmd *base_vcp;
536 int oldlwpflags;
537 ksiginfo_t ksi;
538 ksiginfoq_t kq;
539 char *pathbuf;
540 char *resolvedpathbuf;
541 const char *commandname;
542 u_int modgen;
543
544 p = l->l_proc;
545 modgen = 0;
546
547 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
548
549 /*
550 * Check if we have exceeded our number of processes limit.
551 * This is so that we handle the case where a root daemon
552 * forked, ran setuid to become the desired user and is trying
553 * to exec. The obvious place to do the reference counting check
554 * is setuid(), but we don't do the reference counting check there
555 * like other OS's do because then all the programs that use setuid()
556 * must be modified to check the return code of setuid() and exit().
557 * It is dangerous to make setuid() fail, because it fails open and
558 * the program will continue to run as root. If we make it succeed
559 * and return an error code, again we are not enforcing the limit.
560 * The best place to enforce the limit is here, when the process tries
561 * to execute a new image, because eventually the process will need
562 * to call exec in order to do something useful.
563 */
564 retry:
565 if ((p->p_flag & PK_SUGID) && kauth_authorize_generic(l->l_cred,
566 KAUTH_GENERIC_ISSUSER, NULL) != 0 && chgproccnt(kauth_cred_getuid(
567 l->l_cred), 0) > p->p_rlimit[RLIMIT_NPROC].rlim_cur)
568 return EAGAIN;
569
570 oldlwpflags = l->l_flag & (LW_SA | LW_SA_UPCALL);
571 if (l->l_flag & LW_SA) {
572 lwp_lock(l);
573 l->l_flag &= ~(LW_SA | LW_SA_UPCALL);
574 lwp_unlock(l);
575 }
576
577 /*
578 * Drain existing references and forbid new ones. The process
579 * should be left alone until we're done here. This is necessary
580 * to avoid race conditions - e.g. in ptrace() - that might allow
581 * a local user to illicitly obtain elevated privileges.
582 */
583 rw_enter(&p->p_reflock, RW_WRITER);
584
585 base_vcp = NULL;
586 /*
587 * Init the namei data to point the file user's program name.
588 * This is done here rather than in check_exec(), so that it's
589 * possible to override this settings if any of makecmd/probe
590 * functions call check_exec() recursively - for example,
591 * see exec_script_makecmds().
592 */
593 pathbuf = PNBUF_GET();
594 error = copyinstr(path, pathbuf, MAXPATHLEN, NULL);
595 if (error) {
596 DPRINTF(("execve: copyinstr path %d", error));
597 goto clrflg;
598 }
599 resolvedpathbuf = PNBUF_GET();
600 #ifdef DIAGNOSTIC
601 strcpy(resolvedpathbuf, "/wrong");
602 #endif
603
604 /*
605 * initialize the fields of the exec package.
606 */
607 pack.ep_name = path;
608 pack.ep_kname = pathbuf;
609 pack.ep_resolvedname = resolvedpathbuf;
610 pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
611 pack.ep_hdrlen = exec_maxhdrsz;
612 pack.ep_hdrvalid = 0;
613 pack.ep_emul_arg = NULL;
614 pack.ep_vmcmds.evs_cnt = 0;
615 pack.ep_vmcmds.evs_used = 0;
616 pack.ep_vap = &attr;
617 pack.ep_flags = 0;
618 pack.ep_emul_root = NULL;
619 pack.ep_interp = NULL;
620 pack.ep_esch = NULL;
621 pack.ep_pax_flags = 0;
622
623 rw_enter(&exec_lock, RW_READER);
624
625 /* see if we can run it. */
626 if ((error = check_exec(l, &pack, pathbuf)) != 0) {
627 if (error != ENOENT) {
628 DPRINTF(("execve: check exec failed %d\n", error));
629 }
630 goto freehdr;
631 }
632
633 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
634
635 /* allocate an argument buffer */
636 argp = pool_get(&exec_pool, PR_WAITOK);
637 KASSERT(argp != NULL);
638 dp = argp;
639 argc = 0;
640
641 /* copy the fake args list, if there's one, freeing it as we go */
642 if (pack.ep_flags & EXEC_HASARGL) {
643 tmpfap = pack.ep_fa;
644 while (tmpfap->fa_arg != NULL) {
645 const char *cp;
646
647 cp = tmpfap->fa_arg;
648 while (*cp)
649 *dp++ = *cp++;
650 *dp++ = '\0';
651 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
652
653 kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
654 tmpfap++; argc++;
655 }
656 kmem_free(pack.ep_fa, pack.ep_fa_len);
657 pack.ep_flags &= ~EXEC_HASARGL;
658 }
659
660 /* Now get argv & environment */
661 if (args == NULL) {
662 DPRINTF(("execve: null args\n"));
663 error = EINVAL;
664 goto bad;
665 }
666 /* 'i' will index the argp/envp element to be retrieved */
667 i = 0;
668 if (pack.ep_flags & EXEC_SKIPARG)
669 i++;
670
671 while (1) {
672 len = argp + ARG_MAX - dp;
673 if ((error = (*fetch_element)(args, i, &sp)) != 0) {
674 DPRINTF(("execve: fetch_element args %d\n", error));
675 goto bad;
676 }
677 if (!sp)
678 break;
679 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
680 DPRINTF(("execve: copyinstr args %d\n", error));
681 if (error == ENAMETOOLONG)
682 error = E2BIG;
683 goto bad;
684 }
685 ktrexecarg(dp, len - 1);
686 dp += len;
687 i++;
688 argc++;
689 }
690
691 envc = 0;
692 /* environment need not be there */
693 if (envs != NULL) {
694 i = 0;
695 while (1) {
696 len = argp + ARG_MAX - dp;
697 if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
698 DPRINTF(("execve: fetch_element env %d\n", error));
699 goto bad;
700 }
701 if (!sp)
702 break;
703 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
704 DPRINTF(("execve: copyinstr env %d\n", error));
705 if (error == ENAMETOOLONG)
706 error = E2BIG;
707 goto bad;
708 }
709 ktrexecenv(dp, len - 1);
710 dp += len;
711 i++;
712 envc++;
713 }
714 }
715
716 dp = (char *) ALIGN(dp);
717
718 szsigcode = pack.ep_esch->es_emul->e_esigcode -
719 pack.ep_esch->es_emul->e_sigcode;
720
721 #ifdef __MACHINE_STACK_GROWS_UP
722 /* See big comment lower down */
723 #define RTLD_GAP 32
724 #else
725 #define RTLD_GAP 0
726 #endif
727
728 /* Now check if args & environ fit into new stack */
729 if (pack.ep_flags & EXEC_32)
730 len = ((argc + envc + 2 + pack.ep_esch->es_arglen) *
731 sizeof(int) + sizeof(int) + dp + RTLD_GAP +
732 szsigcode + sizeof(struct ps_strings) + STACK_PTHREADSPACE)
733 - argp;
734 else
735 len = ((argc + envc + 2 + pack.ep_esch->es_arglen) *
736 sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
737 szsigcode + sizeof(struct ps_strings) + STACK_PTHREADSPACE)
738 - argp;
739
740 #ifdef PAX_ASLR
741 if (pax_aslr_active(l))
742 len += (arc4random() % PAGE_SIZE);
743 #endif /* PAX_ASLR */
744
745 #ifdef STACKLALIGN /* arm, etc. */
746 len = STACKALIGN(len); /* make the stack "safely" aligned */
747 #else
748 len = ALIGN(len); /* make the stack "safely" aligned */
749 #endif
750
751 if (len > pack.ep_ssize) { /* in effect, compare to initial limit */
752 DPRINTF(("execve: stack limit exceeded %zu\n", len));
753 error = ENOMEM;
754 goto bad;
755 }
756
757 /* Get rid of other LWPs. */
758 if (p->p_sa || p->p_nlwps > 1) {
759 mutex_enter(p->p_lock);
760 exit_lwps(l);
761 mutex_exit(p->p_lock);
762 }
763 KDASSERT(p->p_nlwps == 1);
764
765 /* Destroy any lwpctl info. */
766 if (p->p_lwpctl != NULL)
767 lwp_ctl_exit();
768
769 /* This is now LWP 1 */
770 l->l_lid = 1;
771 p->p_nlwpid = 1;
772
773 #ifdef KERN_SA
774 /* Release any SA state. */
775 if (p->p_sa)
776 sa_release(p);
777 #endif /* KERN_SA */
778
779 /* Remove POSIX timers */
780 timers_free(p, TIMERS_POSIX);
781
782 /* adjust "active stack depth" for process VSZ */
783 pack.ep_ssize = len; /* maybe should go elsewhere, but... */
784
785 /*
786 * Do whatever is necessary to prepare the address space
787 * for remapping. Note that this might replace the current
788 * vmspace with another!
789 */
790 uvmspace_exec(l, pack.ep_vm_minaddr, pack.ep_vm_maxaddr);
791
792 /* record proc's vnode, for use by procfs and others */
793 if (p->p_textvp)
794 vrele(p->p_textvp);
795 vref(pack.ep_vp);
796 p->p_textvp = pack.ep_vp;
797
798 /* Now map address space */
799 vm = p->p_vmspace;
800 vm->vm_taddr = (void *)pack.ep_taddr;
801 vm->vm_tsize = btoc(pack.ep_tsize);
802 vm->vm_daddr = (void*)pack.ep_daddr;
803 vm->vm_dsize = btoc(pack.ep_dsize);
804 vm->vm_ssize = btoc(pack.ep_ssize);
805 vm->vm_issize = 0;
806 vm->vm_maxsaddr = (void *)pack.ep_maxsaddr;
807 vm->vm_minsaddr = (void *)pack.ep_minsaddr;
808
809 #ifdef PAX_ASLR
810 pax_aslr_init(l, vm);
811 #endif /* PAX_ASLR */
812
813 /* create the new process's VM space by running the vmcmds */
814 #ifdef DIAGNOSTIC
815 if (pack.ep_vmcmds.evs_used == 0)
816 panic("execve: no vmcmds");
817 #endif
818 for (i = 0; i < pack.ep_vmcmds.evs_used && !error; i++) {
819 struct exec_vmcmd *vcp;
820
821 vcp = &pack.ep_vmcmds.evs_cmds[i];
822 if (vcp->ev_flags & VMCMD_RELATIVE) {
823 #ifdef DIAGNOSTIC
824 if (base_vcp == NULL)
825 panic("execve: relative vmcmd with no base");
826 if (vcp->ev_flags & VMCMD_BASE)
827 panic("execve: illegal base & relative vmcmd");
828 #endif
829 vcp->ev_addr += base_vcp->ev_addr;
830 }
831 error = (*vcp->ev_proc)(l, vcp);
832 #ifdef DEBUG_EXEC
833 if (error) {
834 size_t j;
835 struct exec_vmcmd *vp = &pack.ep_vmcmds.evs_cmds[0];
836 for (j = 0; j <= i; j++)
837 uprintf(
838 "vmcmd[%zu] = %#lx/%#lx fd@%#lx prot=0%o flags=%d\n",
839 j, vp[j].ev_addr, vp[j].ev_len,
840 vp[j].ev_offset, vp[j].ev_prot,
841 vp[j].ev_flags);
842 }
843 #endif /* DEBUG_EXEC */
844 if (vcp->ev_flags & VMCMD_BASE)
845 base_vcp = vcp;
846 }
847
848 /* free the vmspace-creation commands, and release their references */
849 kill_vmcmds(&pack.ep_vmcmds);
850
851 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
852 VOP_CLOSE(pack.ep_vp, FREAD, l->l_cred);
853 vput(pack.ep_vp);
854
855 /* if an error happened, deallocate and punt */
856 if (error) {
857 DPRINTF(("execve: vmcmd %zu failed: %d\n", i - 1, error));
858 goto exec_abort;
859 }
860
861 /* remember information about the process */
862 arginfo.ps_nargvstr = argc;
863 arginfo.ps_nenvstr = envc;
864
865 /* set command name & other accounting info */
866 commandname = strrchr(pack.ep_resolvedname, '/');
867 if (commandname != NULL) {
868 commandname++;
869 } else {
870 commandname = pack.ep_resolvedname;
871 }
872 i = min(strlen(commandname), MAXCOMLEN);
873 (void)memcpy(p->p_comm, commandname, i);
874 p->p_comm[i] = '\0';
875
876 dp = PNBUF_GET();
877 /*
878 * If the path starts with /, we don't need to do any work.
879 * This handles the majority of the cases.
880 * In the future perhaps we could canonicalize it?
881 */
882 if (pathbuf[0] == '/')
883 (void)strlcpy(pack.ep_path = dp, pathbuf, MAXPATHLEN);
884 #ifdef notyet
885 /*
886 * Although this works most of the time [since the entry was just
887 * entered in the cache] we don't use it because it theoretically
888 * can fail and it is not the cleanest interface, because there
889 * could be races. When the namei cache is re-written, this can
890 * be changed to use the appropriate function.
891 */
892 else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
893 pack.ep_path = dp;
894 #endif
895 else {
896 #ifdef notyet
897 printf("Cannot get path for pid %d [%s] (error %d)",
898 (int)p->p_pid, p->p_comm, error);
899 #endif
900 pack.ep_path = NULL;
901 PNBUF_PUT(dp);
902 }
903
904 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
905 STACK_PTHREADSPACE + sizeof(struct ps_strings) + szsigcode),
906 len - (sizeof(struct ps_strings) + szsigcode));
907
908 #ifdef __MACHINE_STACK_GROWS_UP
909 /*
910 * The copyargs call always copies into lower addresses
911 * first, moving towards higher addresses, starting with
912 * the stack pointer that we give. When the stack grows
913 * down, this puts argc/argv/envp very shallow on the
914 * stack, right at the first user stack pointer.
915 * When the stack grows up, the situation is reversed.
916 *
917 * Normally, this is no big deal. But the ld_elf.so _rtld()
918 * function expects to be called with a single pointer to
919 * a region that has a few words it can stash values into,
920 * followed by argc/argv/envp. When the stack grows down,
921 * it's easy to decrement the stack pointer a little bit to
922 * allocate the space for these few words and pass the new
923 * stack pointer to _rtld. When the stack grows up, however,
924 * a few words before argc is part of the signal trampoline, XXX
925 * so we have a problem.
926 *
927 * Instead of changing how _rtld works, we take the easy way
928 * out and steal 32 bytes before we call copyargs.
929 * This extra space was allowed for when 'len' was calculated.
930 */
931 stack += RTLD_GAP;
932 #endif /* __MACHINE_STACK_GROWS_UP */
933
934 /* Now copy argc, args & environ to new stack */
935 error = (*pack.ep_esch->es_copyargs)(l, &pack, &arginfo, &stack, argp);
936 if (pack.ep_path) {
937 PNBUF_PUT(pack.ep_path);
938 pack.ep_path = NULL;
939 }
940 if (error) {
941 DPRINTF(("execve: copyargs failed %d\n", error));
942 goto exec_abort;
943 }
944 /* Move the stack back to original point */
945 stack = (char *)STACK_GROW(vm->vm_minsaddr, len);
946
947 /* fill process ps_strings info */
948 p->p_psstr = (struct ps_strings *)
949 STACK_ALLOC(STACK_GROW(vm->vm_minsaddr, STACK_PTHREADSPACE),
950 sizeof(struct ps_strings));
951 p->p_psargv = offsetof(struct ps_strings, ps_argvstr);
952 p->p_psnargv = offsetof(struct ps_strings, ps_nargvstr);
953 p->p_psenv = offsetof(struct ps_strings, ps_envstr);
954 p->p_psnenv = offsetof(struct ps_strings, ps_nenvstr);
955
956 /* copy out the process's ps_strings structure */
957 if ((error = copyout(aip, (char *)p->p_psstr,
958 sizeof(arginfo))) != 0) {
959 DPRINTF(("execve: ps_strings copyout %p->%p size %ld failed\n",
960 aip, (char *)p->p_psstr, (long)sizeof(arginfo)));
961 goto exec_abort;
962 }
963
964 fd_closeexec(); /* handle close on exec */
965 execsigs(p); /* reset catched signals */
966
967 l->l_ctxlink = NULL; /* reset ucontext link */
968
969
970 p->p_acflag &= ~AFORK;
971 mutex_enter(p->p_lock);
972 p->p_flag |= PK_EXEC;
973 mutex_exit(p->p_lock);
974
975 /*
976 * Stop profiling.
977 */
978 if ((p->p_stflag & PST_PROFIL) != 0) {
979 mutex_spin_enter(&p->p_stmutex);
980 stopprofclock(p);
981 mutex_spin_exit(&p->p_stmutex);
982 }
983
984 /*
985 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
986 * exited and exec()/exit() are the only places it will be cleared.
987 */
988 if ((p->p_lflag & PL_PPWAIT) != 0) {
989 mutex_enter(proc_lock);
990 p->p_lflag &= ~PL_PPWAIT;
991 cv_broadcast(&p->p_pptr->p_waitcv);
992 mutex_exit(proc_lock);
993 }
994
995 /*
996 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
997 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
998 * out additional references on the process for the moment.
999 */
1000 if ((p->p_slflag & PSL_TRACED) == 0 &&
1001
1002 (((attr.va_mode & S_ISUID) != 0 &&
1003 kauth_cred_geteuid(l->l_cred) != attr.va_uid) ||
1004
1005 ((attr.va_mode & S_ISGID) != 0 &&
1006 kauth_cred_getegid(l->l_cred) != attr.va_gid))) {
1007 /*
1008 * Mark the process as SUGID before we do
1009 * anything that might block.
1010 */
1011 proc_crmod_enter();
1012 proc_crmod_leave(NULL, NULL, true);
1013
1014 /* Make sure file descriptors 0..2 are in use. */
1015 if ((error = fd_checkstd()) != 0) {
1016 DPRINTF(("execve: fdcheckstd failed %d\n", error));
1017 goto exec_abort;
1018 }
1019
1020 /*
1021 * Copy the credential so other references don't see our
1022 * changes.
1023 */
1024 l->l_cred = kauth_cred_copy(l->l_cred);
1025 #ifdef KTRACE
1026 /*
1027 * If the persistent trace flag isn't set, turn off.
1028 */
1029 if (p->p_tracep) {
1030 mutex_enter(&ktrace_lock);
1031 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1032 ktrderef(p);
1033 mutex_exit(&ktrace_lock);
1034 }
1035 #endif
1036 if (attr.va_mode & S_ISUID)
1037 kauth_cred_seteuid(l->l_cred, attr.va_uid);
1038 if (attr.va_mode & S_ISGID)
1039 kauth_cred_setegid(l->l_cred, attr.va_gid);
1040 } else {
1041 if (kauth_cred_geteuid(l->l_cred) ==
1042 kauth_cred_getuid(l->l_cred) &&
1043 kauth_cred_getegid(l->l_cred) ==
1044 kauth_cred_getgid(l->l_cred))
1045 p->p_flag &= ~PK_SUGID;
1046 }
1047
1048 /*
1049 * Copy the credential so other references don't see our changes.
1050 * Test to see if this is necessary first, since in the common case
1051 * we won't need a private reference.
1052 */
1053 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1054 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1055 l->l_cred = kauth_cred_copy(l->l_cred);
1056 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1057 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1058 }
1059
1060 /* Update the master credentials. */
1061 if (l->l_cred != p->p_cred) {
1062 kauth_cred_t ocred;
1063
1064 kauth_cred_hold(l->l_cred);
1065 mutex_enter(p->p_lock);
1066 ocred = p->p_cred;
1067 p->p_cred = l->l_cred;
1068 mutex_exit(p->p_lock);
1069 kauth_cred_free(ocred);
1070 }
1071
1072 #if defined(__HAVE_RAS)
1073 /*
1074 * Remove all RASs from the address space.
1075 */
1076 ras_purgeall();
1077 #endif
1078
1079 doexechooks(p);
1080
1081 /* setup new registers and do misc. setup. */
1082 (*pack.ep_esch->es_emul->e_setregs)(l, &pack, (vaddr_t)stack);
1083 if (pack.ep_esch->es_setregs)
1084 (*pack.ep_esch->es_setregs)(l, &pack, (vaddr_t)stack);
1085
1086 /* map the process's signal trampoline code */
1087 if (exec_sigcode_map(p, pack.ep_esch->es_emul)) {
1088 DPRINTF(("execve: map sigcode failed %d\n", error));
1089 goto exec_abort;
1090 }
1091
1092 pool_put(&exec_pool, argp);
1093
1094 /* notify others that we exec'd */
1095 KNOTE(&p->p_klist, NOTE_EXEC);
1096
1097 kmem_free(pack.ep_hdr, pack.ep_hdrlen);
1098
1099 SDT_PROBE(proc,,,exec_success, path, 0, 0, 0, 0);
1100
1101 /* The emulation root will usually have been found when we looked
1102 * for the elf interpreter (or similar), if not look now. */
1103 if (pack.ep_esch->es_emul->e_path != NULL && pack.ep_emul_root == NULL)
1104 emul_find_root(l, &pack);
1105
1106 /* Any old emulation root got removed by fdcloseexec */
1107 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1108 p->p_cwdi->cwdi_edir = pack.ep_emul_root;
1109 rw_exit(&p->p_cwdi->cwdi_lock);
1110 pack.ep_emul_root = NULL;
1111 if (pack.ep_interp != NULL)
1112 vrele(pack.ep_interp);
1113
1114 /*
1115 * Call emulation specific exec hook. This can setup per-process
1116 * p->p_emuldata or do any other per-process stuff an emulation needs.
1117 *
1118 * If we are executing process of different emulation than the
1119 * original forked process, call e_proc_exit() of the old emulation
1120 * first, then e_proc_exec() of new emulation. If the emulation is
1121 * same, the exec hook code should deallocate any old emulation
1122 * resources held previously by this process.
1123 */
1124 if (p->p_emul && p->p_emul->e_proc_exit
1125 && p->p_emul != pack.ep_esch->es_emul)
1126 (*p->p_emul->e_proc_exit)(p);
1127
1128 /*
1129 * Call exec hook. Emulation code may NOT store reference to anything
1130 * from &pack.
1131 */
1132 if (pack.ep_esch->es_emul->e_proc_exec)
1133 (*pack.ep_esch->es_emul->e_proc_exec)(p, &pack);
1134
1135 /* update p_emul, the old value is no longer needed */
1136 p->p_emul = pack.ep_esch->es_emul;
1137
1138 /* ...and the same for p_execsw */
1139 p->p_execsw = pack.ep_esch;
1140
1141 #ifdef __HAVE_SYSCALL_INTERN
1142 (*p->p_emul->e_syscall_intern)(p);
1143 #endif
1144 ktremul();
1145
1146 /* Allow new references from the debugger/procfs. */
1147 rw_exit(&p->p_reflock);
1148 rw_exit(&exec_lock);
1149
1150 mutex_enter(proc_lock);
1151
1152 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1153 KSI_INIT_EMPTY(&ksi);
1154 ksi.ksi_signo = SIGTRAP;
1155 ksi.ksi_lid = l->l_lid;
1156 kpsignal(p, &ksi, NULL);
1157 }
1158
1159 if (p->p_sflag & PS_STOPEXEC) {
1160 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1161 p->p_pptr->p_nstopchild++;
1162 p->p_pptr->p_waited = 0;
1163 mutex_enter(p->p_lock);
1164 ksiginfo_queue_init(&kq);
1165 sigclearall(p, &contsigmask, &kq);
1166 lwp_lock(l);
1167 l->l_stat = LSSTOP;
1168 p->p_stat = SSTOP;
1169 p->p_nrlwps--;
1170 mutex_exit(p->p_lock);
1171 mutex_exit(proc_lock);
1172 mi_switch(l);
1173 ksiginfo_queue_drain(&kq);
1174 KERNEL_LOCK(l->l_biglocks, l);
1175 } else {
1176 mutex_exit(proc_lock);
1177 }
1178
1179 PNBUF_PUT(pathbuf);
1180 PNBUF_PUT(resolvedpathbuf);
1181 return (EJUSTRETURN);
1182
1183 bad:
1184 /* free the vmspace-creation commands, and release their references */
1185 kill_vmcmds(&pack.ep_vmcmds);
1186 /* kill any opened file descriptor, if necessary */
1187 if (pack.ep_flags & EXEC_HASFD) {
1188 pack.ep_flags &= ~EXEC_HASFD;
1189 fd_close(pack.ep_fd);
1190 }
1191 /* close and put the exec'd file */
1192 vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
1193 VOP_CLOSE(pack.ep_vp, FREAD, l->l_cred);
1194 vput(pack.ep_vp);
1195 pool_put(&exec_pool, argp);
1196
1197 freehdr:
1198 kmem_free(pack.ep_hdr, pack.ep_hdrlen);
1199 if (pack.ep_emul_root != NULL)
1200 vrele(pack.ep_emul_root);
1201 if (pack.ep_interp != NULL)
1202 vrele(pack.ep_interp);
1203
1204 rw_exit(&exec_lock);
1205
1206 PNBUF_PUT(resolvedpathbuf);
1207
1208 clrflg:
1209 lwp_lock(l);
1210 l->l_flag |= oldlwpflags;
1211 lwp_unlock(l);
1212 rw_exit(&p->p_reflock);
1213
1214 PNBUF_PUT(pathbuf);
1215
1216 if (modgen != module_gen && error == ENOEXEC) {
1217 modgen = module_gen;
1218 exec_autoload();
1219 goto retry;
1220 }
1221
1222 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1223 return error;
1224
1225 exec_abort:
1226 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1227 rw_exit(&p->p_reflock);
1228 rw_exit(&exec_lock);
1229
1230 PNBUF_PUT(pathbuf);
1231 PNBUF_PUT(resolvedpathbuf);
1232
1233 /*
1234 * the old process doesn't exist anymore. exit gracefully.
1235 * get rid of the (new) address space we have created, if any, get rid
1236 * of our namei data and vnode, and exit noting failure
1237 */
1238 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1239 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1240 if (pack.ep_emul_arg)
1241 free(pack.ep_emul_arg, M_TEMP);
1242 pool_put(&exec_pool, argp);
1243 kmem_free(pack.ep_hdr, pack.ep_hdrlen);
1244 if (pack.ep_emul_root != NULL)
1245 vrele(pack.ep_emul_root);
1246 if (pack.ep_interp != NULL)
1247 vrele(pack.ep_interp);
1248
1249 /* Acquire the sched-state mutex (exit1() will release it). */
1250 mutex_enter(p->p_lock);
1251 exit1(l, W_EXITCODE(error, SIGABRT));
1252
1253 /* NOTREACHED */
1254 return 0;
1255 }
1256
1257
1258 int
1259 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1260 char **stackp, void *argp)
1261 {
1262 char **cpp, *dp, *sp;
1263 size_t len;
1264 void *nullp;
1265 long argc, envc;
1266 int error;
1267
1268 cpp = (char **)*stackp;
1269 nullp = NULL;
1270 argc = arginfo->ps_nargvstr;
1271 envc = arginfo->ps_nenvstr;
1272 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0)
1273 return error;
1274
1275 dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1276 sp = argp;
1277
1278 /* XXX don't copy them out, remap them! */
1279 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1280
1281 for (; --argc >= 0; sp += len, dp += len)
1282 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0 ||
1283 (error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0)
1284 return error;
1285
1286 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0)
1287 return error;
1288
1289 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1290
1291 for (; --envc >= 0; sp += len, dp += len)
1292 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0 ||
1293 (error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0)
1294 return error;
1295
1296 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0)
1297 return error;
1298
1299 *stackp = (char *)cpp;
1300 return 0;
1301 }
1302
1303
1304 /*
1305 * Add execsw[] entries.
1306 */
1307 int
1308 exec_add(struct execsw *esp, int count)
1309 {
1310 struct exec_entry *it;
1311 int i;
1312
1313 if (count == 0) {
1314 return 0;
1315 }
1316
1317 /* Check for duplicates. */
1318 rw_enter(&exec_lock, RW_WRITER);
1319 for (i = 0; i < count; i++) {
1320 LIST_FOREACH(it, &ex_head, ex_list) {
1321 /* assume unique (makecmds, probe_func, emulation) */
1322 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1323 it->ex_sw->u.elf_probe_func ==
1324 esp[i].u.elf_probe_func &&
1325 it->ex_sw->es_emul == esp[i].es_emul) {
1326 rw_exit(&exec_lock);
1327 return EEXIST;
1328 }
1329 }
1330 }
1331
1332 /* Allocate new entries. */
1333 for (i = 0; i < count; i++) {
1334 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1335 it->ex_sw = &esp[i];
1336 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1337 }
1338
1339 /* update execsw[] */
1340 exec_init(0);
1341 rw_exit(&exec_lock);
1342 return 0;
1343 }
1344
1345 /*
1346 * Remove execsw[] entry.
1347 */
1348 int
1349 exec_remove(struct execsw *esp, int count)
1350 {
1351 struct exec_entry *it, *next;
1352 int i;
1353 const struct proclist_desc *pd;
1354 proc_t *p;
1355
1356 if (count == 0) {
1357 return 0;
1358 }
1359
1360 /* Abort if any are busy. */
1361 rw_enter(&exec_lock, RW_WRITER);
1362 for (i = 0; i < count; i++) {
1363 mutex_enter(proc_lock);
1364 for (pd = proclists; pd->pd_list != NULL; pd++) {
1365 PROCLIST_FOREACH(p, pd->pd_list) {
1366 if (p->p_execsw == &esp[i]) {
1367 mutex_exit(proc_lock);
1368 rw_exit(&exec_lock);
1369 return EBUSY;
1370 }
1371 }
1372 }
1373 mutex_exit(proc_lock);
1374 }
1375
1376 /* None are busy, so remove them all. */
1377 for (i = 0; i < count; i++) {
1378 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1379 next = LIST_NEXT(it, ex_list);
1380 if (it->ex_sw == &esp[i]) {
1381 LIST_REMOVE(it, ex_list);
1382 kmem_free(it, sizeof(*it));
1383 break;
1384 }
1385 }
1386 }
1387
1388 /* update execsw[] */
1389 exec_init(0);
1390 rw_exit(&exec_lock);
1391 return 0;
1392 }
1393
1394 /*
1395 * Initialize exec structures. If init_boot is true, also does necessary
1396 * one-time initialization (it's called from main() that way).
1397 * Once system is multiuser, this should be called with exec_lock held,
1398 * i.e. via exec_{add|remove}().
1399 */
1400 int
1401 exec_init(int init_boot)
1402 {
1403 const struct execsw **sw;
1404 struct exec_entry *ex;
1405 SLIST_HEAD(,exec_entry) first;
1406 SLIST_HEAD(,exec_entry) any;
1407 SLIST_HEAD(,exec_entry) last;
1408 int i, sz;
1409
1410 if (init_boot) {
1411 /* do one-time initializations */
1412 rw_init(&exec_lock);
1413 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1414 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1415 "execargs", &exec_palloc, IPL_NONE);
1416 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1417 } else {
1418 KASSERT(rw_write_held(&exec_lock));
1419 }
1420
1421 /* Sort each entry onto the appropriate queue. */
1422 SLIST_INIT(&first);
1423 SLIST_INIT(&any);
1424 SLIST_INIT(&last);
1425 sz = 0;
1426 LIST_FOREACH(ex, &ex_head, ex_list) {
1427 switch(ex->ex_sw->es_prio) {
1428 case EXECSW_PRIO_FIRST:
1429 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1430 break;
1431 case EXECSW_PRIO_ANY:
1432 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1433 break;
1434 case EXECSW_PRIO_LAST:
1435 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1436 break;
1437 default:
1438 panic("exec_init");
1439 break;
1440 }
1441 sz++;
1442 }
1443
1444 /*
1445 * Create new execsw[]. Ensure we do not try a zero-sized
1446 * allocation.
1447 */
1448 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1449 i = 0;
1450 SLIST_FOREACH(ex, &first, ex_slist) {
1451 sw[i++] = ex->ex_sw;
1452 }
1453 SLIST_FOREACH(ex, &any, ex_slist) {
1454 sw[i++] = ex->ex_sw;
1455 }
1456 SLIST_FOREACH(ex, &last, ex_slist) {
1457 sw[i++] = ex->ex_sw;
1458 }
1459
1460 /* Replace old execsw[] and free used memory. */
1461 if (execsw != NULL) {
1462 kmem_free(__UNCONST(execsw),
1463 nexecs * sizeof(struct execsw *) + 1);
1464 }
1465 execsw = sw;
1466 nexecs = sz;
1467
1468 /* Figure out the maximum size of an exec header. */
1469 exec_maxhdrsz = sizeof(int);
1470 for (i = 0; i < nexecs; i++) {
1471 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1472 exec_maxhdrsz = execsw[i]->es_hdrsz;
1473 }
1474
1475 return 0;
1476 }
1477
1478 static int
1479 exec_sigcode_map(struct proc *p, const struct emul *e)
1480 {
1481 vaddr_t va;
1482 vsize_t sz;
1483 int error;
1484 struct uvm_object *uobj;
1485
1486 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1487
1488 if (e->e_sigobject == NULL || sz == 0) {
1489 return 0;
1490 }
1491
1492 /*
1493 * If we don't have a sigobject for this emulation, create one.
1494 *
1495 * sigobject is an anonymous memory object (just like SYSV shared
1496 * memory) that we keep a permanent reference to and that we map
1497 * in all processes that need this sigcode. The creation is simple,
1498 * we create an object, add a permanent reference to it, map it in
1499 * kernel space, copy out the sigcode to it and unmap it.
1500 * We map it with PROT_READ|PROT_EXEC into the process just
1501 * the way sys_mmap() would map it.
1502 */
1503
1504 uobj = *e->e_sigobject;
1505 if (uobj == NULL) {
1506 mutex_enter(&sigobject_lock);
1507 if ((uobj = *e->e_sigobject) == NULL) {
1508 uobj = uao_create(sz, 0);
1509 (*uobj->pgops->pgo_reference)(uobj);
1510 va = vm_map_min(kernel_map);
1511 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1512 uobj, 0, 0,
1513 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1514 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1515 printf("kernel mapping failed %d\n", error);
1516 (*uobj->pgops->pgo_detach)(uobj);
1517 mutex_exit(&sigobject_lock);
1518 return (error);
1519 }
1520 memcpy((void *)va, e->e_sigcode, sz);
1521 #ifdef PMAP_NEED_PROCWR
1522 pmap_procwr(&proc0, va, sz);
1523 #endif
1524 uvm_unmap(kernel_map, va, va + round_page(sz));
1525 *e->e_sigobject = uobj;
1526 }
1527 mutex_exit(&sigobject_lock);
1528 }
1529
1530 /* Just a hint to uvm_map where to put it. */
1531 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1532 round_page(sz));
1533
1534 #ifdef __alpha__
1535 /*
1536 * Tru64 puts /sbin/loader at the end of user virtual memory,
1537 * which causes the above calculation to put the sigcode at
1538 * an invalid address. Put it just below the text instead.
1539 */
1540 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1541 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1542 }
1543 #endif
1544
1545 (*uobj->pgops->pgo_reference)(uobj);
1546 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1547 uobj, 0, 0,
1548 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1549 UVM_ADV_RANDOM, 0));
1550 if (error) {
1551 (*uobj->pgops->pgo_detach)(uobj);
1552 return (error);
1553 }
1554 p->p_sigctx.ps_sigcode = (void *)va;
1555 return (0);
1556 }
1557