kern_exec.c revision 1.340 1 /* $NetBSD: kern_exec.c,v 1.340 2012/02/19 21:06:49 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.340 2012/02/19 21:06:49 rmind Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_ktrace.h"
66 #include "opt_modular.h"
67 #include "opt_syscall_debug.h"
68 #include "veriexec.h"
69 #include "opt_pax.h"
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/filedesc.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/mount.h>
77 #include <sys/malloc.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/acct.h>
83 #include <sys/atomic.h>
84 #include <sys/exec.h>
85 #include <sys/ktrace.h>
86 #include <sys/uidinfo.h>
87 #include <sys/wait.h>
88 #include <sys/mman.h>
89 #include <sys/ras.h>
90 #include <sys/signalvar.h>
91 #include <sys/stat.h>
92 #include <sys/syscall.h>
93 #include <sys/kauth.h>
94 #include <sys/lwpctl.h>
95 #include <sys/pax.h>
96 #include <sys/cpu.h>
97 #include <sys/module.h>
98 #include <sys/syscallvar.h>
99 #include <sys/syscallargs.h>
100 #if NVERIEXEC > 0
101 #include <sys/verified_exec.h>
102 #endif /* NVERIEXEC > 0 */
103 #include <sys/sdt.h>
104 #include <sys/spawn.h>
105 #include <sys/prot.h>
106 #include <sys/cprng.h>
107
108 #include <uvm/uvm_extern.h>
109
110 #include <machine/reg.h>
111
112 #include <compat/common/compat_util.h>
113
114 static int exec_sigcode_map(struct proc *, const struct emul *);
115
116 #ifdef DEBUG_EXEC
117 #define DPRINTF(a) printf a
118 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
119 __LINE__, (s), (a), (b))
120 #else
121 #define DPRINTF(a)
122 #define COPYPRINTF(s, a, b)
123 #endif /* DEBUG_EXEC */
124
125 /*
126 * DTrace SDT provider definitions
127 */
128 SDT_PROBE_DEFINE(proc,,,exec,
129 "char *", NULL,
130 NULL, NULL, NULL, NULL,
131 NULL, NULL, NULL, NULL);
132 SDT_PROBE_DEFINE(proc,,,exec_success,
133 "char *", NULL,
134 NULL, NULL, NULL, NULL,
135 NULL, NULL, NULL, NULL);
136 SDT_PROBE_DEFINE(proc,,,exec_failure,
137 "int", NULL,
138 NULL, NULL, NULL, NULL,
139 NULL, NULL, NULL, NULL);
140
141 /*
142 * Exec function switch:
143 *
144 * Note that each makecmds function is responsible for loading the
145 * exec package with the necessary functions for any exec-type-specific
146 * handling.
147 *
148 * Functions for specific exec types should be defined in their own
149 * header file.
150 */
151 static const struct execsw **execsw = NULL;
152 static int nexecs;
153
154 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
155
156 /* list of dynamically loaded execsw entries */
157 static LIST_HEAD(execlist_head, exec_entry) ex_head =
158 LIST_HEAD_INITIALIZER(ex_head);
159 struct exec_entry {
160 LIST_ENTRY(exec_entry) ex_list;
161 SLIST_ENTRY(exec_entry) ex_slist;
162 const struct execsw *ex_sw;
163 };
164
165 #ifndef __HAVE_SYSCALL_INTERN
166 void syscall(void);
167 #endif
168
169 /* NetBSD emul struct */
170 struct emul emul_netbsd = {
171 .e_name = "netbsd",
172 .e_path = NULL,
173 #ifndef __HAVE_MINIMAL_EMUL
174 .e_flags = EMUL_HAS_SYS___syscall,
175 .e_errno = NULL,
176 .e_nosys = SYS_syscall,
177 .e_nsysent = SYS_NSYSENT,
178 #endif
179 .e_sysent = sysent,
180 #ifdef SYSCALL_DEBUG
181 .e_syscallnames = syscallnames,
182 #else
183 .e_syscallnames = NULL,
184 #endif
185 .e_sendsig = sendsig,
186 .e_trapsignal = trapsignal,
187 .e_tracesig = NULL,
188 .e_sigcode = NULL,
189 .e_esigcode = NULL,
190 .e_sigobject = NULL,
191 .e_setregs = setregs,
192 .e_proc_exec = NULL,
193 .e_proc_fork = NULL,
194 .e_proc_exit = NULL,
195 .e_lwp_fork = NULL,
196 .e_lwp_exit = NULL,
197 #ifdef __HAVE_SYSCALL_INTERN
198 .e_syscall_intern = syscall_intern,
199 #else
200 .e_syscall = syscall,
201 #endif
202 .e_sysctlovly = NULL,
203 .e_fault = NULL,
204 .e_vm_default_addr = uvm_default_mapaddr,
205 .e_usertrap = NULL,
206 .e_ucsize = sizeof(ucontext_t),
207 .e_startlwp = startlwp
208 };
209
210 /*
211 * Exec lock. Used to control access to execsw[] structures.
212 * This must not be static so that netbsd32 can access it, too.
213 */
214 krwlock_t exec_lock;
215
216 static kmutex_t sigobject_lock;
217
218 /*
219 * Data used between a loadvm and execve part of an "exec" operation
220 */
221 struct execve_data {
222 struct exec_package ed_pack;
223 struct pathbuf *ed_pathbuf;
224 struct vattr ed_attr;
225 struct ps_strings ed_arginfo;
226 char *ed_argp;
227 const char *ed_pathstring;
228 char *ed_resolvedpathbuf;
229 size_t ed_ps_strings_sz;
230 int ed_szsigcode;
231 long ed_argc;
232 long ed_envc;
233 };
234
235 /*
236 * data passed from parent lwp to child during a posix_spawn()
237 */
238 struct spawn_exec_data {
239 struct execve_data sed_exec;
240 size_t sed_actions_len;
241 struct posix_spawn_file_actions_entry
242 *sed_actions;
243 struct posix_spawnattr *sed_attrs;
244 struct proc *sed_parent;
245 kcondvar_t sed_cv_child_ready;
246 kmutex_t sed_mtx_child;
247 int sed_error;
248 };
249
250 static void *
251 exec_pool_alloc(struct pool *pp, int flags)
252 {
253
254 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
255 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
256 }
257
258 static void
259 exec_pool_free(struct pool *pp, void *addr)
260 {
261
262 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
263 }
264
265 static struct pool exec_pool;
266
267 static struct pool_allocator exec_palloc = {
268 .pa_alloc = exec_pool_alloc,
269 .pa_free = exec_pool_free,
270 .pa_pagesz = NCARGS
271 };
272
273 /*
274 * check exec:
275 * given an "executable" described in the exec package's namei info,
276 * see what we can do with it.
277 *
278 * ON ENTRY:
279 * exec package with appropriate namei info
280 * lwp pointer of exec'ing lwp
281 * NO SELF-LOCKED VNODES
282 *
283 * ON EXIT:
284 * error: nothing held, etc. exec header still allocated.
285 * ok: filled exec package, executable's vnode (unlocked).
286 *
287 * EXEC SWITCH ENTRY:
288 * Locked vnode to check, exec package, proc.
289 *
290 * EXEC SWITCH EXIT:
291 * ok: return 0, filled exec package, executable's vnode (unlocked).
292 * error: destructive:
293 * everything deallocated execept exec header.
294 * non-destructive:
295 * error code, executable's vnode (unlocked),
296 * exec header unmodified.
297 */
298 int
299 /*ARGSUSED*/
300 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
301 {
302 int error, i;
303 struct vnode *vp;
304 struct nameidata nd;
305 size_t resid;
306
307 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
308
309 /* first get the vnode */
310 if ((error = namei(&nd)) != 0)
311 return error;
312 epp->ep_vp = vp = nd.ni_vp;
313 /* this cannot overflow as both are size PATH_MAX */
314 strcpy(epp->ep_resolvedname, nd.ni_pnbuf);
315
316 #ifdef DIAGNOSTIC
317 /* paranoia (take this out once namei stuff stabilizes) */
318 memset(nd.ni_pnbuf, '~', PATH_MAX);
319 #endif
320
321 /* check access and type */
322 if (vp->v_type != VREG) {
323 error = EACCES;
324 goto bad1;
325 }
326 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
327 goto bad1;
328
329 /* get attributes */
330 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
331 goto bad1;
332
333 /* Check mount point */
334 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
335 error = EACCES;
336 goto bad1;
337 }
338 if (vp->v_mount->mnt_flag & MNT_NOSUID)
339 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
340
341 /* try to open it */
342 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
343 goto bad1;
344
345 /* unlock vp, since we need it unlocked from here on out. */
346 VOP_UNLOCK(vp);
347
348 #if NVERIEXEC > 0
349 error = veriexec_verify(l, vp, epp->ep_resolvedname,
350 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
351 NULL);
352 if (error)
353 goto bad2;
354 #endif /* NVERIEXEC > 0 */
355
356 #ifdef PAX_SEGVGUARD
357 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
358 if (error)
359 goto bad2;
360 #endif /* PAX_SEGVGUARD */
361
362 /* now we have the file, get the exec header */
363 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
364 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
365 if (error)
366 goto bad2;
367 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
368
369 /*
370 * Set up default address space limits. Can be overridden
371 * by individual exec packages.
372 *
373 * XXX probably should be all done in the exec packages.
374 */
375 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
376 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
377 /*
378 * set up the vmcmds for creation of the process
379 * address space
380 */
381 error = ENOEXEC;
382 for (i = 0; i < nexecs; i++) {
383 int newerror;
384
385 epp->ep_esch = execsw[i];
386 newerror = (*execsw[i]->es_makecmds)(l, epp);
387
388 if (!newerror) {
389 /* Seems ok: check that entry point is not too high */
390 if (epp->ep_entry > epp->ep_vm_maxaddr) {
391 #ifdef DIAGNOSTIC
392 printf("%s: rejecting %p due to "
393 "too high entry address (> %p)\n",
394 __func__, (void *)epp->ep_entry,
395 (void *)epp->ep_vm_maxaddr);
396 #endif
397 error = ENOEXEC;
398 break;
399 }
400 /* Seems ok: check that entry point is not too low */
401 if (epp->ep_entry < epp->ep_vm_minaddr) {
402 #ifdef DIAGNOSTIC
403 printf("%s: rejecting %p due to "
404 "too low entry address (< %p)\n",
405 __func__, (void *)epp->ep_entry,
406 (void *)epp->ep_vm_minaddr);
407 #endif
408 error = ENOEXEC;
409 break;
410 }
411
412 /* check limits */
413 if ((epp->ep_tsize > MAXTSIZ) ||
414 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
415 [RLIMIT_DATA].rlim_cur)) {
416 #ifdef DIAGNOSTIC
417 printf("%s: rejecting due to "
418 "limits (t=%llu > %llu || d=%llu > %llu)\n",
419 __func__,
420 (unsigned long long)epp->ep_tsize,
421 (unsigned long long)MAXTSIZ,
422 (unsigned long long)epp->ep_dsize,
423 (unsigned long long)
424 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
425 #endif
426 error = ENOMEM;
427 break;
428 }
429 return 0;
430 }
431
432 if (epp->ep_emul_root != NULL) {
433 vrele(epp->ep_emul_root);
434 epp->ep_emul_root = NULL;
435 }
436 if (epp->ep_interp != NULL) {
437 vrele(epp->ep_interp);
438 epp->ep_interp = NULL;
439 }
440
441 /* make sure the first "interesting" error code is saved. */
442 if (error == ENOEXEC)
443 error = newerror;
444
445 if (epp->ep_flags & EXEC_DESTR)
446 /* Error from "#!" code, tidied up by recursive call */
447 return error;
448 }
449
450 /* not found, error */
451
452 /*
453 * free any vmspace-creation commands,
454 * and release their references
455 */
456 kill_vmcmds(&epp->ep_vmcmds);
457
458 bad2:
459 /*
460 * close and release the vnode, restore the old one, free the
461 * pathname buf, and punt.
462 */
463 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
464 VOP_CLOSE(vp, FREAD, l->l_cred);
465 vput(vp);
466 return error;
467
468 bad1:
469 /*
470 * free the namei pathname buffer, and put the vnode
471 * (which we don't yet have open).
472 */
473 vput(vp); /* was still locked */
474 return error;
475 }
476
477 #ifdef __MACHINE_STACK_GROWS_UP
478 #define STACK_PTHREADSPACE NBPG
479 #else
480 #define STACK_PTHREADSPACE 0
481 #endif
482
483 static int
484 execve_fetch_element(char * const *array, size_t index, char **value)
485 {
486 return copyin(array + index, value, sizeof(*value));
487 }
488
489 /*
490 * exec system call
491 */
492 int
493 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
494 {
495 /* {
496 syscallarg(const char *) path;
497 syscallarg(char * const *) argp;
498 syscallarg(char * const *) envp;
499 } */
500
501 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
502 SCARG(uap, envp), execve_fetch_element);
503 }
504
505 int
506 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
507 register_t *retval)
508 {
509 /* {
510 syscallarg(int) fd;
511 syscallarg(char * const *) argp;
512 syscallarg(char * const *) envp;
513 } */
514
515 return ENOSYS;
516 }
517
518 /*
519 * Load modules to try and execute an image that we do not understand.
520 * If no execsw entries are present, we load those likely to be needed
521 * in order to run native images only. Otherwise, we autoload all
522 * possible modules that could let us run the binary. XXX lame
523 */
524 static void
525 exec_autoload(void)
526 {
527 #ifdef MODULAR
528 static const char * const native[] = {
529 "exec_elf32",
530 "exec_elf64",
531 "exec_script",
532 NULL
533 };
534 static const char * const compat[] = {
535 "exec_elf32",
536 "exec_elf64",
537 "exec_script",
538 "exec_aout",
539 "exec_coff",
540 "exec_ecoff",
541 "compat_aoutm68k",
542 "compat_freebsd",
543 "compat_ibcs2",
544 "compat_linux",
545 "compat_linux32",
546 "compat_netbsd32",
547 "compat_sunos",
548 "compat_sunos32",
549 "compat_svr4",
550 "compat_svr4_32",
551 "compat_ultrix",
552 NULL
553 };
554 char const * const *list;
555 int i;
556
557 list = (nexecs == 0 ? native : compat);
558 for (i = 0; list[i] != NULL; i++) {
559 if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) {
560 continue;
561 }
562 yield();
563 }
564 #endif
565 }
566
567 static int
568 execve_loadvm(struct lwp *l, const char *path, char * const *args,
569 char * const *envs, execve_fetch_element_t fetch_element,
570 struct execve_data * restrict data)
571 {
572 int error;
573 struct proc *p;
574 char *dp, *sp;
575 size_t i, len;
576 struct exec_fakearg *tmpfap;
577 u_int modgen;
578
579 KASSERT(data != NULL);
580
581 p = l->l_proc;
582 modgen = 0;
583
584 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
585
586 /*
587 * Check if we have exceeded our number of processes limit.
588 * This is so that we handle the case where a root daemon
589 * forked, ran setuid to become the desired user and is trying
590 * to exec. The obvious place to do the reference counting check
591 * is setuid(), but we don't do the reference counting check there
592 * like other OS's do because then all the programs that use setuid()
593 * must be modified to check the return code of setuid() and exit().
594 * It is dangerous to make setuid() fail, because it fails open and
595 * the program will continue to run as root. If we make it succeed
596 * and return an error code, again we are not enforcing the limit.
597 * The best place to enforce the limit is here, when the process tries
598 * to execute a new image, because eventually the process will need
599 * to call exec in order to do something useful.
600 */
601 retry:
602 if ((p->p_flag & PK_SUGID) && kauth_authorize_generic(l->l_cred,
603 KAUTH_GENERIC_ISSUSER, NULL) != 0 && chgproccnt(kauth_cred_getuid(
604 l->l_cred), 0) > p->p_rlimit[RLIMIT_NPROC].rlim_cur)
605 return EAGAIN;
606
607 /*
608 * Drain existing references and forbid new ones. The process
609 * should be left alone until we're done here. This is necessary
610 * to avoid race conditions - e.g. in ptrace() - that might allow
611 * a local user to illicitly obtain elevated privileges.
612 */
613 rw_enter(&p->p_reflock, RW_WRITER);
614
615 /*
616 * Init the namei data to point the file user's program name.
617 * This is done here rather than in check_exec(), so that it's
618 * possible to override this settings if any of makecmd/probe
619 * functions call check_exec() recursively - for example,
620 * see exec_script_makecmds().
621 */
622 error = pathbuf_copyin(path, &data->ed_pathbuf);
623 if (error) {
624 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
625 path, error));
626 goto clrflg;
627 }
628 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
629
630 data->ed_resolvedpathbuf = PNBUF_GET();
631 #ifdef DIAGNOSTIC
632 strcpy(data->ed_resolvedpathbuf, "/wrong");
633 #endif
634
635 /*
636 * initialize the fields of the exec package.
637 */
638 data->ed_pack.ep_name = path;
639 data->ed_pack.ep_kname = data->ed_pathstring;
640 data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf;
641 data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
642 data->ed_pack.ep_hdrlen = exec_maxhdrsz;
643 data->ed_pack.ep_hdrvalid = 0;
644 data->ed_pack.ep_emul_arg = NULL;
645 data->ed_pack.ep_emul_arg_free = NULL;
646 data->ed_pack.ep_vmcmds.evs_cnt = 0;
647 data->ed_pack.ep_vmcmds.evs_used = 0;
648 data->ed_pack.ep_vap = &data->ed_attr;
649 data->ed_pack.ep_flags = 0;
650 data->ed_pack.ep_emul_root = NULL;
651 data->ed_pack.ep_interp = NULL;
652 data->ed_pack.ep_esch = NULL;
653 data->ed_pack.ep_pax_flags = 0;
654
655 rw_enter(&exec_lock, RW_READER);
656
657 /* see if we can run it. */
658 if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) {
659 if (error != ENOENT) {
660 DPRINTF(("%s: check exec failed %d\n",
661 __func__, error));
662 }
663 goto freehdr;
664 }
665
666 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
667
668 /* allocate an argument buffer */
669 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
670 KASSERT(data->ed_argp != NULL);
671 dp = data->ed_argp;
672 data->ed_argc = 0;
673
674 /* copy the fake args list, if there's one, freeing it as we go */
675 if (data->ed_pack.ep_flags & EXEC_HASARGL) {
676 tmpfap = data->ed_pack.ep_fa;
677 while (tmpfap->fa_arg != NULL) {
678 const char *cp;
679
680 cp = tmpfap->fa_arg;
681 while (*cp)
682 *dp++ = *cp++;
683 *dp++ = '\0';
684 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
685
686 kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
687 tmpfap++; data->ed_argc++;
688 }
689 kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len);
690 data->ed_pack.ep_flags &= ~EXEC_HASARGL;
691 }
692
693 /* Now get argv & environment */
694 if (args == NULL) {
695 DPRINTF(("%s: null args\n", __func__));
696 error = EINVAL;
697 goto bad;
698 }
699 /* 'i' will index the argp/envp element to be retrieved */
700 i = 0;
701 if (data->ed_pack.ep_flags & EXEC_SKIPARG)
702 i++;
703
704 while (1) {
705 len = data->ed_argp + ARG_MAX - dp;
706 if ((error = (*fetch_element)(args, i, &sp)) != 0) {
707 DPRINTF(("%s: fetch_element args %d\n",
708 __func__, error));
709 goto bad;
710 }
711 if (!sp)
712 break;
713 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
714 DPRINTF(("%s: copyinstr args %d\n", __func__, error));
715 if (error == ENAMETOOLONG)
716 error = E2BIG;
717 goto bad;
718 }
719 ktrexecarg(dp, len - 1);
720 dp += len;
721 i++;
722 data->ed_argc++;
723 }
724
725 data->ed_envc = 0;
726 /* environment need not be there */
727 if (envs != NULL) {
728 i = 0;
729 while (1) {
730 len = data->ed_argp + ARG_MAX - dp;
731 if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
732 DPRINTF(("%s: fetch_element env %d\n",
733 __func__, error));
734 goto bad;
735 }
736 if (!sp)
737 break;
738 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
739 DPRINTF(("%s: copyinstr env %d\n",
740 __func__, error));
741 if (error == ENAMETOOLONG)
742 error = E2BIG;
743 goto bad;
744 }
745
746 ktrexecenv(dp, len - 1);
747 dp += len;
748 i++;
749 data->ed_envc++;
750 }
751 }
752
753 dp = (char *) ALIGN(dp);
754
755 data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode -
756 data->ed_pack.ep_esch->es_emul->e_sigcode;
757
758 #ifdef __MACHINE_STACK_GROWS_UP
759 /* See big comment lower down */
760 #define RTLD_GAP 32
761 #else
762 #define RTLD_GAP 0
763 #endif
764
765 /* Now check if args & environ fit into new stack */
766 if (data->ed_pack.ep_flags & EXEC_32) {
767 data->ed_ps_strings_sz = sizeof(struct ps_strings32);
768 len = ((data->ed_argc + data->ed_envc + 2 +
769 data->ed_pack.ep_esch->es_arglen) *
770 sizeof(int) + sizeof(int) + dp + RTLD_GAP +
771 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
772 - data->ed_argp;
773 } else {
774 data->ed_ps_strings_sz = sizeof(struct ps_strings);
775 len = ((data->ed_argc + data->ed_envc + 2 +
776 data->ed_pack.ep_esch->es_arglen) *
777 sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
778 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
779 - data->ed_argp;
780 }
781
782 #ifdef PAX_ASLR
783 if (pax_aslr_active(l))
784 len += (cprng_fast32() % PAGE_SIZE);
785 #endif /* PAX_ASLR */
786
787 /* make the stack "safely" aligned */
788 len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES);
789
790 if (len > data->ed_pack.ep_ssize) {
791 /* in effect, compare to initial limit */
792 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
793 goto bad;
794 }
795 /* adjust "active stack depth" for process VSZ */
796 data->ed_pack.ep_ssize = len;
797
798 return 0;
799
800 bad:
801 /* free the vmspace-creation commands, and release their references */
802 kill_vmcmds(&data->ed_pack.ep_vmcmds);
803 /* kill any opened file descriptor, if necessary */
804 if (data->ed_pack.ep_flags & EXEC_HASFD) {
805 data->ed_pack.ep_flags &= ~EXEC_HASFD;
806 fd_close(data->ed_pack.ep_fd);
807 }
808 /* close and put the exec'd file */
809 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
810 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
811 vput(data->ed_pack.ep_vp);
812 pool_put(&exec_pool, data->ed_argp);
813
814 freehdr:
815 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
816 if (data->ed_pack.ep_emul_root != NULL)
817 vrele(data->ed_pack.ep_emul_root);
818 if (data->ed_pack.ep_interp != NULL)
819 vrele(data->ed_pack.ep_interp);
820
821 rw_exit(&exec_lock);
822
823 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
824 pathbuf_destroy(data->ed_pathbuf);
825 PNBUF_PUT(data->ed_resolvedpathbuf);
826
827 clrflg:
828 rw_exit(&p->p_reflock);
829
830 if (modgen != module_gen && error == ENOEXEC) {
831 modgen = module_gen;
832 exec_autoload();
833 goto retry;
834 }
835
836 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
837 return error;
838 }
839
840 static int
841 execve_runproc(struct lwp *l, struct execve_data * restrict data)
842 {
843 int error = 0;
844 struct proc *p;
845 size_t i;
846 char *stack, *dp;
847 const char *commandname;
848 struct ps_strings32 arginfo32;
849 struct exec_vmcmd *base_vcp;
850 void *aip;
851 struct vmspace *vm;
852 ksiginfo_t ksi;
853 ksiginfoq_t kq;
854 bool proc_is_new;
855
856 KASSERT(rw_lock_held(&exec_lock));
857 KASSERT(data != NULL);
858 if (data == NULL)
859 return (EINVAL);
860
861 p = l->l_proc;
862 proc_is_new = p->p_vmspace == NULL;
863
864 base_vcp = NULL;
865
866 if (data->ed_pack.ep_flags & EXEC_32)
867 aip = &arginfo32;
868 else
869 aip = &data->ed_arginfo;
870
871 /* Get rid of other LWPs. */
872 if (p->p_nlwps > 1) {
873 mutex_enter(p->p_lock);
874 exit_lwps(l);
875 mutex_exit(p->p_lock);
876 }
877 KDASSERT(p->p_nlwps == 1);
878
879 /* Destroy any lwpctl info. */
880 if (p->p_lwpctl != NULL)
881 lwp_ctl_exit();
882
883 /* Remove POSIX timers */
884 timers_free(p, TIMERS_POSIX);
885
886 /*
887 * Do whatever is necessary to prepare the address space
888 * for remapping. Note that this might replace the current
889 * vmspace with another!
890 */
891 uvmspace_exec(l, data->ed_pack.ep_vm_minaddr, data->ed_pack.ep_vm_maxaddr);
892
893 /* record proc's vnode, for use by procfs and others */
894 if (p->p_textvp)
895 vrele(p->p_textvp);
896 vref(data->ed_pack.ep_vp);
897 p->p_textvp = data->ed_pack.ep_vp;
898
899 /* Now map address space */
900 vm = p->p_vmspace;
901 vm->vm_taddr = (void *)data->ed_pack.ep_taddr;
902 vm->vm_tsize = btoc(data->ed_pack.ep_tsize);
903 vm->vm_daddr = (void*)data->ed_pack.ep_daddr;
904 vm->vm_dsize = btoc(data->ed_pack.ep_dsize);
905 vm->vm_ssize = btoc(data->ed_pack.ep_ssize);
906 vm->vm_issize = 0;
907 vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr;
908 vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr;
909
910 #ifdef PAX_ASLR
911 pax_aslr_init(l, vm);
912 #endif /* PAX_ASLR */
913
914 /* create the new process's VM space by running the vmcmds */
915 #ifdef DIAGNOSTIC
916 if (data->ed_pack.ep_vmcmds.evs_used == 0)
917 panic("%s: no vmcmds", __func__);
918 #endif
919
920 #ifdef DEBUG_EXEC
921 {
922 size_t j;
923 struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0];
924 DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used));
925 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
926 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
927 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
928 PRIxVSIZE" prot=0%o flags=%d\n", j,
929 vp[j].ev_proc == vmcmd_map_pagedvn ?
930 "pagedvn" :
931 vp[j].ev_proc == vmcmd_map_readvn ?
932 "readvn" :
933 vp[j].ev_proc == vmcmd_map_zero ?
934 "zero" : "*unknown*",
935 vp[j].ev_addr, vp[j].ev_len,
936 vp[j].ev_offset, vp[j].ev_prot,
937 vp[j].ev_flags));
938 }
939 }
940 #endif /* DEBUG_EXEC */
941
942 for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) {
943 struct exec_vmcmd *vcp;
944
945 vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i];
946 if (vcp->ev_flags & VMCMD_RELATIVE) {
947 #ifdef DIAGNOSTIC
948 if (base_vcp == NULL)
949 panic("%s: relative vmcmd with no base",
950 __func__);
951 if (vcp->ev_flags & VMCMD_BASE)
952 panic("%s: illegal base & relative vmcmd",
953 __func__);
954 #endif
955 vcp->ev_addr += base_vcp->ev_addr;
956 }
957 error = (*vcp->ev_proc)(l, vcp);
958 #ifdef DEBUG_EXEC
959 if (error) {
960 size_t j;
961 struct exec_vmcmd *vp =
962 &data->ed_pack.ep_vmcmds.evs_cmds[0];
963 DPRINTF(("vmcmds %zu/%u, error %d\n", i,
964 data->ed_pack.ep_vmcmds.evs_used, error));
965 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
966 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
967 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
968 PRIxVSIZE" prot=0%o flags=%d\n", j,
969 vp[j].ev_proc == vmcmd_map_pagedvn ?
970 "pagedvn" :
971 vp[j].ev_proc == vmcmd_map_readvn ?
972 "readvn" :
973 vp[j].ev_proc == vmcmd_map_zero ?
974 "zero" : "*unknown*",
975 vp[j].ev_addr, vp[j].ev_len,
976 vp[j].ev_offset, vp[j].ev_prot,
977 vp[j].ev_flags));
978 if (j == i)
979 DPRINTF((" ^--- failed\n"));
980 }
981 }
982 #endif /* DEBUG_EXEC */
983 if (vcp->ev_flags & VMCMD_BASE)
984 base_vcp = vcp;
985 }
986
987 /* free the vmspace-creation commands, and release their references */
988 kill_vmcmds(&data->ed_pack.ep_vmcmds);
989
990 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
991 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
992 vput(data->ed_pack.ep_vp);
993
994 /* if an error happened, deallocate and punt */
995 if (error) {
996 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
997 goto exec_abort;
998 }
999
1000 /* remember information about the process */
1001 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1002 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1003
1004 /* set command name & other accounting info */
1005 commandname = strrchr(data->ed_pack.ep_resolvedname, '/');
1006 if (commandname != NULL) {
1007 commandname++;
1008 } else {
1009 commandname = data->ed_pack.ep_resolvedname;
1010 }
1011 i = min(strlen(commandname), MAXCOMLEN);
1012 (void)memcpy(p->p_comm, commandname, i);
1013 p->p_comm[i] = '\0';
1014
1015 dp = PNBUF_GET();
1016 /*
1017 * If the path starts with /, we don't need to do any work.
1018 * This handles the majority of the cases.
1019 * In the future perhaps we could canonicalize it?
1020 */
1021 if (data->ed_pathstring[0] == '/')
1022 (void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring,
1023 MAXPATHLEN);
1024 #ifdef notyet
1025 /*
1026 * Although this works most of the time [since the entry was just
1027 * entered in the cache] we don't use it because it theoretically
1028 * can fail and it is not the cleanest interface, because there
1029 * could be races. When the namei cache is re-written, this can
1030 * be changed to use the appropriate function.
1031 */
1032 else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
1033 data->ed_pack.ep_path = dp;
1034 #endif
1035 else {
1036 #ifdef notyet
1037 printf("Cannot get path for pid %d [%s] (error %d)",
1038 (int)p->p_pid, p->p_comm, error);
1039 #endif
1040 data->ed_pack.ep_path = NULL;
1041 PNBUF_PUT(dp);
1042 }
1043
1044 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1045 STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
1046 data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
1047
1048 #ifdef __MACHINE_STACK_GROWS_UP
1049 /*
1050 * The copyargs call always copies into lower addresses
1051 * first, moving towards higher addresses, starting with
1052 * the stack pointer that we give. When the stack grows
1053 * down, this puts argc/argv/envp very shallow on the
1054 * stack, right at the first user stack pointer.
1055 * When the stack grows up, the situation is reversed.
1056 *
1057 * Normally, this is no big deal. But the ld_elf.so _rtld()
1058 * function expects to be called with a single pointer to
1059 * a region that has a few words it can stash values into,
1060 * followed by argc/argv/envp. When the stack grows down,
1061 * it's easy to decrement the stack pointer a little bit to
1062 * allocate the space for these few words and pass the new
1063 * stack pointer to _rtld. When the stack grows up, however,
1064 * a few words before argc is part of the signal trampoline, XXX
1065 * so we have a problem.
1066 *
1067 * Instead of changing how _rtld works, we take the easy way
1068 * out and steal 32 bytes before we call copyargs.
1069 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
1070 */
1071 stack += RTLD_GAP;
1072 #endif /* __MACHINE_STACK_GROWS_UP */
1073
1074 /* Now copy argc, args & environ to new stack */
1075 error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack,
1076 &data->ed_arginfo, &stack, data->ed_argp);
1077
1078 if (data->ed_pack.ep_path) {
1079 PNBUF_PUT(data->ed_pack.ep_path);
1080 data->ed_pack.ep_path = NULL;
1081 }
1082 if (error) {
1083 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1084 goto exec_abort;
1085 }
1086 /* Move the stack back to original point */
1087 stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize);
1088
1089 /* fill process ps_strings info */
1090 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1091 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1092
1093 if (data->ed_pack.ep_flags & EXEC_32) {
1094 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1095 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1096 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1097 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1098 }
1099
1100 /* copy out the process's ps_strings structure */
1101 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1102 != 0) {
1103 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1104 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1105 goto exec_abort;
1106 }
1107
1108 cwdexec(p);
1109 fd_closeexec(); /* handle close on exec */
1110
1111 if (__predict_false(ktrace_on))
1112 fd_ktrexecfd();
1113
1114 execsigs(p); /* reset catched signals */
1115
1116 l->l_ctxlink = NULL; /* reset ucontext link */
1117
1118
1119 p->p_acflag &= ~AFORK;
1120 mutex_enter(p->p_lock);
1121 p->p_flag |= PK_EXEC;
1122 mutex_exit(p->p_lock);
1123
1124 /*
1125 * Stop profiling.
1126 */
1127 if ((p->p_stflag & PST_PROFIL) != 0) {
1128 mutex_spin_enter(&p->p_stmutex);
1129 stopprofclock(p);
1130 mutex_spin_exit(&p->p_stmutex);
1131 }
1132
1133 /*
1134 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1135 * exited and exec()/exit() are the only places it will be cleared.
1136 */
1137 if ((p->p_lflag & PL_PPWAIT) != 0) {
1138 mutex_enter(proc_lock);
1139 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1140 p->p_lflag &= ~PL_PPWAIT;
1141 cv_broadcast(&p->p_pptr->p_waitcv);
1142 mutex_exit(proc_lock);
1143 }
1144
1145 /*
1146 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1147 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1148 * out additional references on the process for the moment.
1149 */
1150 if ((p->p_slflag & PSL_TRACED) == 0 &&
1151
1152 (((data->ed_attr.va_mode & S_ISUID) != 0 &&
1153 kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
1154
1155 ((data->ed_attr.va_mode & S_ISGID) != 0 &&
1156 kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
1157 /*
1158 * Mark the process as SUGID before we do
1159 * anything that might block.
1160 */
1161 proc_crmod_enter();
1162 proc_crmod_leave(NULL, NULL, true);
1163
1164 /* Make sure file descriptors 0..2 are in use. */
1165 if ((error = fd_checkstd()) != 0) {
1166 DPRINTF(("%s: fdcheckstd failed %d\n",
1167 __func__, error));
1168 goto exec_abort;
1169 }
1170
1171 /*
1172 * Copy the credential so other references don't see our
1173 * changes.
1174 */
1175 l->l_cred = kauth_cred_copy(l->l_cred);
1176 #ifdef KTRACE
1177 /*
1178 * If the persistent trace flag isn't set, turn off.
1179 */
1180 if (p->p_tracep) {
1181 mutex_enter(&ktrace_lock);
1182 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1183 ktrderef(p);
1184 mutex_exit(&ktrace_lock);
1185 }
1186 #endif
1187 if (data->ed_attr.va_mode & S_ISUID)
1188 kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
1189 if (data->ed_attr.va_mode & S_ISGID)
1190 kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
1191 } else {
1192 if (kauth_cred_geteuid(l->l_cred) ==
1193 kauth_cred_getuid(l->l_cred) &&
1194 kauth_cred_getegid(l->l_cred) ==
1195 kauth_cred_getgid(l->l_cred))
1196 p->p_flag &= ~PK_SUGID;
1197 }
1198
1199 /*
1200 * Copy the credential so other references don't see our changes.
1201 * Test to see if this is necessary first, since in the common case
1202 * we won't need a private reference.
1203 */
1204 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1205 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1206 l->l_cred = kauth_cred_copy(l->l_cred);
1207 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1208 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1209 }
1210
1211 /* Update the master credentials. */
1212 if (l->l_cred != p->p_cred) {
1213 kauth_cred_t ocred;
1214
1215 kauth_cred_hold(l->l_cred);
1216 mutex_enter(p->p_lock);
1217 ocred = p->p_cred;
1218 p->p_cred = l->l_cred;
1219 mutex_exit(p->p_lock);
1220 kauth_cred_free(ocred);
1221 }
1222
1223 #if defined(__HAVE_RAS)
1224 /*
1225 * Remove all RASs from the address space.
1226 */
1227 ras_purgeall();
1228 #endif
1229
1230 doexechooks(p);
1231
1232 /* setup new registers and do misc. setup. */
1233 (*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack,
1234 (vaddr_t)stack);
1235 if (data->ed_pack.ep_esch->es_setregs)
1236 (*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack,
1237 (vaddr_t)stack);
1238
1239 /* Provide a consistent LWP private setting */
1240 (void)lwp_setprivate(l, NULL);
1241
1242 /* Discard all PCU state; need to start fresh */
1243 pcu_discard_all(l);
1244
1245 /* map the process's signal trampoline code */
1246 if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) {
1247 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1248 goto exec_abort;
1249 }
1250
1251 pool_put(&exec_pool, data->ed_argp);
1252
1253 /* notify others that we exec'd */
1254 KNOTE(&p->p_klist, NOTE_EXEC);
1255
1256 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1257
1258 SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0);
1259
1260 /* The emulation root will usually have been found when we looked
1261 * for the elf interpreter (or similar), if not look now. */
1262 if (data->ed_pack.ep_esch->es_emul->e_path != NULL &&
1263 data->ed_pack.ep_emul_root == NULL)
1264 emul_find_root(l, &data->ed_pack);
1265
1266 /* Any old emulation root got removed by fdcloseexec */
1267 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1268 p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root;
1269 rw_exit(&p->p_cwdi->cwdi_lock);
1270 data->ed_pack.ep_emul_root = NULL;
1271 if (data->ed_pack.ep_interp != NULL)
1272 vrele(data->ed_pack.ep_interp);
1273
1274 /*
1275 * Call emulation specific exec hook. This can setup per-process
1276 * p->p_emuldata or do any other per-process stuff an emulation needs.
1277 *
1278 * If we are executing process of different emulation than the
1279 * original forked process, call e_proc_exit() of the old emulation
1280 * first, then e_proc_exec() of new emulation. If the emulation is
1281 * same, the exec hook code should deallocate any old emulation
1282 * resources held previously by this process.
1283 */
1284 if (p->p_emul && p->p_emul->e_proc_exit
1285 && p->p_emul != data->ed_pack.ep_esch->es_emul)
1286 (*p->p_emul->e_proc_exit)(p);
1287
1288 /*
1289 * This is now LWP 1.
1290 */
1291 mutex_enter(p->p_lock);
1292 p->p_nlwpid = 1;
1293 l->l_lid = 1;
1294 mutex_exit(p->p_lock);
1295
1296 /*
1297 * Call exec hook. Emulation code may NOT store reference to anything
1298 * from &pack.
1299 */
1300 if (data->ed_pack.ep_esch->es_emul->e_proc_exec)
1301 (*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack);
1302
1303 /* update p_emul, the old value is no longer needed */
1304 p->p_emul = data->ed_pack.ep_esch->es_emul;
1305
1306 /* ...and the same for p_execsw */
1307 p->p_execsw = data->ed_pack.ep_esch;
1308
1309 #ifdef __HAVE_SYSCALL_INTERN
1310 (*p->p_emul->e_syscall_intern)(p);
1311 #endif
1312 ktremul();
1313
1314 /* Allow new references from the debugger/procfs. */
1315 if (!proc_is_new)
1316 rw_exit(&p->p_reflock);
1317 rw_exit(&exec_lock);
1318
1319 mutex_enter(proc_lock);
1320
1321 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1322 KSI_INIT_EMPTY(&ksi);
1323 ksi.ksi_signo = SIGTRAP;
1324 ksi.ksi_lid = l->l_lid;
1325 kpsignal(p, &ksi, NULL);
1326 }
1327
1328 if (p->p_sflag & PS_STOPEXEC) {
1329 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1330 p->p_pptr->p_nstopchild++;
1331 p->p_pptr->p_waited = 0;
1332 mutex_enter(p->p_lock);
1333 ksiginfo_queue_init(&kq);
1334 sigclearall(p, &contsigmask, &kq);
1335 lwp_lock(l);
1336 l->l_stat = LSSTOP;
1337 p->p_stat = SSTOP;
1338 p->p_nrlwps--;
1339 lwp_unlock(l);
1340 mutex_exit(p->p_lock);
1341 mutex_exit(proc_lock);
1342 lwp_lock(l);
1343 mi_switch(l);
1344 ksiginfo_queue_drain(&kq);
1345 KERNEL_LOCK(l->l_biglocks, l);
1346 } else {
1347 mutex_exit(proc_lock);
1348 }
1349
1350 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1351 pathbuf_destroy(data->ed_pathbuf);
1352 PNBUF_PUT(data->ed_resolvedpathbuf);
1353 DPRINTF(("%s finished\n", __func__));
1354 return (EJUSTRETURN);
1355
1356 exec_abort:
1357 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1358 rw_exit(&p->p_reflock);
1359 rw_exit(&exec_lock);
1360
1361 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1362 pathbuf_destroy(data->ed_pathbuf);
1363 PNBUF_PUT(data->ed_resolvedpathbuf);
1364
1365 /*
1366 * the old process doesn't exist anymore. exit gracefully.
1367 * get rid of the (new) address space we have created, if any, get rid
1368 * of our namei data and vnode, and exit noting failure
1369 */
1370 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1371 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1372 exec_free_emul_arg(&data->ed_pack);
1373 pool_put(&exec_pool, data->ed_argp);
1374 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1375 if (data->ed_pack.ep_emul_root != NULL)
1376 vrele(data->ed_pack.ep_emul_root);
1377 if (data->ed_pack.ep_interp != NULL)
1378 vrele(data->ed_pack.ep_interp);
1379
1380 /* Acquire the sched-state mutex (exit1() will release it). */
1381 if (!proc_is_new) {
1382 mutex_enter(p->p_lock);
1383 exit1(l, W_EXITCODE(error, SIGABRT));
1384 }
1385
1386 /* NOTREACHED */
1387 return 0;
1388 }
1389
1390 int
1391 execve1(struct lwp *l, const char *path, char * const *args,
1392 char * const *envs, execve_fetch_element_t fetch_element)
1393 {
1394 struct execve_data data;
1395 int error;
1396
1397 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1398 if (error)
1399 return error;
1400 error = execve_runproc(l, &data);
1401 return error;
1402 }
1403
1404 int
1405 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1406 char **stackp, void *argp)
1407 {
1408 char **cpp, *dp, *sp;
1409 size_t len;
1410 void *nullp;
1411 long argc, envc;
1412 int error;
1413
1414 cpp = (char **)*stackp;
1415 nullp = NULL;
1416 argc = arginfo->ps_nargvstr;
1417 envc = arginfo->ps_nenvstr;
1418 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1419 COPYPRINTF("", cpp - 1, sizeof(argc));
1420 return error;
1421 }
1422
1423 dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1424 sp = argp;
1425
1426 /* XXX don't copy them out, remap them! */
1427 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1428
1429 for (; --argc >= 0; sp += len, dp += len) {
1430 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1431 COPYPRINTF("", cpp - 1, sizeof(dp));
1432 return error;
1433 }
1434 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1435 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1436 return error;
1437 }
1438 }
1439
1440 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1441 COPYPRINTF("", cpp - 1, sizeof(nullp));
1442 return error;
1443 }
1444
1445 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1446
1447 for (; --envc >= 0; sp += len, dp += len) {
1448 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1449 COPYPRINTF("", cpp - 1, sizeof(dp));
1450 return error;
1451 }
1452 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1453 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1454 return error;
1455 }
1456
1457 }
1458
1459 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1460 COPYPRINTF("", cpp - 1, sizeof(nullp));
1461 return error;
1462 }
1463
1464 *stackp = (char *)cpp;
1465 return 0;
1466 }
1467
1468
1469 /*
1470 * Add execsw[] entries.
1471 */
1472 int
1473 exec_add(struct execsw *esp, int count)
1474 {
1475 struct exec_entry *it;
1476 int i;
1477
1478 if (count == 0) {
1479 return 0;
1480 }
1481
1482 /* Check for duplicates. */
1483 rw_enter(&exec_lock, RW_WRITER);
1484 for (i = 0; i < count; i++) {
1485 LIST_FOREACH(it, &ex_head, ex_list) {
1486 /* assume unique (makecmds, probe_func, emulation) */
1487 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1488 it->ex_sw->u.elf_probe_func ==
1489 esp[i].u.elf_probe_func &&
1490 it->ex_sw->es_emul == esp[i].es_emul) {
1491 rw_exit(&exec_lock);
1492 return EEXIST;
1493 }
1494 }
1495 }
1496
1497 /* Allocate new entries. */
1498 for (i = 0; i < count; i++) {
1499 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1500 it->ex_sw = &esp[i];
1501 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1502 }
1503
1504 /* update execsw[] */
1505 exec_init(0);
1506 rw_exit(&exec_lock);
1507 return 0;
1508 }
1509
1510 /*
1511 * Remove execsw[] entry.
1512 */
1513 int
1514 exec_remove(struct execsw *esp, int count)
1515 {
1516 struct exec_entry *it, *next;
1517 int i;
1518 const struct proclist_desc *pd;
1519 proc_t *p;
1520
1521 if (count == 0) {
1522 return 0;
1523 }
1524
1525 /* Abort if any are busy. */
1526 rw_enter(&exec_lock, RW_WRITER);
1527 for (i = 0; i < count; i++) {
1528 mutex_enter(proc_lock);
1529 for (pd = proclists; pd->pd_list != NULL; pd++) {
1530 PROCLIST_FOREACH(p, pd->pd_list) {
1531 if (p->p_execsw == &esp[i]) {
1532 mutex_exit(proc_lock);
1533 rw_exit(&exec_lock);
1534 return EBUSY;
1535 }
1536 }
1537 }
1538 mutex_exit(proc_lock);
1539 }
1540
1541 /* None are busy, so remove them all. */
1542 for (i = 0; i < count; i++) {
1543 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1544 next = LIST_NEXT(it, ex_list);
1545 if (it->ex_sw == &esp[i]) {
1546 LIST_REMOVE(it, ex_list);
1547 kmem_free(it, sizeof(*it));
1548 break;
1549 }
1550 }
1551 }
1552
1553 /* update execsw[] */
1554 exec_init(0);
1555 rw_exit(&exec_lock);
1556 return 0;
1557 }
1558
1559 /*
1560 * Initialize exec structures. If init_boot is true, also does necessary
1561 * one-time initialization (it's called from main() that way).
1562 * Once system is multiuser, this should be called with exec_lock held,
1563 * i.e. via exec_{add|remove}().
1564 */
1565 int
1566 exec_init(int init_boot)
1567 {
1568 const struct execsw **sw;
1569 struct exec_entry *ex;
1570 SLIST_HEAD(,exec_entry) first;
1571 SLIST_HEAD(,exec_entry) any;
1572 SLIST_HEAD(,exec_entry) last;
1573 int i, sz;
1574
1575 if (init_boot) {
1576 /* do one-time initializations */
1577 rw_init(&exec_lock);
1578 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1579 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1580 "execargs", &exec_palloc, IPL_NONE);
1581 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1582 } else {
1583 KASSERT(rw_write_held(&exec_lock));
1584 }
1585
1586 /* Sort each entry onto the appropriate queue. */
1587 SLIST_INIT(&first);
1588 SLIST_INIT(&any);
1589 SLIST_INIT(&last);
1590 sz = 0;
1591 LIST_FOREACH(ex, &ex_head, ex_list) {
1592 switch(ex->ex_sw->es_prio) {
1593 case EXECSW_PRIO_FIRST:
1594 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1595 break;
1596 case EXECSW_PRIO_ANY:
1597 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1598 break;
1599 case EXECSW_PRIO_LAST:
1600 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1601 break;
1602 default:
1603 panic("%s", __func__);
1604 break;
1605 }
1606 sz++;
1607 }
1608
1609 /*
1610 * Create new execsw[]. Ensure we do not try a zero-sized
1611 * allocation.
1612 */
1613 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1614 i = 0;
1615 SLIST_FOREACH(ex, &first, ex_slist) {
1616 sw[i++] = ex->ex_sw;
1617 }
1618 SLIST_FOREACH(ex, &any, ex_slist) {
1619 sw[i++] = ex->ex_sw;
1620 }
1621 SLIST_FOREACH(ex, &last, ex_slist) {
1622 sw[i++] = ex->ex_sw;
1623 }
1624
1625 /* Replace old execsw[] and free used memory. */
1626 if (execsw != NULL) {
1627 kmem_free(__UNCONST(execsw),
1628 nexecs * sizeof(struct execsw *) + 1);
1629 }
1630 execsw = sw;
1631 nexecs = sz;
1632
1633 /* Figure out the maximum size of an exec header. */
1634 exec_maxhdrsz = sizeof(int);
1635 for (i = 0; i < nexecs; i++) {
1636 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1637 exec_maxhdrsz = execsw[i]->es_hdrsz;
1638 }
1639
1640 return 0;
1641 }
1642
1643 static int
1644 exec_sigcode_map(struct proc *p, const struct emul *e)
1645 {
1646 vaddr_t va;
1647 vsize_t sz;
1648 int error;
1649 struct uvm_object *uobj;
1650
1651 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1652
1653 if (e->e_sigobject == NULL || sz == 0) {
1654 return 0;
1655 }
1656
1657 /*
1658 * If we don't have a sigobject for this emulation, create one.
1659 *
1660 * sigobject is an anonymous memory object (just like SYSV shared
1661 * memory) that we keep a permanent reference to and that we map
1662 * in all processes that need this sigcode. The creation is simple,
1663 * we create an object, add a permanent reference to it, map it in
1664 * kernel space, copy out the sigcode to it and unmap it.
1665 * We map it with PROT_READ|PROT_EXEC into the process just
1666 * the way sys_mmap() would map it.
1667 */
1668
1669 uobj = *e->e_sigobject;
1670 if (uobj == NULL) {
1671 mutex_enter(&sigobject_lock);
1672 if ((uobj = *e->e_sigobject) == NULL) {
1673 uobj = uao_create(sz, 0);
1674 (*uobj->pgops->pgo_reference)(uobj);
1675 va = vm_map_min(kernel_map);
1676 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1677 uobj, 0, 0,
1678 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1679 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1680 printf("kernel mapping failed %d\n", error);
1681 (*uobj->pgops->pgo_detach)(uobj);
1682 mutex_exit(&sigobject_lock);
1683 return (error);
1684 }
1685 memcpy((void *)va, e->e_sigcode, sz);
1686 #ifdef PMAP_NEED_PROCWR
1687 pmap_procwr(&proc0, va, sz);
1688 #endif
1689 uvm_unmap(kernel_map, va, va + round_page(sz));
1690 *e->e_sigobject = uobj;
1691 }
1692 mutex_exit(&sigobject_lock);
1693 }
1694
1695 /* Just a hint to uvm_map where to put it. */
1696 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1697 round_page(sz));
1698
1699 #ifdef __alpha__
1700 /*
1701 * Tru64 puts /sbin/loader at the end of user virtual memory,
1702 * which causes the above calculation to put the sigcode at
1703 * an invalid address. Put it just below the text instead.
1704 */
1705 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1706 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1707 }
1708 #endif
1709
1710 (*uobj->pgops->pgo_reference)(uobj);
1711 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1712 uobj, 0, 0,
1713 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1714 UVM_ADV_RANDOM, 0));
1715 if (error) {
1716 DPRINTF(("%s, %d: map %p "
1717 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1718 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1719 va, error));
1720 (*uobj->pgops->pgo_detach)(uobj);
1721 return (error);
1722 }
1723 p->p_sigctx.ps_sigcode = (void *)va;
1724 return (0);
1725 }
1726
1727 /*
1728 * A child lwp of a posix_spawn operation starts here and ends up in
1729 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1730 * manipulations in between.
1731 */
1732 static void
1733 spawn_return(void *arg)
1734 {
1735 struct spawn_exec_data *spawn_data = arg;
1736 struct lwp *l = curlwp;
1737 int error, newfd;
1738 size_t i;
1739 const struct posix_spawn_file_actions_entry *fae;
1740 register_t retval;
1741
1742 error = 0;
1743 /* handle posix_spawn_file_actions */
1744 if (spawn_data->sed_actions != NULL) {
1745 for (i = 0; i < spawn_data->sed_actions_len; i++) {
1746 fae = &spawn_data->sed_actions[i];
1747 switch (fae->fae_action) {
1748 case FAE_OPEN:
1749 if (fd_getfile(fae->fae_fildes) != NULL) {
1750 error = fd_close(fae->fae_fildes);
1751 if (error)
1752 break;
1753 }
1754 error = fd_open(fae->fae_path, fae->fae_oflag,
1755 fae->fae_mode, &newfd);
1756 if (error)
1757 break;
1758 if (newfd != fae->fae_fildes) {
1759 error = dodup(l, newfd,
1760 fae->fae_fildes, 0, &retval);
1761 if (fd_getfile(newfd) != NULL)
1762 fd_close(newfd);
1763 }
1764 break;
1765 case FAE_DUP2:
1766 error = dodup(l, fae->fae_fildes,
1767 fae->fae_newfildes, 0, &retval);
1768 break;
1769 case FAE_CLOSE:
1770 if (fd_getfile(fae->fae_fildes) == NULL) {
1771 error = EBADF;
1772 break;
1773 }
1774 error = fd_close(fae->fae_fildes);
1775 break;
1776 }
1777 if (error)
1778 goto report_error;
1779 }
1780 }
1781
1782 /* handle posix_spawnattr */
1783 if (spawn_data->sed_attrs != NULL) {
1784 struct sigaction sigact;
1785 sigact._sa_u._sa_handler = SIG_DFL;
1786 sigact.sa_flags = 0;
1787
1788 /*
1789 * set state to SSTOP so that this proc can be found by pid.
1790 * see proc_enterprp, do_sched_setparam below
1791 */
1792 l->l_proc->p_stat = SSTOP;
1793
1794 /* Set process group */
1795 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1796 pid_t mypid = l->l_proc->p_pid,
1797 pgrp = spawn_data->sed_attrs->sa_pgroup;
1798
1799 if (pgrp == 0)
1800 pgrp = mypid;
1801
1802 error = proc_enterpgrp(spawn_data->sed_parent,
1803 mypid, pgrp, false);
1804 if (error)
1805 goto report_error;
1806 }
1807
1808 /* Set scheduler policy */
1809 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1810 error = do_sched_setparam(l->l_proc->p_pid, 0,
1811 spawn_data->sed_attrs->sa_schedpolicy,
1812 &spawn_data->sed_attrs->sa_schedparam);
1813 else if (spawn_data->sed_attrs->sa_flags
1814 & POSIX_SPAWN_SETSCHEDPARAM) {
1815 error = do_sched_setparam(spawn_data->sed_parent->p_pid, 0,
1816 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
1817 }
1818 if (error)
1819 goto report_error;
1820
1821 /* Reset user ID's */
1822 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
1823 error = do_setresuid(l, -1,
1824 kauth_cred_getgid(l->l_cred), -1,
1825 ID_E_EQ_R | ID_E_EQ_S);
1826 if (error)
1827 goto report_error;
1828 error = do_setresuid(l, -1,
1829 kauth_cred_getuid(l->l_cred), -1,
1830 ID_E_EQ_R | ID_E_EQ_S);
1831 if (error)
1832 goto report_error;
1833 }
1834
1835 /* Set signal masks/defaults */
1836 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
1837 mutex_enter(l->l_proc->p_lock);
1838 error = sigprocmask1(l, SIG_SETMASK,
1839 &spawn_data->sed_attrs->sa_sigmask, NULL);
1840 mutex_exit(l->l_proc->p_lock);
1841 if (error)
1842 goto report_error;
1843 }
1844
1845 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
1846 for (i = 1; i <= NSIG; i++) {
1847 if (sigismember(
1848 &spawn_data->sed_attrs->sa_sigdefault, i))
1849 sigaction1(l, i, &sigact, NULL, NULL,
1850 0);
1851 }
1852 }
1853 }
1854
1855 if (spawn_data->sed_actions != NULL) {
1856 for (i = 0; i < spawn_data->sed_actions_len; i++) {
1857 fae = &spawn_data->sed_actions[i];
1858 if (fae->fae_action == FAE_OPEN)
1859 kmem_free(fae->fae_path,
1860 strlen(fae->fae_path)+1);
1861 }
1862 }
1863
1864 /* now do the real exec */
1865 rw_enter(&exec_lock, RW_READER);
1866 error = execve_runproc(l, &spawn_data->sed_exec);
1867 if (error == EJUSTRETURN)
1868 error = 0;
1869 else if (error)
1870 goto report_error;
1871
1872 /* done, signal parent */
1873 mutex_enter(&spawn_data->sed_mtx_child);
1874 cv_signal(&spawn_data->sed_cv_child_ready);
1875 mutex_exit(&spawn_data->sed_mtx_child);
1876
1877 /* and finaly: leave to userland for the first time */
1878 cpu_spawn_return(l);
1879
1880 /* NOTREACHED */
1881 return;
1882
1883 report_error:
1884 if (spawn_data->sed_actions != NULL) {
1885 for (i = 0; i < spawn_data->sed_actions_len; i++) {
1886 fae = &spawn_data->sed_actions[i];
1887 if (fae->fae_action == FAE_OPEN)
1888 kmem_free(fae->fae_path,
1889 strlen(fae->fae_path)+1);
1890 }
1891 }
1892
1893 /*
1894 * Set error value for parent to pick up (and take over ownership
1895 * of spawn_data again), signal parent and exit this process.
1896 */
1897 mutex_enter(&spawn_data->sed_mtx_child);
1898 spawn_data->sed_error = error;
1899 cv_signal(&spawn_data->sed_cv_child_ready);
1900 mutex_exit(&spawn_data->sed_mtx_child);
1901 mutex_enter(l->l_proc->p_lock);
1902 exit1(l, W_EXITCODE(error, SIGABRT));
1903 }
1904
1905 int
1906 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
1907 register_t *retval)
1908 {
1909 /* {
1910 syscallarg(pid_t *) pid;
1911 syscallarg(const char *) path;
1912 syscallarg(const struct posix_spawn_file_actions *) file_actions;
1913 syscallarg(const struct posix_spawnattr *) attrp;
1914 syscallarg(char *const *) argv;
1915 syscallarg(char *const *) envp;
1916 } */
1917
1918 struct proc *p1, *p2;
1919 struct plimit *p1_lim;
1920 struct lwp *l2;
1921 int error = 0, tnprocs, count, i;
1922 struct posix_spawn_file_actions *fa = NULL;
1923 struct posix_spawnattr *sa = NULL;
1924 struct posix_spawn_file_actions_entry *ufa;
1925 struct spawn_exec_data *spawn_data;
1926 uid_t uid;
1927 vaddr_t uaddr;
1928 pid_t pid;
1929 bool have_exec_lock = false;
1930
1931 p1 = l1->l_proc;
1932 uid = kauth_cred_getuid(l1->l_cred);
1933 tnprocs = atomic_inc_uint_nv(&nprocs);
1934
1935 /*
1936 * Although process entries are dynamically created, we still keep
1937 * a global limit on the maximum number we will create.
1938 */
1939 if (__predict_false(tnprocs >= maxproc))
1940 error = -1;
1941 else
1942 error = kauth_authorize_process(l1->l_cred,
1943 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
1944
1945 if (error) {
1946 atomic_dec_uint(&nprocs);
1947 *retval = EAGAIN;
1948 return 0;
1949 }
1950
1951 /*
1952 * Enforce limits.
1953 */
1954 count = chgproccnt(uid, 1);
1955 if (kauth_authorize_generic(l1->l_cred, KAUTH_GENERIC_ISSUSER, NULL) !=
1956 0 && __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
1957 error = EAGAIN;
1958 goto error_exit;
1959 }
1960
1961 /* copy in file_actions struct */
1962 if (SCARG(uap, file_actions) != NULL) {
1963 fa = kmem_alloc(sizeof(struct posix_spawn_file_actions),
1964 KM_SLEEP);
1965 error = copyin(SCARG(uap, file_actions), fa,
1966 sizeof(struct posix_spawn_file_actions));
1967 if (error) {
1968 fa->fae = NULL;
1969 goto error_exit;
1970 }
1971 ufa = fa->fae;
1972 fa->fae = kmem_alloc(fa->len *
1973 sizeof(struct posix_spawn_file_actions_entry), KM_SLEEP);
1974 error = copyin(ufa, fa->fae,
1975 fa->len * sizeof(struct posix_spawn_file_actions_entry));
1976 if (error)
1977 goto error_exit;
1978 for (i = 0; i < fa->len; i++) {
1979 if (fa->fae[i].fae_action == FAE_OPEN) {
1980 char buf[PATH_MAX];
1981 error = copyinstr(fa->fae[i].fae_path, buf,
1982 sizeof(buf), NULL);
1983 if (error)
1984 break;
1985 fa->fae[i].fae_path = kmem_alloc(strlen(buf)+1,
1986 KM_SLEEP);
1987 if (fa->fae[i].fae_path == NULL) {
1988 error = ENOMEM;
1989 break;
1990 }
1991 strcpy(fa->fae[i].fae_path, buf);
1992 }
1993 }
1994 }
1995
1996 /* copyin posix_spawnattr struct */
1997 sa = NULL;
1998 if (SCARG(uap, attrp) != NULL) {
1999 sa = kmem_alloc(sizeof(struct posix_spawnattr), KM_SLEEP);
2000 error = copyin(SCARG(uap, attrp), sa,
2001 sizeof(struct posix_spawnattr));
2002 if (error)
2003 goto error_exit;
2004 }
2005
2006
2007 /*
2008 * Do the first part of the exec now, collect state
2009 * in spawn_data.
2010 */
2011 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2012 error = execve_loadvm(l1, SCARG(uap, path), SCARG(uap, argv),
2013 SCARG(uap, envp), execve_fetch_element, &spawn_data->sed_exec);
2014 if (error == EJUSTRETURN)
2015 error = 0;
2016 else if (error)
2017 goto error_exit;
2018
2019 have_exec_lock = true;
2020
2021 /*
2022 * Allocate virtual address space for the U-area now, while it
2023 * is still easy to abort the fork operation if we're out of
2024 * kernel virtual address space.
2025 */
2026 uaddr = uvm_uarea_alloc();
2027 if (__predict_false(uaddr == 0)) {
2028 error = ENOMEM;
2029 goto error_exit;
2030 }
2031
2032 /*
2033 * Allocate new proc. Leave it's p_vmspace NULL for now.
2034 * This is a point of no return, we will have to go through
2035 * the child proc to properly clean it up past this point.
2036 */
2037 p2 = proc_alloc();
2038 pid = p2->p_pid;
2039
2040 /*
2041 * Make a proc table entry for the new process.
2042 * Start by zeroing the section of proc that is zero-initialized,
2043 * then copy the section that is copied directly from the parent.
2044 */
2045 memset(&p2->p_startzero, 0,
2046 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2047 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2048 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2049 p2->p_vmspace = NULL;
2050
2051 CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
2052
2053 LIST_INIT(&p2->p_lwps);
2054 LIST_INIT(&p2->p_sigwaiters);
2055
2056 /*
2057 * Duplicate sub-structures as needed.
2058 * Increase reference counts on shared objects.
2059 * Inherit flags we want to keep. The flags related to SIGCHLD
2060 * handling are important in order to keep a consistent behaviour
2061 * for the child after the fork. If we are a 32-bit process, the
2062 * child will be too.
2063 */
2064 p2->p_flag =
2065 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2066 p2->p_emul = p1->p_emul;
2067 p2->p_execsw = p1->p_execsw;
2068
2069 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2070 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2071 rw_init(&p2->p_reflock);
2072 cv_init(&p2->p_waitcv, "wait");
2073 cv_init(&p2->p_lwpcv, "lwpwait");
2074
2075 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2076
2077 kauth_proc_fork(p1, p2);
2078
2079 p2->p_raslist = NULL;
2080 p2->p_fd = fd_copy();
2081
2082 /* XXX racy */
2083 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2084
2085 p2->p_cwdi = cwdinit();
2086
2087 /*
2088 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2089 * we just need increase pl_refcnt.
2090 */
2091 p1_lim = p1->p_limit;
2092 if (!p1_lim->pl_writeable) {
2093 lim_addref(p1_lim);
2094 p2->p_limit = p1_lim;
2095 } else {
2096 p2->p_limit = lim_copy(p1->p_limit);
2097 }
2098
2099 p2->p_lflag = 0;
2100 p2->p_sflag = 0;
2101 p2->p_slflag = 0;
2102 p2->p_pptr = p1;
2103 p2->p_ppid = p1->p_pid;
2104 LIST_INIT(&p2->p_children);
2105
2106 p2->p_aio = NULL;
2107
2108 #ifdef KTRACE
2109 /*
2110 * Copy traceflag and tracefile if enabled.
2111 * If not inherited, these were zeroed above.
2112 */
2113 if (p1->p_traceflag & KTRFAC_INHERIT) {
2114 mutex_enter(&ktrace_lock);
2115 p2->p_traceflag = p1->p_traceflag;
2116 if ((p2->p_tracep = p1->p_tracep) != NULL)
2117 ktradref(p2);
2118 mutex_exit(&ktrace_lock);
2119 }
2120 #endif
2121
2122 /*
2123 * Create signal actions for the child process.
2124 */
2125 p2->p_sigacts = sigactsinit(p1, 0);
2126 mutex_enter(p1->p_lock);
2127 p2->p_sflag |=
2128 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2129 sched_proc_fork(p1, p2);
2130 mutex_exit(p1->p_lock);
2131
2132 p2->p_stflag = p1->p_stflag;
2133
2134 /*
2135 * p_stats.
2136 * Copy parts of p_stats, and zero out the rest.
2137 */
2138 p2->p_stats = pstatscopy(p1->p_stats);
2139
2140 /* copy over machdep flags to the new proc */
2141 cpu_proc_fork(p1, p2);
2142
2143 /*
2144 * Prepare remaining parts of spawn data
2145 */
2146 if (fa != NULL) {
2147 spawn_data->sed_actions_len = fa->len;
2148 spawn_data->sed_actions = fa->fae;
2149 kmem_free(fa, sizeof(*fa));
2150 fa = NULL;
2151 }
2152 if (sa != NULL) {
2153 spawn_data->sed_attrs = sa;
2154 sa = NULL;
2155 }
2156
2157 spawn_data->sed_parent = p1;
2158 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2159 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2160 mutex_enter(&spawn_data->sed_mtx_child);
2161
2162 /* create LWP */
2163 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2164 &l2, l1->l_class);
2165 l2->l_ctxlink = NULL; /* reset ucontext link */
2166
2167 /*
2168 * Copy the credential so other references don't see our changes.
2169 * Test to see if this is necessary first, since in the common case
2170 * we won't need a private reference.
2171 */
2172 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2173 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2174 l2->l_cred = kauth_cred_copy(l2->l_cred);
2175 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2176 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2177 }
2178
2179 /* Update the master credentials. */
2180 if (l2->l_cred != p2->p_cred) {
2181 kauth_cred_t ocred;
2182
2183 kauth_cred_hold(l2->l_cred);
2184 mutex_enter(p2->p_lock);
2185 ocred = p2->p_cred;
2186 p2->p_cred = l2->l_cred;
2187 mutex_exit(p2->p_lock);
2188 kauth_cred_free(ocred);
2189 }
2190
2191 /*
2192 * It's now safe for the scheduler and other processes to see the
2193 * child process.
2194 */
2195 mutex_enter(proc_lock);
2196
2197 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2198 p2->p_lflag |= PL_CONTROLT;
2199
2200 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2201 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2202
2203 LIST_INSERT_AFTER(p1, p2, p_pglist);
2204 LIST_INSERT_HEAD(&allproc, p2, p_list);
2205
2206 p2->p_trace_enabled = trace_is_enabled(p2);
2207 #ifdef __HAVE_SYSCALL_INTERN
2208 (*p2->p_emul->e_syscall_intern)(p2);
2209 #endif
2210 rw_exit(&p1->p_reflock);
2211
2212 /*
2213 * Make child runnable, set start time, and add to run queue except
2214 * if the parent requested the child to start in SSTOP state.
2215 */
2216 mutex_enter(p2->p_lock);
2217
2218 getmicrotime(&p2->p_stats->p_start);
2219
2220 lwp_lock(l2);
2221 KASSERT(p2->p_nrlwps == 1);
2222 p2->p_nrlwps = 1;
2223 p2->p_stat = SACTIVE;
2224 l2->l_stat = LSRUN;
2225 sched_enqueue(l2, false);
2226 lwp_unlock(l2);
2227
2228 mutex_exit(p2->p_lock);
2229 mutex_exit(proc_lock);
2230
2231 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2232 mutex_exit(&spawn_data->sed_mtx_child);
2233 error = spawn_data->sed_error;
2234
2235 rw_exit(&exec_lock);
2236 have_exec_lock = false;
2237
2238 if (spawn_data->sed_actions != NULL)
2239 kmem_free(spawn_data->sed_actions,
2240 spawn_data->sed_actions_len * sizeof(*spawn_data->sed_actions));
2241
2242 if (spawn_data->sed_attrs != NULL)
2243 kmem_free(spawn_data->sed_attrs, sizeof(*spawn_data->sed_attrs));
2244
2245 cv_destroy(&spawn_data->sed_cv_child_ready);
2246 mutex_destroy(&spawn_data->sed_mtx_child);
2247
2248 kmem_free(spawn_data, sizeof(*spawn_data));
2249
2250 if (error == 0 && SCARG(uap, pid) != NULL)
2251 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2252
2253 *retval = error;
2254 return 0;
2255
2256 error_exit:
2257 if (have_exec_lock)
2258 rw_exit(&exec_lock);
2259
2260 if (fa != NULL) {
2261 if (fa->fae != NULL)
2262 kmem_free(fa->fae, fa->len * sizeof(*fa->fae));
2263 kmem_free(fa, sizeof(*fa));
2264 }
2265
2266 if (sa != NULL)
2267 kmem_free(sa, sizeof(*sa));
2268
2269 (void)chgproccnt(uid, -1);
2270 atomic_dec_uint(&nprocs);
2271
2272 *retval = error;
2273 return 0;
2274 }
2275
2276 void
2277 exec_free_emul_arg(struct exec_package *epp)
2278 {
2279 if (epp->ep_emul_arg_free != NULL) {
2280 KASSERT(epp->ep_emul_arg != NULL);
2281 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2282 epp->ep_emul_arg_free = NULL;
2283 epp->ep_emul_arg = NULL;
2284 } else {
2285 KASSERT(epp->ep_emul_arg == NULL);
2286 }
2287 }
2288