kern_exec.c revision 1.351 1 /* $NetBSD: kern_exec.c,v 1.351 2012/04/30 21:19:58 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.351 2012/04/30 21:19:58 rmind Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_ktrace.h"
66 #include "opt_modular.h"
67 #include "opt_syscall_debug.h"
68 #include "veriexec.h"
69 #include "opt_pax.h"
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/filedesc.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/mount.h>
77 #include <sys/malloc.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/acct.h>
83 #include <sys/atomic.h>
84 #include <sys/exec.h>
85 #include <sys/ktrace.h>
86 #include <sys/uidinfo.h>
87 #include <sys/wait.h>
88 #include <sys/mman.h>
89 #include <sys/ras.h>
90 #include <sys/signalvar.h>
91 #include <sys/stat.h>
92 #include <sys/syscall.h>
93 #include <sys/kauth.h>
94 #include <sys/lwpctl.h>
95 #include <sys/pax.h>
96 #include <sys/cpu.h>
97 #include <sys/module.h>
98 #include <sys/syscallvar.h>
99 #include <sys/syscallargs.h>
100 #if NVERIEXEC > 0
101 #include <sys/verified_exec.h>
102 #endif /* NVERIEXEC > 0 */
103 #include <sys/sdt.h>
104 #include <sys/spawn.h>
105 #include <sys/prot.h>
106 #include <sys/cprng.h>
107
108 #include <uvm/uvm_extern.h>
109
110 #include <machine/reg.h>
111
112 #include <compat/common/compat_util.h>
113
114 static int exec_sigcode_map(struct proc *, const struct emul *);
115
116 #ifdef DEBUG_EXEC
117 #define DPRINTF(a) printf a
118 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
119 __LINE__, (s), (a), (b))
120 #else
121 #define DPRINTF(a)
122 #define COPYPRINTF(s, a, b)
123 #endif /* DEBUG_EXEC */
124
125 /*
126 * DTrace SDT provider definitions
127 */
128 SDT_PROBE_DEFINE(proc,,,exec,
129 "char *", NULL,
130 NULL, NULL, NULL, NULL,
131 NULL, NULL, NULL, NULL);
132 SDT_PROBE_DEFINE(proc,,,exec_success,
133 "char *", NULL,
134 NULL, NULL, NULL, NULL,
135 NULL, NULL, NULL, NULL);
136 SDT_PROBE_DEFINE(proc,,,exec_failure,
137 "int", NULL,
138 NULL, NULL, NULL, NULL,
139 NULL, NULL, NULL, NULL);
140
141 /*
142 * Exec function switch:
143 *
144 * Note that each makecmds function is responsible for loading the
145 * exec package with the necessary functions for any exec-type-specific
146 * handling.
147 *
148 * Functions for specific exec types should be defined in their own
149 * header file.
150 */
151 static const struct execsw **execsw = NULL;
152 static int nexecs;
153
154 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
155
156 /* list of dynamically loaded execsw entries */
157 static LIST_HEAD(execlist_head, exec_entry) ex_head =
158 LIST_HEAD_INITIALIZER(ex_head);
159 struct exec_entry {
160 LIST_ENTRY(exec_entry) ex_list;
161 SLIST_ENTRY(exec_entry) ex_slist;
162 const struct execsw *ex_sw;
163 };
164
165 #ifndef __HAVE_SYSCALL_INTERN
166 void syscall(void);
167 #endif
168
169 /* NetBSD emul struct */
170 struct emul emul_netbsd = {
171 .e_name = "netbsd",
172 .e_path = NULL,
173 #ifndef __HAVE_MINIMAL_EMUL
174 .e_flags = EMUL_HAS_SYS___syscall,
175 .e_errno = NULL,
176 .e_nosys = SYS_syscall,
177 .e_nsysent = SYS_NSYSENT,
178 #endif
179 .e_sysent = sysent,
180 #ifdef SYSCALL_DEBUG
181 .e_syscallnames = syscallnames,
182 #else
183 .e_syscallnames = NULL,
184 #endif
185 .e_sendsig = sendsig,
186 .e_trapsignal = trapsignal,
187 .e_tracesig = NULL,
188 .e_sigcode = NULL,
189 .e_esigcode = NULL,
190 .e_sigobject = NULL,
191 .e_setregs = setregs,
192 .e_proc_exec = NULL,
193 .e_proc_fork = NULL,
194 .e_proc_exit = NULL,
195 .e_lwp_fork = NULL,
196 .e_lwp_exit = NULL,
197 #ifdef __HAVE_SYSCALL_INTERN
198 .e_syscall_intern = syscall_intern,
199 #else
200 .e_syscall = syscall,
201 #endif
202 .e_sysctlovly = NULL,
203 .e_fault = NULL,
204 .e_vm_default_addr = uvm_default_mapaddr,
205 .e_usertrap = NULL,
206 .e_ucsize = sizeof(ucontext_t),
207 .e_startlwp = startlwp
208 };
209
210 /*
211 * Exec lock. Used to control access to execsw[] structures.
212 * This must not be static so that netbsd32 can access it, too.
213 */
214 krwlock_t exec_lock __cacheline_aligned;
215 static kmutex_t sigobject_lock __cacheline_aligned;
216
217 /*
218 * Data used between a loadvm and execve part of an "exec" operation
219 */
220 struct execve_data {
221 struct exec_package ed_pack;
222 struct pathbuf *ed_pathbuf;
223 struct vattr ed_attr;
224 struct ps_strings ed_arginfo;
225 char *ed_argp;
226 const char *ed_pathstring;
227 char *ed_resolvedpathbuf;
228 size_t ed_ps_strings_sz;
229 int ed_szsigcode;
230 long ed_argc;
231 long ed_envc;
232 };
233
234 /*
235 * data passed from parent lwp to child during a posix_spawn()
236 */
237 struct spawn_exec_data {
238 struct execve_data sed_exec;
239 struct posix_spawn_file_actions
240 *sed_actions;
241 struct posix_spawnattr *sed_attrs;
242 struct proc *sed_parent;
243 kcondvar_t sed_cv_child_ready;
244 kmutex_t sed_mtx_child;
245 int sed_error;
246 volatile uint32_t sed_refcnt;
247 };
248
249 static void *
250 exec_pool_alloc(struct pool *pp, int flags)
251 {
252
253 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
254 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
255 }
256
257 static void
258 exec_pool_free(struct pool *pp, void *addr)
259 {
260
261 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
262 }
263
264 static struct pool exec_pool;
265
266 static struct pool_allocator exec_palloc = {
267 .pa_alloc = exec_pool_alloc,
268 .pa_free = exec_pool_free,
269 .pa_pagesz = NCARGS
270 };
271
272 /*
273 * check exec:
274 * given an "executable" described in the exec package's namei info,
275 * see what we can do with it.
276 *
277 * ON ENTRY:
278 * exec package with appropriate namei info
279 * lwp pointer of exec'ing lwp
280 * NO SELF-LOCKED VNODES
281 *
282 * ON EXIT:
283 * error: nothing held, etc. exec header still allocated.
284 * ok: filled exec package, executable's vnode (unlocked).
285 *
286 * EXEC SWITCH ENTRY:
287 * Locked vnode to check, exec package, proc.
288 *
289 * EXEC SWITCH EXIT:
290 * ok: return 0, filled exec package, executable's vnode (unlocked).
291 * error: destructive:
292 * everything deallocated execept exec header.
293 * non-destructive:
294 * error code, executable's vnode (unlocked),
295 * exec header unmodified.
296 */
297 int
298 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
299 {
300 int error, i;
301 struct vnode *vp;
302 struct nameidata nd;
303 size_t resid;
304
305 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
306
307 /* first get the vnode */
308 if ((error = namei(&nd)) != 0)
309 return error;
310 epp->ep_vp = vp = nd.ni_vp;
311 /* this cannot overflow as both are size PATH_MAX */
312 strcpy(epp->ep_resolvedname, nd.ni_pnbuf);
313
314 #ifdef DIAGNOSTIC
315 /* paranoia (take this out once namei stuff stabilizes) */
316 memset(nd.ni_pnbuf, '~', PATH_MAX);
317 #endif
318
319 /* check access and type */
320 if (vp->v_type != VREG) {
321 error = EACCES;
322 goto bad1;
323 }
324 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
325 goto bad1;
326
327 /* get attributes */
328 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
329 goto bad1;
330
331 /* Check mount point */
332 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
333 error = EACCES;
334 goto bad1;
335 }
336 if (vp->v_mount->mnt_flag & MNT_NOSUID)
337 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
338
339 /* try to open it */
340 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
341 goto bad1;
342
343 /* unlock vp, since we need it unlocked from here on out. */
344 VOP_UNLOCK(vp);
345
346 #if NVERIEXEC > 0
347 error = veriexec_verify(l, vp, epp->ep_resolvedname,
348 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
349 NULL);
350 if (error)
351 goto bad2;
352 #endif /* NVERIEXEC > 0 */
353
354 #ifdef PAX_SEGVGUARD
355 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
356 if (error)
357 goto bad2;
358 #endif /* PAX_SEGVGUARD */
359
360 /* now we have the file, get the exec header */
361 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
362 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
363 if (error)
364 goto bad2;
365 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
366
367 /*
368 * Set up default address space limits. Can be overridden
369 * by individual exec packages.
370 *
371 * XXX probably should be all done in the exec packages.
372 */
373 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
374 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
375 /*
376 * set up the vmcmds for creation of the process
377 * address space
378 */
379 error = ENOEXEC;
380 for (i = 0; i < nexecs; i++) {
381 int newerror;
382
383 epp->ep_esch = execsw[i];
384 newerror = (*execsw[i]->es_makecmds)(l, epp);
385
386 if (!newerror) {
387 /* Seems ok: check that entry point is not too high */
388 if (epp->ep_entry > epp->ep_vm_maxaddr) {
389 #ifdef DIAGNOSTIC
390 printf("%s: rejecting %p due to "
391 "too high entry address (> %p)\n",
392 __func__, (void *)epp->ep_entry,
393 (void *)epp->ep_vm_maxaddr);
394 #endif
395 error = ENOEXEC;
396 break;
397 }
398 /* Seems ok: check that entry point is not too low */
399 if (epp->ep_entry < epp->ep_vm_minaddr) {
400 #ifdef DIAGNOSTIC
401 printf("%s: rejecting %p due to "
402 "too low entry address (< %p)\n",
403 __func__, (void *)epp->ep_entry,
404 (void *)epp->ep_vm_minaddr);
405 #endif
406 error = ENOEXEC;
407 break;
408 }
409
410 /* check limits */
411 if ((epp->ep_tsize > MAXTSIZ) ||
412 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
413 [RLIMIT_DATA].rlim_cur)) {
414 #ifdef DIAGNOSTIC
415 printf("%s: rejecting due to "
416 "limits (t=%llu > %llu || d=%llu > %llu)\n",
417 __func__,
418 (unsigned long long)epp->ep_tsize,
419 (unsigned long long)MAXTSIZ,
420 (unsigned long long)epp->ep_dsize,
421 (unsigned long long)
422 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
423 #endif
424 error = ENOMEM;
425 break;
426 }
427 return 0;
428 }
429
430 if (epp->ep_emul_root != NULL) {
431 vrele(epp->ep_emul_root);
432 epp->ep_emul_root = NULL;
433 }
434 if (epp->ep_interp != NULL) {
435 vrele(epp->ep_interp);
436 epp->ep_interp = NULL;
437 }
438
439 /* make sure the first "interesting" error code is saved. */
440 if (error == ENOEXEC)
441 error = newerror;
442
443 if (epp->ep_flags & EXEC_DESTR)
444 /* Error from "#!" code, tidied up by recursive call */
445 return error;
446 }
447
448 /* not found, error */
449
450 /*
451 * free any vmspace-creation commands,
452 * and release their references
453 */
454 kill_vmcmds(&epp->ep_vmcmds);
455
456 bad2:
457 /*
458 * close and release the vnode, restore the old one, free the
459 * pathname buf, and punt.
460 */
461 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
462 VOP_CLOSE(vp, FREAD, l->l_cred);
463 vput(vp);
464 return error;
465
466 bad1:
467 /*
468 * free the namei pathname buffer, and put the vnode
469 * (which we don't yet have open).
470 */
471 vput(vp); /* was still locked */
472 return error;
473 }
474
475 #ifdef __MACHINE_STACK_GROWS_UP
476 #define STACK_PTHREADSPACE NBPG
477 #else
478 #define STACK_PTHREADSPACE 0
479 #endif
480
481 static int
482 execve_fetch_element(char * const *array, size_t index, char **value)
483 {
484 return copyin(array + index, value, sizeof(*value));
485 }
486
487 /*
488 * exec system call
489 */
490 int
491 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
492 {
493 /* {
494 syscallarg(const char *) path;
495 syscallarg(char * const *) argp;
496 syscallarg(char * const *) envp;
497 } */
498
499 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
500 SCARG(uap, envp), execve_fetch_element);
501 }
502
503 int
504 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
505 register_t *retval)
506 {
507 /* {
508 syscallarg(int) fd;
509 syscallarg(char * const *) argp;
510 syscallarg(char * const *) envp;
511 } */
512
513 return ENOSYS;
514 }
515
516 /*
517 * Load modules to try and execute an image that we do not understand.
518 * If no execsw entries are present, we load those likely to be needed
519 * in order to run native images only. Otherwise, we autoload all
520 * possible modules that could let us run the binary. XXX lame
521 */
522 static void
523 exec_autoload(void)
524 {
525 #ifdef MODULAR
526 static const char * const native[] = {
527 "exec_elf32",
528 "exec_elf64",
529 "exec_script",
530 NULL
531 };
532 static const char * const compat[] = {
533 "exec_elf32",
534 "exec_elf64",
535 "exec_script",
536 "exec_aout",
537 "exec_coff",
538 "exec_ecoff",
539 "compat_aoutm68k",
540 "compat_freebsd",
541 "compat_ibcs2",
542 "compat_linux",
543 "compat_linux32",
544 "compat_netbsd32",
545 "compat_sunos",
546 "compat_sunos32",
547 "compat_svr4",
548 "compat_svr4_32",
549 "compat_ultrix",
550 NULL
551 };
552 char const * const *list;
553 int i;
554
555 list = (nexecs == 0 ? native : compat);
556 for (i = 0; list[i] != NULL; i++) {
557 if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) {
558 continue;
559 }
560 yield();
561 }
562 #endif
563 }
564
565 static void
566 execve_free_vmspace(struct execve_data *ed)
567 {
568
569 /*
570 * Free the vmspace-creation commands and release their references.
571 */
572 kill_vmcmds(&ed->ed_pack.ep_vmcmds);
573
574 /* Kill any opened file descriptor, if necessary. */
575 if (ed->ed_pack.ep_flags & EXEC_HASFD) {
576 ed->ed_pack.ep_flags &= ~EXEC_HASFD;
577 fd_close(ed->ed_pack.ep_fd);
578 }
579
580 /* Close and put the executed file. */
581 vn_lock(ed->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
582 VOP_CLOSE(ed->ed_pack.ep_vp, FREAD, curlwp->l_cred);
583 vput(ed->ed_pack.ep_vp);
584 pool_put(&exec_pool, ed->ed_argp);
585 }
586
587 static void
588 execve_free_data(struct execve_data *ed)
589 {
590
591 kmem_free(ed->ed_pack.ep_hdr, ed->ed_pack.ep_hdrlen);
592 if (ed->ed_pack.ep_emul_root != NULL)
593 vrele(ed->ed_pack.ep_emul_root);
594 if (ed->ed_pack.ep_interp != NULL)
595 vrele(ed->ed_pack.ep_interp);
596
597 pathbuf_stringcopy_put(ed->ed_pathbuf, ed->ed_pathstring);
598 pathbuf_destroy(ed->ed_pathbuf);
599 PNBUF_PUT(ed->ed_resolvedpathbuf);
600 }
601
602 static int
603 execve_loadvm(struct lwp *l, const char *path, char * const *args,
604 char * const *envs, execve_fetch_element_t fetch_element,
605 struct execve_data * restrict data)
606 {
607 int error;
608 struct proc *p;
609 char *dp, *sp;
610 size_t i, len;
611 struct exec_fakearg *tmpfap;
612 u_int modgen;
613 bool freevm;
614
615 KASSERT(data != NULL);
616
617 p = l->l_proc;
618 modgen = 0;
619
620 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
621
622 /*
623 * Check if we have exceeded our number of processes limit.
624 * This is so that we handle the case where a root daemon
625 * forked, ran setuid to become the desired user and is trying
626 * to exec. The obvious place to do the reference counting check
627 * is setuid(), but we don't do the reference counting check there
628 * like other OS's do because then all the programs that use setuid()
629 * must be modified to check the return code of setuid() and exit().
630 * It is dangerous to make setuid() fail, because it fails open and
631 * the program will continue to run as root. If we make it succeed
632 * and return an error code, again we are not enforcing the limit.
633 * The best place to enforce the limit is here, when the process tries
634 * to execute a new image, because eventually the process will need
635 * to call exec in order to do something useful.
636 */
637 retry:
638 freevm = false;
639 if (p->p_flag & PK_SUGID) {
640 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
641 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
642 &p->p_rlimit[RLIMIT_NPROC],
643 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
644 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
645 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
646 return EAGAIN;
647 }
648
649 /*
650 * Init the namei data to point the file user's program name.
651 * This is done here rather than in check_exec(), so that it's
652 * possible to override this settings if any of makecmd/probe
653 * functions call check_exec() recursively - for example,
654 * see exec_script_makecmds().
655 */
656 error = pathbuf_copyin(path, &data->ed_pathbuf);
657 if (error) {
658 return error;
659 }
660 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
661
662 data->ed_resolvedpathbuf = PNBUF_GET();
663 #ifdef DIAGNOSTIC
664 strcpy(data->ed_resolvedpathbuf, "/wrong");
665 #endif
666
667 /*
668 * initialize the fields of the exec package.
669 */
670 data->ed_pack.ep_name = path;
671 data->ed_pack.ep_kname = data->ed_pathstring;
672 data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf;
673 data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
674 data->ed_pack.ep_hdrlen = exec_maxhdrsz;
675 data->ed_pack.ep_hdrvalid = 0;
676 data->ed_pack.ep_emul_arg = NULL;
677 data->ed_pack.ep_emul_arg_free = NULL;
678 data->ed_pack.ep_vmcmds.evs_cnt = 0;
679 data->ed_pack.ep_vmcmds.evs_used = 0;
680 data->ed_pack.ep_vap = &data->ed_attr;
681 data->ed_pack.ep_flags = 0;
682 data->ed_pack.ep_emul_root = NULL;
683 data->ed_pack.ep_interp = NULL;
684 data->ed_pack.ep_esch = NULL;
685 data->ed_pack.ep_pax_flags = 0;
686
687 /*
688 * Drain existing references and forbid new ones. The process
689 * should be left alone until we're done here. This is necessary
690 * to avoid race conditions - e.g. in ptrace() - that might allow
691 * a local user to illicitly obtain elevated privileges.
692 */
693 rw_enter(&p->p_reflock, RW_WRITER);
694 rw_enter(&exec_lock, RW_READER);
695
696 /* see if we can run it. */
697 if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) {
698 if (error != ENOENT) {
699 DPRINTF(("%s: check exec failed %d\n",
700 __func__, error));
701 }
702 goto bad;
703 }
704 freevm = true;
705
706 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
707
708 /* allocate an argument buffer */
709 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
710 KASSERT(data->ed_argp != NULL);
711 dp = data->ed_argp;
712 data->ed_argc = 0;
713
714 /* copy the fake args list, if there's one, freeing it as we go */
715 if (data->ed_pack.ep_flags & EXEC_HASARGL) {
716 tmpfap = data->ed_pack.ep_fa;
717 while (tmpfap->fa_arg != NULL) {
718 const char *cp;
719
720 cp = tmpfap->fa_arg;
721 while (*cp)
722 *dp++ = *cp++;
723 *dp++ = '\0';
724 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
725
726 kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
727 tmpfap++; data->ed_argc++;
728 }
729 kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len);
730 data->ed_pack.ep_flags &= ~EXEC_HASARGL;
731 }
732
733 /* Now get argv & environment */
734 if (args == NULL) {
735 DPRINTF(("%s: null args\n", __func__));
736 error = EINVAL;
737 goto bad;
738 }
739 /* 'i' will index the argp/envp element to be retrieved */
740 i = 0;
741 if (data->ed_pack.ep_flags & EXEC_SKIPARG)
742 i++;
743
744 while (1) {
745 len = data->ed_argp + ARG_MAX - dp;
746 if ((error = (*fetch_element)(args, i, &sp)) != 0) {
747 DPRINTF(("%s: fetch_element args %d\n",
748 __func__, error));
749 goto bad;
750 }
751 if (!sp)
752 break;
753 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
754 DPRINTF(("%s: copyinstr args %d\n", __func__, error));
755 if (error == ENAMETOOLONG)
756 error = E2BIG;
757 goto bad;
758 }
759 ktrexecarg(dp, len - 1);
760 dp += len;
761 i++;
762 data->ed_argc++;
763 }
764
765 data->ed_envc = 0;
766 /* environment need not be there */
767 if (envs != NULL) {
768 i = 0;
769 while (1) {
770 len = data->ed_argp + ARG_MAX - dp;
771 if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
772 DPRINTF(("%s: fetch_element env %d\n",
773 __func__, error));
774 goto bad;
775 }
776 if (!sp)
777 break;
778 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
779 DPRINTF(("%s: copyinstr env %d\n",
780 __func__, error));
781 if (error == ENAMETOOLONG)
782 error = E2BIG;
783 goto bad;
784 }
785
786 ktrexecenv(dp, len - 1);
787 dp += len;
788 i++;
789 data->ed_envc++;
790 }
791 }
792
793 dp = (char *) ALIGN(dp);
794
795 data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode -
796 data->ed_pack.ep_esch->es_emul->e_sigcode;
797
798 #ifdef __MACHINE_STACK_GROWS_UP
799 /* See big comment lower down */
800 #define RTLD_GAP 32
801 #else
802 #define RTLD_GAP 0
803 #endif
804
805 /* Now check if args & environ fit into new stack */
806 if (data->ed_pack.ep_flags & EXEC_32) {
807 data->ed_ps_strings_sz = sizeof(struct ps_strings32);
808 len = ((data->ed_argc + data->ed_envc + 2 +
809 data->ed_pack.ep_esch->es_arglen) *
810 sizeof(int) + sizeof(int) + dp + RTLD_GAP +
811 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
812 - data->ed_argp;
813 } else {
814 data->ed_ps_strings_sz = sizeof(struct ps_strings);
815 len = ((data->ed_argc + data->ed_envc + 2 +
816 data->ed_pack.ep_esch->es_arglen) *
817 sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
818 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
819 - data->ed_argp;
820 }
821
822 #ifdef PAX_ASLR
823 if (pax_aslr_active(l))
824 len += (cprng_fast32() % PAGE_SIZE);
825 #endif /* PAX_ASLR */
826
827 /* make the stack "safely" aligned */
828 len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES);
829
830 if (len > data->ed_pack.ep_ssize) {
831 /* in effect, compare to initial limit */
832 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
833 goto bad;
834 }
835 /* adjust "active stack depth" for process VSZ */
836 data->ed_pack.ep_ssize = len;
837
838 return 0;
839
840 bad:
841 rw_exit(&exec_lock);
842 rw_exit(&p->p_reflock);
843
844 if (freevm) {
845 execve_free_vmspace(data);
846 }
847 execve_free_data(data);
848
849 if (modgen != module_gen && error == ENOEXEC) {
850 modgen = module_gen;
851 exec_autoload();
852 goto retry;
853 }
854
855 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
856 return error;
857 }
858
859 static int
860 execve_runproc(struct lwp *l, struct execve_data * restrict data,
861 bool no_local_exec_lock, bool is_spawn)
862 {
863 struct proc *p = l->l_proc;
864 size_t i;
865 char *stack, *dp;
866 const char *commandname;
867 struct ps_strings32 arginfo32;
868 struct exec_vmcmd *base_vcp;
869 void *aip;
870 struct vmspace *vm;
871 ksiginfo_t ksi;
872 ksiginfoq_t kq;
873 int error = 0;
874
875 /*
876 * In case of a posix_spawn operation, the child doing the exec
877 * might not hold the reader lock on exec_lock, but the parent
878 * will do this instead.
879 */
880 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
881 KASSERT(!no_local_exec_lock || is_spawn);
882 KASSERT(rw_lock_held(&p->p_reflock));
883 KASSERT(data != NULL);
884
885 base_vcp = NULL;
886
887 if (data->ed_pack.ep_flags & EXEC_32)
888 aip = &arginfo32;
889 else
890 aip = &data->ed_arginfo;
891
892 /* Get rid of other LWPs. */
893 if (p->p_nlwps > 1) {
894 mutex_enter(p->p_lock);
895 exit_lwps(l);
896 mutex_exit(p->p_lock);
897 }
898 KDASSERT(p->p_nlwps == 1);
899
900 /* Destroy any lwpctl info. */
901 if (p->p_lwpctl != NULL)
902 lwp_ctl_exit();
903
904 /* Remove POSIX timers */
905 timers_free(p, TIMERS_POSIX);
906
907 /*
908 * Do whatever is necessary to prepare the address space
909 * for remapping. Note that this might replace the current
910 * vmspace with another!
911 */
912 if (is_spawn)
913 uvmspace_spawn(l, data->ed_pack.ep_vm_minaddr,
914 data->ed_pack.ep_vm_maxaddr);
915 else
916 uvmspace_exec(l, data->ed_pack.ep_vm_minaddr,
917 data->ed_pack.ep_vm_maxaddr);
918
919 /* record proc's vnode, for use by procfs and others */
920 if (p->p_textvp)
921 vrele(p->p_textvp);
922 vref(data->ed_pack.ep_vp);
923 p->p_textvp = data->ed_pack.ep_vp;
924
925 /* Now map address space */
926 vm = p->p_vmspace;
927 vm->vm_taddr = (void *)data->ed_pack.ep_taddr;
928 vm->vm_tsize = btoc(data->ed_pack.ep_tsize);
929 vm->vm_daddr = (void*)data->ed_pack.ep_daddr;
930 vm->vm_dsize = btoc(data->ed_pack.ep_dsize);
931 vm->vm_ssize = btoc(data->ed_pack.ep_ssize);
932 vm->vm_issize = 0;
933 vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr;
934 vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr;
935
936 #ifdef PAX_ASLR
937 pax_aslr_init(l, vm);
938 #endif /* PAX_ASLR */
939
940 /* create the new process's VM space by running the vmcmds */
941 #ifdef DIAGNOSTIC
942 if (data->ed_pack.ep_vmcmds.evs_used == 0)
943 panic("%s: no vmcmds", __func__);
944 #endif
945
946 #ifdef DEBUG_EXEC
947 {
948 size_t j;
949 struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0];
950 DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used));
951 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
952 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
953 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
954 PRIxVSIZE" prot=0%o flags=%d\n", j,
955 vp[j].ev_proc == vmcmd_map_pagedvn ?
956 "pagedvn" :
957 vp[j].ev_proc == vmcmd_map_readvn ?
958 "readvn" :
959 vp[j].ev_proc == vmcmd_map_zero ?
960 "zero" : "*unknown*",
961 vp[j].ev_addr, vp[j].ev_len,
962 vp[j].ev_offset, vp[j].ev_prot,
963 vp[j].ev_flags));
964 }
965 }
966 #endif /* DEBUG_EXEC */
967
968 for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) {
969 struct exec_vmcmd *vcp;
970
971 vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i];
972 if (vcp->ev_flags & VMCMD_RELATIVE) {
973 #ifdef DIAGNOSTIC
974 if (base_vcp == NULL)
975 panic("%s: relative vmcmd with no base",
976 __func__);
977 if (vcp->ev_flags & VMCMD_BASE)
978 panic("%s: illegal base & relative vmcmd",
979 __func__);
980 #endif
981 vcp->ev_addr += base_vcp->ev_addr;
982 }
983 error = (*vcp->ev_proc)(l, vcp);
984 #ifdef DEBUG_EXEC
985 if (error) {
986 size_t j;
987 struct exec_vmcmd *vp =
988 &data->ed_pack.ep_vmcmds.evs_cmds[0];
989 DPRINTF(("vmcmds %zu/%u, error %d\n", i,
990 data->ed_pack.ep_vmcmds.evs_used, error));
991 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
992 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
993 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
994 PRIxVSIZE" prot=0%o flags=%d\n", j,
995 vp[j].ev_proc == vmcmd_map_pagedvn ?
996 "pagedvn" :
997 vp[j].ev_proc == vmcmd_map_readvn ?
998 "readvn" :
999 vp[j].ev_proc == vmcmd_map_zero ?
1000 "zero" : "*unknown*",
1001 vp[j].ev_addr, vp[j].ev_len,
1002 vp[j].ev_offset, vp[j].ev_prot,
1003 vp[j].ev_flags));
1004 if (j == i)
1005 DPRINTF((" ^--- failed\n"));
1006 }
1007 }
1008 #endif /* DEBUG_EXEC */
1009 if (vcp->ev_flags & VMCMD_BASE)
1010 base_vcp = vcp;
1011 }
1012
1013 /* free the vmspace-creation commands, and release their references */
1014 kill_vmcmds(&data->ed_pack.ep_vmcmds);
1015
1016 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
1017 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
1018 vput(data->ed_pack.ep_vp);
1019
1020 /* if an error happened, deallocate and punt */
1021 if (error) {
1022 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
1023 goto exec_abort;
1024 }
1025
1026 /* remember information about the process */
1027 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1028 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1029
1030 /* set command name & other accounting info */
1031 commandname = strrchr(data->ed_pack.ep_resolvedname, '/');
1032 if (commandname != NULL) {
1033 commandname++;
1034 } else {
1035 commandname = data->ed_pack.ep_resolvedname;
1036 }
1037 i = min(strlen(commandname), MAXCOMLEN);
1038 (void)memcpy(p->p_comm, commandname, i);
1039 p->p_comm[i] = '\0';
1040
1041 dp = PNBUF_GET();
1042 /*
1043 * If the path starts with /, we don't need to do any work.
1044 * This handles the majority of the cases.
1045 * In the future perhaps we could canonicalize it?
1046 */
1047 if (data->ed_pathstring[0] == '/')
1048 (void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring,
1049 MAXPATHLEN);
1050 #ifdef notyet
1051 /*
1052 * Although this works most of the time [since the entry was just
1053 * entered in the cache] we don't use it because it theoretically
1054 * can fail and it is not the cleanest interface, because there
1055 * could be races. When the namei cache is re-written, this can
1056 * be changed to use the appropriate function.
1057 */
1058 else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
1059 data->ed_pack.ep_path = dp;
1060 #endif
1061 else {
1062 #ifdef notyet
1063 printf("Cannot get path for pid %d [%s] (error %d)",
1064 (int)p->p_pid, p->p_comm, error);
1065 #endif
1066 data->ed_pack.ep_path = NULL;
1067 PNBUF_PUT(dp);
1068 }
1069
1070 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1071 STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
1072 data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
1073
1074 #ifdef __MACHINE_STACK_GROWS_UP
1075 /*
1076 * The copyargs call always copies into lower addresses
1077 * first, moving towards higher addresses, starting with
1078 * the stack pointer that we give. When the stack grows
1079 * down, this puts argc/argv/envp very shallow on the
1080 * stack, right at the first user stack pointer.
1081 * When the stack grows up, the situation is reversed.
1082 *
1083 * Normally, this is no big deal. But the ld_elf.so _rtld()
1084 * function expects to be called with a single pointer to
1085 * a region that has a few words it can stash values into,
1086 * followed by argc/argv/envp. When the stack grows down,
1087 * it's easy to decrement the stack pointer a little bit to
1088 * allocate the space for these few words and pass the new
1089 * stack pointer to _rtld. When the stack grows up, however,
1090 * a few words before argc is part of the signal trampoline, XXX
1091 * so we have a problem.
1092 *
1093 * Instead of changing how _rtld works, we take the easy way
1094 * out and steal 32 bytes before we call copyargs.
1095 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
1096 */
1097 stack += RTLD_GAP;
1098 #endif /* __MACHINE_STACK_GROWS_UP */
1099
1100 /* Now copy argc, args & environ to new stack */
1101 error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack,
1102 &data->ed_arginfo, &stack, data->ed_argp);
1103
1104 if (data->ed_pack.ep_path) {
1105 PNBUF_PUT(data->ed_pack.ep_path);
1106 data->ed_pack.ep_path = NULL;
1107 }
1108 if (error) {
1109 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1110 goto exec_abort;
1111 }
1112 /* Move the stack back to original point */
1113 stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize);
1114
1115 /* fill process ps_strings info */
1116 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1117 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1118
1119 if (data->ed_pack.ep_flags & EXEC_32) {
1120 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1121 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1122 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1123 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1124 }
1125
1126 /* copy out the process's ps_strings structure */
1127 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1128 != 0) {
1129 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1130 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1131 goto exec_abort;
1132 }
1133
1134 cwdexec(p);
1135 fd_closeexec(); /* handle close on exec */
1136
1137 if (__predict_false(ktrace_on))
1138 fd_ktrexecfd();
1139
1140 execsigs(p); /* reset catched signals */
1141
1142 l->l_ctxlink = NULL; /* reset ucontext link */
1143
1144
1145 p->p_acflag &= ~AFORK;
1146 mutex_enter(p->p_lock);
1147 p->p_flag |= PK_EXEC;
1148 mutex_exit(p->p_lock);
1149
1150 /*
1151 * Stop profiling.
1152 */
1153 if ((p->p_stflag & PST_PROFIL) != 0) {
1154 mutex_spin_enter(&p->p_stmutex);
1155 stopprofclock(p);
1156 mutex_spin_exit(&p->p_stmutex);
1157 }
1158
1159 /*
1160 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1161 * exited and exec()/exit() are the only places it will be cleared.
1162 */
1163 if ((p->p_lflag & PL_PPWAIT) != 0) {
1164 mutex_enter(proc_lock);
1165 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1166 p->p_lflag &= ~PL_PPWAIT;
1167 cv_broadcast(&p->p_pptr->p_waitcv);
1168 mutex_exit(proc_lock);
1169 }
1170
1171 /*
1172 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1173 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1174 * out additional references on the process for the moment.
1175 */
1176 if ((p->p_slflag & PSL_TRACED) == 0 &&
1177
1178 (((data->ed_attr.va_mode & S_ISUID) != 0 &&
1179 kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
1180
1181 ((data->ed_attr.va_mode & S_ISGID) != 0 &&
1182 kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
1183 /*
1184 * Mark the process as SUGID before we do
1185 * anything that might block.
1186 */
1187 proc_crmod_enter();
1188 proc_crmod_leave(NULL, NULL, true);
1189
1190 /* Make sure file descriptors 0..2 are in use. */
1191 if ((error = fd_checkstd()) != 0) {
1192 DPRINTF(("%s: fdcheckstd failed %d\n",
1193 __func__, error));
1194 goto exec_abort;
1195 }
1196
1197 /*
1198 * Copy the credential so other references don't see our
1199 * changes.
1200 */
1201 l->l_cred = kauth_cred_copy(l->l_cred);
1202 #ifdef KTRACE
1203 /*
1204 * If the persistent trace flag isn't set, turn off.
1205 */
1206 if (p->p_tracep) {
1207 mutex_enter(&ktrace_lock);
1208 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1209 ktrderef(p);
1210 mutex_exit(&ktrace_lock);
1211 }
1212 #endif
1213 if (data->ed_attr.va_mode & S_ISUID)
1214 kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
1215 if (data->ed_attr.va_mode & S_ISGID)
1216 kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
1217 } else {
1218 if (kauth_cred_geteuid(l->l_cred) ==
1219 kauth_cred_getuid(l->l_cred) &&
1220 kauth_cred_getegid(l->l_cred) ==
1221 kauth_cred_getgid(l->l_cred))
1222 p->p_flag &= ~PK_SUGID;
1223 }
1224
1225 /*
1226 * Copy the credential so other references don't see our changes.
1227 * Test to see if this is necessary first, since in the common case
1228 * we won't need a private reference.
1229 */
1230 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1231 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1232 l->l_cred = kauth_cred_copy(l->l_cred);
1233 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1234 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1235 }
1236
1237 /* Update the master credentials. */
1238 if (l->l_cred != p->p_cred) {
1239 kauth_cred_t ocred;
1240
1241 kauth_cred_hold(l->l_cred);
1242 mutex_enter(p->p_lock);
1243 ocred = p->p_cred;
1244 p->p_cred = l->l_cred;
1245 mutex_exit(p->p_lock);
1246 kauth_cred_free(ocred);
1247 }
1248
1249 #if defined(__HAVE_RAS)
1250 /*
1251 * Remove all RASs from the address space.
1252 */
1253 ras_purgeall();
1254 #endif
1255
1256 doexechooks(p);
1257
1258 /* setup new registers and do misc. setup. */
1259 (*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack,
1260 (vaddr_t)stack);
1261 if (data->ed_pack.ep_esch->es_setregs)
1262 (*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack,
1263 (vaddr_t)stack);
1264
1265 /* Provide a consistent LWP private setting */
1266 (void)lwp_setprivate(l, NULL);
1267
1268 /* Discard all PCU state; need to start fresh */
1269 pcu_discard_all(l);
1270
1271 /* map the process's signal trampoline code */
1272 if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) {
1273 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1274 goto exec_abort;
1275 }
1276
1277 pool_put(&exec_pool, data->ed_argp);
1278
1279 /* notify others that we exec'd */
1280 KNOTE(&p->p_klist, NOTE_EXEC);
1281
1282 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1283
1284 SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0);
1285
1286 /* The emulation root will usually have been found when we looked
1287 * for the elf interpreter (or similar), if not look now. */
1288 if (data->ed_pack.ep_esch->es_emul->e_path != NULL &&
1289 data->ed_pack.ep_emul_root == NULL)
1290 emul_find_root(l, &data->ed_pack);
1291
1292 /* Any old emulation root got removed by fdcloseexec */
1293 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1294 p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root;
1295 rw_exit(&p->p_cwdi->cwdi_lock);
1296 data->ed_pack.ep_emul_root = NULL;
1297 if (data->ed_pack.ep_interp != NULL)
1298 vrele(data->ed_pack.ep_interp);
1299
1300 /*
1301 * Call emulation specific exec hook. This can setup per-process
1302 * p->p_emuldata or do any other per-process stuff an emulation needs.
1303 *
1304 * If we are executing process of different emulation than the
1305 * original forked process, call e_proc_exit() of the old emulation
1306 * first, then e_proc_exec() of new emulation. If the emulation is
1307 * same, the exec hook code should deallocate any old emulation
1308 * resources held previously by this process.
1309 */
1310 if (p->p_emul && p->p_emul->e_proc_exit
1311 && p->p_emul != data->ed_pack.ep_esch->es_emul)
1312 (*p->p_emul->e_proc_exit)(p);
1313
1314 /*
1315 * This is now LWP 1.
1316 */
1317 mutex_enter(p->p_lock);
1318 p->p_nlwpid = 1;
1319 l->l_lid = 1;
1320 mutex_exit(p->p_lock);
1321
1322 /*
1323 * Call exec hook. Emulation code may NOT store reference to anything
1324 * from &pack.
1325 */
1326 if (data->ed_pack.ep_esch->es_emul->e_proc_exec)
1327 (*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack);
1328
1329 /* update p_emul, the old value is no longer needed */
1330 p->p_emul = data->ed_pack.ep_esch->es_emul;
1331
1332 /* ...and the same for p_execsw */
1333 p->p_execsw = data->ed_pack.ep_esch;
1334
1335 #ifdef __HAVE_SYSCALL_INTERN
1336 (*p->p_emul->e_syscall_intern)(p);
1337 #endif
1338 ktremul();
1339
1340 /* Allow new references from the debugger/procfs. */
1341 rw_exit(&p->p_reflock);
1342 if (!no_local_exec_lock)
1343 rw_exit(&exec_lock);
1344
1345 mutex_enter(proc_lock);
1346
1347 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1348 KSI_INIT_EMPTY(&ksi);
1349 ksi.ksi_signo = SIGTRAP;
1350 ksi.ksi_lid = l->l_lid;
1351 kpsignal(p, &ksi, NULL);
1352 }
1353
1354 if (p->p_sflag & PS_STOPEXEC) {
1355 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1356 p->p_pptr->p_nstopchild++;
1357 p->p_pptr->p_waited = 0;
1358 mutex_enter(p->p_lock);
1359 ksiginfo_queue_init(&kq);
1360 sigclearall(p, &contsigmask, &kq);
1361 lwp_lock(l);
1362 l->l_stat = LSSTOP;
1363 p->p_stat = SSTOP;
1364 p->p_nrlwps--;
1365 lwp_unlock(l);
1366 mutex_exit(p->p_lock);
1367 mutex_exit(proc_lock);
1368 lwp_lock(l);
1369 mi_switch(l);
1370 ksiginfo_queue_drain(&kq);
1371 KERNEL_LOCK(l->l_biglocks, l);
1372 } else {
1373 mutex_exit(proc_lock);
1374 }
1375
1376 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1377 pathbuf_destroy(data->ed_pathbuf);
1378 PNBUF_PUT(data->ed_resolvedpathbuf);
1379 DPRINTF(("%s finished\n", __func__));
1380 return (EJUSTRETURN);
1381
1382 exec_abort:
1383 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1384 rw_exit(&p->p_reflock);
1385 if (!no_local_exec_lock)
1386 rw_exit(&exec_lock);
1387
1388 /*
1389 * the old process doesn't exist anymore. exit gracefully.
1390 * get rid of the (new) address space we have created, if any, get rid
1391 * of our namei data and vnode, and exit noting failure
1392 */
1393 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1394 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1395
1396 exec_free_emul_arg(&data->ed_pack);
1397 pool_put(&exec_pool, data->ed_argp);
1398 execve_free_data(data);
1399
1400 /* Acquire the sched-state mutex (exit1() will release it). */
1401 if (!is_spawn) {
1402 mutex_enter(p->p_lock);
1403 exit1(l, W_EXITCODE(error, SIGABRT));
1404 }
1405
1406 return error;
1407 }
1408
1409 int
1410 execve1(struct lwp *l, const char *path, char * const *args,
1411 char * const *envs, execve_fetch_element_t fetch_element)
1412 {
1413 struct execve_data data;
1414 int error;
1415
1416 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1417 if (error)
1418 return error;
1419 error = execve_runproc(l, &data, false, false);
1420 return error;
1421 }
1422
1423 int
1424 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1425 char **stackp, void *argp)
1426 {
1427 char **cpp, *dp, *sp;
1428 size_t len;
1429 void *nullp;
1430 long argc, envc;
1431 int error;
1432
1433 cpp = (char **)*stackp;
1434 nullp = NULL;
1435 argc = arginfo->ps_nargvstr;
1436 envc = arginfo->ps_nenvstr;
1437 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1438 COPYPRINTF("", cpp - 1, sizeof(argc));
1439 return error;
1440 }
1441
1442 dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1443 sp = argp;
1444
1445 /* XXX don't copy them out, remap them! */
1446 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1447
1448 for (; --argc >= 0; sp += len, dp += len) {
1449 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1450 COPYPRINTF("", cpp - 1, sizeof(dp));
1451 return error;
1452 }
1453 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1454 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1455 return error;
1456 }
1457 }
1458
1459 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1460 COPYPRINTF("", cpp - 1, sizeof(nullp));
1461 return error;
1462 }
1463
1464 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1465
1466 for (; --envc >= 0; sp += len, dp += len) {
1467 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1468 COPYPRINTF("", cpp - 1, sizeof(dp));
1469 return error;
1470 }
1471 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1472 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1473 return error;
1474 }
1475
1476 }
1477
1478 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1479 COPYPRINTF("", cpp - 1, sizeof(nullp));
1480 return error;
1481 }
1482
1483 *stackp = (char *)cpp;
1484 return 0;
1485 }
1486
1487
1488 /*
1489 * Add execsw[] entries.
1490 */
1491 int
1492 exec_add(struct execsw *esp, int count)
1493 {
1494 struct exec_entry *it;
1495 int i;
1496
1497 if (count == 0) {
1498 return 0;
1499 }
1500
1501 /* Check for duplicates. */
1502 rw_enter(&exec_lock, RW_WRITER);
1503 for (i = 0; i < count; i++) {
1504 LIST_FOREACH(it, &ex_head, ex_list) {
1505 /* assume unique (makecmds, probe_func, emulation) */
1506 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1507 it->ex_sw->u.elf_probe_func ==
1508 esp[i].u.elf_probe_func &&
1509 it->ex_sw->es_emul == esp[i].es_emul) {
1510 rw_exit(&exec_lock);
1511 return EEXIST;
1512 }
1513 }
1514 }
1515
1516 /* Allocate new entries. */
1517 for (i = 0; i < count; i++) {
1518 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1519 it->ex_sw = &esp[i];
1520 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1521 }
1522
1523 /* update execsw[] */
1524 exec_init(0);
1525 rw_exit(&exec_lock);
1526 return 0;
1527 }
1528
1529 /*
1530 * Remove execsw[] entry.
1531 */
1532 int
1533 exec_remove(struct execsw *esp, int count)
1534 {
1535 struct exec_entry *it, *next;
1536 int i;
1537 const struct proclist_desc *pd;
1538 proc_t *p;
1539
1540 if (count == 0) {
1541 return 0;
1542 }
1543
1544 /* Abort if any are busy. */
1545 rw_enter(&exec_lock, RW_WRITER);
1546 for (i = 0; i < count; i++) {
1547 mutex_enter(proc_lock);
1548 for (pd = proclists; pd->pd_list != NULL; pd++) {
1549 PROCLIST_FOREACH(p, pd->pd_list) {
1550 if (p->p_execsw == &esp[i]) {
1551 mutex_exit(proc_lock);
1552 rw_exit(&exec_lock);
1553 return EBUSY;
1554 }
1555 }
1556 }
1557 mutex_exit(proc_lock);
1558 }
1559
1560 /* None are busy, so remove them all. */
1561 for (i = 0; i < count; i++) {
1562 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1563 next = LIST_NEXT(it, ex_list);
1564 if (it->ex_sw == &esp[i]) {
1565 LIST_REMOVE(it, ex_list);
1566 kmem_free(it, sizeof(*it));
1567 break;
1568 }
1569 }
1570 }
1571
1572 /* update execsw[] */
1573 exec_init(0);
1574 rw_exit(&exec_lock);
1575 return 0;
1576 }
1577
1578 /*
1579 * Initialize exec structures. If init_boot is true, also does necessary
1580 * one-time initialization (it's called from main() that way).
1581 * Once system is multiuser, this should be called with exec_lock held,
1582 * i.e. via exec_{add|remove}().
1583 */
1584 int
1585 exec_init(int init_boot)
1586 {
1587 const struct execsw **sw;
1588 struct exec_entry *ex;
1589 SLIST_HEAD(,exec_entry) first;
1590 SLIST_HEAD(,exec_entry) any;
1591 SLIST_HEAD(,exec_entry) last;
1592 int i, sz;
1593
1594 if (init_boot) {
1595 /* do one-time initializations */
1596 rw_init(&exec_lock);
1597 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1598 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1599 "execargs", &exec_palloc, IPL_NONE);
1600 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1601 } else {
1602 KASSERT(rw_write_held(&exec_lock));
1603 }
1604
1605 /* Sort each entry onto the appropriate queue. */
1606 SLIST_INIT(&first);
1607 SLIST_INIT(&any);
1608 SLIST_INIT(&last);
1609 sz = 0;
1610 LIST_FOREACH(ex, &ex_head, ex_list) {
1611 switch(ex->ex_sw->es_prio) {
1612 case EXECSW_PRIO_FIRST:
1613 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1614 break;
1615 case EXECSW_PRIO_ANY:
1616 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1617 break;
1618 case EXECSW_PRIO_LAST:
1619 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1620 break;
1621 default:
1622 panic("%s", __func__);
1623 break;
1624 }
1625 sz++;
1626 }
1627
1628 /*
1629 * Create new execsw[]. Ensure we do not try a zero-sized
1630 * allocation.
1631 */
1632 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1633 i = 0;
1634 SLIST_FOREACH(ex, &first, ex_slist) {
1635 sw[i++] = ex->ex_sw;
1636 }
1637 SLIST_FOREACH(ex, &any, ex_slist) {
1638 sw[i++] = ex->ex_sw;
1639 }
1640 SLIST_FOREACH(ex, &last, ex_slist) {
1641 sw[i++] = ex->ex_sw;
1642 }
1643
1644 /* Replace old execsw[] and free used memory. */
1645 if (execsw != NULL) {
1646 kmem_free(__UNCONST(execsw),
1647 nexecs * sizeof(struct execsw *) + 1);
1648 }
1649 execsw = sw;
1650 nexecs = sz;
1651
1652 /* Figure out the maximum size of an exec header. */
1653 exec_maxhdrsz = sizeof(int);
1654 for (i = 0; i < nexecs; i++) {
1655 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1656 exec_maxhdrsz = execsw[i]->es_hdrsz;
1657 }
1658
1659 return 0;
1660 }
1661
1662 static int
1663 exec_sigcode_map(struct proc *p, const struct emul *e)
1664 {
1665 vaddr_t va;
1666 vsize_t sz;
1667 int error;
1668 struct uvm_object *uobj;
1669
1670 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1671
1672 if (e->e_sigobject == NULL || sz == 0) {
1673 return 0;
1674 }
1675
1676 /*
1677 * If we don't have a sigobject for this emulation, create one.
1678 *
1679 * sigobject is an anonymous memory object (just like SYSV shared
1680 * memory) that we keep a permanent reference to and that we map
1681 * in all processes that need this sigcode. The creation is simple,
1682 * we create an object, add a permanent reference to it, map it in
1683 * kernel space, copy out the sigcode to it and unmap it.
1684 * We map it with PROT_READ|PROT_EXEC into the process just
1685 * the way sys_mmap() would map it.
1686 */
1687
1688 uobj = *e->e_sigobject;
1689 if (uobj == NULL) {
1690 mutex_enter(&sigobject_lock);
1691 if ((uobj = *e->e_sigobject) == NULL) {
1692 uobj = uao_create(sz, 0);
1693 (*uobj->pgops->pgo_reference)(uobj);
1694 va = vm_map_min(kernel_map);
1695 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1696 uobj, 0, 0,
1697 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1698 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1699 printf("kernel mapping failed %d\n", error);
1700 (*uobj->pgops->pgo_detach)(uobj);
1701 mutex_exit(&sigobject_lock);
1702 return (error);
1703 }
1704 memcpy((void *)va, e->e_sigcode, sz);
1705 #ifdef PMAP_NEED_PROCWR
1706 pmap_procwr(&proc0, va, sz);
1707 #endif
1708 uvm_unmap(kernel_map, va, va + round_page(sz));
1709 *e->e_sigobject = uobj;
1710 }
1711 mutex_exit(&sigobject_lock);
1712 }
1713
1714 /* Just a hint to uvm_map where to put it. */
1715 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1716 round_page(sz));
1717
1718 #ifdef __alpha__
1719 /*
1720 * Tru64 puts /sbin/loader at the end of user virtual memory,
1721 * which causes the above calculation to put the sigcode at
1722 * an invalid address. Put it just below the text instead.
1723 */
1724 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1725 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1726 }
1727 #endif
1728
1729 (*uobj->pgops->pgo_reference)(uobj);
1730 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1731 uobj, 0, 0,
1732 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1733 UVM_ADV_RANDOM, 0));
1734 if (error) {
1735 DPRINTF(("%s, %d: map %p "
1736 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1737 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1738 va, error));
1739 (*uobj->pgops->pgo_detach)(uobj);
1740 return (error);
1741 }
1742 p->p_sigctx.ps_sigcode = (void *)va;
1743 return (0);
1744 }
1745
1746 /*
1747 * Release a refcount on spawn_exec_data and destroy memory, if this
1748 * was the last one.
1749 */
1750 static void
1751 spawn_exec_data_release(struct spawn_exec_data *data)
1752 {
1753 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1754 return;
1755
1756 cv_destroy(&data->sed_cv_child_ready);
1757 mutex_destroy(&data->sed_mtx_child);
1758
1759 if (data->sed_actions)
1760 posix_spawn_fa_free(data->sed_actions,
1761 data->sed_actions->len);
1762 if (data->sed_attrs)
1763 kmem_free(data->sed_attrs,
1764 sizeof(*data->sed_attrs));
1765 kmem_free(data, sizeof(*data));
1766 }
1767
1768 /*
1769 * A child lwp of a posix_spawn operation starts here and ends up in
1770 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1771 * manipulations in between.
1772 * The parent waits for the child, as it is not clear wether the child
1773 * will be able to aquire its own exec_lock. If it can, the parent can
1774 * be released early and continue running in parallel. If not (or if the
1775 * magic debug flag is passed in the scheduler attribute struct), the
1776 * child rides on the parent's exec lock untill it is ready to return to
1777 * to userland - and only then releases the parent. This method loses
1778 * concurrency, but improves error reporting.
1779 */
1780 static void
1781 spawn_return(void *arg)
1782 {
1783 struct spawn_exec_data *spawn_data = arg;
1784 struct lwp *l = curlwp;
1785 int error, newfd;
1786 size_t i;
1787 const struct posix_spawn_file_actions_entry *fae;
1788 pid_t ppid;
1789 register_t retval;
1790 bool have_reflock;
1791 bool parent_is_waiting = true;
1792
1793 error = 0;
1794
1795 /* don't allow debugger access yet */
1796 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1797 have_reflock = true;
1798
1799 /*
1800 * Check if we can release parent early.
1801 * We either need to have no sed_attrs, or sed_attrs does not
1802 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1803 * safe access to the parent proc (passed in sed_parent).
1804 * We then try to get the exec_lock, and only if that works, we can
1805 * release the parent here already.
1806 */
1807 ppid = spawn_data->sed_parent->p_pid;
1808 if ((!spawn_data->sed_attrs
1809 || (spawn_data->sed_attrs->sa_flags
1810 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1811 && rw_tryenter(&exec_lock, RW_READER)) {
1812 parent_is_waiting = false;
1813 mutex_enter(&spawn_data->sed_mtx_child);
1814 cv_signal(&spawn_data->sed_cv_child_ready);
1815 mutex_exit(&spawn_data->sed_mtx_child);
1816 }
1817
1818 /* handle posix_spawn_file_actions */
1819 if (spawn_data->sed_actions != NULL) {
1820 for (i = 0; i < spawn_data->sed_actions->len; i++) {
1821 fae = &spawn_data->sed_actions->fae[i];
1822 switch (fae->fae_action) {
1823 case FAE_OPEN:
1824 if (fd_getfile(fae->fae_fildes) != NULL) {
1825 error = fd_close(fae->fae_fildes);
1826 if (error)
1827 break;
1828 }
1829 error = fd_open(fae->fae_path, fae->fae_oflag,
1830 fae->fae_mode, &newfd);
1831 if (error)
1832 break;
1833 if (newfd != fae->fae_fildes) {
1834 error = dodup(l, newfd,
1835 fae->fae_fildes, 0, &retval);
1836 if (fd_getfile(newfd) != NULL)
1837 fd_close(newfd);
1838 }
1839 break;
1840 case FAE_DUP2:
1841 error = dodup(l, fae->fae_fildes,
1842 fae->fae_newfildes, 0, &retval);
1843 break;
1844 case FAE_CLOSE:
1845 if (fd_getfile(fae->fae_fildes) == NULL) {
1846 error = EBADF;
1847 break;
1848 }
1849 error = fd_close(fae->fae_fildes);
1850 break;
1851 }
1852 if (error)
1853 goto report_error;
1854 }
1855 }
1856
1857 /* handle posix_spawnattr */
1858 if (spawn_data->sed_attrs != NULL) {
1859 struct sigaction sigact;
1860 sigact._sa_u._sa_handler = SIG_DFL;
1861 sigact.sa_flags = 0;
1862
1863 /*
1864 * set state to SSTOP so that this proc can be found by pid.
1865 * see proc_enterprp, do_sched_setparam below
1866 */
1867 l->l_proc->p_stat = SSTOP;
1868
1869 /* Set process group */
1870 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1871 pid_t mypid = l->l_proc->p_pid,
1872 pgrp = spawn_data->sed_attrs->sa_pgroup;
1873
1874 if (pgrp == 0)
1875 pgrp = mypid;
1876
1877 error = proc_enterpgrp(spawn_data->sed_parent,
1878 mypid, pgrp, false);
1879 if (error)
1880 goto report_error;
1881 }
1882
1883 /* Set scheduler policy */
1884 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1885 error = do_sched_setparam(l->l_proc->p_pid, 0,
1886 spawn_data->sed_attrs->sa_schedpolicy,
1887 &spawn_data->sed_attrs->sa_schedparam);
1888 else if (spawn_data->sed_attrs->sa_flags
1889 & POSIX_SPAWN_SETSCHEDPARAM) {
1890 error = do_sched_setparam(ppid, 0,
1891 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
1892 }
1893 if (error)
1894 goto report_error;
1895
1896 /* Reset user ID's */
1897 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
1898 error = do_setresuid(l, -1,
1899 kauth_cred_getgid(l->l_cred), -1,
1900 ID_E_EQ_R | ID_E_EQ_S);
1901 if (error)
1902 goto report_error;
1903 error = do_setresuid(l, -1,
1904 kauth_cred_getuid(l->l_cred), -1,
1905 ID_E_EQ_R | ID_E_EQ_S);
1906 if (error)
1907 goto report_error;
1908 }
1909
1910 /* Set signal masks/defaults */
1911 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
1912 mutex_enter(l->l_proc->p_lock);
1913 error = sigprocmask1(l, SIG_SETMASK,
1914 &spawn_data->sed_attrs->sa_sigmask, NULL);
1915 mutex_exit(l->l_proc->p_lock);
1916 if (error)
1917 goto report_error;
1918 }
1919
1920 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
1921 for (i = 1; i <= NSIG; i++) {
1922 if (sigismember(
1923 &spawn_data->sed_attrs->sa_sigdefault, i))
1924 sigaction1(l, i, &sigact, NULL, NULL,
1925 0);
1926 }
1927 }
1928 }
1929
1930 /* Now perform the real exec (will drop the locks). */
1931 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
1932 true);
1933 have_reflock = false;
1934 if (error && error != EJUSTRETURN) {
1935 goto report_error;
1936 }
1937
1938 if (parent_is_waiting) {
1939 mutex_enter(&spawn_data->sed_mtx_child);
1940 cv_signal(&spawn_data->sed_cv_child_ready);
1941 mutex_exit(&spawn_data->sed_mtx_child);
1942 }
1943
1944 /* release our refcount on the data */
1945 spawn_exec_data_release(spawn_data);
1946
1947 /* and finaly: leave to userland for the first time */
1948 cpu_spawn_return(l);
1949
1950 /* NOTREACHED */
1951 return;
1952
1953 report_error:
1954 if (have_reflock) {
1955 /*
1956 * We have not passed through execve_runproc(),
1957 * which would have released the p_reflock and also
1958 * taken ownership of the sed_exec part of spawn_data,
1959 * so release/free both here.
1960 */
1961 rw_exit(&l->l_proc->p_reflock);
1962 execve_free_vmspace(&spawn_data->sed_exec);
1963 execve_free_data(&spawn_data->sed_exec);
1964 }
1965
1966 if (parent_is_waiting) {
1967 /* pass error to parent */
1968 mutex_enter(&spawn_data->sed_mtx_child);
1969 spawn_data->sed_error = error;
1970 cv_signal(&spawn_data->sed_cv_child_ready);
1971 mutex_exit(&spawn_data->sed_mtx_child);
1972 } else {
1973 rw_exit(&exec_lock);
1974 }
1975
1976 /* release our refcount on the data */
1977 spawn_exec_data_release(spawn_data);
1978
1979 /*
1980 * POSIX explicitly requires an exit code of 127 if we report
1981 * errors from the child process - so, unfortunately, there
1982 * is no way to report a more exact error code.
1983 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
1984 * flag bit in the attrp argument to posix_spawn(2), see above.
1985 */
1986 mutex_enter(l->l_proc->p_lock);
1987 exit1(l, W_EXITCODE(127, 0));
1988 }
1989
1990 /*
1991 * posix_spawn_fa_free: free file action structures.
1992 */
1993 void
1994 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
1995 {
1996
1997 for (size_t i = 0; i < len; i++) {
1998 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
1999 if (fae->fae_action != FAE_OPEN)
2000 continue;
2001 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2002 }
2003 if (fa->len > 0)
2004 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2005 kmem_free(fa, sizeof(*fa));
2006 }
2007
2008 /*
2009 * posix_spawn_fa_alloc: allocation file action structures and copy-in from
2010 * the user space. Note: we re-use the same structure in the kernel; care
2011 * is taken to reset userspace pointers.
2012 */
2013 static int
2014 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2015 const struct posix_spawn_file_actions *ufa)
2016 {
2017 struct posix_spawn_file_actions *fa;
2018 struct posix_spawn_file_actions_entry *fae;
2019 size_t i = 0, totalsize;
2020 char *pbuf = NULL;
2021 int error;
2022
2023 /* Allocate structure containing file action entries. */
2024 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2025 error = copyin(ufa, fa, sizeof(*fa));
2026 if (error) {
2027 fa->fae = NULL;
2028 fa->len = 0;
2029 goto out;
2030 }
2031 if (fa->len == 0) {
2032 kmem_free(fa, sizeof(*fa));
2033 return 0;
2034 }
2035
2036 fa->size = fa->len;
2037 totalsize = fa->len * sizeof(*fae);
2038
2039 /* Allocate memory block needed for file action entries. */
2040 fae = kmem_alloc(totalsize, KM_SLEEP);
2041 error = copyin(fa->fae, fae, totalsize);
2042 fa->fae = fae;
2043 if (error)
2044 goto out;
2045
2046 /* Allocate a path and copy-in each entry. */
2047 pbuf = PNBUF_GET();
2048 for (; i < fa->len; i++) {
2049 size_t len;
2050
2051 fae = &fa->fae[i];
2052 if (fae->fae_action != FAE_OPEN)
2053 continue;
2054 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &len);
2055 if (error)
2056 goto out;
2057 fae->fae_path = kmem_alloc(len, KM_SLEEP);
2058 memcpy(fae->fae_path, pbuf, len);
2059 }
2060 PNBUF_PUT(pbuf);
2061
2062 *fap = fa;
2063 return 0;
2064 out:
2065 if (pbuf)
2066 PNBUF_PUT(pbuf);
2067 posix_spawn_fa_free(fa, i);
2068 return error;
2069 }
2070
2071 int
2072 check_posix_spawn(struct lwp *l1)
2073 {
2074 int error, tnprocs, count;
2075 uid_t uid;
2076 struct proc *p1;
2077
2078 p1 = l1->l_proc;
2079 uid = kauth_cred_getuid(l1->l_cred);
2080 tnprocs = atomic_inc_uint_nv(&nprocs);
2081
2082 /*
2083 * Although process entries are dynamically created, we still keep
2084 * a global limit on the maximum number we will create.
2085 */
2086 if (__predict_false(tnprocs >= maxproc))
2087 error = -1;
2088 else
2089 error = kauth_authorize_process(l1->l_cred,
2090 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2091
2092 if (error) {
2093 atomic_dec_uint(&nprocs);
2094 return EAGAIN;
2095 }
2096
2097 /*
2098 * Enforce limits.
2099 */
2100 count = chgproccnt(uid, 1);
2101 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2102 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2103 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2104 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2105 (void)chgproccnt(uid, -1);
2106 atomic_dec_uint(&nprocs);
2107 return EAGAIN;
2108 }
2109
2110 return 0;
2111 }
2112
2113 int
2114 do_posix_spawn(struct lwp *l1, pid_t *pid_res, const char *path,
2115 struct posix_spawn_file_actions *fa, struct posix_spawnattr *sa,
2116 char *const *argv, char *const *envp, execve_fetch_element_t fetch)
2117 {
2118 struct proc *p1, *p2;
2119 struct lwp *l2;
2120 int error;
2121 struct spawn_exec_data *spawn_data;
2122 vaddr_t uaddr;
2123 pid_t pid;
2124
2125 p1 = l1->l_proc;
2126
2127 /* Allocate and init spawn_data */
2128 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2129 spawn_data->sed_refcnt = 1; /* only parent so far */
2130 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2131 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2132
2133 /*
2134 * Allocate virtual address space for the U-area now, while it
2135 * is still easy to abort the fork operation if we're out of
2136 * kernel virtual address space.
2137 */
2138 uaddr = uvm_uarea_alloc();
2139 if (__predict_false(uaddr == 0)) {
2140 spawn_exec_data_release(spawn_data);
2141 return ENOMEM;
2142 }
2143
2144 /*
2145 * Do the first part of the exec now, collect state in spawn_data.
2146 */
2147 mutex_enter(&spawn_data->sed_mtx_child);
2148 error = execve_loadvm(l1, path, argv,
2149 envp, fetch, &spawn_data->sed_exec);
2150 if (error && error != EJUSTRETURN) {
2151 uvm_uarea_free(uaddr);
2152 mutex_exit(&spawn_data->sed_mtx_child);
2153 spawn_exec_data_release(spawn_data);
2154 return error;
2155 }
2156 KASSERT(rw_lock_held(&p1->p_reflock));
2157 KASSERT(rw_lock_held(&exec_lock));
2158 error = 0;
2159
2160 /*
2161 * Allocate new proc. Borrow proc0 vmspace for it, we will
2162 * replace it with its own before returning to userland
2163 * in the child.
2164 * This is a point of no return, we will have to go through
2165 * the child proc to properly clean it up past this point.
2166 */
2167 p2 = proc_alloc();
2168 pid = p2->p_pid;
2169
2170 /*
2171 * Make a proc table entry for the new process.
2172 * Start by zeroing the section of proc that is zero-initialized,
2173 * then copy the section that is copied directly from the parent.
2174 */
2175 memset(&p2->p_startzero, 0,
2176 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2177 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2178 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2179 p2->p_vmspace = proc0.p_vmspace;
2180
2181 CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
2182
2183 LIST_INIT(&p2->p_lwps);
2184 LIST_INIT(&p2->p_sigwaiters);
2185
2186 /*
2187 * Duplicate sub-structures as needed.
2188 * Increase reference counts on shared objects.
2189 * Inherit flags we want to keep. The flags related to SIGCHLD
2190 * handling are important in order to keep a consistent behaviour
2191 * for the child after the fork. If we are a 32-bit process, the
2192 * child will be too.
2193 */
2194 p2->p_flag =
2195 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2196 p2->p_emul = p1->p_emul;
2197 p2->p_execsw = p1->p_execsw;
2198
2199 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2200 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2201 rw_init(&p2->p_reflock);
2202 cv_init(&p2->p_waitcv, "wait");
2203 cv_init(&p2->p_lwpcv, "lwpwait");
2204
2205 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2206
2207 kauth_proc_fork(p1, p2);
2208
2209 p2->p_raslist = NULL;
2210 p2->p_fd = fd_copy();
2211
2212 /* XXX racy */
2213 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2214
2215 p2->p_cwdi = cwdinit();
2216
2217 /*
2218 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2219 * we just need increase pl_refcnt.
2220 */
2221 if (!p1->p_limit->pl_writeable) {
2222 lim_addref(p1->p_limit);
2223 p2->p_limit = p1->p_limit;
2224 } else {
2225 p2->p_limit = lim_copy(p1->p_limit);
2226 }
2227
2228 p2->p_lflag = 0;
2229 p2->p_sflag = 0;
2230 p2->p_slflag = 0;
2231 p2->p_pptr = p1;
2232 p2->p_ppid = p1->p_pid;
2233 LIST_INIT(&p2->p_children);
2234
2235 p2->p_aio = NULL;
2236
2237 #ifdef KTRACE
2238 /*
2239 * Copy traceflag and tracefile if enabled.
2240 * If not inherited, these were zeroed above.
2241 */
2242 if (p1->p_traceflag & KTRFAC_INHERIT) {
2243 mutex_enter(&ktrace_lock);
2244 p2->p_traceflag = p1->p_traceflag;
2245 if ((p2->p_tracep = p1->p_tracep) != NULL)
2246 ktradref(p2);
2247 mutex_exit(&ktrace_lock);
2248 }
2249 #endif
2250
2251 /*
2252 * Create signal actions for the child process.
2253 */
2254 p2->p_sigacts = sigactsinit(p1, 0);
2255 mutex_enter(p1->p_lock);
2256 p2->p_sflag |=
2257 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2258 sched_proc_fork(p1, p2);
2259 mutex_exit(p1->p_lock);
2260
2261 p2->p_stflag = p1->p_stflag;
2262
2263 /*
2264 * p_stats.
2265 * Copy parts of p_stats, and zero out the rest.
2266 */
2267 p2->p_stats = pstatscopy(p1->p_stats);
2268
2269 /* copy over machdep flags to the new proc */
2270 cpu_proc_fork(p1, p2);
2271
2272 /*
2273 * Prepare remaining parts of spawn data. Child gets a reference.
2274 */
2275 spawn_data->sed_actions = fa;
2276 spawn_data->sed_attrs = sa;
2277 spawn_data->sed_parent = p1;
2278 spawn_data->sed_refcnt++;
2279
2280 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2281 &l2, l1->l_class);
2282 l2->l_ctxlink = NULL; /* reset ucontext link */
2283
2284 /*
2285 * Copy the credential so other references don't see our changes.
2286 * Test to see if this is necessary first, since in the common case
2287 * we won't need a private reference.
2288 */
2289 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2290 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2291 l2->l_cred = kauth_cred_copy(l2->l_cred);
2292 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2293 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2294 }
2295
2296 /* Update the master credentials. */
2297 if (l2->l_cred != p2->p_cred) {
2298 kauth_cred_t ocred;
2299
2300 kauth_cred_hold(l2->l_cred);
2301 mutex_enter(p2->p_lock);
2302 ocred = p2->p_cred;
2303 p2->p_cred = l2->l_cred;
2304 mutex_exit(p2->p_lock);
2305 kauth_cred_free(ocred);
2306 }
2307
2308 #if 0
2309 l2->l_nopreempt = 1; /* start it non-preemptable */
2310 #endif
2311
2312 /*
2313 * It's now safe for the scheduler and other processes to see the
2314 * child process.
2315 */
2316 mutex_enter(proc_lock);
2317
2318 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2319 p2->p_lflag |= PL_CONTROLT;
2320
2321 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2322 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2323
2324 LIST_INSERT_AFTER(p1, p2, p_pglist);
2325 LIST_INSERT_HEAD(&allproc, p2, p_list);
2326
2327 p2->p_trace_enabled = trace_is_enabled(p2);
2328 #ifdef __HAVE_SYSCALL_INTERN
2329 (*p2->p_emul->e_syscall_intern)(p2);
2330 #endif
2331
2332 /*
2333 * Make child runnable, set start time, and add to run queue except
2334 * if the parent requested the child to start in SSTOP state.
2335 */
2336 mutex_enter(p2->p_lock);
2337
2338 getmicrotime(&p2->p_stats->p_start);
2339
2340 lwp_lock(l2);
2341 KASSERT(p2->p_nrlwps == 1);
2342 p2->p_nrlwps = 1;
2343 p2->p_stat = SACTIVE;
2344 l2->l_stat = LSRUN;
2345 sched_enqueue(l2, false);
2346 lwp_unlock(l2);
2347
2348 mutex_exit(p2->p_lock);
2349 mutex_exit(proc_lock);
2350
2351 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2352 error = spawn_data->sed_error;
2353 mutex_exit(&spawn_data->sed_mtx_child);
2354
2355 rw_exit(&p1->p_reflock);
2356 rw_exit(&exec_lock);
2357
2358 spawn_exec_data_release(spawn_data);
2359
2360 *pid_res = pid;
2361 return error;
2362 }
2363
2364 int
2365 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2366 register_t *retval)
2367 {
2368 /* {
2369 syscallarg(pid_t *) pid;
2370 syscallarg(const char *) path;
2371 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2372 syscallarg(const struct posix_spawnattr *) attrp;
2373 syscallarg(char *const *) argv;
2374 syscallarg(char *const *) envp;
2375 } */
2376
2377 int error;
2378 struct posix_spawn_file_actions *fa = NULL;
2379 struct posix_spawnattr *sa = NULL;
2380 pid_t pid;
2381
2382 error = check_posix_spawn(l1);
2383 if (error) {
2384 *retval = error;
2385 return 0;
2386 }
2387
2388 /* copy in file_actions struct */
2389 if (SCARG(uap, file_actions) != NULL) {
2390 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions));
2391 if (error)
2392 goto fail;
2393 }
2394
2395 /* copyin posix_spawnattr struct */
2396 if (SCARG(uap, attrp) != NULL) {
2397 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2398 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2399 if (error)
2400 goto fail;
2401 }
2402
2403 /*
2404 * Do the spawn
2405 */
2406 error = do_posix_spawn(l1, &pid, SCARG(uap, path), fa, sa,
2407 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2408 if (error)
2409 goto fail;
2410
2411 if (error == 0 && SCARG(uap, pid) != NULL)
2412 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2413
2414 *retval = error;
2415 return 0;
2416
2417 fail:
2418 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2419 atomic_dec_uint(&nprocs);
2420
2421 if (sa)
2422 kmem_free(sa, sizeof(*sa));
2423 if (fa)
2424 posix_spawn_fa_free(fa, fa->len);
2425 *retval = error;
2426 return 0;
2427 }
2428
2429 void
2430 exec_free_emul_arg(struct exec_package *epp)
2431 {
2432 if (epp->ep_emul_arg_free != NULL) {
2433 KASSERT(epp->ep_emul_arg != NULL);
2434 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2435 epp->ep_emul_arg_free = NULL;
2436 epp->ep_emul_arg = NULL;
2437 } else {
2438 KASSERT(epp->ep_emul_arg == NULL);
2439 }
2440 }
2441