kern_exec.c revision 1.354 1 /* $NetBSD: kern_exec.c,v 1.354 2012/07/27 20:52:49 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.354 2012/07/27 20:52:49 christos Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_ktrace.h"
66 #include "opt_modular.h"
67 #include "opt_syscall_debug.h"
68 #include "veriexec.h"
69 #include "opt_pax.h"
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/filedesc.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/mount.h>
77 #include <sys/malloc.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/acct.h>
83 #include <sys/atomic.h>
84 #include <sys/exec.h>
85 #include <sys/ktrace.h>
86 #include <sys/uidinfo.h>
87 #include <sys/wait.h>
88 #include <sys/mman.h>
89 #include <sys/ras.h>
90 #include <sys/signalvar.h>
91 #include <sys/stat.h>
92 #include <sys/syscall.h>
93 #include <sys/kauth.h>
94 #include <sys/lwpctl.h>
95 #include <sys/pax.h>
96 #include <sys/cpu.h>
97 #include <sys/module.h>
98 #include <sys/syscallvar.h>
99 #include <sys/syscallargs.h>
100 #if NVERIEXEC > 0
101 #include <sys/verified_exec.h>
102 #endif /* NVERIEXEC > 0 */
103 #include <sys/sdt.h>
104 #include <sys/spawn.h>
105 #include <sys/prot.h>
106 #include <sys/cprng.h>
107
108 #include <uvm/uvm_extern.h>
109
110 #include <machine/reg.h>
111
112 #include <compat/common/compat_util.h>
113
114 static int exec_sigcode_map(struct proc *, const struct emul *);
115
116 #ifdef DEBUG_EXEC
117 #define DPRINTF(a) printf a
118 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
119 __LINE__, (s), (a), (b))
120 #else
121 #define DPRINTF(a)
122 #define COPYPRINTF(s, a, b)
123 #endif /* DEBUG_EXEC */
124
125 /*
126 * DTrace SDT provider definitions
127 */
128 SDT_PROBE_DEFINE(proc,,,exec,
129 "char *", NULL,
130 NULL, NULL, NULL, NULL,
131 NULL, NULL, NULL, NULL);
132 SDT_PROBE_DEFINE(proc,,,exec_success,
133 "char *", NULL,
134 NULL, NULL, NULL, NULL,
135 NULL, NULL, NULL, NULL);
136 SDT_PROBE_DEFINE(proc,,,exec_failure,
137 "int", NULL,
138 NULL, NULL, NULL, NULL,
139 NULL, NULL, NULL, NULL);
140
141 /*
142 * Exec function switch:
143 *
144 * Note that each makecmds function is responsible for loading the
145 * exec package with the necessary functions for any exec-type-specific
146 * handling.
147 *
148 * Functions for specific exec types should be defined in their own
149 * header file.
150 */
151 static const struct execsw **execsw = NULL;
152 static int nexecs;
153
154 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
155
156 /* list of dynamically loaded execsw entries */
157 static LIST_HEAD(execlist_head, exec_entry) ex_head =
158 LIST_HEAD_INITIALIZER(ex_head);
159 struct exec_entry {
160 LIST_ENTRY(exec_entry) ex_list;
161 SLIST_ENTRY(exec_entry) ex_slist;
162 const struct execsw *ex_sw;
163 };
164
165 #ifndef __HAVE_SYSCALL_INTERN
166 void syscall(void);
167 #endif
168
169 /* NetBSD emul struct */
170 struct emul emul_netbsd = {
171 .e_name = "netbsd",
172 .e_path = NULL,
173 #ifndef __HAVE_MINIMAL_EMUL
174 .e_flags = EMUL_HAS_SYS___syscall,
175 .e_errno = NULL,
176 .e_nosys = SYS_syscall,
177 .e_nsysent = SYS_NSYSENT,
178 #endif
179 .e_sysent = sysent,
180 #ifdef SYSCALL_DEBUG
181 .e_syscallnames = syscallnames,
182 #else
183 .e_syscallnames = NULL,
184 #endif
185 .e_sendsig = sendsig,
186 .e_trapsignal = trapsignal,
187 .e_tracesig = NULL,
188 .e_sigcode = NULL,
189 .e_esigcode = NULL,
190 .e_sigobject = NULL,
191 .e_setregs = setregs,
192 .e_proc_exec = NULL,
193 .e_proc_fork = NULL,
194 .e_proc_exit = NULL,
195 .e_lwp_fork = NULL,
196 .e_lwp_exit = NULL,
197 #ifdef __HAVE_SYSCALL_INTERN
198 .e_syscall_intern = syscall_intern,
199 #else
200 .e_syscall = syscall,
201 #endif
202 .e_sysctlovly = NULL,
203 .e_fault = NULL,
204 .e_vm_default_addr = uvm_default_mapaddr,
205 .e_usertrap = NULL,
206 .e_ucsize = sizeof(ucontext_t),
207 .e_startlwp = startlwp
208 };
209
210 /*
211 * Exec lock. Used to control access to execsw[] structures.
212 * This must not be static so that netbsd32 can access it, too.
213 */
214 krwlock_t exec_lock;
215
216 static kmutex_t sigobject_lock;
217
218 /*
219 * Data used between a loadvm and execve part of an "exec" operation
220 */
221 struct execve_data {
222 struct exec_package ed_pack;
223 struct pathbuf *ed_pathbuf;
224 struct vattr ed_attr;
225 struct ps_strings ed_arginfo;
226 char *ed_argp;
227 const char *ed_pathstring;
228 char *ed_resolvedpathbuf;
229 size_t ed_ps_strings_sz;
230 int ed_szsigcode;
231 long ed_argc;
232 long ed_envc;
233 };
234
235 /*
236 * data passed from parent lwp to child during a posix_spawn()
237 */
238 struct spawn_exec_data {
239 struct execve_data sed_exec;
240 struct posix_spawn_file_actions
241 *sed_actions;
242 struct posix_spawnattr *sed_attrs;
243 struct proc *sed_parent;
244 kcondvar_t sed_cv_child_ready;
245 kmutex_t sed_mtx_child;
246 int sed_error;
247 volatile uint32_t sed_refcnt;
248 };
249
250 static void *
251 exec_pool_alloc(struct pool *pp, int flags)
252 {
253
254 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
255 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
256 }
257
258 static void
259 exec_pool_free(struct pool *pp, void *addr)
260 {
261
262 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
263 }
264
265 static struct pool exec_pool;
266
267 static struct pool_allocator exec_palloc = {
268 .pa_alloc = exec_pool_alloc,
269 .pa_free = exec_pool_free,
270 .pa_pagesz = NCARGS
271 };
272
273 /*
274 * check exec:
275 * given an "executable" described in the exec package's namei info,
276 * see what we can do with it.
277 *
278 * ON ENTRY:
279 * exec package with appropriate namei info
280 * lwp pointer of exec'ing lwp
281 * NO SELF-LOCKED VNODES
282 *
283 * ON EXIT:
284 * error: nothing held, etc. exec header still allocated.
285 * ok: filled exec package, executable's vnode (unlocked).
286 *
287 * EXEC SWITCH ENTRY:
288 * Locked vnode to check, exec package, proc.
289 *
290 * EXEC SWITCH EXIT:
291 * ok: return 0, filled exec package, executable's vnode (unlocked).
292 * error: destructive:
293 * everything deallocated execept exec header.
294 * non-destructive:
295 * error code, executable's vnode (unlocked),
296 * exec header unmodified.
297 */
298 int
299 /*ARGSUSED*/
300 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
301 {
302 int error, i;
303 struct vnode *vp;
304 struct nameidata nd;
305 size_t resid;
306
307 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
308
309 /* first get the vnode */
310 if ((error = namei(&nd)) != 0)
311 return error;
312 epp->ep_vp = vp = nd.ni_vp;
313 /* this cannot overflow as both are size PATH_MAX */
314 strcpy(epp->ep_resolvedname, nd.ni_pnbuf);
315
316 #ifdef DIAGNOSTIC
317 /* paranoia (take this out once namei stuff stabilizes) */
318 memset(nd.ni_pnbuf, '~', PATH_MAX);
319 #endif
320
321 /* check access and type */
322 if (vp->v_type != VREG) {
323 error = EACCES;
324 goto bad1;
325 }
326 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
327 goto bad1;
328
329 /* get attributes */
330 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
331 goto bad1;
332
333 /* Check mount point */
334 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
335 error = EACCES;
336 goto bad1;
337 }
338 if (vp->v_mount->mnt_flag & MNT_NOSUID)
339 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
340
341 /* try to open it */
342 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
343 goto bad1;
344
345 /* unlock vp, since we need it unlocked from here on out. */
346 VOP_UNLOCK(vp);
347
348 #if NVERIEXEC > 0
349 error = veriexec_verify(l, vp, epp->ep_resolvedname,
350 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
351 NULL);
352 if (error)
353 goto bad2;
354 #endif /* NVERIEXEC > 0 */
355
356 #ifdef PAX_SEGVGUARD
357 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
358 if (error)
359 goto bad2;
360 #endif /* PAX_SEGVGUARD */
361
362 /* now we have the file, get the exec header */
363 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
364 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
365 if (error)
366 goto bad2;
367 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
368
369 /*
370 * Set up default address space limits. Can be overridden
371 * by individual exec packages.
372 *
373 * XXX probably should be all done in the exec packages.
374 */
375 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
376 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
377 /*
378 * set up the vmcmds for creation of the process
379 * address space
380 */
381 error = ENOEXEC;
382 for (i = 0; i < nexecs; i++) {
383 int newerror;
384
385 epp->ep_esch = execsw[i];
386 newerror = (*execsw[i]->es_makecmds)(l, epp);
387
388 if (!newerror) {
389 /* Seems ok: check that entry point is not too high */
390 if (epp->ep_entry > epp->ep_vm_maxaddr) {
391 #ifdef DIAGNOSTIC
392 printf("%s: rejecting %p due to "
393 "too high entry address (> %p)\n",
394 __func__, (void *)epp->ep_entry,
395 (void *)epp->ep_vm_maxaddr);
396 #endif
397 error = ENOEXEC;
398 break;
399 }
400 /* Seems ok: check that entry point is not too low */
401 if (epp->ep_entry < epp->ep_vm_minaddr) {
402 #ifdef DIAGNOSTIC
403 printf("%s: rejecting %p due to "
404 "too low entry address (< %p)\n",
405 __func__, (void *)epp->ep_entry,
406 (void *)epp->ep_vm_minaddr);
407 #endif
408 error = ENOEXEC;
409 break;
410 }
411
412 /* check limits */
413 if ((epp->ep_tsize > MAXTSIZ) ||
414 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
415 [RLIMIT_DATA].rlim_cur)) {
416 #ifdef DIAGNOSTIC
417 printf("%s: rejecting due to "
418 "limits (t=%llu > %llu || d=%llu > %llu)\n",
419 __func__,
420 (unsigned long long)epp->ep_tsize,
421 (unsigned long long)MAXTSIZ,
422 (unsigned long long)epp->ep_dsize,
423 (unsigned long long)
424 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
425 #endif
426 error = ENOMEM;
427 break;
428 }
429 return 0;
430 }
431
432 if (epp->ep_emul_root != NULL) {
433 vrele(epp->ep_emul_root);
434 epp->ep_emul_root = NULL;
435 }
436 if (epp->ep_interp != NULL) {
437 vrele(epp->ep_interp);
438 epp->ep_interp = NULL;
439 }
440
441 /* make sure the first "interesting" error code is saved. */
442 if (error == ENOEXEC)
443 error = newerror;
444
445 if (epp->ep_flags & EXEC_DESTR)
446 /* Error from "#!" code, tidied up by recursive call */
447 return error;
448 }
449
450 /* not found, error */
451
452 /*
453 * free any vmspace-creation commands,
454 * and release their references
455 */
456 kill_vmcmds(&epp->ep_vmcmds);
457
458 bad2:
459 /*
460 * close and release the vnode, restore the old one, free the
461 * pathname buf, and punt.
462 */
463 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
464 VOP_CLOSE(vp, FREAD, l->l_cred);
465 vput(vp);
466 return error;
467
468 bad1:
469 /*
470 * free the namei pathname buffer, and put the vnode
471 * (which we don't yet have open).
472 */
473 vput(vp); /* was still locked */
474 return error;
475 }
476
477 #ifdef __MACHINE_STACK_GROWS_UP
478 #define STACK_PTHREADSPACE NBPG
479 #else
480 #define STACK_PTHREADSPACE 0
481 #endif
482
483 static int
484 execve_fetch_element(char * const *array, size_t index, char **value)
485 {
486 return copyin(array + index, value, sizeof(*value));
487 }
488
489 /*
490 * exec system call
491 */
492 int
493 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
494 {
495 /* {
496 syscallarg(const char *) path;
497 syscallarg(char * const *) argp;
498 syscallarg(char * const *) envp;
499 } */
500
501 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
502 SCARG(uap, envp), execve_fetch_element);
503 }
504
505 int
506 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
507 register_t *retval)
508 {
509 /* {
510 syscallarg(int) fd;
511 syscallarg(char * const *) argp;
512 syscallarg(char * const *) envp;
513 } */
514
515 return ENOSYS;
516 }
517
518 /*
519 * Load modules to try and execute an image that we do not understand.
520 * If no execsw entries are present, we load those likely to be needed
521 * in order to run native images only. Otherwise, we autoload all
522 * possible modules that could let us run the binary. XXX lame
523 */
524 static void
525 exec_autoload(void)
526 {
527 #ifdef MODULAR
528 static const char * const native[] = {
529 "exec_elf32",
530 "exec_elf64",
531 "exec_script",
532 NULL
533 };
534 static const char * const compat[] = {
535 "exec_elf32",
536 "exec_elf64",
537 "exec_script",
538 "exec_aout",
539 "exec_coff",
540 "exec_ecoff",
541 "compat_aoutm68k",
542 "compat_freebsd",
543 "compat_ibcs2",
544 "compat_linux",
545 "compat_linux32",
546 "compat_netbsd32",
547 "compat_sunos",
548 "compat_sunos32",
549 "compat_svr4",
550 "compat_svr4_32",
551 "compat_ultrix",
552 NULL
553 };
554 char const * const *list;
555 int i;
556
557 list = (nexecs == 0 ? native : compat);
558 for (i = 0; list[i] != NULL; i++) {
559 if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) {
560 continue;
561 }
562 yield();
563 }
564 #endif
565 }
566
567 static int
568 execve_loadvm(struct lwp *l, const char *path, char * const *args,
569 char * const *envs, execve_fetch_element_t fetch_element,
570 struct execve_data * restrict data)
571 {
572 int error;
573 struct proc *p;
574 char *dp, *sp;
575 size_t i, len;
576 struct exec_fakearg *tmpfap;
577 u_int modgen;
578
579 KASSERT(data != NULL);
580
581 p = l->l_proc;
582 modgen = 0;
583
584 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
585
586 /*
587 * Check if we have exceeded our number of processes limit.
588 * This is so that we handle the case where a root daemon
589 * forked, ran setuid to become the desired user and is trying
590 * to exec. The obvious place to do the reference counting check
591 * is setuid(), but we don't do the reference counting check there
592 * like other OS's do because then all the programs that use setuid()
593 * must be modified to check the return code of setuid() and exit().
594 * It is dangerous to make setuid() fail, because it fails open and
595 * the program will continue to run as root. If we make it succeed
596 * and return an error code, again we are not enforcing the limit.
597 * The best place to enforce the limit is here, when the process tries
598 * to execute a new image, because eventually the process will need
599 * to call exec in order to do something useful.
600 */
601 retry:
602 if (p->p_flag & PK_SUGID) {
603 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
604 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
605 &p->p_rlimit[RLIMIT_NPROC],
606 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
607 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
608 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
609 return EAGAIN;
610 }
611
612 /*
613 * Drain existing references and forbid new ones. The process
614 * should be left alone until we're done here. This is necessary
615 * to avoid race conditions - e.g. in ptrace() - that might allow
616 * a local user to illicitly obtain elevated privileges.
617 */
618 rw_enter(&p->p_reflock, RW_WRITER);
619
620 /*
621 * Init the namei data to point the file user's program name.
622 * This is done here rather than in check_exec(), so that it's
623 * possible to override this settings if any of makecmd/probe
624 * functions call check_exec() recursively - for example,
625 * see exec_script_makecmds().
626 */
627 error = pathbuf_copyin(path, &data->ed_pathbuf);
628 if (error) {
629 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
630 path, error));
631 goto clrflg;
632 }
633 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
634
635 data->ed_resolvedpathbuf = PNBUF_GET();
636 #ifdef DIAGNOSTIC
637 strcpy(data->ed_resolvedpathbuf, "/wrong");
638 #endif
639
640 /*
641 * initialize the fields of the exec package.
642 */
643 data->ed_pack.ep_name = path;
644 data->ed_pack.ep_kname = data->ed_pathstring;
645 data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf;
646 data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
647 data->ed_pack.ep_hdrlen = exec_maxhdrsz;
648 data->ed_pack.ep_hdrvalid = 0;
649 data->ed_pack.ep_emul_arg = NULL;
650 data->ed_pack.ep_emul_arg_free = NULL;
651 data->ed_pack.ep_vmcmds.evs_cnt = 0;
652 data->ed_pack.ep_vmcmds.evs_used = 0;
653 data->ed_pack.ep_vap = &data->ed_attr;
654 data->ed_pack.ep_flags = 0;
655 data->ed_pack.ep_emul_root = NULL;
656 data->ed_pack.ep_interp = NULL;
657 data->ed_pack.ep_esch = NULL;
658 data->ed_pack.ep_pax_flags = 0;
659
660 rw_enter(&exec_lock, RW_READER);
661
662 /* see if we can run it. */
663 if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) {
664 if (error != ENOENT) {
665 DPRINTF(("%s: check exec failed %d\n",
666 __func__, error));
667 }
668 goto freehdr;
669 }
670
671 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
672
673 /* allocate an argument buffer */
674 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
675 KASSERT(data->ed_argp != NULL);
676 dp = data->ed_argp;
677 data->ed_argc = 0;
678
679 /* copy the fake args list, if there's one, freeing it as we go */
680 if (data->ed_pack.ep_flags & EXEC_HASARGL) {
681 tmpfap = data->ed_pack.ep_fa;
682 while (tmpfap->fa_arg != NULL) {
683 const char *cp;
684
685 cp = tmpfap->fa_arg;
686 while (*cp)
687 *dp++ = *cp++;
688 *dp++ = '\0';
689 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
690
691 kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
692 tmpfap++; data->ed_argc++;
693 }
694 kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len);
695 data->ed_pack.ep_flags &= ~EXEC_HASARGL;
696 }
697
698 /* Now get argv & environment */
699 if (args == NULL) {
700 DPRINTF(("%s: null args\n", __func__));
701 error = EINVAL;
702 goto bad;
703 }
704 /* 'i' will index the argp/envp element to be retrieved */
705 i = 0;
706 if (data->ed_pack.ep_flags & EXEC_SKIPARG)
707 i++;
708
709 while (1) {
710 len = data->ed_argp + ARG_MAX - dp;
711 if ((error = (*fetch_element)(args, i, &sp)) != 0) {
712 DPRINTF(("%s: fetch_element args %d\n",
713 __func__, error));
714 goto bad;
715 }
716 if (!sp)
717 break;
718 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
719 DPRINTF(("%s: copyinstr args %d\n", __func__, error));
720 if (error == ENAMETOOLONG)
721 error = E2BIG;
722 goto bad;
723 }
724 ktrexecarg(dp, len - 1);
725 dp += len;
726 i++;
727 data->ed_argc++;
728 }
729
730 data->ed_envc = 0;
731 /* environment need not be there */
732 if (envs != NULL) {
733 i = 0;
734 while (1) {
735 len = data->ed_argp + ARG_MAX - dp;
736 if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
737 DPRINTF(("%s: fetch_element env %d\n",
738 __func__, error));
739 goto bad;
740 }
741 if (!sp)
742 break;
743 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
744 DPRINTF(("%s: copyinstr env %d\n",
745 __func__, error));
746 if (error == ENAMETOOLONG)
747 error = E2BIG;
748 goto bad;
749 }
750
751 ktrexecenv(dp, len - 1);
752 dp += len;
753 i++;
754 data->ed_envc++;
755 }
756 }
757
758 dp = (char *) ALIGN(dp);
759
760 data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode -
761 data->ed_pack.ep_esch->es_emul->e_sigcode;
762
763 #ifdef __MACHINE_STACK_GROWS_UP
764 /* See big comment lower down */
765 #define RTLD_GAP 32
766 #else
767 #define RTLD_GAP 0
768 #endif
769
770 /* Now check if args & environ fit into new stack */
771 if (data->ed_pack.ep_flags & EXEC_32) {
772 data->ed_ps_strings_sz = sizeof(struct ps_strings32);
773 len = ((data->ed_argc + data->ed_envc + 2 +
774 data->ed_pack.ep_esch->es_arglen) *
775 sizeof(int) + sizeof(int) + dp + RTLD_GAP +
776 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
777 - data->ed_argp;
778 } else {
779 data->ed_ps_strings_sz = sizeof(struct ps_strings);
780 len = ((data->ed_argc + data->ed_envc + 2 +
781 data->ed_pack.ep_esch->es_arglen) *
782 sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
783 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
784 - data->ed_argp;
785 }
786
787 #ifdef PAX_ASLR
788 if (pax_aslr_active(l))
789 len += (cprng_fast32() % PAGE_SIZE);
790 #endif /* PAX_ASLR */
791
792 /* make the stack "safely" aligned */
793 len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES);
794
795 if (len > data->ed_pack.ep_ssize) {
796 /* in effect, compare to initial limit */
797 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
798 goto bad;
799 }
800 /* adjust "active stack depth" for process VSZ */
801 data->ed_pack.ep_ssize = len;
802
803 return 0;
804
805 bad:
806 /* free the vmspace-creation commands, and release their references */
807 kill_vmcmds(&data->ed_pack.ep_vmcmds);
808 /* kill any opened file descriptor, if necessary */
809 if (data->ed_pack.ep_flags & EXEC_HASFD) {
810 data->ed_pack.ep_flags &= ~EXEC_HASFD;
811 fd_close(data->ed_pack.ep_fd);
812 }
813 /* close and put the exec'd file */
814 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
815 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
816 vput(data->ed_pack.ep_vp);
817 pool_put(&exec_pool, data->ed_argp);
818
819 freehdr:
820 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
821 if (data->ed_pack.ep_emul_root != NULL)
822 vrele(data->ed_pack.ep_emul_root);
823 if (data->ed_pack.ep_interp != NULL)
824 vrele(data->ed_pack.ep_interp);
825
826 rw_exit(&exec_lock);
827
828 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
829 pathbuf_destroy(data->ed_pathbuf);
830 PNBUF_PUT(data->ed_resolvedpathbuf);
831
832 clrflg:
833 rw_exit(&p->p_reflock);
834
835 if (modgen != module_gen && error == ENOEXEC) {
836 modgen = module_gen;
837 exec_autoload();
838 goto retry;
839 }
840
841 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
842 return error;
843 }
844
845 static void
846 execve_free_data(struct execve_data *data)
847 {
848
849 /* free the vmspace-creation commands, and release their references */
850 kill_vmcmds(&data->ed_pack.ep_vmcmds);
851 /* kill any opened file descriptor, if necessary */
852 if (data->ed_pack.ep_flags & EXEC_HASFD) {
853 data->ed_pack.ep_flags &= ~EXEC_HASFD;
854 fd_close(data->ed_pack.ep_fd);
855 }
856
857 /* close and put the exec'd file */
858 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
859 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, curlwp->l_cred);
860 vput(data->ed_pack.ep_vp);
861 pool_put(&exec_pool, data->ed_argp);
862
863 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
864 if (data->ed_pack.ep_emul_root != NULL)
865 vrele(data->ed_pack.ep_emul_root);
866 if (data->ed_pack.ep_interp != NULL)
867 vrele(data->ed_pack.ep_interp);
868
869 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
870 pathbuf_destroy(data->ed_pathbuf);
871 PNBUF_PUT(data->ed_resolvedpathbuf);
872 }
873
874 static int
875 execve_runproc(struct lwp *l, struct execve_data * restrict data,
876 bool no_local_exec_lock, bool is_spawn)
877 {
878 int error = 0;
879 struct proc *p;
880 size_t i;
881 char *stack, *dp;
882 const char *commandname;
883 struct ps_strings32 arginfo32;
884 struct exec_vmcmd *base_vcp;
885 void *aip;
886 struct vmspace *vm;
887 ksiginfo_t ksi;
888 ksiginfoq_t kq;
889
890 /*
891 * In case of a posix_spawn operation, the child doing the exec
892 * might not hold the reader lock on exec_lock, but the parent
893 * will do this instead.
894 */
895 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
896 KASSERT(data != NULL);
897 if (data == NULL)
898 return (EINVAL);
899
900 p = l->l_proc;
901 if (no_local_exec_lock)
902 KASSERT(is_spawn);
903
904 base_vcp = NULL;
905
906 if (data->ed_pack.ep_flags & EXEC_32)
907 aip = &arginfo32;
908 else
909 aip = &data->ed_arginfo;
910
911 /* Get rid of other LWPs. */
912 if (p->p_nlwps > 1) {
913 mutex_enter(p->p_lock);
914 exit_lwps(l);
915 mutex_exit(p->p_lock);
916 }
917 KDASSERT(p->p_nlwps == 1);
918
919 /* Destroy any lwpctl info. */
920 if (p->p_lwpctl != NULL)
921 lwp_ctl_exit();
922
923 /* Remove POSIX timers */
924 timers_free(p, TIMERS_POSIX);
925
926 /*
927 * Do whatever is necessary to prepare the address space
928 * for remapping. Note that this might replace the current
929 * vmspace with another!
930 */
931 if (is_spawn)
932 uvmspace_spawn(l, data->ed_pack.ep_vm_minaddr,
933 data->ed_pack.ep_vm_maxaddr);
934 else
935 uvmspace_exec(l, data->ed_pack.ep_vm_minaddr,
936 data->ed_pack.ep_vm_maxaddr);
937
938 /* record proc's vnode, for use by procfs and others */
939 if (p->p_textvp)
940 vrele(p->p_textvp);
941 vref(data->ed_pack.ep_vp);
942 p->p_textvp = data->ed_pack.ep_vp;
943
944 /* Now map address space */
945 vm = p->p_vmspace;
946 vm->vm_taddr = (void *)data->ed_pack.ep_taddr;
947 vm->vm_tsize = btoc(data->ed_pack.ep_tsize);
948 vm->vm_daddr = (void*)data->ed_pack.ep_daddr;
949 vm->vm_dsize = btoc(data->ed_pack.ep_dsize);
950 vm->vm_ssize = btoc(data->ed_pack.ep_ssize);
951 vm->vm_issize = 0;
952 vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr;
953 vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr;
954
955 #ifdef PAX_ASLR
956 pax_aslr_init(l, vm);
957 #endif /* PAX_ASLR */
958
959 /* create the new process's VM space by running the vmcmds */
960 #ifdef DIAGNOSTIC
961 if (data->ed_pack.ep_vmcmds.evs_used == 0)
962 panic("%s: no vmcmds", __func__);
963 #endif
964
965 #ifdef DEBUG_EXEC
966 {
967 size_t j;
968 struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0];
969 DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used));
970 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
971 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
972 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
973 PRIxVSIZE" prot=0%o flags=%d\n", j,
974 vp[j].ev_proc == vmcmd_map_pagedvn ?
975 "pagedvn" :
976 vp[j].ev_proc == vmcmd_map_readvn ?
977 "readvn" :
978 vp[j].ev_proc == vmcmd_map_zero ?
979 "zero" : "*unknown*",
980 vp[j].ev_addr, vp[j].ev_len,
981 vp[j].ev_offset, vp[j].ev_prot,
982 vp[j].ev_flags));
983 }
984 }
985 #endif /* DEBUG_EXEC */
986
987 for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) {
988 struct exec_vmcmd *vcp;
989
990 vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i];
991 if (vcp->ev_flags & VMCMD_RELATIVE) {
992 #ifdef DIAGNOSTIC
993 if (base_vcp == NULL)
994 panic("%s: relative vmcmd with no base",
995 __func__);
996 if (vcp->ev_flags & VMCMD_BASE)
997 panic("%s: illegal base & relative vmcmd",
998 __func__);
999 #endif
1000 vcp->ev_addr += base_vcp->ev_addr;
1001 }
1002 error = (*vcp->ev_proc)(l, vcp);
1003 #ifdef DEBUG_EXEC
1004 if (error) {
1005 size_t j;
1006 struct exec_vmcmd *vp =
1007 &data->ed_pack.ep_vmcmds.evs_cmds[0];
1008 DPRINTF(("vmcmds %zu/%u, error %d\n", i,
1009 data->ed_pack.ep_vmcmds.evs_used, error));
1010 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
1011 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
1012 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
1013 PRIxVSIZE" prot=0%o flags=%d\n", j,
1014 vp[j].ev_proc == vmcmd_map_pagedvn ?
1015 "pagedvn" :
1016 vp[j].ev_proc == vmcmd_map_readvn ?
1017 "readvn" :
1018 vp[j].ev_proc == vmcmd_map_zero ?
1019 "zero" : "*unknown*",
1020 vp[j].ev_addr, vp[j].ev_len,
1021 vp[j].ev_offset, vp[j].ev_prot,
1022 vp[j].ev_flags));
1023 if (j == i)
1024 DPRINTF((" ^--- failed\n"));
1025 }
1026 }
1027 #endif /* DEBUG_EXEC */
1028 if (vcp->ev_flags & VMCMD_BASE)
1029 base_vcp = vcp;
1030 }
1031
1032 /* free the vmspace-creation commands, and release their references */
1033 kill_vmcmds(&data->ed_pack.ep_vmcmds);
1034
1035 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
1036 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
1037 vput(data->ed_pack.ep_vp);
1038
1039 /* if an error happened, deallocate and punt */
1040 if (error) {
1041 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
1042 goto exec_abort;
1043 }
1044
1045 /* remember information about the process */
1046 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1047 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1048
1049 /* set command name & other accounting info */
1050 commandname = strrchr(data->ed_pack.ep_resolvedname, '/');
1051 if (commandname != NULL) {
1052 commandname++;
1053 } else {
1054 commandname = data->ed_pack.ep_resolvedname;
1055 }
1056 i = min(strlen(commandname), MAXCOMLEN);
1057 (void)memcpy(p->p_comm, commandname, i);
1058 p->p_comm[i] = '\0';
1059
1060 dp = PNBUF_GET();
1061 /*
1062 * If the path starts with /, we don't need to do any work.
1063 * This handles the majority of the cases.
1064 * In the future perhaps we could canonicalize it?
1065 */
1066 if (data->ed_pathstring[0] == '/')
1067 (void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring,
1068 MAXPATHLEN);
1069 #ifdef notyet
1070 /*
1071 * Although this works most of the time [since the entry was just
1072 * entered in the cache] we don't use it because it theoretically
1073 * can fail and it is not the cleanest interface, because there
1074 * could be races. When the namei cache is re-written, this can
1075 * be changed to use the appropriate function.
1076 */
1077 else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
1078 data->ed_pack.ep_path = dp;
1079 #endif
1080 else {
1081 #ifdef notyet
1082 printf("Cannot get path for pid %d [%s] (error %d)",
1083 (int)p->p_pid, p->p_comm, error);
1084 #endif
1085 data->ed_pack.ep_path = NULL;
1086 PNBUF_PUT(dp);
1087 }
1088
1089 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1090 STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
1091 data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
1092
1093 #ifdef __MACHINE_STACK_GROWS_UP
1094 /*
1095 * The copyargs call always copies into lower addresses
1096 * first, moving towards higher addresses, starting with
1097 * the stack pointer that we give. When the stack grows
1098 * down, this puts argc/argv/envp very shallow on the
1099 * stack, right at the first user stack pointer.
1100 * When the stack grows up, the situation is reversed.
1101 *
1102 * Normally, this is no big deal. But the ld_elf.so _rtld()
1103 * function expects to be called with a single pointer to
1104 * a region that has a few words it can stash values into,
1105 * followed by argc/argv/envp. When the stack grows down,
1106 * it's easy to decrement the stack pointer a little bit to
1107 * allocate the space for these few words and pass the new
1108 * stack pointer to _rtld. When the stack grows up, however,
1109 * a few words before argc is part of the signal trampoline, XXX
1110 * so we have a problem.
1111 *
1112 * Instead of changing how _rtld works, we take the easy way
1113 * out and steal 32 bytes before we call copyargs.
1114 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
1115 */
1116 stack += RTLD_GAP;
1117 #endif /* __MACHINE_STACK_GROWS_UP */
1118
1119 /* Now copy argc, args & environ to new stack */
1120 error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack,
1121 &data->ed_arginfo, &stack, data->ed_argp);
1122
1123 if (data->ed_pack.ep_path) {
1124 PNBUF_PUT(data->ed_pack.ep_path);
1125 data->ed_pack.ep_path = NULL;
1126 }
1127 if (error) {
1128 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1129 goto exec_abort;
1130 }
1131 /* Move the stack back to original point */
1132 stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize);
1133
1134 /* fill process ps_strings info */
1135 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1136 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1137
1138 if (data->ed_pack.ep_flags & EXEC_32) {
1139 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1140 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1141 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1142 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1143 }
1144
1145 /* copy out the process's ps_strings structure */
1146 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1147 != 0) {
1148 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1149 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1150 goto exec_abort;
1151 }
1152
1153 cwdexec(p);
1154 fd_closeexec(); /* handle close on exec */
1155
1156 if (__predict_false(ktrace_on))
1157 fd_ktrexecfd();
1158
1159 execsigs(p); /* reset catched signals */
1160
1161 l->l_ctxlink = NULL; /* reset ucontext link */
1162
1163
1164 p->p_acflag &= ~AFORK;
1165 mutex_enter(p->p_lock);
1166 p->p_flag |= PK_EXEC;
1167 mutex_exit(p->p_lock);
1168
1169 /*
1170 * Stop profiling.
1171 */
1172 if ((p->p_stflag & PST_PROFIL) != 0) {
1173 mutex_spin_enter(&p->p_stmutex);
1174 stopprofclock(p);
1175 mutex_spin_exit(&p->p_stmutex);
1176 }
1177
1178 /*
1179 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1180 * exited and exec()/exit() are the only places it will be cleared.
1181 */
1182 if ((p->p_lflag & PL_PPWAIT) != 0) {
1183 #if 0
1184 lwp_t *lp;
1185
1186 mutex_enter(proc_lock);
1187 lp = p->p_vforklwp;
1188 p->p_vforklwp = NULL;
1189
1190 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1191 p->p_lflag &= ~PL_PPWAIT;
1192
1193 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1194 cv_broadcast(&lp->l_waitcv);
1195 mutex_exit(proc_lock);
1196 #else
1197 mutex_enter(proc_lock);
1198 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1199 p->p_lflag &= ~PL_PPWAIT;
1200 cv_broadcast(&p->p_pptr->p_waitcv);
1201 mutex_exit(proc_lock);
1202 #endif
1203 }
1204
1205 /*
1206 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1207 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1208 * out additional references on the process for the moment.
1209 */
1210 if ((p->p_slflag & PSL_TRACED) == 0 &&
1211
1212 (((data->ed_attr.va_mode & S_ISUID) != 0 &&
1213 kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
1214
1215 ((data->ed_attr.va_mode & S_ISGID) != 0 &&
1216 kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
1217 /*
1218 * Mark the process as SUGID before we do
1219 * anything that might block.
1220 */
1221 proc_crmod_enter();
1222 proc_crmod_leave(NULL, NULL, true);
1223
1224 /* Make sure file descriptors 0..2 are in use. */
1225 if ((error = fd_checkstd()) != 0) {
1226 DPRINTF(("%s: fdcheckstd failed %d\n",
1227 __func__, error));
1228 goto exec_abort;
1229 }
1230
1231 /*
1232 * Copy the credential so other references don't see our
1233 * changes.
1234 */
1235 l->l_cred = kauth_cred_copy(l->l_cred);
1236 #ifdef KTRACE
1237 /*
1238 * If the persistent trace flag isn't set, turn off.
1239 */
1240 if (p->p_tracep) {
1241 mutex_enter(&ktrace_lock);
1242 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1243 ktrderef(p);
1244 mutex_exit(&ktrace_lock);
1245 }
1246 #endif
1247 if (data->ed_attr.va_mode & S_ISUID)
1248 kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
1249 if (data->ed_attr.va_mode & S_ISGID)
1250 kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
1251 } else {
1252 if (kauth_cred_geteuid(l->l_cred) ==
1253 kauth_cred_getuid(l->l_cred) &&
1254 kauth_cred_getegid(l->l_cred) ==
1255 kauth_cred_getgid(l->l_cred))
1256 p->p_flag &= ~PK_SUGID;
1257 }
1258
1259 /*
1260 * Copy the credential so other references don't see our changes.
1261 * Test to see if this is necessary first, since in the common case
1262 * we won't need a private reference.
1263 */
1264 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1265 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1266 l->l_cred = kauth_cred_copy(l->l_cred);
1267 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1268 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1269 }
1270
1271 /* Update the master credentials. */
1272 if (l->l_cred != p->p_cred) {
1273 kauth_cred_t ocred;
1274
1275 kauth_cred_hold(l->l_cred);
1276 mutex_enter(p->p_lock);
1277 ocred = p->p_cred;
1278 p->p_cred = l->l_cred;
1279 mutex_exit(p->p_lock);
1280 kauth_cred_free(ocred);
1281 }
1282
1283 #if defined(__HAVE_RAS)
1284 /*
1285 * Remove all RASs from the address space.
1286 */
1287 ras_purgeall();
1288 #endif
1289
1290 doexechooks(p);
1291
1292 /* setup new registers and do misc. setup. */
1293 (*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack,
1294 (vaddr_t)stack);
1295 if (data->ed_pack.ep_esch->es_setregs)
1296 (*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack,
1297 (vaddr_t)stack);
1298
1299 /* Provide a consistent LWP private setting */
1300 (void)lwp_setprivate(l, NULL);
1301
1302 /* Discard all PCU state; need to start fresh */
1303 pcu_discard_all(l);
1304
1305 /* map the process's signal trampoline code */
1306 if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) {
1307 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1308 goto exec_abort;
1309 }
1310
1311 pool_put(&exec_pool, data->ed_argp);
1312
1313 /* notify others that we exec'd */
1314 KNOTE(&p->p_klist, NOTE_EXEC);
1315
1316 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1317
1318 SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0);
1319
1320 /* The emulation root will usually have been found when we looked
1321 * for the elf interpreter (or similar), if not look now. */
1322 if (data->ed_pack.ep_esch->es_emul->e_path != NULL &&
1323 data->ed_pack.ep_emul_root == NULL)
1324 emul_find_root(l, &data->ed_pack);
1325
1326 /* Any old emulation root got removed by fdcloseexec */
1327 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1328 p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root;
1329 rw_exit(&p->p_cwdi->cwdi_lock);
1330 data->ed_pack.ep_emul_root = NULL;
1331 if (data->ed_pack.ep_interp != NULL)
1332 vrele(data->ed_pack.ep_interp);
1333
1334 /*
1335 * Call emulation specific exec hook. This can setup per-process
1336 * p->p_emuldata or do any other per-process stuff an emulation needs.
1337 *
1338 * If we are executing process of different emulation than the
1339 * original forked process, call e_proc_exit() of the old emulation
1340 * first, then e_proc_exec() of new emulation. If the emulation is
1341 * same, the exec hook code should deallocate any old emulation
1342 * resources held previously by this process.
1343 */
1344 if (p->p_emul && p->p_emul->e_proc_exit
1345 && p->p_emul != data->ed_pack.ep_esch->es_emul)
1346 (*p->p_emul->e_proc_exit)(p);
1347
1348 /*
1349 * This is now LWP 1.
1350 */
1351 mutex_enter(p->p_lock);
1352 p->p_nlwpid = 1;
1353 l->l_lid = 1;
1354 mutex_exit(p->p_lock);
1355
1356 /*
1357 * Call exec hook. Emulation code may NOT store reference to anything
1358 * from &pack.
1359 */
1360 if (data->ed_pack.ep_esch->es_emul->e_proc_exec)
1361 (*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack);
1362
1363 /* update p_emul, the old value is no longer needed */
1364 p->p_emul = data->ed_pack.ep_esch->es_emul;
1365
1366 /* ...and the same for p_execsw */
1367 p->p_execsw = data->ed_pack.ep_esch;
1368
1369 #ifdef __HAVE_SYSCALL_INTERN
1370 (*p->p_emul->e_syscall_intern)(p);
1371 #endif
1372 ktremul();
1373
1374 /* Allow new references from the debugger/procfs. */
1375 rw_exit(&p->p_reflock);
1376 if (!no_local_exec_lock)
1377 rw_exit(&exec_lock);
1378
1379 mutex_enter(proc_lock);
1380
1381 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1382 KSI_INIT_EMPTY(&ksi);
1383 ksi.ksi_signo = SIGTRAP;
1384 ksi.ksi_lid = l->l_lid;
1385 kpsignal(p, &ksi, NULL);
1386 }
1387
1388 if (p->p_sflag & PS_STOPEXEC) {
1389 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1390 p->p_pptr->p_nstopchild++;
1391 p->p_pptr->p_waited = 0;
1392 mutex_enter(p->p_lock);
1393 ksiginfo_queue_init(&kq);
1394 sigclearall(p, &contsigmask, &kq);
1395 lwp_lock(l);
1396 l->l_stat = LSSTOP;
1397 p->p_stat = SSTOP;
1398 p->p_nrlwps--;
1399 lwp_unlock(l);
1400 mutex_exit(p->p_lock);
1401 mutex_exit(proc_lock);
1402 lwp_lock(l);
1403 mi_switch(l);
1404 ksiginfo_queue_drain(&kq);
1405 KERNEL_LOCK(l->l_biglocks, l);
1406 } else {
1407 mutex_exit(proc_lock);
1408 }
1409
1410 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1411 pathbuf_destroy(data->ed_pathbuf);
1412 PNBUF_PUT(data->ed_resolvedpathbuf);
1413 DPRINTF(("%s finished\n", __func__));
1414 return (EJUSTRETURN);
1415
1416 exec_abort:
1417 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1418 rw_exit(&p->p_reflock);
1419 if (!no_local_exec_lock)
1420 rw_exit(&exec_lock);
1421
1422 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1423 pathbuf_destroy(data->ed_pathbuf);
1424 PNBUF_PUT(data->ed_resolvedpathbuf);
1425
1426 /*
1427 * the old process doesn't exist anymore. exit gracefully.
1428 * get rid of the (new) address space we have created, if any, get rid
1429 * of our namei data and vnode, and exit noting failure
1430 */
1431 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1432 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1433
1434 exec_free_emul_arg(&data->ed_pack);
1435 pool_put(&exec_pool, data->ed_argp);
1436 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1437 if (data->ed_pack.ep_emul_root != NULL)
1438 vrele(data->ed_pack.ep_emul_root);
1439 if (data->ed_pack.ep_interp != NULL)
1440 vrele(data->ed_pack.ep_interp);
1441
1442 /* Acquire the sched-state mutex (exit1() will release it). */
1443 if (!is_spawn) {
1444 mutex_enter(p->p_lock);
1445 exit1(l, W_EXITCODE(error, SIGABRT));
1446 }
1447
1448 return error;
1449 }
1450
1451 int
1452 execve1(struct lwp *l, const char *path, char * const *args,
1453 char * const *envs, execve_fetch_element_t fetch_element)
1454 {
1455 struct execve_data data;
1456 int error;
1457
1458 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1459 if (error)
1460 return error;
1461 error = execve_runproc(l, &data, false, false);
1462 return error;
1463 }
1464
1465 int
1466 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1467 char **stackp, void *argp)
1468 {
1469 char **cpp, *dp, *sp;
1470 size_t len;
1471 void *nullp;
1472 long argc, envc;
1473 int error;
1474
1475 cpp = (char **)*stackp;
1476 nullp = NULL;
1477 argc = arginfo->ps_nargvstr;
1478 envc = arginfo->ps_nenvstr;
1479 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1480 COPYPRINTF("", cpp - 1, sizeof(argc));
1481 return error;
1482 }
1483
1484 dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1485 sp = argp;
1486
1487 /* XXX don't copy them out, remap them! */
1488 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1489
1490 for (; --argc >= 0; sp += len, dp += len) {
1491 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1492 COPYPRINTF("", cpp - 1, sizeof(dp));
1493 return error;
1494 }
1495 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1496 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1497 return error;
1498 }
1499 }
1500
1501 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1502 COPYPRINTF("", cpp - 1, sizeof(nullp));
1503 return error;
1504 }
1505
1506 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1507
1508 for (; --envc >= 0; sp += len, dp += len) {
1509 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1510 COPYPRINTF("", cpp - 1, sizeof(dp));
1511 return error;
1512 }
1513 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1514 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1515 return error;
1516 }
1517
1518 }
1519
1520 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1521 COPYPRINTF("", cpp - 1, sizeof(nullp));
1522 return error;
1523 }
1524
1525 *stackp = (char *)cpp;
1526 return 0;
1527 }
1528
1529
1530 /*
1531 * Add execsw[] entries.
1532 */
1533 int
1534 exec_add(struct execsw *esp, int count)
1535 {
1536 struct exec_entry *it;
1537 int i;
1538
1539 if (count == 0) {
1540 return 0;
1541 }
1542
1543 /* Check for duplicates. */
1544 rw_enter(&exec_lock, RW_WRITER);
1545 for (i = 0; i < count; i++) {
1546 LIST_FOREACH(it, &ex_head, ex_list) {
1547 /* assume unique (makecmds, probe_func, emulation) */
1548 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1549 it->ex_sw->u.elf_probe_func ==
1550 esp[i].u.elf_probe_func &&
1551 it->ex_sw->es_emul == esp[i].es_emul) {
1552 rw_exit(&exec_lock);
1553 return EEXIST;
1554 }
1555 }
1556 }
1557
1558 /* Allocate new entries. */
1559 for (i = 0; i < count; i++) {
1560 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1561 it->ex_sw = &esp[i];
1562 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1563 }
1564
1565 /* update execsw[] */
1566 exec_init(0);
1567 rw_exit(&exec_lock);
1568 return 0;
1569 }
1570
1571 /*
1572 * Remove execsw[] entry.
1573 */
1574 int
1575 exec_remove(struct execsw *esp, int count)
1576 {
1577 struct exec_entry *it, *next;
1578 int i;
1579 const struct proclist_desc *pd;
1580 proc_t *p;
1581
1582 if (count == 0) {
1583 return 0;
1584 }
1585
1586 /* Abort if any are busy. */
1587 rw_enter(&exec_lock, RW_WRITER);
1588 for (i = 0; i < count; i++) {
1589 mutex_enter(proc_lock);
1590 for (pd = proclists; pd->pd_list != NULL; pd++) {
1591 PROCLIST_FOREACH(p, pd->pd_list) {
1592 if (p->p_execsw == &esp[i]) {
1593 mutex_exit(proc_lock);
1594 rw_exit(&exec_lock);
1595 return EBUSY;
1596 }
1597 }
1598 }
1599 mutex_exit(proc_lock);
1600 }
1601
1602 /* None are busy, so remove them all. */
1603 for (i = 0; i < count; i++) {
1604 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1605 next = LIST_NEXT(it, ex_list);
1606 if (it->ex_sw == &esp[i]) {
1607 LIST_REMOVE(it, ex_list);
1608 kmem_free(it, sizeof(*it));
1609 break;
1610 }
1611 }
1612 }
1613
1614 /* update execsw[] */
1615 exec_init(0);
1616 rw_exit(&exec_lock);
1617 return 0;
1618 }
1619
1620 /*
1621 * Initialize exec structures. If init_boot is true, also does necessary
1622 * one-time initialization (it's called from main() that way).
1623 * Once system is multiuser, this should be called with exec_lock held,
1624 * i.e. via exec_{add|remove}().
1625 */
1626 int
1627 exec_init(int init_boot)
1628 {
1629 const struct execsw **sw;
1630 struct exec_entry *ex;
1631 SLIST_HEAD(,exec_entry) first;
1632 SLIST_HEAD(,exec_entry) any;
1633 SLIST_HEAD(,exec_entry) last;
1634 int i, sz;
1635
1636 if (init_boot) {
1637 /* do one-time initializations */
1638 rw_init(&exec_lock);
1639 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1640 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1641 "execargs", &exec_palloc, IPL_NONE);
1642 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1643 } else {
1644 KASSERT(rw_write_held(&exec_lock));
1645 }
1646
1647 /* Sort each entry onto the appropriate queue. */
1648 SLIST_INIT(&first);
1649 SLIST_INIT(&any);
1650 SLIST_INIT(&last);
1651 sz = 0;
1652 LIST_FOREACH(ex, &ex_head, ex_list) {
1653 switch(ex->ex_sw->es_prio) {
1654 case EXECSW_PRIO_FIRST:
1655 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1656 break;
1657 case EXECSW_PRIO_ANY:
1658 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1659 break;
1660 case EXECSW_PRIO_LAST:
1661 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1662 break;
1663 default:
1664 panic("%s", __func__);
1665 break;
1666 }
1667 sz++;
1668 }
1669
1670 /*
1671 * Create new execsw[]. Ensure we do not try a zero-sized
1672 * allocation.
1673 */
1674 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1675 i = 0;
1676 SLIST_FOREACH(ex, &first, ex_slist) {
1677 sw[i++] = ex->ex_sw;
1678 }
1679 SLIST_FOREACH(ex, &any, ex_slist) {
1680 sw[i++] = ex->ex_sw;
1681 }
1682 SLIST_FOREACH(ex, &last, ex_slist) {
1683 sw[i++] = ex->ex_sw;
1684 }
1685
1686 /* Replace old execsw[] and free used memory. */
1687 if (execsw != NULL) {
1688 kmem_free(__UNCONST(execsw),
1689 nexecs * sizeof(struct execsw *) + 1);
1690 }
1691 execsw = sw;
1692 nexecs = sz;
1693
1694 /* Figure out the maximum size of an exec header. */
1695 exec_maxhdrsz = sizeof(int);
1696 for (i = 0; i < nexecs; i++) {
1697 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1698 exec_maxhdrsz = execsw[i]->es_hdrsz;
1699 }
1700
1701 return 0;
1702 }
1703
1704 static int
1705 exec_sigcode_map(struct proc *p, const struct emul *e)
1706 {
1707 vaddr_t va;
1708 vsize_t sz;
1709 int error;
1710 struct uvm_object *uobj;
1711
1712 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1713
1714 if (e->e_sigobject == NULL || sz == 0) {
1715 return 0;
1716 }
1717
1718 /*
1719 * If we don't have a sigobject for this emulation, create one.
1720 *
1721 * sigobject is an anonymous memory object (just like SYSV shared
1722 * memory) that we keep a permanent reference to and that we map
1723 * in all processes that need this sigcode. The creation is simple,
1724 * we create an object, add a permanent reference to it, map it in
1725 * kernel space, copy out the sigcode to it and unmap it.
1726 * We map it with PROT_READ|PROT_EXEC into the process just
1727 * the way sys_mmap() would map it.
1728 */
1729
1730 uobj = *e->e_sigobject;
1731 if (uobj == NULL) {
1732 mutex_enter(&sigobject_lock);
1733 if ((uobj = *e->e_sigobject) == NULL) {
1734 uobj = uao_create(sz, 0);
1735 (*uobj->pgops->pgo_reference)(uobj);
1736 va = vm_map_min(kernel_map);
1737 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1738 uobj, 0, 0,
1739 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1740 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1741 printf("kernel mapping failed %d\n", error);
1742 (*uobj->pgops->pgo_detach)(uobj);
1743 mutex_exit(&sigobject_lock);
1744 return (error);
1745 }
1746 memcpy((void *)va, e->e_sigcode, sz);
1747 #ifdef PMAP_NEED_PROCWR
1748 pmap_procwr(&proc0, va, sz);
1749 #endif
1750 uvm_unmap(kernel_map, va, va + round_page(sz));
1751 *e->e_sigobject = uobj;
1752 }
1753 mutex_exit(&sigobject_lock);
1754 }
1755
1756 /* Just a hint to uvm_map where to put it. */
1757 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1758 round_page(sz));
1759
1760 #ifdef __alpha__
1761 /*
1762 * Tru64 puts /sbin/loader at the end of user virtual memory,
1763 * which causes the above calculation to put the sigcode at
1764 * an invalid address. Put it just below the text instead.
1765 */
1766 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1767 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1768 }
1769 #endif
1770
1771 (*uobj->pgops->pgo_reference)(uobj);
1772 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1773 uobj, 0, 0,
1774 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1775 UVM_ADV_RANDOM, 0));
1776 if (error) {
1777 DPRINTF(("%s, %d: map %p "
1778 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1779 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1780 va, error));
1781 (*uobj->pgops->pgo_detach)(uobj);
1782 return (error);
1783 }
1784 p->p_sigctx.ps_sigcode = (void *)va;
1785 return (0);
1786 }
1787
1788 /*
1789 * Release a refcount on spawn_exec_data and destroy memory, if this
1790 * was the last one.
1791 */
1792 static void
1793 spawn_exec_data_release(struct spawn_exec_data *data)
1794 {
1795 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1796 return;
1797
1798 cv_destroy(&data->sed_cv_child_ready);
1799 mutex_destroy(&data->sed_mtx_child);
1800
1801 if (data->sed_actions)
1802 posix_spawn_fa_free(data->sed_actions,
1803 data->sed_actions->len);
1804 if (data->sed_attrs)
1805 kmem_free(data->sed_attrs,
1806 sizeof(*data->sed_attrs));
1807 kmem_free(data, sizeof(*data));
1808 }
1809
1810 /*
1811 * A child lwp of a posix_spawn operation starts here and ends up in
1812 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1813 * manipulations in between.
1814 * The parent waits for the child, as it is not clear wether the child
1815 * will be able to aquire its own exec_lock. If it can, the parent can
1816 * be released early and continue running in parallel. If not (or if the
1817 * magic debug flag is passed in the scheduler attribute struct), the
1818 * child rides on the parent's exec lock untill it is ready to return to
1819 * to userland - and only then releases the parent. This method loses
1820 * concurrency, but improves error reporting.
1821 */
1822 static void
1823 spawn_return(void *arg)
1824 {
1825 struct spawn_exec_data *spawn_data = arg;
1826 struct lwp *l = curlwp;
1827 int error, newfd;
1828 size_t i;
1829 const struct posix_spawn_file_actions_entry *fae;
1830 pid_t ppid;
1831 register_t retval;
1832 bool have_reflock;
1833 bool parent_is_waiting = true;
1834
1835 /*
1836 * Check if we can release parent early.
1837 * We either need to have no sed_attrs, or sed_attrs does not
1838 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1839 * safe access to the parent proc (passed in sed_parent).
1840 * We then try to get the exec_lock, and only if that works, we can
1841 * release the parent here already.
1842 */
1843 ppid = spawn_data->sed_parent->p_pid;
1844 if ((!spawn_data->sed_attrs
1845 || (spawn_data->sed_attrs->sa_flags
1846 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1847 && rw_tryenter(&exec_lock, RW_READER)) {
1848 parent_is_waiting = false;
1849 mutex_enter(&spawn_data->sed_mtx_child);
1850 cv_signal(&spawn_data->sed_cv_child_ready);
1851 mutex_exit(&spawn_data->sed_mtx_child);
1852 }
1853
1854 /* don't allow debugger access yet */
1855 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1856 have_reflock = true;
1857
1858 error = 0;
1859 /* handle posix_spawn_file_actions */
1860 if (spawn_data->sed_actions != NULL) {
1861 for (i = 0; i < spawn_data->sed_actions->len; i++) {
1862 fae = &spawn_data->sed_actions->fae[i];
1863 switch (fae->fae_action) {
1864 case FAE_OPEN:
1865 if (fd_getfile(fae->fae_fildes) != NULL) {
1866 error = fd_close(fae->fae_fildes);
1867 if (error)
1868 break;
1869 }
1870 error = fd_open(fae->fae_path, fae->fae_oflag,
1871 fae->fae_mode, &newfd);
1872 if (error)
1873 break;
1874 if (newfd != fae->fae_fildes) {
1875 error = dodup(l, newfd,
1876 fae->fae_fildes, 0, &retval);
1877 if (fd_getfile(newfd) != NULL)
1878 fd_close(newfd);
1879 }
1880 break;
1881 case FAE_DUP2:
1882 error = dodup(l, fae->fae_fildes,
1883 fae->fae_newfildes, 0, &retval);
1884 break;
1885 case FAE_CLOSE:
1886 if (fd_getfile(fae->fae_fildes) == NULL) {
1887 error = EBADF;
1888 break;
1889 }
1890 error = fd_close(fae->fae_fildes);
1891 break;
1892 }
1893 if (error)
1894 goto report_error;
1895 }
1896 }
1897
1898 /* handle posix_spawnattr */
1899 if (spawn_data->sed_attrs != NULL) {
1900 struct sigaction sigact;
1901 sigact._sa_u._sa_handler = SIG_DFL;
1902 sigact.sa_flags = 0;
1903
1904 /*
1905 * set state to SSTOP so that this proc can be found by pid.
1906 * see proc_enterprp, do_sched_setparam below
1907 */
1908 l->l_proc->p_stat = SSTOP;
1909
1910 /* Set process group */
1911 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1912 pid_t mypid = l->l_proc->p_pid,
1913 pgrp = spawn_data->sed_attrs->sa_pgroup;
1914
1915 if (pgrp == 0)
1916 pgrp = mypid;
1917
1918 error = proc_enterpgrp(spawn_data->sed_parent,
1919 mypid, pgrp, false);
1920 if (error)
1921 goto report_error;
1922 }
1923
1924 /* Set scheduler policy */
1925 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1926 error = do_sched_setparam(l->l_proc->p_pid, 0,
1927 spawn_data->sed_attrs->sa_schedpolicy,
1928 &spawn_data->sed_attrs->sa_schedparam);
1929 else if (spawn_data->sed_attrs->sa_flags
1930 & POSIX_SPAWN_SETSCHEDPARAM) {
1931 error = do_sched_setparam(ppid, 0,
1932 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
1933 }
1934 if (error)
1935 goto report_error;
1936
1937 /* Reset user ID's */
1938 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
1939 error = do_setresuid(l, -1,
1940 kauth_cred_getgid(l->l_cred), -1,
1941 ID_E_EQ_R | ID_E_EQ_S);
1942 if (error)
1943 goto report_error;
1944 error = do_setresuid(l, -1,
1945 kauth_cred_getuid(l->l_cred), -1,
1946 ID_E_EQ_R | ID_E_EQ_S);
1947 if (error)
1948 goto report_error;
1949 }
1950
1951 /* Set signal masks/defaults */
1952 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
1953 mutex_enter(l->l_proc->p_lock);
1954 error = sigprocmask1(l, SIG_SETMASK,
1955 &spawn_data->sed_attrs->sa_sigmask, NULL);
1956 mutex_exit(l->l_proc->p_lock);
1957 if (error)
1958 goto report_error;
1959 }
1960
1961 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
1962 for (i = 1; i <= NSIG; i++) {
1963 if (sigismember(
1964 &spawn_data->sed_attrs->sa_sigdefault, i))
1965 sigaction1(l, i, &sigact, NULL, NULL,
1966 0);
1967 }
1968 }
1969 }
1970
1971 /* now do the real exec */
1972 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
1973 true);
1974 have_reflock = false;
1975 if (error == EJUSTRETURN)
1976 error = 0;
1977 else if (error)
1978 goto report_error;
1979
1980 if (parent_is_waiting) {
1981 mutex_enter(&spawn_data->sed_mtx_child);
1982 cv_signal(&spawn_data->sed_cv_child_ready);
1983 mutex_exit(&spawn_data->sed_mtx_child);
1984 }
1985
1986 /* release our refcount on the data */
1987 spawn_exec_data_release(spawn_data);
1988
1989 /* and finaly: leave to userland for the first time */
1990 cpu_spawn_return(l);
1991
1992 /* NOTREACHED */
1993 return;
1994
1995 report_error:
1996 if (have_reflock) {
1997 /*
1998 * We have not passed through execve_runproc(),
1999 * which would have released the p_reflock and also
2000 * taken ownership of the sed_exec part of spawn_data,
2001 * so release/free both here.
2002 */
2003 rw_exit(&l->l_proc->p_reflock);
2004 execve_free_data(&spawn_data->sed_exec);
2005 }
2006
2007 if (parent_is_waiting) {
2008 /* pass error to parent */
2009 mutex_enter(&spawn_data->sed_mtx_child);
2010 spawn_data->sed_error = error;
2011 cv_signal(&spawn_data->sed_cv_child_ready);
2012 mutex_exit(&spawn_data->sed_mtx_child);
2013 } else {
2014 rw_exit(&exec_lock);
2015 }
2016
2017 /* release our refcount on the data */
2018 spawn_exec_data_release(spawn_data);
2019
2020 /* done, exit */
2021 mutex_enter(l->l_proc->p_lock);
2022 /*
2023 * Posix explicitly asks for an exit code of 127 if we report
2024 * errors from the child process - so, unfortunately, there
2025 * is no way to report a more exact error code.
2026 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2027 * flag bit in the attrp argument to posix_spawn(2), see above.
2028 */
2029 exit1(l, W_EXITCODE(127, 0));
2030 }
2031
2032 void
2033 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2034 {
2035
2036 for (size_t i = 0; i < len; i++) {
2037 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2038 if (fae->fae_action != FAE_OPEN)
2039 continue;
2040 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2041 }
2042 if (fa->len > 0)
2043 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2044 kmem_free(fa, sizeof(*fa));
2045 }
2046
2047 static int
2048 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2049 const struct posix_spawn_file_actions *ufa)
2050 {
2051 struct posix_spawn_file_actions *fa;
2052 struct posix_spawn_file_actions_entry *fae;
2053 char *pbuf = NULL;
2054 int error;
2055 size_t i = 0;
2056
2057 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2058 error = copyin(ufa, fa, sizeof(*fa));
2059 if (error) {
2060 fa->fae = NULL;
2061 fa->len = 0;
2062 goto out;
2063 }
2064
2065 if (fa->len == 0) {
2066 kmem_free(fa, sizeof(*fa));
2067 return 0;
2068 }
2069
2070 fa->size = fa->len;
2071 size_t fal = fa->len * sizeof(*fae);
2072 fae = fa->fae;
2073 fa->fae = kmem_alloc(fal, KM_SLEEP);
2074 error = copyin(fae, fa->fae, fal);
2075 if (error)
2076 goto out;
2077
2078 pbuf = PNBUF_GET();
2079 for (; i < fa->len; i++) {
2080 fae = &fa->fae[i];
2081 if (fae->fae_action != FAE_OPEN)
2082 continue;
2083 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2084 if (error)
2085 goto out;
2086 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2087 memcpy(fae->fae_path, pbuf, fal);
2088 }
2089 PNBUF_PUT(pbuf);
2090
2091 *fap = fa;
2092 return 0;
2093 out:
2094 if (pbuf)
2095 PNBUF_PUT(pbuf);
2096 posix_spawn_fa_free(fa, i);
2097 return error;
2098 }
2099
2100 int
2101 check_posix_spawn(struct lwp *l1)
2102 {
2103 int error, tnprocs, count;
2104 uid_t uid;
2105 struct proc *p1;
2106
2107 p1 = l1->l_proc;
2108 uid = kauth_cred_getuid(l1->l_cred);
2109 tnprocs = atomic_inc_uint_nv(&nprocs);
2110
2111 /*
2112 * Although process entries are dynamically created, we still keep
2113 * a global limit on the maximum number we will create.
2114 */
2115 if (__predict_false(tnprocs >= maxproc))
2116 error = -1;
2117 else
2118 error = kauth_authorize_process(l1->l_cred,
2119 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2120
2121 if (error) {
2122 atomic_dec_uint(&nprocs);
2123 return EAGAIN;
2124 }
2125
2126 /*
2127 * Enforce limits.
2128 */
2129 count = chgproccnt(uid, 1);
2130 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2131 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2132 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2133 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2134 (void)chgproccnt(uid, -1);
2135 atomic_dec_uint(&nprocs);
2136 return EAGAIN;
2137 }
2138
2139 return 0;
2140 }
2141
2142 int
2143 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2144 struct posix_spawn_file_actions *fa,
2145 struct posix_spawnattr *sa,
2146 char *const *argv, char *const *envp,
2147 execve_fetch_element_t fetch)
2148 {
2149
2150 struct proc *p1, *p2;
2151 struct lwp *l2;
2152 int error;
2153 struct spawn_exec_data *spawn_data;
2154 vaddr_t uaddr;
2155 pid_t pid;
2156 bool have_exec_lock = false;
2157
2158 p1 = l1->l_proc;
2159
2160 /* Allocate and init spawn_data */
2161 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2162 spawn_data->sed_refcnt = 1; /* only parent so far */
2163 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2164 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2165 mutex_enter(&spawn_data->sed_mtx_child);
2166
2167 /*
2168 * Do the first part of the exec now, collect state
2169 * in spawn_data.
2170 */
2171 error = execve_loadvm(l1, path, argv,
2172 envp, fetch, &spawn_data->sed_exec);
2173 if (error == EJUSTRETURN)
2174 error = 0;
2175 else if (error)
2176 goto error_exit;
2177
2178 have_exec_lock = true;
2179
2180 /*
2181 * Allocate virtual address space for the U-area now, while it
2182 * is still easy to abort the fork operation if we're out of
2183 * kernel virtual address space.
2184 */
2185 uaddr = uvm_uarea_alloc();
2186 if (__predict_false(uaddr == 0)) {
2187 error = ENOMEM;
2188 goto error_exit;
2189 }
2190
2191 /*
2192 * Allocate new proc. Borrow proc0 vmspace for it, we will
2193 * replace it with its own before returning to userland
2194 * in the child.
2195 * This is a point of no return, we will have to go through
2196 * the child proc to properly clean it up past this point.
2197 */
2198 p2 = proc_alloc();
2199 pid = p2->p_pid;
2200
2201 /*
2202 * Make a proc table entry for the new process.
2203 * Start by zeroing the section of proc that is zero-initialized,
2204 * then copy the section that is copied directly from the parent.
2205 */
2206 memset(&p2->p_startzero, 0,
2207 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2208 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2209 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2210 p2->p_vmspace = proc0.p_vmspace;
2211
2212 CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
2213
2214 LIST_INIT(&p2->p_lwps);
2215 LIST_INIT(&p2->p_sigwaiters);
2216
2217 /*
2218 * Duplicate sub-structures as needed.
2219 * Increase reference counts on shared objects.
2220 * Inherit flags we want to keep. The flags related to SIGCHLD
2221 * handling are important in order to keep a consistent behaviour
2222 * for the child after the fork. If we are a 32-bit process, the
2223 * child will be too.
2224 */
2225 p2->p_flag =
2226 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2227 p2->p_emul = p1->p_emul;
2228 p2->p_execsw = p1->p_execsw;
2229
2230 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2231 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2232 rw_init(&p2->p_reflock);
2233 cv_init(&p2->p_waitcv, "wait");
2234 cv_init(&p2->p_lwpcv, "lwpwait");
2235
2236 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2237
2238 kauth_proc_fork(p1, p2);
2239
2240 p2->p_raslist = NULL;
2241 p2->p_fd = fd_copy();
2242
2243 /* XXX racy */
2244 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2245
2246 p2->p_cwdi = cwdinit();
2247
2248 /*
2249 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2250 * we just need increase pl_refcnt.
2251 */
2252 if (!p1->p_limit->pl_writeable) {
2253 lim_addref(p1->p_limit);
2254 p2->p_limit = p1->p_limit;
2255 } else {
2256 p2->p_limit = lim_copy(p1->p_limit);
2257 }
2258
2259 p2->p_lflag = 0;
2260 p2->p_sflag = 0;
2261 p2->p_slflag = 0;
2262 p2->p_pptr = p1;
2263 p2->p_ppid = p1->p_pid;
2264 LIST_INIT(&p2->p_children);
2265
2266 p2->p_aio = NULL;
2267
2268 #ifdef KTRACE
2269 /*
2270 * Copy traceflag and tracefile if enabled.
2271 * If not inherited, these were zeroed above.
2272 */
2273 if (p1->p_traceflag & KTRFAC_INHERIT) {
2274 mutex_enter(&ktrace_lock);
2275 p2->p_traceflag = p1->p_traceflag;
2276 if ((p2->p_tracep = p1->p_tracep) != NULL)
2277 ktradref(p2);
2278 mutex_exit(&ktrace_lock);
2279 }
2280 #endif
2281
2282 /*
2283 * Create signal actions for the child process.
2284 */
2285 p2->p_sigacts = sigactsinit(p1, 0);
2286 mutex_enter(p1->p_lock);
2287 p2->p_sflag |=
2288 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2289 sched_proc_fork(p1, p2);
2290 mutex_exit(p1->p_lock);
2291
2292 p2->p_stflag = p1->p_stflag;
2293
2294 /*
2295 * p_stats.
2296 * Copy parts of p_stats, and zero out the rest.
2297 */
2298 p2->p_stats = pstatscopy(p1->p_stats);
2299
2300 /* copy over machdep flags to the new proc */
2301 cpu_proc_fork(p1, p2);
2302
2303 /*
2304 * Prepare remaining parts of spawn data
2305 */
2306 spawn_data->sed_actions = fa;
2307 spawn_data->sed_attrs = sa;
2308
2309 spawn_data->sed_parent = p1;
2310
2311 /* create LWP */
2312 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2313 &l2, l1->l_class);
2314 l2->l_ctxlink = NULL; /* reset ucontext link */
2315
2316 /*
2317 * Copy the credential so other references don't see our changes.
2318 * Test to see if this is necessary first, since in the common case
2319 * we won't need a private reference.
2320 */
2321 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2322 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2323 l2->l_cred = kauth_cred_copy(l2->l_cred);
2324 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2325 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2326 }
2327
2328 /* Update the master credentials. */
2329 if (l2->l_cred != p2->p_cred) {
2330 kauth_cred_t ocred;
2331
2332 kauth_cred_hold(l2->l_cred);
2333 mutex_enter(p2->p_lock);
2334 ocred = p2->p_cred;
2335 p2->p_cred = l2->l_cred;
2336 mutex_exit(p2->p_lock);
2337 kauth_cred_free(ocred);
2338 }
2339
2340 *child_ok = true;
2341 spawn_data->sed_refcnt = 2; /* child gets it as well */
2342 #if 0
2343 l2->l_nopreempt = 1; /* start it non-preemptable */
2344 #endif
2345
2346 /*
2347 * It's now safe for the scheduler and other processes to see the
2348 * child process.
2349 */
2350 mutex_enter(proc_lock);
2351
2352 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2353 p2->p_lflag |= PL_CONTROLT;
2354
2355 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2356 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2357
2358 LIST_INSERT_AFTER(p1, p2, p_pglist);
2359 LIST_INSERT_HEAD(&allproc, p2, p_list);
2360
2361 p2->p_trace_enabled = trace_is_enabled(p2);
2362 #ifdef __HAVE_SYSCALL_INTERN
2363 (*p2->p_emul->e_syscall_intern)(p2);
2364 #endif
2365
2366 /*
2367 * Make child runnable, set start time, and add to run queue except
2368 * if the parent requested the child to start in SSTOP state.
2369 */
2370 mutex_enter(p2->p_lock);
2371
2372 getmicrotime(&p2->p_stats->p_start);
2373
2374 lwp_lock(l2);
2375 KASSERT(p2->p_nrlwps == 1);
2376 p2->p_nrlwps = 1;
2377 p2->p_stat = SACTIVE;
2378 l2->l_stat = LSRUN;
2379 sched_enqueue(l2, false);
2380 lwp_unlock(l2);
2381
2382 mutex_exit(p2->p_lock);
2383 mutex_exit(proc_lock);
2384
2385 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2386 error = spawn_data->sed_error;
2387 mutex_exit(&spawn_data->sed_mtx_child);
2388 spawn_exec_data_release(spawn_data);
2389
2390 rw_exit(&p1->p_reflock);
2391 rw_exit(&exec_lock);
2392 have_exec_lock = false;
2393
2394 *pid_res = pid;
2395 return error;
2396
2397 error_exit:
2398 if (have_exec_lock) {
2399 execve_free_data(&spawn_data->sed_exec);
2400 rw_exit(&p1->p_reflock);
2401 rw_exit(&exec_lock);
2402 }
2403 mutex_exit(&spawn_data->sed_mtx_child);
2404 spawn_exec_data_release(spawn_data);
2405
2406 return error;
2407 }
2408
2409 int
2410 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2411 register_t *retval)
2412 {
2413 /* {
2414 syscallarg(pid_t *) pid;
2415 syscallarg(const char *) path;
2416 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2417 syscallarg(const struct posix_spawnattr *) attrp;
2418 syscallarg(char *const *) argv;
2419 syscallarg(char *const *) envp;
2420 } */
2421
2422 int error;
2423 struct posix_spawn_file_actions *fa = NULL;
2424 struct posix_spawnattr *sa = NULL;
2425 pid_t pid;
2426 bool child_ok = false;
2427
2428 error = check_posix_spawn(l1);
2429 if (error) {
2430 *retval = error;
2431 return 0;
2432 }
2433
2434 /* copy in file_actions struct */
2435 if (SCARG(uap, file_actions) != NULL) {
2436 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions));
2437 if (error)
2438 goto error_exit;
2439 }
2440
2441 /* copyin posix_spawnattr struct */
2442 if (SCARG(uap, attrp) != NULL) {
2443 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2444 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2445 if (error)
2446 goto error_exit;
2447 }
2448
2449 /*
2450 * Do the spawn
2451 */
2452 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2453 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2454 if (error)
2455 goto error_exit;
2456
2457 if (error == 0 && SCARG(uap, pid) != NULL)
2458 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2459
2460 *retval = error;
2461 return 0;
2462
2463 error_exit:
2464 if (!child_ok) {
2465 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2466 atomic_dec_uint(&nprocs);
2467
2468 if (sa)
2469 kmem_free(sa, sizeof(*sa));
2470 if (fa)
2471 posix_spawn_fa_free(fa, fa->len);
2472 }
2473
2474 *retval = error;
2475 return 0;
2476 }
2477
2478 void
2479 exec_free_emul_arg(struct exec_package *epp)
2480 {
2481 if (epp->ep_emul_arg_free != NULL) {
2482 KASSERT(epp->ep_emul_arg != NULL);
2483 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2484 epp->ep_emul_arg_free = NULL;
2485 epp->ep_emul_arg = NULL;
2486 } else {
2487 KASSERT(epp->ep_emul_arg == NULL);
2488 }
2489 }
2490