Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.354
      1 /*	$NetBSD: kern_exec.c,v 1.354 2012/07/27 20:52:49 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     31  * Copyright (C) 1992 Wolfgang Solfrank.
     32  * Copyright (C) 1992 TooLs GmbH.
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by TooLs GmbH.
     46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.354 2012/07/27 20:52:49 christos Exp $");
     63 
     64 #include "opt_exec.h"
     65 #include "opt_ktrace.h"
     66 #include "opt_modular.h"
     67 #include "opt_syscall_debug.h"
     68 #include "veriexec.h"
     69 #include "opt_pax.h"
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/filedesc.h>
     74 #include <sys/kernel.h>
     75 #include <sys/proc.h>
     76 #include <sys/mount.h>
     77 #include <sys/malloc.h>
     78 #include <sys/kmem.h>
     79 #include <sys/namei.h>
     80 #include <sys/vnode.h>
     81 #include <sys/file.h>
     82 #include <sys/acct.h>
     83 #include <sys/atomic.h>
     84 #include <sys/exec.h>
     85 #include <sys/ktrace.h>
     86 #include <sys/uidinfo.h>
     87 #include <sys/wait.h>
     88 #include <sys/mman.h>
     89 #include <sys/ras.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/stat.h>
     92 #include <sys/syscall.h>
     93 #include <sys/kauth.h>
     94 #include <sys/lwpctl.h>
     95 #include <sys/pax.h>
     96 #include <sys/cpu.h>
     97 #include <sys/module.h>
     98 #include <sys/syscallvar.h>
     99 #include <sys/syscallargs.h>
    100 #if NVERIEXEC > 0
    101 #include <sys/verified_exec.h>
    102 #endif /* NVERIEXEC > 0 */
    103 #include <sys/sdt.h>
    104 #include <sys/spawn.h>
    105 #include <sys/prot.h>
    106 #include <sys/cprng.h>
    107 
    108 #include <uvm/uvm_extern.h>
    109 
    110 #include <machine/reg.h>
    111 
    112 #include <compat/common/compat_util.h>
    113 
    114 static int exec_sigcode_map(struct proc *, const struct emul *);
    115 
    116 #ifdef DEBUG_EXEC
    117 #define DPRINTF(a) printf a
    118 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    119     __LINE__, (s), (a), (b))
    120 #else
    121 #define DPRINTF(a)
    122 #define COPYPRINTF(s, a, b)
    123 #endif /* DEBUG_EXEC */
    124 
    125 /*
    126  * DTrace SDT provider definitions
    127  */
    128 SDT_PROBE_DEFINE(proc,,,exec,
    129 	    "char *", NULL,
    130 	    NULL, NULL, NULL, NULL,
    131 	    NULL, NULL, NULL, NULL);
    132 SDT_PROBE_DEFINE(proc,,,exec_success,
    133 	    "char *", NULL,
    134 	    NULL, NULL, NULL, NULL,
    135 	    NULL, NULL, NULL, NULL);
    136 SDT_PROBE_DEFINE(proc,,,exec_failure,
    137 	    "int", NULL,
    138 	    NULL, NULL, NULL, NULL,
    139 	    NULL, NULL, NULL, NULL);
    140 
    141 /*
    142  * Exec function switch:
    143  *
    144  * Note that each makecmds function is responsible for loading the
    145  * exec package with the necessary functions for any exec-type-specific
    146  * handling.
    147  *
    148  * Functions for specific exec types should be defined in their own
    149  * header file.
    150  */
    151 static const struct execsw	**execsw = NULL;
    152 static int			nexecs;
    153 
    154 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    155 
    156 /* list of dynamically loaded execsw entries */
    157 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    158     LIST_HEAD_INITIALIZER(ex_head);
    159 struct exec_entry {
    160 	LIST_ENTRY(exec_entry)	ex_list;
    161 	SLIST_ENTRY(exec_entry)	ex_slist;
    162 	const struct execsw	*ex_sw;
    163 };
    164 
    165 #ifndef __HAVE_SYSCALL_INTERN
    166 void	syscall(void);
    167 #endif
    168 
    169 /* NetBSD emul struct */
    170 struct emul emul_netbsd = {
    171 	.e_name =		"netbsd",
    172 	.e_path =		NULL,
    173 #ifndef __HAVE_MINIMAL_EMUL
    174 	.e_flags =		EMUL_HAS_SYS___syscall,
    175 	.e_errno =		NULL,
    176 	.e_nosys =		SYS_syscall,
    177 	.e_nsysent =		SYS_NSYSENT,
    178 #endif
    179 	.e_sysent =		sysent,
    180 #ifdef SYSCALL_DEBUG
    181 	.e_syscallnames =	syscallnames,
    182 #else
    183 	.e_syscallnames =	NULL,
    184 #endif
    185 	.e_sendsig =		sendsig,
    186 	.e_trapsignal =		trapsignal,
    187 	.e_tracesig =		NULL,
    188 	.e_sigcode =		NULL,
    189 	.e_esigcode =		NULL,
    190 	.e_sigobject =		NULL,
    191 	.e_setregs =		setregs,
    192 	.e_proc_exec =		NULL,
    193 	.e_proc_fork =		NULL,
    194 	.e_proc_exit =		NULL,
    195 	.e_lwp_fork =		NULL,
    196 	.e_lwp_exit =		NULL,
    197 #ifdef __HAVE_SYSCALL_INTERN
    198 	.e_syscall_intern =	syscall_intern,
    199 #else
    200 	.e_syscall =		syscall,
    201 #endif
    202 	.e_sysctlovly =		NULL,
    203 	.e_fault =		NULL,
    204 	.e_vm_default_addr =	uvm_default_mapaddr,
    205 	.e_usertrap =		NULL,
    206 	.e_ucsize =		sizeof(ucontext_t),
    207 	.e_startlwp =		startlwp
    208 };
    209 
    210 /*
    211  * Exec lock. Used to control access to execsw[] structures.
    212  * This must not be static so that netbsd32 can access it, too.
    213  */
    214 krwlock_t exec_lock;
    215 
    216 static kmutex_t sigobject_lock;
    217 
    218 /*
    219  * Data used between a loadvm and execve part of an "exec" operation
    220  */
    221 struct execve_data {
    222 	struct exec_package	ed_pack;
    223 	struct pathbuf		*ed_pathbuf;
    224 	struct vattr		ed_attr;
    225 	struct ps_strings	ed_arginfo;
    226 	char			*ed_argp;
    227 	const char		*ed_pathstring;
    228 	char			*ed_resolvedpathbuf;
    229 	size_t			ed_ps_strings_sz;
    230 	int			ed_szsigcode;
    231 	long			ed_argc;
    232 	long			ed_envc;
    233 };
    234 
    235 /*
    236  * data passed from parent lwp to child during a posix_spawn()
    237  */
    238 struct spawn_exec_data {
    239 	struct execve_data	sed_exec;
    240 	struct posix_spawn_file_actions
    241 				*sed_actions;
    242 	struct posix_spawnattr	*sed_attrs;
    243 	struct proc		*sed_parent;
    244 	kcondvar_t		sed_cv_child_ready;
    245 	kmutex_t		sed_mtx_child;
    246 	int			sed_error;
    247 	volatile uint32_t	sed_refcnt;
    248 };
    249 
    250 static void *
    251 exec_pool_alloc(struct pool *pp, int flags)
    252 {
    253 
    254 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
    255 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    256 }
    257 
    258 static void
    259 exec_pool_free(struct pool *pp, void *addr)
    260 {
    261 
    262 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    263 }
    264 
    265 static struct pool exec_pool;
    266 
    267 static struct pool_allocator exec_palloc = {
    268 	.pa_alloc = exec_pool_alloc,
    269 	.pa_free = exec_pool_free,
    270 	.pa_pagesz = NCARGS
    271 };
    272 
    273 /*
    274  * check exec:
    275  * given an "executable" described in the exec package's namei info,
    276  * see what we can do with it.
    277  *
    278  * ON ENTRY:
    279  *	exec package with appropriate namei info
    280  *	lwp pointer of exec'ing lwp
    281  *	NO SELF-LOCKED VNODES
    282  *
    283  * ON EXIT:
    284  *	error:	nothing held, etc.  exec header still allocated.
    285  *	ok:	filled exec package, executable's vnode (unlocked).
    286  *
    287  * EXEC SWITCH ENTRY:
    288  * 	Locked vnode to check, exec package, proc.
    289  *
    290  * EXEC SWITCH EXIT:
    291  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    292  *	error:	destructive:
    293  *			everything deallocated execept exec header.
    294  *		non-destructive:
    295  *			error code, executable's vnode (unlocked),
    296  *			exec header unmodified.
    297  */
    298 int
    299 /*ARGSUSED*/
    300 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
    301 {
    302 	int		error, i;
    303 	struct vnode	*vp;
    304 	struct nameidata nd;
    305 	size_t		resid;
    306 
    307 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    308 
    309 	/* first get the vnode */
    310 	if ((error = namei(&nd)) != 0)
    311 		return error;
    312 	epp->ep_vp = vp = nd.ni_vp;
    313 	/* this cannot overflow as both are size PATH_MAX */
    314 	strcpy(epp->ep_resolvedname, nd.ni_pnbuf);
    315 
    316 #ifdef DIAGNOSTIC
    317 	/* paranoia (take this out once namei stuff stabilizes) */
    318 	memset(nd.ni_pnbuf, '~', PATH_MAX);
    319 #endif
    320 
    321 	/* check access and type */
    322 	if (vp->v_type != VREG) {
    323 		error = EACCES;
    324 		goto bad1;
    325 	}
    326 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    327 		goto bad1;
    328 
    329 	/* get attributes */
    330 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    331 		goto bad1;
    332 
    333 	/* Check mount point */
    334 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    335 		error = EACCES;
    336 		goto bad1;
    337 	}
    338 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    339 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    340 
    341 	/* try to open it */
    342 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    343 		goto bad1;
    344 
    345 	/* unlock vp, since we need it unlocked from here on out. */
    346 	VOP_UNLOCK(vp);
    347 
    348 #if NVERIEXEC > 0
    349 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
    350 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    351 	    NULL);
    352 	if (error)
    353 		goto bad2;
    354 #endif /* NVERIEXEC > 0 */
    355 
    356 #ifdef PAX_SEGVGUARD
    357 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    358 	if (error)
    359 		goto bad2;
    360 #endif /* PAX_SEGVGUARD */
    361 
    362 	/* now we have the file, get the exec header */
    363 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    364 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
    365 	if (error)
    366 		goto bad2;
    367 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    368 
    369 	/*
    370 	 * Set up default address space limits.  Can be overridden
    371 	 * by individual exec packages.
    372 	 *
    373 	 * XXX probably should be all done in the exec packages.
    374 	 */
    375 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
    376 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    377 	/*
    378 	 * set up the vmcmds for creation of the process
    379 	 * address space
    380 	 */
    381 	error = ENOEXEC;
    382 	for (i = 0; i < nexecs; i++) {
    383 		int newerror;
    384 
    385 		epp->ep_esch = execsw[i];
    386 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    387 
    388 		if (!newerror) {
    389 			/* Seems ok: check that entry point is not too high */
    390 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
    391 #ifdef DIAGNOSTIC
    392 				printf("%s: rejecting %p due to "
    393 				    "too high entry address (> %p)\n",
    394 					 __func__, (void *)epp->ep_entry,
    395 					 (void *)epp->ep_vm_maxaddr);
    396 #endif
    397 				error = ENOEXEC;
    398 				break;
    399 			}
    400 			/* Seems ok: check that entry point is not too low */
    401 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    402 #ifdef DIAGNOSTIC
    403 				printf("%s: rejecting %p due to "
    404 				    "too low entry address (< %p)\n",
    405 				     __func__, (void *)epp->ep_entry,
    406 				     (void *)epp->ep_vm_minaddr);
    407 #endif
    408 				error = ENOEXEC;
    409 				break;
    410 			}
    411 
    412 			/* check limits */
    413 			if ((epp->ep_tsize > MAXTSIZ) ||
    414 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    415 						    [RLIMIT_DATA].rlim_cur)) {
    416 #ifdef DIAGNOSTIC
    417 				printf("%s: rejecting due to "
    418 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    419 				    __func__,
    420 				    (unsigned long long)epp->ep_tsize,
    421 				    (unsigned long long)MAXTSIZ,
    422 				    (unsigned long long)epp->ep_dsize,
    423 				    (unsigned long long)
    424 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    425 #endif
    426 				error = ENOMEM;
    427 				break;
    428 			}
    429 			return 0;
    430 		}
    431 
    432 		if (epp->ep_emul_root != NULL) {
    433 			vrele(epp->ep_emul_root);
    434 			epp->ep_emul_root = NULL;
    435 		}
    436 		if (epp->ep_interp != NULL) {
    437 			vrele(epp->ep_interp);
    438 			epp->ep_interp = NULL;
    439 		}
    440 
    441 		/* make sure the first "interesting" error code is saved. */
    442 		if (error == ENOEXEC)
    443 			error = newerror;
    444 
    445 		if (epp->ep_flags & EXEC_DESTR)
    446 			/* Error from "#!" code, tidied up by recursive call */
    447 			return error;
    448 	}
    449 
    450 	/* not found, error */
    451 
    452 	/*
    453 	 * free any vmspace-creation commands,
    454 	 * and release their references
    455 	 */
    456 	kill_vmcmds(&epp->ep_vmcmds);
    457 
    458 bad2:
    459 	/*
    460 	 * close and release the vnode, restore the old one, free the
    461 	 * pathname buf, and punt.
    462 	 */
    463 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    464 	VOP_CLOSE(vp, FREAD, l->l_cred);
    465 	vput(vp);
    466 	return error;
    467 
    468 bad1:
    469 	/*
    470 	 * free the namei pathname buffer, and put the vnode
    471 	 * (which we don't yet have open).
    472 	 */
    473 	vput(vp);				/* was still locked */
    474 	return error;
    475 }
    476 
    477 #ifdef __MACHINE_STACK_GROWS_UP
    478 #define STACK_PTHREADSPACE NBPG
    479 #else
    480 #define STACK_PTHREADSPACE 0
    481 #endif
    482 
    483 static int
    484 execve_fetch_element(char * const *array, size_t index, char **value)
    485 {
    486 	return copyin(array + index, value, sizeof(*value));
    487 }
    488 
    489 /*
    490  * exec system call
    491  */
    492 int
    493 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    494 {
    495 	/* {
    496 		syscallarg(const char *)	path;
    497 		syscallarg(char * const *)	argp;
    498 		syscallarg(char * const *)	envp;
    499 	} */
    500 
    501 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
    502 	    SCARG(uap, envp), execve_fetch_element);
    503 }
    504 
    505 int
    506 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    507     register_t *retval)
    508 {
    509 	/* {
    510 		syscallarg(int)			fd;
    511 		syscallarg(char * const *)	argp;
    512 		syscallarg(char * const *)	envp;
    513 	} */
    514 
    515 	return ENOSYS;
    516 }
    517 
    518 /*
    519  * Load modules to try and execute an image that we do not understand.
    520  * If no execsw entries are present, we load those likely to be needed
    521  * in order to run native images only.  Otherwise, we autoload all
    522  * possible modules that could let us run the binary.  XXX lame
    523  */
    524 static void
    525 exec_autoload(void)
    526 {
    527 #ifdef MODULAR
    528 	static const char * const native[] = {
    529 		"exec_elf32",
    530 		"exec_elf64",
    531 		"exec_script",
    532 		NULL
    533 	};
    534 	static const char * const compat[] = {
    535 		"exec_elf32",
    536 		"exec_elf64",
    537 		"exec_script",
    538 		"exec_aout",
    539 		"exec_coff",
    540 		"exec_ecoff",
    541 		"compat_aoutm68k",
    542 		"compat_freebsd",
    543 		"compat_ibcs2",
    544 		"compat_linux",
    545 		"compat_linux32",
    546 		"compat_netbsd32",
    547 		"compat_sunos",
    548 		"compat_sunos32",
    549 		"compat_svr4",
    550 		"compat_svr4_32",
    551 		"compat_ultrix",
    552 		NULL
    553 	};
    554 	char const * const *list;
    555 	int i;
    556 
    557 	list = (nexecs == 0 ? native : compat);
    558 	for (i = 0; list[i] != NULL; i++) {
    559 		if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) {
    560 		    	continue;
    561 		}
    562 	   	yield();
    563 	}
    564 #endif
    565 }
    566 
    567 static int
    568 execve_loadvm(struct lwp *l, const char *path, char * const *args,
    569 	char * const *envs, execve_fetch_element_t fetch_element,
    570 	struct execve_data * restrict data)
    571 {
    572 	int			error;
    573 	struct proc		*p;
    574 	char			*dp, *sp;
    575 	size_t			i, len;
    576 	struct exec_fakearg	*tmpfap;
    577 	u_int			modgen;
    578 
    579 	KASSERT(data != NULL);
    580 
    581 	p = l->l_proc;
    582  	modgen = 0;
    583 
    584 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
    585 
    586 	/*
    587 	 * Check if we have exceeded our number of processes limit.
    588 	 * This is so that we handle the case where a root daemon
    589 	 * forked, ran setuid to become the desired user and is trying
    590 	 * to exec. The obvious place to do the reference counting check
    591 	 * is setuid(), but we don't do the reference counting check there
    592 	 * like other OS's do because then all the programs that use setuid()
    593 	 * must be modified to check the return code of setuid() and exit().
    594 	 * It is dangerous to make setuid() fail, because it fails open and
    595 	 * the program will continue to run as root. If we make it succeed
    596 	 * and return an error code, again we are not enforcing the limit.
    597 	 * The best place to enforce the limit is here, when the process tries
    598 	 * to execute a new image, because eventually the process will need
    599 	 * to call exec in order to do something useful.
    600 	 */
    601  retry:
    602 	if (p->p_flag & PK_SUGID) {
    603 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    604 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    605 		     &p->p_rlimit[RLIMIT_NPROC],
    606 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    607 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    608 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    609 		return EAGAIN;
    610 	}
    611 
    612 	/*
    613 	 * Drain existing references and forbid new ones.  The process
    614 	 * should be left alone until we're done here.  This is necessary
    615 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    616 	 * a local user to illicitly obtain elevated privileges.
    617 	 */
    618 	rw_enter(&p->p_reflock, RW_WRITER);
    619 
    620 	/*
    621 	 * Init the namei data to point the file user's program name.
    622 	 * This is done here rather than in check_exec(), so that it's
    623 	 * possible to override this settings if any of makecmd/probe
    624 	 * functions call check_exec() recursively - for example,
    625 	 * see exec_script_makecmds().
    626 	 */
    627 	error = pathbuf_copyin(path, &data->ed_pathbuf);
    628 	if (error) {
    629 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
    630 		    path, error));
    631 		goto clrflg;
    632 	}
    633 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    634 
    635 	data->ed_resolvedpathbuf = PNBUF_GET();
    636 #ifdef DIAGNOSTIC
    637 	strcpy(data->ed_resolvedpathbuf, "/wrong");
    638 #endif
    639 
    640 	/*
    641 	 * initialize the fields of the exec package.
    642 	 */
    643 	data->ed_pack.ep_name = path;
    644 	data->ed_pack.ep_kname = data->ed_pathstring;
    645 	data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf;
    646 	data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    647 	data->ed_pack.ep_hdrlen = exec_maxhdrsz;
    648 	data->ed_pack.ep_hdrvalid = 0;
    649 	data->ed_pack.ep_emul_arg = NULL;
    650 	data->ed_pack.ep_emul_arg_free = NULL;
    651 	data->ed_pack.ep_vmcmds.evs_cnt = 0;
    652 	data->ed_pack.ep_vmcmds.evs_used = 0;
    653 	data->ed_pack.ep_vap = &data->ed_attr;
    654 	data->ed_pack.ep_flags = 0;
    655 	data->ed_pack.ep_emul_root = NULL;
    656 	data->ed_pack.ep_interp = NULL;
    657 	data->ed_pack.ep_esch = NULL;
    658 	data->ed_pack.ep_pax_flags = 0;
    659 
    660 	rw_enter(&exec_lock, RW_READER);
    661 
    662 	/* see if we can run it. */
    663 	if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) {
    664 		if (error != ENOENT) {
    665 			DPRINTF(("%s: check exec failed %d\n",
    666 			    __func__, error));
    667 		}
    668 		goto freehdr;
    669 	}
    670 
    671 	/* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
    672 
    673 	/* allocate an argument buffer */
    674 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    675 	KASSERT(data->ed_argp != NULL);
    676 	dp = data->ed_argp;
    677 	data->ed_argc = 0;
    678 
    679 	/* copy the fake args list, if there's one, freeing it as we go */
    680 	if (data->ed_pack.ep_flags & EXEC_HASARGL) {
    681 		tmpfap = data->ed_pack.ep_fa;
    682 		while (tmpfap->fa_arg != NULL) {
    683 			const char *cp;
    684 
    685 			cp = tmpfap->fa_arg;
    686 			while (*cp)
    687 				*dp++ = *cp++;
    688 			*dp++ = '\0';
    689 			ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
    690 
    691 			kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
    692 			tmpfap++; data->ed_argc++;
    693 		}
    694 		kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len);
    695 		data->ed_pack.ep_flags &= ~EXEC_HASARGL;
    696 	}
    697 
    698 	/* Now get argv & environment */
    699 	if (args == NULL) {
    700 		DPRINTF(("%s: null args\n", __func__));
    701 		error = EINVAL;
    702 		goto bad;
    703 	}
    704 	/* 'i' will index the argp/envp element to be retrieved */
    705 	i = 0;
    706 	if (data->ed_pack.ep_flags & EXEC_SKIPARG)
    707 		i++;
    708 
    709 	while (1) {
    710 		len = data->ed_argp + ARG_MAX - dp;
    711 		if ((error = (*fetch_element)(args, i, &sp)) != 0) {
    712 			DPRINTF(("%s: fetch_element args %d\n",
    713 			    __func__, error));
    714 			goto bad;
    715 		}
    716 		if (!sp)
    717 			break;
    718 		if ((error = copyinstr(sp, dp, len, &len)) != 0) {
    719 			DPRINTF(("%s: copyinstr args %d\n", __func__, error));
    720 			if (error == ENAMETOOLONG)
    721 				error = E2BIG;
    722 			goto bad;
    723 		}
    724 		ktrexecarg(dp, len - 1);
    725 		dp += len;
    726 		i++;
    727 		data->ed_argc++;
    728 	}
    729 
    730 	data->ed_envc = 0;
    731 	/* environment need not be there */
    732 	if (envs != NULL) {
    733 		i = 0;
    734 		while (1) {
    735 			len = data->ed_argp + ARG_MAX - dp;
    736 			if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
    737 				DPRINTF(("%s: fetch_element env %d\n",
    738 				    __func__, error));
    739 				goto bad;
    740 			}
    741 			if (!sp)
    742 				break;
    743 			if ((error = copyinstr(sp, dp, len, &len)) != 0) {
    744 				DPRINTF(("%s: copyinstr env %d\n",
    745 				    __func__, error));
    746 				if (error == ENAMETOOLONG)
    747 					error = E2BIG;
    748 				goto bad;
    749 			}
    750 
    751 			ktrexecenv(dp, len - 1);
    752 			dp += len;
    753 			i++;
    754 			data->ed_envc++;
    755 		}
    756 	}
    757 
    758 	dp = (char *) ALIGN(dp);
    759 
    760 	data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode -
    761 	    data->ed_pack.ep_esch->es_emul->e_sigcode;
    762 
    763 #ifdef __MACHINE_STACK_GROWS_UP
    764 /* See big comment lower down */
    765 #define	RTLD_GAP	32
    766 #else
    767 #define	RTLD_GAP	0
    768 #endif
    769 
    770 	/* Now check if args & environ fit into new stack */
    771 	if (data->ed_pack.ep_flags & EXEC_32) {
    772 		data->ed_ps_strings_sz = sizeof(struct ps_strings32);
    773 		len = ((data->ed_argc + data->ed_envc + 2 +
    774 		    data->ed_pack.ep_esch->es_arglen) *
    775 		    sizeof(int) + sizeof(int) + dp + RTLD_GAP +
    776 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
    777 		    - data->ed_argp;
    778 	} else {
    779 		data->ed_ps_strings_sz = sizeof(struct ps_strings);
    780 		len = ((data->ed_argc + data->ed_envc + 2 +
    781 		    data->ed_pack.ep_esch->es_arglen) *
    782 		    sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
    783 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
    784 		    - data->ed_argp;
    785 	}
    786 
    787 #ifdef PAX_ASLR
    788 	if (pax_aslr_active(l))
    789 		len += (cprng_fast32() % PAGE_SIZE);
    790 #endif /* PAX_ASLR */
    791 
    792 	/* make the stack "safely" aligned */
    793 	len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES);
    794 
    795 	if (len > data->ed_pack.ep_ssize) {
    796 		/* in effect, compare to initial limit */
    797 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    798 		goto bad;
    799 	}
    800 	/* adjust "active stack depth" for process VSZ */
    801 	data->ed_pack.ep_ssize = len;
    802 
    803 	return 0;
    804 
    805  bad:
    806 	/* free the vmspace-creation commands, and release their references */
    807 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
    808 	/* kill any opened file descriptor, if necessary */
    809 	if (data->ed_pack.ep_flags & EXEC_HASFD) {
    810 		data->ed_pack.ep_flags &= ~EXEC_HASFD;
    811 		fd_close(data->ed_pack.ep_fd);
    812 	}
    813 	/* close and put the exec'd file */
    814 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
    815 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
    816 	vput(data->ed_pack.ep_vp);
    817 	pool_put(&exec_pool, data->ed_argp);
    818 
    819  freehdr:
    820 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
    821 	if (data->ed_pack.ep_emul_root != NULL)
    822 		vrele(data->ed_pack.ep_emul_root);
    823 	if (data->ed_pack.ep_interp != NULL)
    824 		vrele(data->ed_pack.ep_interp);
    825 
    826 	rw_exit(&exec_lock);
    827 
    828 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    829 	pathbuf_destroy(data->ed_pathbuf);
    830 	PNBUF_PUT(data->ed_resolvedpathbuf);
    831 
    832  clrflg:
    833 	rw_exit(&p->p_reflock);
    834 
    835 	if (modgen != module_gen && error == ENOEXEC) {
    836 		modgen = module_gen;
    837 		exec_autoload();
    838 		goto retry;
    839 	}
    840 
    841 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
    842 	return error;
    843 }
    844 
    845 static void
    846 execve_free_data(struct execve_data *data)
    847 {
    848 
    849 	/* free the vmspace-creation commands, and release their references */
    850 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
    851 	/* kill any opened file descriptor, if necessary */
    852 	if (data->ed_pack.ep_flags & EXEC_HASFD) {
    853 		data->ed_pack.ep_flags &= ~EXEC_HASFD;
    854 		fd_close(data->ed_pack.ep_fd);
    855 	}
    856 
    857 	/* close and put the exec'd file */
    858 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
    859 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, curlwp->l_cred);
    860 	vput(data->ed_pack.ep_vp);
    861 	pool_put(&exec_pool, data->ed_argp);
    862 
    863 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
    864 	if (data->ed_pack.ep_emul_root != NULL)
    865 		vrele(data->ed_pack.ep_emul_root);
    866 	if (data->ed_pack.ep_interp != NULL)
    867 		vrele(data->ed_pack.ep_interp);
    868 
    869 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    870 	pathbuf_destroy(data->ed_pathbuf);
    871 	PNBUF_PUT(data->ed_resolvedpathbuf);
    872 }
    873 
    874 static int
    875 execve_runproc(struct lwp *l, struct execve_data * restrict data,
    876 	bool no_local_exec_lock, bool is_spawn)
    877 {
    878 	int error = 0;
    879 	struct proc		*p;
    880 	size_t			i;
    881 	char			*stack, *dp;
    882 	const char		*commandname;
    883 	struct ps_strings32	arginfo32;
    884 	struct exec_vmcmd	*base_vcp;
    885 	void			*aip;
    886 	struct vmspace		*vm;
    887 	ksiginfo_t		ksi;
    888 	ksiginfoq_t		kq;
    889 
    890 	/*
    891 	 * In case of a posix_spawn operation, the child doing the exec
    892 	 * might not hold the reader lock on exec_lock, but the parent
    893 	 * will do this instead.
    894 	 */
    895 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
    896 	KASSERT(data != NULL);
    897 	if (data == NULL)
    898 		return (EINVAL);
    899 
    900 	p = l->l_proc;
    901 	if (no_local_exec_lock)
    902 		KASSERT(is_spawn);
    903 
    904 	base_vcp = NULL;
    905 
    906 	if (data->ed_pack.ep_flags & EXEC_32)
    907 		aip = &arginfo32;
    908 	else
    909 		aip = &data->ed_arginfo;
    910 
    911 	/* Get rid of other LWPs. */
    912 	if (p->p_nlwps > 1) {
    913 		mutex_enter(p->p_lock);
    914 		exit_lwps(l);
    915 		mutex_exit(p->p_lock);
    916 	}
    917 	KDASSERT(p->p_nlwps == 1);
    918 
    919 	/* Destroy any lwpctl info. */
    920 	if (p->p_lwpctl != NULL)
    921 		lwp_ctl_exit();
    922 
    923 	/* Remove POSIX timers */
    924 	timers_free(p, TIMERS_POSIX);
    925 
    926 	/*
    927 	 * Do whatever is necessary to prepare the address space
    928 	 * for remapping.  Note that this might replace the current
    929 	 * vmspace with another!
    930 	 */
    931 	if (is_spawn)
    932 		uvmspace_spawn(l, data->ed_pack.ep_vm_minaddr,
    933 		    data->ed_pack.ep_vm_maxaddr);
    934 	else
    935 		uvmspace_exec(l, data->ed_pack.ep_vm_minaddr,
    936 		    data->ed_pack.ep_vm_maxaddr);
    937 
    938 	/* record proc's vnode, for use by procfs and others */
    939         if (p->p_textvp)
    940                 vrele(p->p_textvp);
    941 	vref(data->ed_pack.ep_vp);
    942 	p->p_textvp = data->ed_pack.ep_vp;
    943 
    944 	/* Now map address space */
    945 	vm = p->p_vmspace;
    946 	vm->vm_taddr = (void *)data->ed_pack.ep_taddr;
    947 	vm->vm_tsize = btoc(data->ed_pack.ep_tsize);
    948 	vm->vm_daddr = (void*)data->ed_pack.ep_daddr;
    949 	vm->vm_dsize = btoc(data->ed_pack.ep_dsize);
    950 	vm->vm_ssize = btoc(data->ed_pack.ep_ssize);
    951 	vm->vm_issize = 0;
    952 	vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr;
    953 	vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr;
    954 
    955 #ifdef PAX_ASLR
    956 	pax_aslr_init(l, vm);
    957 #endif /* PAX_ASLR */
    958 
    959 	/* create the new process's VM space by running the vmcmds */
    960 #ifdef DIAGNOSTIC
    961 	if (data->ed_pack.ep_vmcmds.evs_used == 0)
    962 		panic("%s: no vmcmds", __func__);
    963 #endif
    964 
    965 #ifdef DEBUG_EXEC
    966 	{
    967 		size_t j;
    968 		struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0];
    969 		DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used));
    970 		for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
    971 			DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
    972 			    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
    973 			    PRIxVSIZE" prot=0%o flags=%d\n", j,
    974 			    vp[j].ev_proc == vmcmd_map_pagedvn ?
    975 			    "pagedvn" :
    976 			    vp[j].ev_proc == vmcmd_map_readvn ?
    977 			    "readvn" :
    978 			    vp[j].ev_proc == vmcmd_map_zero ?
    979 			    "zero" : "*unknown*",
    980 			    vp[j].ev_addr, vp[j].ev_len,
    981 			    vp[j].ev_offset, vp[j].ev_prot,
    982 			    vp[j].ev_flags));
    983 		}
    984 	}
    985 #endif	/* DEBUG_EXEC */
    986 
    987 	for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) {
    988 		struct exec_vmcmd *vcp;
    989 
    990 		vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i];
    991 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    992 #ifdef DIAGNOSTIC
    993 			if (base_vcp == NULL)
    994 				panic("%s: relative vmcmd with no base",
    995 				    __func__);
    996 			if (vcp->ev_flags & VMCMD_BASE)
    997 				panic("%s: illegal base & relative vmcmd",
    998 				    __func__);
    999 #endif
   1000 			vcp->ev_addr += base_vcp->ev_addr;
   1001 		}
   1002 		error = (*vcp->ev_proc)(l, vcp);
   1003 #ifdef DEBUG_EXEC
   1004 		if (error) {
   1005 			size_t j;
   1006 			struct exec_vmcmd *vp =
   1007 			    &data->ed_pack.ep_vmcmds.evs_cmds[0];
   1008 			DPRINTF(("vmcmds %zu/%u, error %d\n", i,
   1009 			    data->ed_pack.ep_vmcmds.evs_used, error));
   1010 			for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
   1011 				DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   1012 				    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   1013 				    PRIxVSIZE" prot=0%o flags=%d\n", j,
   1014 				    vp[j].ev_proc == vmcmd_map_pagedvn ?
   1015 				    "pagedvn" :
   1016 				    vp[j].ev_proc == vmcmd_map_readvn ?
   1017 				    "readvn" :
   1018 				    vp[j].ev_proc == vmcmd_map_zero ?
   1019 				    "zero" : "*unknown*",
   1020 				    vp[j].ev_addr, vp[j].ev_len,
   1021 				    vp[j].ev_offset, vp[j].ev_prot,
   1022 				    vp[j].ev_flags));
   1023 				if (j == i)
   1024 					DPRINTF(("     ^--- failed\n"));
   1025 			}
   1026 		}
   1027 #endif /* DEBUG_EXEC */
   1028 		if (vcp->ev_flags & VMCMD_BASE)
   1029 			base_vcp = vcp;
   1030 	}
   1031 
   1032 	/* free the vmspace-creation commands, and release their references */
   1033 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
   1034 
   1035 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
   1036 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
   1037 	vput(data->ed_pack.ep_vp);
   1038 
   1039 	/* if an error happened, deallocate and punt */
   1040 	if (error) {
   1041 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
   1042 		goto exec_abort;
   1043 	}
   1044 
   1045 	/* remember information about the process */
   1046 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1047 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1048 
   1049 	/* set command name & other accounting info */
   1050 	commandname = strrchr(data->ed_pack.ep_resolvedname, '/');
   1051 	if (commandname != NULL) {
   1052 		commandname++;
   1053 	} else {
   1054 		commandname = data->ed_pack.ep_resolvedname;
   1055 	}
   1056 	i = min(strlen(commandname), MAXCOMLEN);
   1057 	(void)memcpy(p->p_comm, commandname, i);
   1058 	p->p_comm[i] = '\0';
   1059 
   1060 	dp = PNBUF_GET();
   1061 	/*
   1062 	 * If the path starts with /, we don't need to do any work.
   1063 	 * This handles the majority of the cases.
   1064 	 * In the future perhaps we could canonicalize it?
   1065 	 */
   1066 	if (data->ed_pathstring[0] == '/')
   1067 		(void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring,
   1068 		    MAXPATHLEN);
   1069 #ifdef notyet
   1070 	/*
   1071 	 * Although this works most of the time [since the entry was just
   1072 	 * entered in the cache] we don't use it because it theoretically
   1073 	 * can fail and it is not the cleanest interface, because there
   1074 	 * could be races. When the namei cache is re-written, this can
   1075 	 * be changed to use the appropriate function.
   1076 	 */
   1077 	else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
   1078 		data->ed_pack.ep_path = dp;
   1079 #endif
   1080 	else {
   1081 #ifdef notyet
   1082 		printf("Cannot get path for pid %d [%s] (error %d)",
   1083 		    (int)p->p_pid, p->p_comm, error);
   1084 #endif
   1085 		data->ed_pack.ep_path = NULL;
   1086 		PNBUF_PUT(dp);
   1087 	}
   1088 
   1089 	stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
   1090 		STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
   1091 		data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
   1092 
   1093 #ifdef __MACHINE_STACK_GROWS_UP
   1094 	/*
   1095 	 * The copyargs call always copies into lower addresses
   1096 	 * first, moving towards higher addresses, starting with
   1097 	 * the stack pointer that we give.  When the stack grows
   1098 	 * down, this puts argc/argv/envp very shallow on the
   1099 	 * stack, right at the first user stack pointer.
   1100 	 * When the stack grows up, the situation is reversed.
   1101 	 *
   1102 	 * Normally, this is no big deal.  But the ld_elf.so _rtld()
   1103 	 * function expects to be called with a single pointer to
   1104 	 * a region that has a few words it can stash values into,
   1105 	 * followed by argc/argv/envp.  When the stack grows down,
   1106 	 * it's easy to decrement the stack pointer a little bit to
   1107 	 * allocate the space for these few words and pass the new
   1108 	 * stack pointer to _rtld.  When the stack grows up, however,
   1109 	 * a few words before argc is part of the signal trampoline, XXX
   1110 	 * so we have a problem.
   1111 	 *
   1112 	 * Instead of changing how _rtld works, we take the easy way
   1113 	 * out and steal 32 bytes before we call copyargs.
   1114 	 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
   1115 	 */
   1116 	stack += RTLD_GAP;
   1117 #endif /* __MACHINE_STACK_GROWS_UP */
   1118 
   1119 	/* Now copy argc, args & environ to new stack */
   1120 	error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack,
   1121 	    &data->ed_arginfo, &stack, data->ed_argp);
   1122 
   1123 	if (data->ed_pack.ep_path) {
   1124 		PNBUF_PUT(data->ed_pack.ep_path);
   1125 		data->ed_pack.ep_path = NULL;
   1126 	}
   1127 	if (error) {
   1128 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1129 		goto exec_abort;
   1130 	}
   1131 	/* Move the stack back to original point */
   1132 	stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize);
   1133 
   1134 	/* fill process ps_strings info */
   1135 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
   1136 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1137 
   1138 	if (data->ed_pack.ep_flags & EXEC_32) {
   1139 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1140 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1141 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1142 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1143 	}
   1144 
   1145 	/* copy out the process's ps_strings structure */
   1146 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1147 	    != 0) {
   1148 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1149 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1150 		goto exec_abort;
   1151 	}
   1152 
   1153 	cwdexec(p);
   1154 	fd_closeexec();		/* handle close on exec */
   1155 
   1156 	if (__predict_false(ktrace_on))
   1157 		fd_ktrexecfd();
   1158 
   1159 	execsigs(p);		/* reset catched signals */
   1160 
   1161 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1162 
   1163 
   1164 	p->p_acflag &= ~AFORK;
   1165 	mutex_enter(p->p_lock);
   1166 	p->p_flag |= PK_EXEC;
   1167 	mutex_exit(p->p_lock);
   1168 
   1169 	/*
   1170 	 * Stop profiling.
   1171 	 */
   1172 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1173 		mutex_spin_enter(&p->p_stmutex);
   1174 		stopprofclock(p);
   1175 		mutex_spin_exit(&p->p_stmutex);
   1176 	}
   1177 
   1178 	/*
   1179 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1180 	 * exited and exec()/exit() are the only places it will be cleared.
   1181 	 */
   1182 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1183 #if 0
   1184 		lwp_t *lp;
   1185 
   1186 		mutex_enter(proc_lock);
   1187 		lp = p->p_vforklwp;
   1188 		p->p_vforklwp = NULL;
   1189 
   1190 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1191 		p->p_lflag &= ~PL_PPWAIT;
   1192 
   1193 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
   1194 		cv_broadcast(&lp->l_waitcv);
   1195 		mutex_exit(proc_lock);
   1196 #else
   1197 		mutex_enter(proc_lock);
   1198 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1199 		p->p_lflag &= ~PL_PPWAIT;
   1200 		cv_broadcast(&p->p_pptr->p_waitcv);
   1201 		mutex_exit(proc_lock);
   1202 #endif
   1203 	}
   1204 
   1205 	/*
   1206 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
   1207 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
   1208 	 * out additional references on the process for the moment.
   1209 	 */
   1210 	if ((p->p_slflag & PSL_TRACED) == 0 &&
   1211 
   1212 	    (((data->ed_attr.va_mode & S_ISUID) != 0 &&
   1213 	      kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
   1214 
   1215 	     ((data->ed_attr.va_mode & S_ISGID) != 0 &&
   1216 	      kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
   1217 		/*
   1218 		 * Mark the process as SUGID before we do
   1219 		 * anything that might block.
   1220 		 */
   1221 		proc_crmod_enter();
   1222 		proc_crmod_leave(NULL, NULL, true);
   1223 
   1224 		/* Make sure file descriptors 0..2 are in use. */
   1225 		if ((error = fd_checkstd()) != 0) {
   1226 			DPRINTF(("%s: fdcheckstd failed %d\n",
   1227 			    __func__, error));
   1228 			goto exec_abort;
   1229 		}
   1230 
   1231 		/*
   1232 		 * Copy the credential so other references don't see our
   1233 		 * changes.
   1234 		 */
   1235 		l->l_cred = kauth_cred_copy(l->l_cred);
   1236 #ifdef KTRACE
   1237 		/*
   1238 		 * If the persistent trace flag isn't set, turn off.
   1239 		 */
   1240 		if (p->p_tracep) {
   1241 			mutex_enter(&ktrace_lock);
   1242 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
   1243 				ktrderef(p);
   1244 			mutex_exit(&ktrace_lock);
   1245 		}
   1246 #endif
   1247 		if (data->ed_attr.va_mode & S_ISUID)
   1248 			kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
   1249 		if (data->ed_attr.va_mode & S_ISGID)
   1250 			kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
   1251 	} else {
   1252 		if (kauth_cred_geteuid(l->l_cred) ==
   1253 		    kauth_cred_getuid(l->l_cred) &&
   1254 		    kauth_cred_getegid(l->l_cred) ==
   1255 		    kauth_cred_getgid(l->l_cred))
   1256 			p->p_flag &= ~PK_SUGID;
   1257 	}
   1258 
   1259 	/*
   1260 	 * Copy the credential so other references don't see our changes.
   1261 	 * Test to see if this is necessary first, since in the common case
   1262 	 * we won't need a private reference.
   1263 	 */
   1264 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1265 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1266 		l->l_cred = kauth_cred_copy(l->l_cred);
   1267 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1268 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1269 	}
   1270 
   1271 	/* Update the master credentials. */
   1272 	if (l->l_cred != p->p_cred) {
   1273 		kauth_cred_t ocred;
   1274 
   1275 		kauth_cred_hold(l->l_cred);
   1276 		mutex_enter(p->p_lock);
   1277 		ocred = p->p_cred;
   1278 		p->p_cred = l->l_cred;
   1279 		mutex_exit(p->p_lock);
   1280 		kauth_cred_free(ocred);
   1281 	}
   1282 
   1283 #if defined(__HAVE_RAS)
   1284 	/*
   1285 	 * Remove all RASs from the address space.
   1286 	 */
   1287 	ras_purgeall();
   1288 #endif
   1289 
   1290 	doexechooks(p);
   1291 
   1292 	/* setup new registers and do misc. setup. */
   1293 	(*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack,
   1294 	     (vaddr_t)stack);
   1295 	if (data->ed_pack.ep_esch->es_setregs)
   1296 		(*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack,
   1297 		    (vaddr_t)stack);
   1298 
   1299 	/* Provide a consistent LWP private setting */
   1300 	(void)lwp_setprivate(l, NULL);
   1301 
   1302 	/* Discard all PCU state; need to start fresh */
   1303 	pcu_discard_all(l);
   1304 
   1305 	/* map the process's signal trampoline code */
   1306 	if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) {
   1307 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1308 		goto exec_abort;
   1309 	}
   1310 
   1311 	pool_put(&exec_pool, data->ed_argp);
   1312 
   1313 	/* notify others that we exec'd */
   1314 	KNOTE(&p->p_klist, NOTE_EXEC);
   1315 
   1316 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
   1317 
   1318 	SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0);
   1319 
   1320 	/* The emulation root will usually have been found when we looked
   1321 	 * for the elf interpreter (or similar), if not look now. */
   1322 	if (data->ed_pack.ep_esch->es_emul->e_path != NULL &&
   1323 	    data->ed_pack.ep_emul_root == NULL)
   1324 		emul_find_root(l, &data->ed_pack);
   1325 
   1326 	/* Any old emulation root got removed by fdcloseexec */
   1327 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1328 	p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root;
   1329 	rw_exit(&p->p_cwdi->cwdi_lock);
   1330 	data->ed_pack.ep_emul_root = NULL;
   1331 	if (data->ed_pack.ep_interp != NULL)
   1332 		vrele(data->ed_pack.ep_interp);
   1333 
   1334 	/*
   1335 	 * Call emulation specific exec hook. This can setup per-process
   1336 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1337 	 *
   1338 	 * If we are executing process of different emulation than the
   1339 	 * original forked process, call e_proc_exit() of the old emulation
   1340 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1341 	 * same, the exec hook code should deallocate any old emulation
   1342 	 * resources held previously by this process.
   1343 	 */
   1344 	if (p->p_emul && p->p_emul->e_proc_exit
   1345 	    && p->p_emul != data->ed_pack.ep_esch->es_emul)
   1346 		(*p->p_emul->e_proc_exit)(p);
   1347 
   1348 	/*
   1349 	 * This is now LWP 1.
   1350 	 */
   1351 	mutex_enter(p->p_lock);
   1352 	p->p_nlwpid = 1;
   1353 	l->l_lid = 1;
   1354 	mutex_exit(p->p_lock);
   1355 
   1356 	/*
   1357 	 * Call exec hook. Emulation code may NOT store reference to anything
   1358 	 * from &pack.
   1359 	 */
   1360 	if (data->ed_pack.ep_esch->es_emul->e_proc_exec)
   1361 		(*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack);
   1362 
   1363 	/* update p_emul, the old value is no longer needed */
   1364 	p->p_emul = data->ed_pack.ep_esch->es_emul;
   1365 
   1366 	/* ...and the same for p_execsw */
   1367 	p->p_execsw = data->ed_pack.ep_esch;
   1368 
   1369 #ifdef __HAVE_SYSCALL_INTERN
   1370 	(*p->p_emul->e_syscall_intern)(p);
   1371 #endif
   1372 	ktremul();
   1373 
   1374 	/* Allow new references from the debugger/procfs. */
   1375 	rw_exit(&p->p_reflock);
   1376 	if (!no_local_exec_lock)
   1377 		rw_exit(&exec_lock);
   1378 
   1379 	mutex_enter(proc_lock);
   1380 
   1381 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
   1382 		KSI_INIT_EMPTY(&ksi);
   1383 		ksi.ksi_signo = SIGTRAP;
   1384 		ksi.ksi_lid = l->l_lid;
   1385 		kpsignal(p, &ksi, NULL);
   1386 	}
   1387 
   1388 	if (p->p_sflag & PS_STOPEXEC) {
   1389 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1390 		p->p_pptr->p_nstopchild++;
   1391 		p->p_pptr->p_waited = 0;
   1392 		mutex_enter(p->p_lock);
   1393 		ksiginfo_queue_init(&kq);
   1394 		sigclearall(p, &contsigmask, &kq);
   1395 		lwp_lock(l);
   1396 		l->l_stat = LSSTOP;
   1397 		p->p_stat = SSTOP;
   1398 		p->p_nrlwps--;
   1399 		lwp_unlock(l);
   1400 		mutex_exit(p->p_lock);
   1401 		mutex_exit(proc_lock);
   1402 		lwp_lock(l);
   1403 		mi_switch(l);
   1404 		ksiginfo_queue_drain(&kq);
   1405 		KERNEL_LOCK(l->l_biglocks, l);
   1406 	} else {
   1407 		mutex_exit(proc_lock);
   1408 	}
   1409 
   1410 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1411 	pathbuf_destroy(data->ed_pathbuf);
   1412 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1413 	DPRINTF(("%s finished\n", __func__));
   1414 	return (EJUSTRETURN);
   1415 
   1416  exec_abort:
   1417 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
   1418 	rw_exit(&p->p_reflock);
   1419 	if (!no_local_exec_lock)
   1420 		rw_exit(&exec_lock);
   1421 
   1422 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1423 	pathbuf_destroy(data->ed_pathbuf);
   1424 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1425 
   1426 	/*
   1427 	 * the old process doesn't exist anymore.  exit gracefully.
   1428 	 * get rid of the (new) address space we have created, if any, get rid
   1429 	 * of our namei data and vnode, and exit noting failure
   1430 	 */
   1431 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1432 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1433 
   1434 	exec_free_emul_arg(&data->ed_pack);
   1435 	pool_put(&exec_pool, data->ed_argp);
   1436 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
   1437 	if (data->ed_pack.ep_emul_root != NULL)
   1438 		vrele(data->ed_pack.ep_emul_root);
   1439 	if (data->ed_pack.ep_interp != NULL)
   1440 		vrele(data->ed_pack.ep_interp);
   1441 
   1442 	/* Acquire the sched-state mutex (exit1() will release it). */
   1443 	if (!is_spawn) {
   1444 		mutex_enter(p->p_lock);
   1445 		exit1(l, W_EXITCODE(error, SIGABRT));
   1446 	}
   1447 
   1448 	return error;
   1449 }
   1450 
   1451 int
   1452 execve1(struct lwp *l, const char *path, char * const *args,
   1453     char * const *envs, execve_fetch_element_t fetch_element)
   1454 {
   1455 	struct execve_data data;
   1456 	int error;
   1457 
   1458 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
   1459 	if (error)
   1460 		return error;
   1461 	error = execve_runproc(l, &data, false, false);
   1462 	return error;
   1463 }
   1464 
   1465 int
   1466 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1467     char **stackp, void *argp)
   1468 {
   1469 	char	**cpp, *dp, *sp;
   1470 	size_t	len;
   1471 	void	*nullp;
   1472 	long	argc, envc;
   1473 	int	error;
   1474 
   1475 	cpp = (char **)*stackp;
   1476 	nullp = NULL;
   1477 	argc = arginfo->ps_nargvstr;
   1478 	envc = arginfo->ps_nenvstr;
   1479 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1480 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1481 		return error;
   1482 	}
   1483 
   1484 	dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
   1485 	sp = argp;
   1486 
   1487 	/* XXX don't copy them out, remap them! */
   1488 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1489 
   1490 	for (; --argc >= 0; sp += len, dp += len) {
   1491 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1492 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1493 			return error;
   1494 		}
   1495 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1496 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1497 			return error;
   1498 		}
   1499 	}
   1500 
   1501 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1502 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1503 		return error;
   1504 	}
   1505 
   1506 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1507 
   1508 	for (; --envc >= 0; sp += len, dp += len) {
   1509 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1510 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1511 			return error;
   1512 		}
   1513 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1514 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1515 			return error;
   1516 		}
   1517 
   1518 	}
   1519 
   1520 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1521 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1522 		return error;
   1523 	}
   1524 
   1525 	*stackp = (char *)cpp;
   1526 	return 0;
   1527 }
   1528 
   1529 
   1530 /*
   1531  * Add execsw[] entries.
   1532  */
   1533 int
   1534 exec_add(struct execsw *esp, int count)
   1535 {
   1536 	struct exec_entry	*it;
   1537 	int			i;
   1538 
   1539 	if (count == 0) {
   1540 		return 0;
   1541 	}
   1542 
   1543 	/* Check for duplicates. */
   1544 	rw_enter(&exec_lock, RW_WRITER);
   1545 	for (i = 0; i < count; i++) {
   1546 		LIST_FOREACH(it, &ex_head, ex_list) {
   1547 			/* assume unique (makecmds, probe_func, emulation) */
   1548 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1549 			    it->ex_sw->u.elf_probe_func ==
   1550 			    esp[i].u.elf_probe_func &&
   1551 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1552 				rw_exit(&exec_lock);
   1553 				return EEXIST;
   1554 			}
   1555 		}
   1556 	}
   1557 
   1558 	/* Allocate new entries. */
   1559 	for (i = 0; i < count; i++) {
   1560 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1561 		it->ex_sw = &esp[i];
   1562 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1563 	}
   1564 
   1565 	/* update execsw[] */
   1566 	exec_init(0);
   1567 	rw_exit(&exec_lock);
   1568 	return 0;
   1569 }
   1570 
   1571 /*
   1572  * Remove execsw[] entry.
   1573  */
   1574 int
   1575 exec_remove(struct execsw *esp, int count)
   1576 {
   1577 	struct exec_entry	*it, *next;
   1578 	int			i;
   1579 	const struct proclist_desc *pd;
   1580 	proc_t			*p;
   1581 
   1582 	if (count == 0) {
   1583 		return 0;
   1584 	}
   1585 
   1586 	/* Abort if any are busy. */
   1587 	rw_enter(&exec_lock, RW_WRITER);
   1588 	for (i = 0; i < count; i++) {
   1589 		mutex_enter(proc_lock);
   1590 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1591 			PROCLIST_FOREACH(p, pd->pd_list) {
   1592 				if (p->p_execsw == &esp[i]) {
   1593 					mutex_exit(proc_lock);
   1594 					rw_exit(&exec_lock);
   1595 					return EBUSY;
   1596 				}
   1597 			}
   1598 		}
   1599 		mutex_exit(proc_lock);
   1600 	}
   1601 
   1602 	/* None are busy, so remove them all. */
   1603 	for (i = 0; i < count; i++) {
   1604 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1605 			next = LIST_NEXT(it, ex_list);
   1606 			if (it->ex_sw == &esp[i]) {
   1607 				LIST_REMOVE(it, ex_list);
   1608 				kmem_free(it, sizeof(*it));
   1609 				break;
   1610 			}
   1611 		}
   1612 	}
   1613 
   1614 	/* update execsw[] */
   1615 	exec_init(0);
   1616 	rw_exit(&exec_lock);
   1617 	return 0;
   1618 }
   1619 
   1620 /*
   1621  * Initialize exec structures. If init_boot is true, also does necessary
   1622  * one-time initialization (it's called from main() that way).
   1623  * Once system is multiuser, this should be called with exec_lock held,
   1624  * i.e. via exec_{add|remove}().
   1625  */
   1626 int
   1627 exec_init(int init_boot)
   1628 {
   1629 	const struct execsw 	**sw;
   1630 	struct exec_entry	*ex;
   1631 	SLIST_HEAD(,exec_entry)	first;
   1632 	SLIST_HEAD(,exec_entry)	any;
   1633 	SLIST_HEAD(,exec_entry)	last;
   1634 	int			i, sz;
   1635 
   1636 	if (init_boot) {
   1637 		/* do one-time initializations */
   1638 		rw_init(&exec_lock);
   1639 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1640 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1641 		    "execargs", &exec_palloc, IPL_NONE);
   1642 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1643 	} else {
   1644 		KASSERT(rw_write_held(&exec_lock));
   1645 	}
   1646 
   1647 	/* Sort each entry onto the appropriate queue. */
   1648 	SLIST_INIT(&first);
   1649 	SLIST_INIT(&any);
   1650 	SLIST_INIT(&last);
   1651 	sz = 0;
   1652 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1653 		switch(ex->ex_sw->es_prio) {
   1654 		case EXECSW_PRIO_FIRST:
   1655 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1656 			break;
   1657 		case EXECSW_PRIO_ANY:
   1658 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1659 			break;
   1660 		case EXECSW_PRIO_LAST:
   1661 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1662 			break;
   1663 		default:
   1664 			panic("%s", __func__);
   1665 			break;
   1666 		}
   1667 		sz++;
   1668 	}
   1669 
   1670 	/*
   1671 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1672 	 * allocation.
   1673 	 */
   1674 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1675 	i = 0;
   1676 	SLIST_FOREACH(ex, &first, ex_slist) {
   1677 		sw[i++] = ex->ex_sw;
   1678 	}
   1679 	SLIST_FOREACH(ex, &any, ex_slist) {
   1680 		sw[i++] = ex->ex_sw;
   1681 	}
   1682 	SLIST_FOREACH(ex, &last, ex_slist) {
   1683 		sw[i++] = ex->ex_sw;
   1684 	}
   1685 
   1686 	/* Replace old execsw[] and free used memory. */
   1687 	if (execsw != NULL) {
   1688 		kmem_free(__UNCONST(execsw),
   1689 		    nexecs * sizeof(struct execsw *) + 1);
   1690 	}
   1691 	execsw = sw;
   1692 	nexecs = sz;
   1693 
   1694 	/* Figure out the maximum size of an exec header. */
   1695 	exec_maxhdrsz = sizeof(int);
   1696 	for (i = 0; i < nexecs; i++) {
   1697 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1698 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1699 	}
   1700 
   1701 	return 0;
   1702 }
   1703 
   1704 static int
   1705 exec_sigcode_map(struct proc *p, const struct emul *e)
   1706 {
   1707 	vaddr_t va;
   1708 	vsize_t sz;
   1709 	int error;
   1710 	struct uvm_object *uobj;
   1711 
   1712 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1713 
   1714 	if (e->e_sigobject == NULL || sz == 0) {
   1715 		return 0;
   1716 	}
   1717 
   1718 	/*
   1719 	 * If we don't have a sigobject for this emulation, create one.
   1720 	 *
   1721 	 * sigobject is an anonymous memory object (just like SYSV shared
   1722 	 * memory) that we keep a permanent reference to and that we map
   1723 	 * in all processes that need this sigcode. The creation is simple,
   1724 	 * we create an object, add a permanent reference to it, map it in
   1725 	 * kernel space, copy out the sigcode to it and unmap it.
   1726 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1727 	 * the way sys_mmap() would map it.
   1728 	 */
   1729 
   1730 	uobj = *e->e_sigobject;
   1731 	if (uobj == NULL) {
   1732 		mutex_enter(&sigobject_lock);
   1733 		if ((uobj = *e->e_sigobject) == NULL) {
   1734 			uobj = uao_create(sz, 0);
   1735 			(*uobj->pgops->pgo_reference)(uobj);
   1736 			va = vm_map_min(kernel_map);
   1737 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1738 			    uobj, 0, 0,
   1739 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1740 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1741 				printf("kernel mapping failed %d\n", error);
   1742 				(*uobj->pgops->pgo_detach)(uobj);
   1743 				mutex_exit(&sigobject_lock);
   1744 				return (error);
   1745 			}
   1746 			memcpy((void *)va, e->e_sigcode, sz);
   1747 #ifdef PMAP_NEED_PROCWR
   1748 			pmap_procwr(&proc0, va, sz);
   1749 #endif
   1750 			uvm_unmap(kernel_map, va, va + round_page(sz));
   1751 			*e->e_sigobject = uobj;
   1752 		}
   1753 		mutex_exit(&sigobject_lock);
   1754 	}
   1755 
   1756 	/* Just a hint to uvm_map where to put it. */
   1757 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   1758 	    round_page(sz));
   1759 
   1760 #ifdef __alpha__
   1761 	/*
   1762 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   1763 	 * which causes the above calculation to put the sigcode at
   1764 	 * an invalid address.  Put it just below the text instead.
   1765 	 */
   1766 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   1767 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   1768 	}
   1769 #endif
   1770 
   1771 	(*uobj->pgops->pgo_reference)(uobj);
   1772 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   1773 			uobj, 0, 0,
   1774 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   1775 				    UVM_ADV_RANDOM, 0));
   1776 	if (error) {
   1777 		DPRINTF(("%s, %d: map %p "
   1778 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   1779 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   1780 		    va, error));
   1781 		(*uobj->pgops->pgo_detach)(uobj);
   1782 		return (error);
   1783 	}
   1784 	p->p_sigctx.ps_sigcode = (void *)va;
   1785 	return (0);
   1786 }
   1787 
   1788 /*
   1789  * Release a refcount on spawn_exec_data and destroy memory, if this
   1790  * was the last one.
   1791  */
   1792 static void
   1793 spawn_exec_data_release(struct spawn_exec_data *data)
   1794 {
   1795 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   1796 		return;
   1797 
   1798 	cv_destroy(&data->sed_cv_child_ready);
   1799 	mutex_destroy(&data->sed_mtx_child);
   1800 
   1801 	if (data->sed_actions)
   1802 		posix_spawn_fa_free(data->sed_actions,
   1803 		    data->sed_actions->len);
   1804 	if (data->sed_attrs)
   1805 		kmem_free(data->sed_attrs,
   1806 		    sizeof(*data->sed_attrs));
   1807 	kmem_free(data, sizeof(*data));
   1808 }
   1809 
   1810 /*
   1811  * A child lwp of a posix_spawn operation starts here and ends up in
   1812  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   1813  * manipulations in between.
   1814  * The parent waits for the child, as it is not clear wether the child
   1815  * will be able to aquire its own exec_lock. If it can, the parent can
   1816  * be released early and continue running in parallel. If not (or if the
   1817  * magic debug flag is passed in the scheduler attribute struct), the
   1818  * child rides on the parent's exec lock untill it is ready to return to
   1819  * to userland - and only then releases the parent. This method loses
   1820  * concurrency, but improves error reporting.
   1821  */
   1822 static void
   1823 spawn_return(void *arg)
   1824 {
   1825 	struct spawn_exec_data *spawn_data = arg;
   1826 	struct lwp *l = curlwp;
   1827 	int error, newfd;
   1828 	size_t i;
   1829 	const struct posix_spawn_file_actions_entry *fae;
   1830 	pid_t ppid;
   1831 	register_t retval;
   1832 	bool have_reflock;
   1833 	bool parent_is_waiting = true;
   1834 
   1835 	/*
   1836 	 * Check if we can release parent early.
   1837 	 * We either need to have no sed_attrs, or sed_attrs does not
   1838 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   1839 	 * safe access to the parent proc (passed in sed_parent).
   1840 	 * We then try to get the exec_lock, and only if that works, we can
   1841 	 * release the parent here already.
   1842 	 */
   1843 	ppid = spawn_data->sed_parent->p_pid;
   1844 	if ((!spawn_data->sed_attrs
   1845 	    || (spawn_data->sed_attrs->sa_flags
   1846 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   1847 	    && rw_tryenter(&exec_lock, RW_READER)) {
   1848 		parent_is_waiting = false;
   1849 		mutex_enter(&spawn_data->sed_mtx_child);
   1850 		cv_signal(&spawn_data->sed_cv_child_ready);
   1851 		mutex_exit(&spawn_data->sed_mtx_child);
   1852 	}
   1853 
   1854 	/* don't allow debugger access yet */
   1855 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
   1856 	have_reflock = true;
   1857 
   1858 	error = 0;
   1859 	/* handle posix_spawn_file_actions */
   1860 	if (spawn_data->sed_actions != NULL) {
   1861 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   1862 			fae = &spawn_data->sed_actions->fae[i];
   1863 			switch (fae->fae_action) {
   1864 			case FAE_OPEN:
   1865 				if (fd_getfile(fae->fae_fildes) != NULL) {
   1866 					error = fd_close(fae->fae_fildes);
   1867 					if (error)
   1868 						break;
   1869 				}
   1870 				error = fd_open(fae->fae_path, fae->fae_oflag,
   1871 				    fae->fae_mode, &newfd);
   1872  				if (error)
   1873  					break;
   1874 				if (newfd != fae->fae_fildes) {
   1875 					error = dodup(l, newfd,
   1876 					    fae->fae_fildes, 0, &retval);
   1877 					if (fd_getfile(newfd) != NULL)
   1878 						fd_close(newfd);
   1879 				}
   1880 				break;
   1881 			case FAE_DUP2:
   1882 				error = dodup(l, fae->fae_fildes,
   1883 				    fae->fae_newfildes, 0, &retval);
   1884 				break;
   1885 			case FAE_CLOSE:
   1886 				if (fd_getfile(fae->fae_fildes) == NULL) {
   1887 					error = EBADF;
   1888 					break;
   1889 				}
   1890 				error = fd_close(fae->fae_fildes);
   1891 				break;
   1892 			}
   1893 			if (error)
   1894 				goto report_error;
   1895 		}
   1896 	}
   1897 
   1898 	/* handle posix_spawnattr */
   1899 	if (spawn_data->sed_attrs != NULL) {
   1900 		struct sigaction sigact;
   1901 		sigact._sa_u._sa_handler = SIG_DFL;
   1902 		sigact.sa_flags = 0;
   1903 
   1904 		/*
   1905 		 * set state to SSTOP so that this proc can be found by pid.
   1906 		 * see proc_enterprp, do_sched_setparam below
   1907 		 */
   1908 		l->l_proc->p_stat = SSTOP;
   1909 
   1910 		/* Set process group */
   1911 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   1912 			pid_t mypid = l->l_proc->p_pid,
   1913 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   1914 
   1915 			if (pgrp == 0)
   1916 				pgrp = mypid;
   1917 
   1918 			error = proc_enterpgrp(spawn_data->sed_parent,
   1919 			    mypid, pgrp, false);
   1920 			if (error)
   1921 				goto report_error;
   1922 		}
   1923 
   1924 		/* Set scheduler policy */
   1925 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   1926 			error = do_sched_setparam(l->l_proc->p_pid, 0,
   1927 			    spawn_data->sed_attrs->sa_schedpolicy,
   1928 			    &spawn_data->sed_attrs->sa_schedparam);
   1929 		else if (spawn_data->sed_attrs->sa_flags
   1930 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   1931 			error = do_sched_setparam(ppid, 0,
   1932 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   1933 		}
   1934 		if (error)
   1935 			goto report_error;
   1936 
   1937 		/* Reset user ID's */
   1938 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   1939 			error = do_setresuid(l, -1,
   1940 			     kauth_cred_getgid(l->l_cred), -1,
   1941 			     ID_E_EQ_R | ID_E_EQ_S);
   1942 			if (error)
   1943 				goto report_error;
   1944 			error = do_setresuid(l, -1,
   1945 			    kauth_cred_getuid(l->l_cred), -1,
   1946 			    ID_E_EQ_R | ID_E_EQ_S);
   1947 			if (error)
   1948 				goto report_error;
   1949 		}
   1950 
   1951 		/* Set signal masks/defaults */
   1952 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   1953 			mutex_enter(l->l_proc->p_lock);
   1954 			error = sigprocmask1(l, SIG_SETMASK,
   1955 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   1956 			mutex_exit(l->l_proc->p_lock);
   1957 			if (error)
   1958 				goto report_error;
   1959 		}
   1960 
   1961 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   1962 			for (i = 1; i <= NSIG; i++) {
   1963 				if (sigismember(
   1964 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   1965 					sigaction1(l, i, &sigact, NULL, NULL,
   1966 					    0);
   1967 			}
   1968 		}
   1969 	}
   1970 
   1971 	/* now do the real exec */
   1972 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   1973 	    true);
   1974 	have_reflock = false;
   1975 	if (error == EJUSTRETURN)
   1976 		error = 0;
   1977 	else if (error)
   1978 		goto report_error;
   1979 
   1980 	if (parent_is_waiting) {
   1981 		mutex_enter(&spawn_data->sed_mtx_child);
   1982 		cv_signal(&spawn_data->sed_cv_child_ready);
   1983 		mutex_exit(&spawn_data->sed_mtx_child);
   1984 	}
   1985 
   1986 	/* release our refcount on the data */
   1987 	spawn_exec_data_release(spawn_data);
   1988 
   1989 	/* and finaly: leave to userland for the first time */
   1990 	cpu_spawn_return(l);
   1991 
   1992 	/* NOTREACHED */
   1993 	return;
   1994 
   1995  report_error:
   1996  	if (have_reflock) {
   1997  		/*
   1998 		 * We have not passed through execve_runproc(),
   1999 		 * which would have released the p_reflock and also
   2000 		 * taken ownership of the sed_exec part of spawn_data,
   2001 		 * so release/free both here.
   2002 		 */
   2003 		rw_exit(&l->l_proc->p_reflock);
   2004 		execve_free_data(&spawn_data->sed_exec);
   2005 	}
   2006 
   2007 	if (parent_is_waiting) {
   2008 		/* pass error to parent */
   2009 		mutex_enter(&spawn_data->sed_mtx_child);
   2010 		spawn_data->sed_error = error;
   2011 		cv_signal(&spawn_data->sed_cv_child_ready);
   2012 		mutex_exit(&spawn_data->sed_mtx_child);
   2013 	} else {
   2014 		rw_exit(&exec_lock);
   2015 	}
   2016 
   2017 	/* release our refcount on the data */
   2018 	spawn_exec_data_release(spawn_data);
   2019 
   2020 	/* done, exit */
   2021 	mutex_enter(l->l_proc->p_lock);
   2022 	/*
   2023 	 * Posix explicitly asks for an exit code of 127 if we report
   2024 	 * errors from the child process - so, unfortunately, there
   2025 	 * is no way to report a more exact error code.
   2026 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2027 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2028 	 */
   2029 	exit1(l, W_EXITCODE(127, 0));
   2030 }
   2031 
   2032 void
   2033 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2034 {
   2035 
   2036 	for (size_t i = 0; i < len; i++) {
   2037 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2038 		if (fae->fae_action != FAE_OPEN)
   2039 			continue;
   2040 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
   2041 	}
   2042 	if (fa->len > 0)
   2043 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2044 	kmem_free(fa, sizeof(*fa));
   2045 }
   2046 
   2047 static int
   2048 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2049     const struct posix_spawn_file_actions *ufa)
   2050 {
   2051 	struct posix_spawn_file_actions *fa;
   2052 	struct posix_spawn_file_actions_entry *fae;
   2053 	char *pbuf = NULL;
   2054 	int error;
   2055 	size_t i = 0;
   2056 
   2057 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2058 	error = copyin(ufa, fa, sizeof(*fa));
   2059 	if (error) {
   2060 		fa->fae = NULL;
   2061 		fa->len = 0;
   2062 		goto out;
   2063 	}
   2064 
   2065 	if (fa->len == 0) {
   2066 		kmem_free(fa, sizeof(*fa));
   2067 		return 0;
   2068 	}
   2069 
   2070 	fa->size = fa->len;
   2071 	size_t fal = fa->len * sizeof(*fae);
   2072 	fae = fa->fae;
   2073 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2074 	error = copyin(fae, fa->fae, fal);
   2075 	if (error)
   2076 		goto out;
   2077 
   2078 	pbuf = PNBUF_GET();
   2079 	for (; i < fa->len; i++) {
   2080 		fae = &fa->fae[i];
   2081 		if (fae->fae_action != FAE_OPEN)
   2082 			continue;
   2083 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2084 		if (error)
   2085 			goto out;
   2086 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2087 		memcpy(fae->fae_path, pbuf, fal);
   2088 	}
   2089 	PNBUF_PUT(pbuf);
   2090 
   2091 	*fap = fa;
   2092 	return 0;
   2093 out:
   2094 	if (pbuf)
   2095 		PNBUF_PUT(pbuf);
   2096 	posix_spawn_fa_free(fa, i);
   2097 	return error;
   2098 }
   2099 
   2100 int
   2101 check_posix_spawn(struct lwp *l1)
   2102 {
   2103 	int error, tnprocs, count;
   2104 	uid_t uid;
   2105 	struct proc *p1;
   2106 
   2107 	p1 = l1->l_proc;
   2108 	uid = kauth_cred_getuid(l1->l_cred);
   2109 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2110 
   2111 	/*
   2112 	 * Although process entries are dynamically created, we still keep
   2113 	 * a global limit on the maximum number we will create.
   2114 	 */
   2115 	if (__predict_false(tnprocs >= maxproc))
   2116 		error = -1;
   2117 	else
   2118 		error = kauth_authorize_process(l1->l_cred,
   2119 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2120 
   2121 	if (error) {
   2122 		atomic_dec_uint(&nprocs);
   2123 		return EAGAIN;
   2124 	}
   2125 
   2126 	/*
   2127 	 * Enforce limits.
   2128 	 */
   2129 	count = chgproccnt(uid, 1);
   2130 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2131 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2132 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2133 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2134 		(void)chgproccnt(uid, -1);
   2135 		atomic_dec_uint(&nprocs);
   2136 		return EAGAIN;
   2137 	}
   2138 
   2139 	return 0;
   2140 }
   2141 
   2142 int
   2143 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2144 	struct posix_spawn_file_actions *fa,
   2145 	struct posix_spawnattr *sa,
   2146 	char *const *argv, char *const *envp,
   2147 	execve_fetch_element_t fetch)
   2148 {
   2149 
   2150 	struct proc *p1, *p2;
   2151 	struct lwp *l2;
   2152 	int error;
   2153 	struct spawn_exec_data *spawn_data;
   2154 	vaddr_t uaddr;
   2155 	pid_t pid;
   2156 	bool have_exec_lock = false;
   2157 
   2158 	p1 = l1->l_proc;
   2159 
   2160 	/* Allocate and init spawn_data */
   2161 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2162 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2163 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2164 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2165 	mutex_enter(&spawn_data->sed_mtx_child);
   2166 
   2167 	/*
   2168 	 * Do the first part of the exec now, collect state
   2169 	 * in spawn_data.
   2170 	 */
   2171 	error = execve_loadvm(l1, path, argv,
   2172 	    envp, fetch, &spawn_data->sed_exec);
   2173 	if (error == EJUSTRETURN)
   2174 		error = 0;
   2175 	else if (error)
   2176 		goto error_exit;
   2177 
   2178 	have_exec_lock = true;
   2179 
   2180 	/*
   2181 	 * Allocate virtual address space for the U-area now, while it
   2182 	 * is still easy to abort the fork operation if we're out of
   2183 	 * kernel virtual address space.
   2184 	 */
   2185 	uaddr = uvm_uarea_alloc();
   2186 	if (__predict_false(uaddr == 0)) {
   2187 		error = ENOMEM;
   2188 		goto error_exit;
   2189 	}
   2190 
   2191 	/*
   2192 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2193 	 * replace it with its own before returning to userland
   2194 	 * in the child.
   2195 	 * This is a point of no return, we will have to go through
   2196 	 * the child proc to properly clean it up past this point.
   2197 	 */
   2198 	p2 = proc_alloc();
   2199 	pid = p2->p_pid;
   2200 
   2201 	/*
   2202 	 * Make a proc table entry for the new process.
   2203 	 * Start by zeroing the section of proc that is zero-initialized,
   2204 	 * then copy the section that is copied directly from the parent.
   2205 	 */
   2206 	memset(&p2->p_startzero, 0,
   2207 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2208 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2209 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2210 	p2->p_vmspace = proc0.p_vmspace;
   2211 
   2212 	CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
   2213 
   2214 	LIST_INIT(&p2->p_lwps);
   2215 	LIST_INIT(&p2->p_sigwaiters);
   2216 
   2217 	/*
   2218 	 * Duplicate sub-structures as needed.
   2219 	 * Increase reference counts on shared objects.
   2220 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2221 	 * handling are important in order to keep a consistent behaviour
   2222 	 * for the child after the fork.  If we are a 32-bit process, the
   2223 	 * child will be too.
   2224 	 */
   2225 	p2->p_flag =
   2226 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2227 	p2->p_emul = p1->p_emul;
   2228 	p2->p_execsw = p1->p_execsw;
   2229 
   2230 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2231 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2232 	rw_init(&p2->p_reflock);
   2233 	cv_init(&p2->p_waitcv, "wait");
   2234 	cv_init(&p2->p_lwpcv, "lwpwait");
   2235 
   2236 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2237 
   2238 	kauth_proc_fork(p1, p2);
   2239 
   2240 	p2->p_raslist = NULL;
   2241 	p2->p_fd = fd_copy();
   2242 
   2243 	/* XXX racy */
   2244 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2245 
   2246 	p2->p_cwdi = cwdinit();
   2247 
   2248 	/*
   2249 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2250 	 * we just need increase pl_refcnt.
   2251 	 */
   2252 	if (!p1->p_limit->pl_writeable) {
   2253 		lim_addref(p1->p_limit);
   2254 		p2->p_limit = p1->p_limit;
   2255 	} else {
   2256 		p2->p_limit = lim_copy(p1->p_limit);
   2257 	}
   2258 
   2259 	p2->p_lflag = 0;
   2260 	p2->p_sflag = 0;
   2261 	p2->p_slflag = 0;
   2262 	p2->p_pptr = p1;
   2263 	p2->p_ppid = p1->p_pid;
   2264 	LIST_INIT(&p2->p_children);
   2265 
   2266 	p2->p_aio = NULL;
   2267 
   2268 #ifdef KTRACE
   2269 	/*
   2270 	 * Copy traceflag and tracefile if enabled.
   2271 	 * If not inherited, these were zeroed above.
   2272 	 */
   2273 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2274 		mutex_enter(&ktrace_lock);
   2275 		p2->p_traceflag = p1->p_traceflag;
   2276 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2277 			ktradref(p2);
   2278 		mutex_exit(&ktrace_lock);
   2279 	}
   2280 #endif
   2281 
   2282 	/*
   2283 	 * Create signal actions for the child process.
   2284 	 */
   2285 	p2->p_sigacts = sigactsinit(p1, 0);
   2286 	mutex_enter(p1->p_lock);
   2287 	p2->p_sflag |=
   2288 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2289 	sched_proc_fork(p1, p2);
   2290 	mutex_exit(p1->p_lock);
   2291 
   2292 	p2->p_stflag = p1->p_stflag;
   2293 
   2294 	/*
   2295 	 * p_stats.
   2296 	 * Copy parts of p_stats, and zero out the rest.
   2297 	 */
   2298 	p2->p_stats = pstatscopy(p1->p_stats);
   2299 
   2300 	/* copy over machdep flags to the new proc */
   2301 	cpu_proc_fork(p1, p2);
   2302 
   2303 	/*
   2304 	 * Prepare remaining parts of spawn data
   2305 	 */
   2306 	spawn_data->sed_actions = fa;
   2307 	spawn_data->sed_attrs = sa;
   2308 
   2309 	spawn_data->sed_parent = p1;
   2310 
   2311 	/* create LWP */
   2312 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2313 	    &l2, l1->l_class);
   2314 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2315 
   2316 	/*
   2317 	 * Copy the credential so other references don't see our changes.
   2318 	 * Test to see if this is necessary first, since in the common case
   2319 	 * we won't need a private reference.
   2320 	 */
   2321 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2322 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2323 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2324 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2325 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2326 	}
   2327 
   2328 	/* Update the master credentials. */
   2329 	if (l2->l_cred != p2->p_cred) {
   2330 		kauth_cred_t ocred;
   2331 
   2332 		kauth_cred_hold(l2->l_cred);
   2333 		mutex_enter(p2->p_lock);
   2334 		ocred = p2->p_cred;
   2335 		p2->p_cred = l2->l_cred;
   2336 		mutex_exit(p2->p_lock);
   2337 		kauth_cred_free(ocred);
   2338 	}
   2339 
   2340 	*child_ok = true;
   2341 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2342 #if 0
   2343 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2344 #endif
   2345 
   2346 	/*
   2347 	 * It's now safe for the scheduler and other processes to see the
   2348 	 * child process.
   2349 	 */
   2350 	mutex_enter(proc_lock);
   2351 
   2352 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2353 		p2->p_lflag |= PL_CONTROLT;
   2354 
   2355 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2356 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2357 
   2358 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2359 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2360 
   2361 	p2->p_trace_enabled = trace_is_enabled(p2);
   2362 #ifdef __HAVE_SYSCALL_INTERN
   2363 	(*p2->p_emul->e_syscall_intern)(p2);
   2364 #endif
   2365 
   2366 	/*
   2367 	 * Make child runnable, set start time, and add to run queue except
   2368 	 * if the parent requested the child to start in SSTOP state.
   2369 	 */
   2370 	mutex_enter(p2->p_lock);
   2371 
   2372 	getmicrotime(&p2->p_stats->p_start);
   2373 
   2374 	lwp_lock(l2);
   2375 	KASSERT(p2->p_nrlwps == 1);
   2376 	p2->p_nrlwps = 1;
   2377 	p2->p_stat = SACTIVE;
   2378 	l2->l_stat = LSRUN;
   2379 	sched_enqueue(l2, false);
   2380 	lwp_unlock(l2);
   2381 
   2382 	mutex_exit(p2->p_lock);
   2383 	mutex_exit(proc_lock);
   2384 
   2385 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2386 	error = spawn_data->sed_error;
   2387 	mutex_exit(&spawn_data->sed_mtx_child);
   2388 	spawn_exec_data_release(spawn_data);
   2389 
   2390 	rw_exit(&p1->p_reflock);
   2391 	rw_exit(&exec_lock);
   2392 	have_exec_lock = false;
   2393 
   2394 	*pid_res = pid;
   2395 	return error;
   2396 
   2397  error_exit:
   2398  	if (have_exec_lock) {
   2399 		execve_free_data(&spawn_data->sed_exec);
   2400 		rw_exit(&p1->p_reflock);
   2401  		rw_exit(&exec_lock);
   2402 	}
   2403 	mutex_exit(&spawn_data->sed_mtx_child);
   2404 	spawn_exec_data_release(spawn_data);
   2405 
   2406 	return error;
   2407 }
   2408 
   2409 int
   2410 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2411     register_t *retval)
   2412 {
   2413 	/* {
   2414 		syscallarg(pid_t *) pid;
   2415 		syscallarg(const char *) path;
   2416 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2417 		syscallarg(const struct posix_spawnattr *) attrp;
   2418 		syscallarg(char *const *) argv;
   2419 		syscallarg(char *const *) envp;
   2420 	} */
   2421 
   2422 	int error;
   2423 	struct posix_spawn_file_actions *fa = NULL;
   2424 	struct posix_spawnattr *sa = NULL;
   2425 	pid_t pid;
   2426 	bool child_ok = false;
   2427 
   2428 	error = check_posix_spawn(l1);
   2429 	if (error) {
   2430 		*retval = error;
   2431 		return 0;
   2432 	}
   2433 
   2434 	/* copy in file_actions struct */
   2435 	if (SCARG(uap, file_actions) != NULL) {
   2436 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions));
   2437 		if (error)
   2438 			goto error_exit;
   2439 	}
   2440 
   2441 	/* copyin posix_spawnattr struct */
   2442 	if (SCARG(uap, attrp) != NULL) {
   2443 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2444 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2445 		if (error)
   2446 			goto error_exit;
   2447 	}
   2448 
   2449 	/*
   2450 	 * Do the spawn
   2451 	 */
   2452 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2453 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2454 	if (error)
   2455 		goto error_exit;
   2456 
   2457 	if (error == 0 && SCARG(uap, pid) != NULL)
   2458 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2459 
   2460 	*retval = error;
   2461 	return 0;
   2462 
   2463  error_exit:
   2464 	if (!child_ok) {
   2465 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2466 		atomic_dec_uint(&nprocs);
   2467 
   2468 		if (sa)
   2469 			kmem_free(sa, sizeof(*sa));
   2470 		if (fa)
   2471 			posix_spawn_fa_free(fa, fa->len);
   2472 	}
   2473 
   2474 	*retval = error;
   2475 	return 0;
   2476 }
   2477 
   2478 void
   2479 exec_free_emul_arg(struct exec_package *epp)
   2480 {
   2481 	if (epp->ep_emul_arg_free != NULL) {
   2482 		KASSERT(epp->ep_emul_arg != NULL);
   2483 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2484 		epp->ep_emul_arg_free = NULL;
   2485 		epp->ep_emul_arg = NULL;
   2486 	} else {
   2487 		KASSERT(epp->ep_emul_arg == NULL);
   2488 	}
   2489 }
   2490