kern_exec.c revision 1.368 1 /* $NetBSD: kern_exec.c,v 1.368 2013/12/24 14:47:04 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.368 2013/12/24 14:47:04 christos Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108
109 #include <uvm/uvm_extern.h>
110
111 #include <machine/reg.h>
112
113 #include <compat/common/compat_util.h>
114
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USING_TOPDOWN_VM
117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122
123 static int exec_sigcode_map(struct proc *, const struct emul *);
124
125 #ifdef DEBUG_EXEC
126 #define DPRINTF(a) printf a
127 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
128 __LINE__, (s), (a), (b))
129 #else
130 #define DPRINTF(a)
131 #define COPYPRINTF(s, a, b)
132 #endif /* DEBUG_EXEC */
133
134 /*
135 * DTrace SDT provider definitions
136 */
137 SDT_PROBE_DEFINE(proc,,,exec,exec,
138 "char *", NULL,
139 NULL, NULL, NULL, NULL,
140 NULL, NULL, NULL, NULL);
141 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
142 "char *", NULL,
143 NULL, NULL, NULL, NULL,
144 NULL, NULL, NULL, NULL);
145 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
146 "int", NULL,
147 NULL, NULL, NULL, NULL,
148 NULL, NULL, NULL, NULL);
149
150 /*
151 * Exec function switch:
152 *
153 * Note that each makecmds function is responsible for loading the
154 * exec package with the necessary functions for any exec-type-specific
155 * handling.
156 *
157 * Functions for specific exec types should be defined in their own
158 * header file.
159 */
160 static const struct execsw **execsw = NULL;
161 static int nexecs;
162
163 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
164
165 /* list of dynamically loaded execsw entries */
166 static LIST_HEAD(execlist_head, exec_entry) ex_head =
167 LIST_HEAD_INITIALIZER(ex_head);
168 struct exec_entry {
169 LIST_ENTRY(exec_entry) ex_list;
170 SLIST_ENTRY(exec_entry) ex_slist;
171 const struct execsw *ex_sw;
172 };
173
174 #ifndef __HAVE_SYSCALL_INTERN
175 void syscall(void);
176 #endif
177
178 /* NetBSD emul struct */
179 struct emul emul_netbsd = {
180 .e_name = "netbsd",
181 .e_path = NULL,
182 #ifndef __HAVE_MINIMAL_EMUL
183 .e_flags = EMUL_HAS_SYS___syscall,
184 .e_errno = NULL,
185 .e_nosys = SYS_syscall,
186 .e_nsysent = SYS_NSYSENT,
187 #endif
188 .e_sysent = sysent,
189 #ifdef SYSCALL_DEBUG
190 .e_syscallnames = syscallnames,
191 #else
192 .e_syscallnames = NULL,
193 #endif
194 .e_sendsig = sendsig,
195 .e_trapsignal = trapsignal,
196 .e_tracesig = NULL,
197 .e_sigcode = NULL,
198 .e_esigcode = NULL,
199 .e_sigobject = NULL,
200 .e_setregs = setregs,
201 .e_proc_exec = NULL,
202 .e_proc_fork = NULL,
203 .e_proc_exit = NULL,
204 .e_lwp_fork = NULL,
205 .e_lwp_exit = NULL,
206 #ifdef __HAVE_SYSCALL_INTERN
207 .e_syscall_intern = syscall_intern,
208 #else
209 .e_syscall = syscall,
210 #endif
211 .e_sysctlovly = NULL,
212 .e_fault = NULL,
213 .e_vm_default_addr = uvm_default_mapaddr,
214 .e_usertrap = NULL,
215 .e_ucsize = sizeof(ucontext_t),
216 .e_startlwp = startlwp
217 };
218
219 /*
220 * Exec lock. Used to control access to execsw[] structures.
221 * This must not be static so that netbsd32 can access it, too.
222 */
223 krwlock_t exec_lock;
224
225 static kmutex_t sigobject_lock;
226
227 /*
228 * Data used between a loadvm and execve part of an "exec" operation
229 */
230 struct execve_data {
231 struct exec_package ed_pack;
232 struct pathbuf *ed_pathbuf;
233 struct vattr ed_attr;
234 struct ps_strings ed_arginfo;
235 char *ed_argp;
236 const char *ed_pathstring;
237 char *ed_resolvedpathbuf;
238 size_t ed_ps_strings_sz;
239 int ed_szsigcode;
240 long ed_argc;
241 long ed_envc;
242 };
243
244 /*
245 * data passed from parent lwp to child during a posix_spawn()
246 */
247 struct spawn_exec_data {
248 struct execve_data sed_exec;
249 struct posix_spawn_file_actions
250 *sed_actions;
251 struct posix_spawnattr *sed_attrs;
252 struct proc *sed_parent;
253 kcondvar_t sed_cv_child_ready;
254 kmutex_t sed_mtx_child;
255 int sed_error;
256 volatile uint32_t sed_refcnt;
257 };
258
259 static void *
260 exec_pool_alloc(struct pool *pp, int flags)
261 {
262
263 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
264 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
265 }
266
267 static void
268 exec_pool_free(struct pool *pp, void *addr)
269 {
270
271 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
272 }
273
274 static struct pool exec_pool;
275
276 static struct pool_allocator exec_palloc = {
277 .pa_alloc = exec_pool_alloc,
278 .pa_free = exec_pool_free,
279 .pa_pagesz = NCARGS
280 };
281
282 /*
283 * check exec:
284 * given an "executable" described in the exec package's namei info,
285 * see what we can do with it.
286 *
287 * ON ENTRY:
288 * exec package with appropriate namei info
289 * lwp pointer of exec'ing lwp
290 * NO SELF-LOCKED VNODES
291 *
292 * ON EXIT:
293 * error: nothing held, etc. exec header still allocated.
294 * ok: filled exec package, executable's vnode (unlocked).
295 *
296 * EXEC SWITCH ENTRY:
297 * Locked vnode to check, exec package, proc.
298 *
299 * EXEC SWITCH EXIT:
300 * ok: return 0, filled exec package, executable's vnode (unlocked).
301 * error: destructive:
302 * everything deallocated execept exec header.
303 * non-destructive:
304 * error code, executable's vnode (unlocked),
305 * exec header unmodified.
306 */
307 int
308 /*ARGSUSED*/
309 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
310 {
311 int error, i;
312 struct vnode *vp;
313 struct nameidata nd;
314 size_t resid;
315
316 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
317
318 /* first get the vnode */
319 if ((error = namei(&nd)) != 0)
320 return error;
321 epp->ep_vp = vp = nd.ni_vp;
322 /* normally this can't fail */
323 if ((error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL)))
324 goto bad1;
325
326 #ifdef DIAGNOSTIC
327 /* paranoia (take this out once namei stuff stabilizes) */
328 memset(nd.ni_pnbuf, '~', PATH_MAX);
329 #endif
330
331 /* check access and type */
332 if (vp->v_type != VREG) {
333 error = EACCES;
334 goto bad1;
335 }
336 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
337 goto bad1;
338
339 /* get attributes */
340 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
341 goto bad1;
342
343 /* Check mount point */
344 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
345 error = EACCES;
346 goto bad1;
347 }
348 if (vp->v_mount->mnt_flag & MNT_NOSUID)
349 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
350
351 /* try to open it */
352 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
353 goto bad1;
354
355 /* unlock vp, since we need it unlocked from here on out. */
356 VOP_UNLOCK(vp);
357
358 #if NVERIEXEC > 0
359 error = veriexec_verify(l, vp, epp->ep_resolvedname,
360 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
361 NULL);
362 if (error)
363 goto bad2;
364 #endif /* NVERIEXEC > 0 */
365
366 #ifdef PAX_SEGVGUARD
367 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
368 if (error)
369 goto bad2;
370 #endif /* PAX_SEGVGUARD */
371
372 /* now we have the file, get the exec header */
373 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
374 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
375 if (error)
376 goto bad2;
377 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
378
379 /*
380 * Set up default address space limits. Can be overridden
381 * by individual exec packages.
382 *
383 * XXX probably should be all done in the exec packages.
384 */
385 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
386 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
387 /*
388 * set up the vmcmds for creation of the process
389 * address space
390 */
391 error = ENOEXEC;
392 for (i = 0; i < nexecs; i++) {
393 int newerror;
394
395 epp->ep_esch = execsw[i];
396 newerror = (*execsw[i]->es_makecmds)(l, epp);
397
398 if (!newerror) {
399 /* Seems ok: check that entry point is not too high */
400 if (epp->ep_entry > epp->ep_vm_maxaddr) {
401 #ifdef DIAGNOSTIC
402 printf("%s: rejecting %p due to "
403 "too high entry address (> %p)\n",
404 __func__, (void *)epp->ep_entry,
405 (void *)epp->ep_vm_maxaddr);
406 #endif
407 error = ENOEXEC;
408 break;
409 }
410 /* Seems ok: check that entry point is not too low */
411 if (epp->ep_entry < epp->ep_vm_minaddr) {
412 #ifdef DIAGNOSTIC
413 printf("%s: rejecting %p due to "
414 "too low entry address (< %p)\n",
415 __func__, (void *)epp->ep_entry,
416 (void *)epp->ep_vm_minaddr);
417 #endif
418 error = ENOEXEC;
419 break;
420 }
421
422 /* check limits */
423 if ((epp->ep_tsize > MAXTSIZ) ||
424 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
425 [RLIMIT_DATA].rlim_cur)) {
426 #ifdef DIAGNOSTIC
427 printf("%s: rejecting due to "
428 "limits (t=%llu > %llu || d=%llu > %llu)\n",
429 __func__,
430 (unsigned long long)epp->ep_tsize,
431 (unsigned long long)MAXTSIZ,
432 (unsigned long long)epp->ep_dsize,
433 (unsigned long long)
434 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
435 #endif
436 error = ENOMEM;
437 break;
438 }
439 return 0;
440 }
441
442 if (epp->ep_emul_root != NULL) {
443 vrele(epp->ep_emul_root);
444 epp->ep_emul_root = NULL;
445 }
446 if (epp->ep_interp != NULL) {
447 vrele(epp->ep_interp);
448 epp->ep_interp = NULL;
449 }
450
451 /* make sure the first "interesting" error code is saved. */
452 if (error == ENOEXEC)
453 error = newerror;
454
455 if (epp->ep_flags & EXEC_DESTR)
456 /* Error from "#!" code, tidied up by recursive call */
457 return error;
458 }
459
460 /* not found, error */
461
462 /*
463 * free any vmspace-creation commands,
464 * and release their references
465 */
466 kill_vmcmds(&epp->ep_vmcmds);
467
468 bad2:
469 /*
470 * close and release the vnode, restore the old one, free the
471 * pathname buf, and punt.
472 */
473 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
474 VOP_CLOSE(vp, FREAD, l->l_cred);
475 vput(vp);
476 return error;
477
478 bad1:
479 /*
480 * free the namei pathname buffer, and put the vnode
481 * (which we don't yet have open).
482 */
483 vput(vp); /* was still locked */
484 return error;
485 }
486
487 #ifdef __MACHINE_STACK_GROWS_UP
488 #define STACK_PTHREADSPACE NBPG
489 #else
490 #define STACK_PTHREADSPACE 0
491 #endif
492
493 static int
494 execve_fetch_element(char * const *array, size_t index, char **value)
495 {
496 return copyin(array + index, value, sizeof(*value));
497 }
498
499 /*
500 * exec system call
501 */
502 int
503 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
504 {
505 /* {
506 syscallarg(const char *) path;
507 syscallarg(char * const *) argp;
508 syscallarg(char * const *) envp;
509 } */
510
511 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
512 SCARG(uap, envp), execve_fetch_element);
513 }
514
515 int
516 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
517 register_t *retval)
518 {
519 /* {
520 syscallarg(int) fd;
521 syscallarg(char * const *) argp;
522 syscallarg(char * const *) envp;
523 } */
524
525 return ENOSYS;
526 }
527
528 /*
529 * Load modules to try and execute an image that we do not understand.
530 * If no execsw entries are present, we load those likely to be needed
531 * in order to run native images only. Otherwise, we autoload all
532 * possible modules that could let us run the binary. XXX lame
533 */
534 static void
535 exec_autoload(void)
536 {
537 #ifdef MODULAR
538 static const char * const native[] = {
539 "exec_elf32",
540 "exec_elf64",
541 "exec_script",
542 NULL
543 };
544 static const char * const compat[] = {
545 "exec_elf32",
546 "exec_elf64",
547 "exec_script",
548 "exec_aout",
549 "exec_coff",
550 "exec_ecoff",
551 "compat_aoutm68k",
552 "compat_freebsd",
553 "compat_ibcs2",
554 "compat_linux",
555 "compat_linux32",
556 "compat_netbsd32",
557 "compat_sunos",
558 "compat_sunos32",
559 "compat_svr4",
560 "compat_svr4_32",
561 "compat_ultrix",
562 NULL
563 };
564 char const * const *list;
565 int i;
566
567 list = (nexecs == 0 ? native : compat);
568 for (i = 0; list[i] != NULL; i++) {
569 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
570 continue;
571 }
572 yield();
573 }
574 #endif
575 }
576
577 static int
578 execve_loadvm(struct lwp *l, const char *path, char * const *args,
579 char * const *envs, execve_fetch_element_t fetch_element,
580 struct execve_data * restrict data)
581 {
582 int error;
583 struct proc *p;
584 char *dp, *sp;
585 size_t i, len;
586 struct exec_fakearg *tmpfap;
587 u_int modgen;
588
589 KASSERT(data != NULL);
590
591 p = l->l_proc;
592 modgen = 0;
593
594 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
595
596 /*
597 * Check if we have exceeded our number of processes limit.
598 * This is so that we handle the case where a root daemon
599 * forked, ran setuid to become the desired user and is trying
600 * to exec. The obvious place to do the reference counting check
601 * is setuid(), but we don't do the reference counting check there
602 * like other OS's do because then all the programs that use setuid()
603 * must be modified to check the return code of setuid() and exit().
604 * It is dangerous to make setuid() fail, because it fails open and
605 * the program will continue to run as root. If we make it succeed
606 * and return an error code, again we are not enforcing the limit.
607 * The best place to enforce the limit is here, when the process tries
608 * to execute a new image, because eventually the process will need
609 * to call exec in order to do something useful.
610 */
611 retry:
612 if (p->p_flag & PK_SUGID) {
613 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
614 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
615 &p->p_rlimit[RLIMIT_NPROC],
616 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
617 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
618 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
619 return EAGAIN;
620 }
621
622 /*
623 * Drain existing references and forbid new ones. The process
624 * should be left alone until we're done here. This is necessary
625 * to avoid race conditions - e.g. in ptrace() - that might allow
626 * a local user to illicitly obtain elevated privileges.
627 */
628 rw_enter(&p->p_reflock, RW_WRITER);
629
630 /*
631 * Init the namei data to point the file user's program name.
632 * This is done here rather than in check_exec(), so that it's
633 * possible to override this settings if any of makecmd/probe
634 * functions call check_exec() recursively - for example,
635 * see exec_script_makecmds().
636 */
637 error = pathbuf_copyin(path, &data->ed_pathbuf);
638 if (error) {
639 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
640 path, error));
641 goto clrflg;
642 }
643 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
644 data->ed_resolvedpathbuf = PNBUF_GET();
645
646 /*
647 * initialize the fields of the exec package.
648 */
649 data->ed_pack.ep_name = path;
650 data->ed_pack.ep_kname = data->ed_pathstring;
651 data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf;
652 data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
653 data->ed_pack.ep_hdrlen = exec_maxhdrsz;
654 data->ed_pack.ep_hdrvalid = 0;
655 data->ed_pack.ep_emul_arg = NULL;
656 data->ed_pack.ep_emul_arg_free = NULL;
657 data->ed_pack.ep_vmcmds.evs_cnt = 0;
658 data->ed_pack.ep_vmcmds.evs_used = 0;
659 data->ed_pack.ep_vap = &data->ed_attr;
660 data->ed_pack.ep_flags = 0;
661 MD_TOPDOWN_INIT(&data->ed_pack);
662 data->ed_pack.ep_emul_root = NULL;
663 data->ed_pack.ep_interp = NULL;
664 data->ed_pack.ep_esch = NULL;
665 data->ed_pack.ep_pax_flags = 0;
666 memset(data->ed_pack.ep_machine_arch, 0,
667 sizeof(data->ed_pack.ep_machine_arch));
668
669 rw_enter(&exec_lock, RW_READER);
670
671 /* see if we can run it. */
672 if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) {
673 if (error != ENOENT) {
674 DPRINTF(("%s: check exec failed %d\n",
675 __func__, error));
676 }
677 goto freehdr;
678 }
679
680 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
681
682 /* allocate an argument buffer */
683 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
684 KASSERT(data->ed_argp != NULL);
685 dp = data->ed_argp;
686 data->ed_argc = 0;
687
688 /* copy the fake args list, if there's one, freeing it as we go */
689 if (data->ed_pack.ep_flags & EXEC_HASARGL) {
690 tmpfap = data->ed_pack.ep_fa;
691 while (tmpfap->fa_arg != NULL) {
692 const char *cp;
693
694 cp = tmpfap->fa_arg;
695 while (*cp)
696 *dp++ = *cp++;
697 *dp++ = '\0';
698 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
699
700 kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
701 tmpfap++; data->ed_argc++;
702 }
703 kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len);
704 data->ed_pack.ep_flags &= ~EXEC_HASARGL;
705 }
706
707 /* Now get argv & environment */
708 if (args == NULL) {
709 DPRINTF(("%s: null args\n", __func__));
710 error = EINVAL;
711 goto bad;
712 }
713 /* 'i' will index the argp/envp element to be retrieved */
714 i = 0;
715 if (data->ed_pack.ep_flags & EXEC_SKIPARG)
716 i++;
717
718 while (1) {
719 len = data->ed_argp + ARG_MAX - dp;
720 if ((error = (*fetch_element)(args, i, &sp)) != 0) {
721 DPRINTF(("%s: fetch_element args %d\n",
722 __func__, error));
723 goto bad;
724 }
725 if (!sp)
726 break;
727 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
728 DPRINTF(("%s: copyinstr args %d\n", __func__, error));
729 if (error == ENAMETOOLONG)
730 error = E2BIG;
731 goto bad;
732 }
733 ktrexecarg(dp, len - 1);
734 dp += len;
735 i++;
736 data->ed_argc++;
737 }
738
739 data->ed_envc = 0;
740 /* environment need not be there */
741 if (envs != NULL) {
742 i = 0;
743 while (1) {
744 len = data->ed_argp + ARG_MAX - dp;
745 if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
746 DPRINTF(("%s: fetch_element env %d\n",
747 __func__, error));
748 goto bad;
749 }
750 if (!sp)
751 break;
752 if ((error = copyinstr(sp, dp, len, &len)) != 0) {
753 DPRINTF(("%s: copyinstr env %d\n",
754 __func__, error));
755 if (error == ENAMETOOLONG)
756 error = E2BIG;
757 goto bad;
758 }
759
760 ktrexecenv(dp, len - 1);
761 dp += len;
762 i++;
763 data->ed_envc++;
764 }
765 }
766
767 dp = (char *) ALIGN(dp);
768
769 data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode -
770 data->ed_pack.ep_esch->es_emul->e_sigcode;
771
772 #ifdef __MACHINE_STACK_GROWS_UP
773 /* See big comment lower down */
774 #define RTLD_GAP 32
775 #else
776 #define RTLD_GAP 0
777 #endif
778
779 /* Now check if args & environ fit into new stack */
780 if (data->ed_pack.ep_flags & EXEC_32) {
781 data->ed_ps_strings_sz = sizeof(struct ps_strings32);
782 len = ((data->ed_argc + data->ed_envc + 2 +
783 data->ed_pack.ep_esch->es_arglen) *
784 sizeof(int) + sizeof(int) + dp + RTLD_GAP +
785 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
786 - data->ed_argp;
787 } else {
788 data->ed_ps_strings_sz = sizeof(struct ps_strings);
789 len = ((data->ed_argc + data->ed_envc + 2 +
790 data->ed_pack.ep_esch->es_arglen) *
791 sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
792 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
793 - data->ed_argp;
794 }
795
796 #ifdef PAX_ASLR
797 if (pax_aslr_active(l))
798 len += (cprng_fast32() % PAGE_SIZE);
799 #endif /* PAX_ASLR */
800
801 /* make the stack "safely" aligned */
802 len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES);
803
804 if (len > data->ed_pack.ep_ssize) {
805 /* in effect, compare to initial limit */
806 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
807 goto bad;
808 }
809 /* adjust "active stack depth" for process VSZ */
810 data->ed_pack.ep_ssize = len;
811
812 return 0;
813
814 bad:
815 /* free the vmspace-creation commands, and release their references */
816 kill_vmcmds(&data->ed_pack.ep_vmcmds);
817 /* kill any opened file descriptor, if necessary */
818 if (data->ed_pack.ep_flags & EXEC_HASFD) {
819 data->ed_pack.ep_flags &= ~EXEC_HASFD;
820 fd_close(data->ed_pack.ep_fd);
821 }
822 /* close and put the exec'd file */
823 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
824 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
825 vput(data->ed_pack.ep_vp);
826 pool_put(&exec_pool, data->ed_argp);
827
828 freehdr:
829 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
830 if (data->ed_pack.ep_emul_root != NULL)
831 vrele(data->ed_pack.ep_emul_root);
832 if (data->ed_pack.ep_interp != NULL)
833 vrele(data->ed_pack.ep_interp);
834
835 rw_exit(&exec_lock);
836
837 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
838 pathbuf_destroy(data->ed_pathbuf);
839 PNBUF_PUT(data->ed_resolvedpathbuf);
840
841 clrflg:
842 rw_exit(&p->p_reflock);
843
844 if (modgen != module_gen && error == ENOEXEC) {
845 modgen = module_gen;
846 exec_autoload();
847 goto retry;
848 }
849
850 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
851 return error;
852 }
853
854 static void
855 execve_free_data(struct execve_data *data)
856 {
857
858 /* free the vmspace-creation commands, and release their references */
859 kill_vmcmds(&data->ed_pack.ep_vmcmds);
860 /* kill any opened file descriptor, if necessary */
861 if (data->ed_pack.ep_flags & EXEC_HASFD) {
862 data->ed_pack.ep_flags &= ~EXEC_HASFD;
863 fd_close(data->ed_pack.ep_fd);
864 }
865
866 /* close and put the exec'd file */
867 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
868 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, curlwp->l_cred);
869 vput(data->ed_pack.ep_vp);
870 pool_put(&exec_pool, data->ed_argp);
871
872 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
873 if (data->ed_pack.ep_emul_root != NULL)
874 vrele(data->ed_pack.ep_emul_root);
875 if (data->ed_pack.ep_interp != NULL)
876 vrele(data->ed_pack.ep_interp);
877
878 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
879 pathbuf_destroy(data->ed_pathbuf);
880 PNBUF_PUT(data->ed_resolvedpathbuf);
881 }
882
883 static int
884 execve_runproc(struct lwp *l, struct execve_data * restrict data,
885 bool no_local_exec_lock, bool is_spawn)
886 {
887 int error = 0;
888 struct proc *p;
889 size_t i;
890 char *stack, *dp;
891 const char *commandname;
892 struct ps_strings32 arginfo32;
893 struct exec_vmcmd *base_vcp;
894 void *aip;
895 struct vmspace *vm;
896 ksiginfo_t ksi;
897 ksiginfoq_t kq;
898
899 /*
900 * In case of a posix_spawn operation, the child doing the exec
901 * might not hold the reader lock on exec_lock, but the parent
902 * will do this instead.
903 */
904 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
905 KASSERT(data != NULL);
906 if (data == NULL)
907 return (EINVAL);
908
909 p = l->l_proc;
910 if (no_local_exec_lock)
911 KASSERT(is_spawn);
912
913 base_vcp = NULL;
914
915 if (data->ed_pack.ep_flags & EXEC_32)
916 aip = &arginfo32;
917 else
918 aip = &data->ed_arginfo;
919
920 /* Get rid of other LWPs. */
921 if (p->p_nlwps > 1) {
922 mutex_enter(p->p_lock);
923 exit_lwps(l);
924 mutex_exit(p->p_lock);
925 }
926 KDASSERT(p->p_nlwps == 1);
927
928 /* Destroy any lwpctl info. */
929 if (p->p_lwpctl != NULL)
930 lwp_ctl_exit();
931
932 /* Remove POSIX timers */
933 timers_free(p, TIMERS_POSIX);
934
935 /*
936 * Do whatever is necessary to prepare the address space
937 * for remapping. Note that this might replace the current
938 * vmspace with another!
939 */
940 if (is_spawn)
941 uvmspace_spawn(l, data->ed_pack.ep_vm_minaddr,
942 data->ed_pack.ep_vm_maxaddr,
943 data->ed_pack.ep_flags & EXEC_TOPDOWN_VM);
944 else
945 uvmspace_exec(l, data->ed_pack.ep_vm_minaddr,
946 data->ed_pack.ep_vm_maxaddr,
947 data->ed_pack.ep_flags & EXEC_TOPDOWN_VM);
948
949 /* record proc's vnode, for use by procfs and others */
950 if (p->p_textvp)
951 vrele(p->p_textvp);
952 vref(data->ed_pack.ep_vp);
953 p->p_textvp = data->ed_pack.ep_vp;
954
955 /* Now map address space */
956 vm = p->p_vmspace;
957 vm->vm_taddr = (void *)data->ed_pack.ep_taddr;
958 vm->vm_tsize = btoc(data->ed_pack.ep_tsize);
959 vm->vm_daddr = (void*)data->ed_pack.ep_daddr;
960 vm->vm_dsize = btoc(data->ed_pack.ep_dsize);
961 vm->vm_ssize = btoc(data->ed_pack.ep_ssize);
962 vm->vm_issize = 0;
963 vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr;
964 vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr;
965
966 #ifdef PAX_ASLR
967 pax_aslr_init(l, vm);
968 #endif /* PAX_ASLR */
969
970 /* create the new process's VM space by running the vmcmds */
971 #ifdef DIAGNOSTIC
972 if (data->ed_pack.ep_vmcmds.evs_used == 0)
973 panic("%s: no vmcmds", __func__);
974 #endif
975
976 #ifdef DEBUG_EXEC
977 {
978 size_t j;
979 struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0];
980 DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used));
981 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
982 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
983 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
984 PRIxVSIZE" prot=0%o flags=%d\n", j,
985 vp[j].ev_proc == vmcmd_map_pagedvn ?
986 "pagedvn" :
987 vp[j].ev_proc == vmcmd_map_readvn ?
988 "readvn" :
989 vp[j].ev_proc == vmcmd_map_zero ?
990 "zero" : "*unknown*",
991 vp[j].ev_addr, vp[j].ev_len,
992 vp[j].ev_offset, vp[j].ev_prot,
993 vp[j].ev_flags));
994 }
995 }
996 #endif /* DEBUG_EXEC */
997
998 for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) {
999 struct exec_vmcmd *vcp;
1000
1001 vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i];
1002 if (vcp->ev_flags & VMCMD_RELATIVE) {
1003 #ifdef DIAGNOSTIC
1004 if (base_vcp == NULL)
1005 panic("%s: relative vmcmd with no base",
1006 __func__);
1007 if (vcp->ev_flags & VMCMD_BASE)
1008 panic("%s: illegal base & relative vmcmd",
1009 __func__);
1010 #endif
1011 vcp->ev_addr += base_vcp->ev_addr;
1012 }
1013 error = (*vcp->ev_proc)(l, vcp);
1014 #ifdef DEBUG_EXEC
1015 if (error) {
1016 size_t j;
1017 struct exec_vmcmd *vp =
1018 &data->ed_pack.ep_vmcmds.evs_cmds[0];
1019 DPRINTF(("vmcmds %zu/%u, error %d\n", i,
1020 data->ed_pack.ep_vmcmds.evs_used, error));
1021 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
1022 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
1023 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
1024 PRIxVSIZE" prot=0%o flags=%d\n", j,
1025 vp[j].ev_proc == vmcmd_map_pagedvn ?
1026 "pagedvn" :
1027 vp[j].ev_proc == vmcmd_map_readvn ?
1028 "readvn" :
1029 vp[j].ev_proc == vmcmd_map_zero ?
1030 "zero" : "*unknown*",
1031 vp[j].ev_addr, vp[j].ev_len,
1032 vp[j].ev_offset, vp[j].ev_prot,
1033 vp[j].ev_flags));
1034 if (j == i)
1035 DPRINTF((" ^--- failed\n"));
1036 }
1037 }
1038 #endif /* DEBUG_EXEC */
1039 if (vcp->ev_flags & VMCMD_BASE)
1040 base_vcp = vcp;
1041 }
1042
1043 /* free the vmspace-creation commands, and release their references */
1044 kill_vmcmds(&data->ed_pack.ep_vmcmds);
1045
1046 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
1047 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
1048 vput(data->ed_pack.ep_vp);
1049
1050 /* if an error happened, deallocate and punt */
1051 if (error) {
1052 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
1053 goto exec_abort;
1054 }
1055
1056 /* remember information about the process */
1057 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1058 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1059
1060 /* set command name & other accounting info */
1061 commandname = strrchr(data->ed_pack.ep_resolvedname, '/');
1062 if (commandname != NULL) {
1063 commandname++;
1064 } else {
1065 commandname = data->ed_pack.ep_resolvedname;
1066 }
1067 i = min(strlen(commandname), MAXCOMLEN);
1068 (void)memcpy(p->p_comm, commandname, i);
1069 p->p_comm[i] = '\0';
1070
1071 dp = PNBUF_GET();
1072 /*
1073 * If the path starts with /, we don't need to do any work.
1074 * This handles the majority of the cases.
1075 * In the future perhaps we could canonicalize it?
1076 */
1077 if (data->ed_pathstring[0] == '/')
1078 (void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring,
1079 MAXPATHLEN);
1080 #ifdef notyet
1081 /*
1082 * Although this works most of the time [since the entry was just
1083 * entered in the cache] we don't use it because it will fail for
1084 * entries that are not placed in the cache because their name is
1085 * longer than NCHNAMLEN and it is not the cleanest interface,
1086 * because there could be races. When the namei cache is re-written,
1087 * this can be changed to use the appropriate function.
1088 */
1089 else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
1090 data->ed_pack.ep_path = dp;
1091 #endif
1092 else {
1093 #ifdef notyet
1094 printf("Cannot get path for pid %d [%s] (error %d)\n",
1095 (int)p->p_pid, p->p_comm, error);
1096 #endif
1097 data->ed_pack.ep_path = NULL;
1098 PNBUF_PUT(dp);
1099 }
1100
1101 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1102 STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
1103 data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
1104
1105 #ifdef __MACHINE_STACK_GROWS_UP
1106 /*
1107 * The copyargs call always copies into lower addresses
1108 * first, moving towards higher addresses, starting with
1109 * the stack pointer that we give. When the stack grows
1110 * down, this puts argc/argv/envp very shallow on the
1111 * stack, right at the first user stack pointer.
1112 * When the stack grows up, the situation is reversed.
1113 *
1114 * Normally, this is no big deal. But the ld_elf.so _rtld()
1115 * function expects to be called with a single pointer to
1116 * a region that has a few words it can stash values into,
1117 * followed by argc/argv/envp. When the stack grows down,
1118 * it's easy to decrement the stack pointer a little bit to
1119 * allocate the space for these few words and pass the new
1120 * stack pointer to _rtld. When the stack grows up, however,
1121 * a few words before argc is part of the signal trampoline, XXX
1122 * so we have a problem.
1123 *
1124 * Instead of changing how _rtld works, we take the easy way
1125 * out and steal 32 bytes before we call copyargs.
1126 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
1127 */
1128 stack += RTLD_GAP;
1129 #endif /* __MACHINE_STACK_GROWS_UP */
1130
1131 /* Now copy argc, args & environ to new stack */
1132 error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack,
1133 &data->ed_arginfo, &stack, data->ed_argp);
1134
1135 if (data->ed_pack.ep_path) {
1136 PNBUF_PUT(data->ed_pack.ep_path);
1137 data->ed_pack.ep_path = NULL;
1138 }
1139 if (error) {
1140 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1141 goto exec_abort;
1142 }
1143 /* Move the stack back to original point */
1144 stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize);
1145
1146 /* fill process ps_strings info */
1147 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1148 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1149
1150 if (data->ed_pack.ep_flags & EXEC_32) {
1151 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1152 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1153 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1154 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1155 }
1156
1157 /* copy out the process's ps_strings structure */
1158 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1159 != 0) {
1160 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1161 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1162 goto exec_abort;
1163 }
1164
1165 cwdexec(p);
1166 fd_closeexec(); /* handle close on exec */
1167
1168 if (__predict_false(ktrace_on))
1169 fd_ktrexecfd();
1170
1171 execsigs(p); /* reset catched signals */
1172
1173 l->l_ctxlink = NULL; /* reset ucontext link */
1174
1175
1176 p->p_acflag &= ~AFORK;
1177 mutex_enter(p->p_lock);
1178 p->p_flag |= PK_EXEC;
1179 mutex_exit(p->p_lock);
1180
1181 /*
1182 * Stop profiling.
1183 */
1184 if ((p->p_stflag & PST_PROFIL) != 0) {
1185 mutex_spin_enter(&p->p_stmutex);
1186 stopprofclock(p);
1187 mutex_spin_exit(&p->p_stmutex);
1188 }
1189
1190 /*
1191 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1192 * exited and exec()/exit() are the only places it will be cleared.
1193 */
1194 if ((p->p_lflag & PL_PPWAIT) != 0) {
1195 #if 0
1196 lwp_t *lp;
1197
1198 mutex_enter(proc_lock);
1199 lp = p->p_vforklwp;
1200 p->p_vforklwp = NULL;
1201
1202 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1203 p->p_lflag &= ~PL_PPWAIT;
1204
1205 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1206 cv_broadcast(&lp->l_waitcv);
1207 mutex_exit(proc_lock);
1208 #else
1209 mutex_enter(proc_lock);
1210 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1211 p->p_lflag &= ~PL_PPWAIT;
1212 cv_broadcast(&p->p_pptr->p_waitcv);
1213 mutex_exit(proc_lock);
1214 #endif
1215 }
1216
1217 /*
1218 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1219 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1220 * out additional references on the process for the moment.
1221 */
1222 if ((p->p_slflag & PSL_TRACED) == 0 &&
1223
1224 (((data->ed_attr.va_mode & S_ISUID) != 0 &&
1225 kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
1226
1227 ((data->ed_attr.va_mode & S_ISGID) != 0 &&
1228 kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
1229 /*
1230 * Mark the process as SUGID before we do
1231 * anything that might block.
1232 */
1233 proc_crmod_enter();
1234 proc_crmod_leave(NULL, NULL, true);
1235
1236 /* Make sure file descriptors 0..2 are in use. */
1237 if ((error = fd_checkstd()) != 0) {
1238 DPRINTF(("%s: fdcheckstd failed %d\n",
1239 __func__, error));
1240 goto exec_abort;
1241 }
1242
1243 /*
1244 * Copy the credential so other references don't see our
1245 * changes.
1246 */
1247 l->l_cred = kauth_cred_copy(l->l_cred);
1248 #ifdef KTRACE
1249 /*
1250 * If the persistent trace flag isn't set, turn off.
1251 */
1252 if (p->p_tracep) {
1253 mutex_enter(&ktrace_lock);
1254 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1255 ktrderef(p);
1256 mutex_exit(&ktrace_lock);
1257 }
1258 #endif
1259 if (data->ed_attr.va_mode & S_ISUID)
1260 kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
1261 if (data->ed_attr.va_mode & S_ISGID)
1262 kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
1263 } else {
1264 if (kauth_cred_geteuid(l->l_cred) ==
1265 kauth_cred_getuid(l->l_cred) &&
1266 kauth_cred_getegid(l->l_cred) ==
1267 kauth_cred_getgid(l->l_cred))
1268 p->p_flag &= ~PK_SUGID;
1269 }
1270
1271 /*
1272 * Copy the credential so other references don't see our changes.
1273 * Test to see if this is necessary first, since in the common case
1274 * we won't need a private reference.
1275 */
1276 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1277 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1278 l->l_cred = kauth_cred_copy(l->l_cred);
1279 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1280 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1281 }
1282
1283 /* Update the master credentials. */
1284 if (l->l_cred != p->p_cred) {
1285 kauth_cred_t ocred;
1286
1287 kauth_cred_hold(l->l_cred);
1288 mutex_enter(p->p_lock);
1289 ocred = p->p_cred;
1290 p->p_cred = l->l_cred;
1291 mutex_exit(p->p_lock);
1292 kauth_cred_free(ocred);
1293 }
1294
1295 #if defined(__HAVE_RAS)
1296 /*
1297 * Remove all RASs from the address space.
1298 */
1299 ras_purgeall();
1300 #endif
1301
1302 doexechooks(p);
1303
1304 /* setup new registers and do misc. setup. */
1305 (*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack,
1306 (vaddr_t)stack);
1307 if (data->ed_pack.ep_esch->es_setregs)
1308 (*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack,
1309 (vaddr_t)stack);
1310
1311 /* Provide a consistent LWP private setting */
1312 (void)lwp_setprivate(l, NULL);
1313
1314 /* Discard all PCU state; need to start fresh */
1315 pcu_discard_all(l);
1316
1317 /* map the process's signal trampoline code */
1318 if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) {
1319 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1320 goto exec_abort;
1321 }
1322
1323 pool_put(&exec_pool, data->ed_argp);
1324
1325 /* notify others that we exec'd */
1326 KNOTE(&p->p_klist, NOTE_EXEC);
1327
1328 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1329
1330 SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0);
1331
1332 /* The emulation root will usually have been found when we looked
1333 * for the elf interpreter (or similar), if not look now. */
1334 if (data->ed_pack.ep_esch->es_emul->e_path != NULL &&
1335 data->ed_pack.ep_emul_root == NULL)
1336 emul_find_root(l, &data->ed_pack);
1337
1338 /* Any old emulation root got removed by fdcloseexec */
1339 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1340 p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root;
1341 rw_exit(&p->p_cwdi->cwdi_lock);
1342 data->ed_pack.ep_emul_root = NULL;
1343 if (data->ed_pack.ep_interp != NULL)
1344 vrele(data->ed_pack.ep_interp);
1345
1346 /*
1347 * Call emulation specific exec hook. This can setup per-process
1348 * p->p_emuldata or do any other per-process stuff an emulation needs.
1349 *
1350 * If we are executing process of different emulation than the
1351 * original forked process, call e_proc_exit() of the old emulation
1352 * first, then e_proc_exec() of new emulation. If the emulation is
1353 * same, the exec hook code should deallocate any old emulation
1354 * resources held previously by this process.
1355 */
1356 if (p->p_emul && p->p_emul->e_proc_exit
1357 && p->p_emul != data->ed_pack.ep_esch->es_emul)
1358 (*p->p_emul->e_proc_exit)(p);
1359
1360 /*
1361 * This is now LWP 1.
1362 */
1363 mutex_enter(p->p_lock);
1364 p->p_nlwpid = 1;
1365 l->l_lid = 1;
1366 mutex_exit(p->p_lock);
1367
1368 /*
1369 * Call exec hook. Emulation code may NOT store reference to anything
1370 * from &pack.
1371 */
1372 if (data->ed_pack.ep_esch->es_emul->e_proc_exec)
1373 (*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack);
1374
1375 /* update p_emul, the old value is no longer needed */
1376 p->p_emul = data->ed_pack.ep_esch->es_emul;
1377
1378 /* ...and the same for p_execsw */
1379 p->p_execsw = data->ed_pack.ep_esch;
1380
1381 #ifdef __HAVE_SYSCALL_INTERN
1382 (*p->p_emul->e_syscall_intern)(p);
1383 #endif
1384 ktremul();
1385
1386 /* Allow new references from the debugger/procfs. */
1387 rw_exit(&p->p_reflock);
1388 if (!no_local_exec_lock)
1389 rw_exit(&exec_lock);
1390
1391 mutex_enter(proc_lock);
1392
1393 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1394 KSI_INIT_EMPTY(&ksi);
1395 ksi.ksi_signo = SIGTRAP;
1396 ksi.ksi_lid = l->l_lid;
1397 kpsignal(p, &ksi, NULL);
1398 }
1399
1400 if (p->p_sflag & PS_STOPEXEC) {
1401 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1402 p->p_pptr->p_nstopchild++;
1403 p->p_pptr->p_waited = 0;
1404 mutex_enter(p->p_lock);
1405 ksiginfo_queue_init(&kq);
1406 sigclearall(p, &contsigmask, &kq);
1407 lwp_lock(l);
1408 l->l_stat = LSSTOP;
1409 p->p_stat = SSTOP;
1410 p->p_nrlwps--;
1411 lwp_unlock(l);
1412 mutex_exit(p->p_lock);
1413 mutex_exit(proc_lock);
1414 lwp_lock(l);
1415 mi_switch(l);
1416 ksiginfo_queue_drain(&kq);
1417 KERNEL_LOCK(l->l_biglocks, l);
1418 } else {
1419 mutex_exit(proc_lock);
1420 }
1421
1422 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1423 pathbuf_destroy(data->ed_pathbuf);
1424 PNBUF_PUT(data->ed_resolvedpathbuf);
1425 DPRINTF(("%s finished\n", __func__));
1426 return (EJUSTRETURN);
1427
1428 exec_abort:
1429 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1430 rw_exit(&p->p_reflock);
1431 if (!no_local_exec_lock)
1432 rw_exit(&exec_lock);
1433
1434 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1435 pathbuf_destroy(data->ed_pathbuf);
1436 PNBUF_PUT(data->ed_resolvedpathbuf);
1437
1438 /*
1439 * the old process doesn't exist anymore. exit gracefully.
1440 * get rid of the (new) address space we have created, if any, get rid
1441 * of our namei data and vnode, and exit noting failure
1442 */
1443 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1444 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1445
1446 exec_free_emul_arg(&data->ed_pack);
1447 pool_put(&exec_pool, data->ed_argp);
1448 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1449 if (data->ed_pack.ep_emul_root != NULL)
1450 vrele(data->ed_pack.ep_emul_root);
1451 if (data->ed_pack.ep_interp != NULL)
1452 vrele(data->ed_pack.ep_interp);
1453
1454 /* Acquire the sched-state mutex (exit1() will release it). */
1455 if (!is_spawn) {
1456 mutex_enter(p->p_lock);
1457 exit1(l, W_EXITCODE(error, SIGABRT));
1458 }
1459
1460 return error;
1461 }
1462
1463 int
1464 execve1(struct lwp *l, const char *path, char * const *args,
1465 char * const *envs, execve_fetch_element_t fetch_element)
1466 {
1467 struct execve_data data;
1468 int error;
1469
1470 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1471 if (error)
1472 return error;
1473 error = execve_runproc(l, &data, false, false);
1474 return error;
1475 }
1476
1477 int
1478 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1479 char **stackp, void *argp)
1480 {
1481 char **cpp, *dp, *sp;
1482 size_t len;
1483 void *nullp;
1484 long argc, envc;
1485 int error;
1486
1487 cpp = (char **)*stackp;
1488 nullp = NULL;
1489 argc = arginfo->ps_nargvstr;
1490 envc = arginfo->ps_nenvstr;
1491 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1492 COPYPRINTF("", cpp - 1, sizeof(argc));
1493 return error;
1494 }
1495
1496 dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1497 sp = argp;
1498
1499 /* XXX don't copy them out, remap them! */
1500 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1501
1502 for (; --argc >= 0; sp += len, dp += len) {
1503 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1504 COPYPRINTF("", cpp - 1, sizeof(dp));
1505 return error;
1506 }
1507 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1508 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1509 return error;
1510 }
1511 }
1512
1513 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1514 COPYPRINTF("", cpp - 1, sizeof(nullp));
1515 return error;
1516 }
1517
1518 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1519
1520 for (; --envc >= 0; sp += len, dp += len) {
1521 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1522 COPYPRINTF("", cpp - 1, sizeof(dp));
1523 return error;
1524 }
1525 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1526 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1527 return error;
1528 }
1529
1530 }
1531
1532 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1533 COPYPRINTF("", cpp - 1, sizeof(nullp));
1534 return error;
1535 }
1536
1537 *stackp = (char *)cpp;
1538 return 0;
1539 }
1540
1541
1542 /*
1543 * Add execsw[] entries.
1544 */
1545 int
1546 exec_add(struct execsw *esp, int count)
1547 {
1548 struct exec_entry *it;
1549 int i;
1550
1551 if (count == 0) {
1552 return 0;
1553 }
1554
1555 /* Check for duplicates. */
1556 rw_enter(&exec_lock, RW_WRITER);
1557 for (i = 0; i < count; i++) {
1558 LIST_FOREACH(it, &ex_head, ex_list) {
1559 /* assume unique (makecmds, probe_func, emulation) */
1560 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1561 it->ex_sw->u.elf_probe_func ==
1562 esp[i].u.elf_probe_func &&
1563 it->ex_sw->es_emul == esp[i].es_emul) {
1564 rw_exit(&exec_lock);
1565 return EEXIST;
1566 }
1567 }
1568 }
1569
1570 /* Allocate new entries. */
1571 for (i = 0; i < count; i++) {
1572 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1573 it->ex_sw = &esp[i];
1574 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1575 }
1576
1577 /* update execsw[] */
1578 exec_init(0);
1579 rw_exit(&exec_lock);
1580 return 0;
1581 }
1582
1583 /*
1584 * Remove execsw[] entry.
1585 */
1586 int
1587 exec_remove(struct execsw *esp, int count)
1588 {
1589 struct exec_entry *it, *next;
1590 int i;
1591 const struct proclist_desc *pd;
1592 proc_t *p;
1593
1594 if (count == 0) {
1595 return 0;
1596 }
1597
1598 /* Abort if any are busy. */
1599 rw_enter(&exec_lock, RW_WRITER);
1600 for (i = 0; i < count; i++) {
1601 mutex_enter(proc_lock);
1602 for (pd = proclists; pd->pd_list != NULL; pd++) {
1603 PROCLIST_FOREACH(p, pd->pd_list) {
1604 if (p->p_execsw == &esp[i]) {
1605 mutex_exit(proc_lock);
1606 rw_exit(&exec_lock);
1607 return EBUSY;
1608 }
1609 }
1610 }
1611 mutex_exit(proc_lock);
1612 }
1613
1614 /* None are busy, so remove them all. */
1615 for (i = 0; i < count; i++) {
1616 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1617 next = LIST_NEXT(it, ex_list);
1618 if (it->ex_sw == &esp[i]) {
1619 LIST_REMOVE(it, ex_list);
1620 kmem_free(it, sizeof(*it));
1621 break;
1622 }
1623 }
1624 }
1625
1626 /* update execsw[] */
1627 exec_init(0);
1628 rw_exit(&exec_lock);
1629 return 0;
1630 }
1631
1632 /*
1633 * Initialize exec structures. If init_boot is true, also does necessary
1634 * one-time initialization (it's called from main() that way).
1635 * Once system is multiuser, this should be called with exec_lock held,
1636 * i.e. via exec_{add|remove}().
1637 */
1638 int
1639 exec_init(int init_boot)
1640 {
1641 const struct execsw **sw;
1642 struct exec_entry *ex;
1643 SLIST_HEAD(,exec_entry) first;
1644 SLIST_HEAD(,exec_entry) any;
1645 SLIST_HEAD(,exec_entry) last;
1646 int i, sz;
1647
1648 if (init_boot) {
1649 /* do one-time initializations */
1650 rw_init(&exec_lock);
1651 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1652 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1653 "execargs", &exec_palloc, IPL_NONE);
1654 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1655 } else {
1656 KASSERT(rw_write_held(&exec_lock));
1657 }
1658
1659 /* Sort each entry onto the appropriate queue. */
1660 SLIST_INIT(&first);
1661 SLIST_INIT(&any);
1662 SLIST_INIT(&last);
1663 sz = 0;
1664 LIST_FOREACH(ex, &ex_head, ex_list) {
1665 switch(ex->ex_sw->es_prio) {
1666 case EXECSW_PRIO_FIRST:
1667 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1668 break;
1669 case EXECSW_PRIO_ANY:
1670 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1671 break;
1672 case EXECSW_PRIO_LAST:
1673 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1674 break;
1675 default:
1676 panic("%s", __func__);
1677 break;
1678 }
1679 sz++;
1680 }
1681
1682 /*
1683 * Create new execsw[]. Ensure we do not try a zero-sized
1684 * allocation.
1685 */
1686 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1687 i = 0;
1688 SLIST_FOREACH(ex, &first, ex_slist) {
1689 sw[i++] = ex->ex_sw;
1690 }
1691 SLIST_FOREACH(ex, &any, ex_slist) {
1692 sw[i++] = ex->ex_sw;
1693 }
1694 SLIST_FOREACH(ex, &last, ex_slist) {
1695 sw[i++] = ex->ex_sw;
1696 }
1697
1698 /* Replace old execsw[] and free used memory. */
1699 if (execsw != NULL) {
1700 kmem_free(__UNCONST(execsw),
1701 nexecs * sizeof(struct execsw *) + 1);
1702 }
1703 execsw = sw;
1704 nexecs = sz;
1705
1706 /* Figure out the maximum size of an exec header. */
1707 exec_maxhdrsz = sizeof(int);
1708 for (i = 0; i < nexecs; i++) {
1709 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1710 exec_maxhdrsz = execsw[i]->es_hdrsz;
1711 }
1712
1713 return 0;
1714 }
1715
1716 static int
1717 exec_sigcode_map(struct proc *p, const struct emul *e)
1718 {
1719 vaddr_t va;
1720 vsize_t sz;
1721 int error;
1722 struct uvm_object *uobj;
1723
1724 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1725
1726 if (e->e_sigobject == NULL || sz == 0) {
1727 return 0;
1728 }
1729
1730 /*
1731 * If we don't have a sigobject for this emulation, create one.
1732 *
1733 * sigobject is an anonymous memory object (just like SYSV shared
1734 * memory) that we keep a permanent reference to and that we map
1735 * in all processes that need this sigcode. The creation is simple,
1736 * we create an object, add a permanent reference to it, map it in
1737 * kernel space, copy out the sigcode to it and unmap it.
1738 * We map it with PROT_READ|PROT_EXEC into the process just
1739 * the way sys_mmap() would map it.
1740 */
1741
1742 uobj = *e->e_sigobject;
1743 if (uobj == NULL) {
1744 mutex_enter(&sigobject_lock);
1745 if ((uobj = *e->e_sigobject) == NULL) {
1746 uobj = uao_create(sz, 0);
1747 (*uobj->pgops->pgo_reference)(uobj);
1748 va = vm_map_min(kernel_map);
1749 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1750 uobj, 0, 0,
1751 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1752 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1753 printf("kernel mapping failed %d\n", error);
1754 (*uobj->pgops->pgo_detach)(uobj);
1755 mutex_exit(&sigobject_lock);
1756 return (error);
1757 }
1758 memcpy((void *)va, e->e_sigcode, sz);
1759 #ifdef PMAP_NEED_PROCWR
1760 pmap_procwr(&proc0, va, sz);
1761 #endif
1762 uvm_unmap(kernel_map, va, va + round_page(sz));
1763 *e->e_sigobject = uobj;
1764 }
1765 mutex_exit(&sigobject_lock);
1766 }
1767
1768 /* Just a hint to uvm_map where to put it. */
1769 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1770 round_page(sz));
1771
1772 #ifdef __alpha__
1773 /*
1774 * Tru64 puts /sbin/loader at the end of user virtual memory,
1775 * which causes the above calculation to put the sigcode at
1776 * an invalid address. Put it just below the text instead.
1777 */
1778 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1779 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1780 }
1781 #endif
1782
1783 (*uobj->pgops->pgo_reference)(uobj);
1784 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1785 uobj, 0, 0,
1786 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1787 UVM_ADV_RANDOM, 0));
1788 if (error) {
1789 DPRINTF(("%s, %d: map %p "
1790 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1791 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1792 va, error));
1793 (*uobj->pgops->pgo_detach)(uobj);
1794 return (error);
1795 }
1796 p->p_sigctx.ps_sigcode = (void *)va;
1797 return (0);
1798 }
1799
1800 /*
1801 * Release a refcount on spawn_exec_data and destroy memory, if this
1802 * was the last one.
1803 */
1804 static void
1805 spawn_exec_data_release(struct spawn_exec_data *data)
1806 {
1807 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1808 return;
1809
1810 cv_destroy(&data->sed_cv_child_ready);
1811 mutex_destroy(&data->sed_mtx_child);
1812
1813 if (data->sed_actions)
1814 posix_spawn_fa_free(data->sed_actions,
1815 data->sed_actions->len);
1816 if (data->sed_attrs)
1817 kmem_free(data->sed_attrs,
1818 sizeof(*data->sed_attrs));
1819 kmem_free(data, sizeof(*data));
1820 }
1821
1822 /*
1823 * A child lwp of a posix_spawn operation starts here and ends up in
1824 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1825 * manipulations in between.
1826 * The parent waits for the child, as it is not clear wether the child
1827 * will be able to aquire its own exec_lock. If it can, the parent can
1828 * be released early and continue running in parallel. If not (or if the
1829 * magic debug flag is passed in the scheduler attribute struct), the
1830 * child rides on the parent's exec lock untill it is ready to return to
1831 * to userland - and only then releases the parent. This method loses
1832 * concurrency, but improves error reporting.
1833 */
1834 static void
1835 spawn_return(void *arg)
1836 {
1837 struct spawn_exec_data *spawn_data = arg;
1838 struct lwp *l = curlwp;
1839 int error, newfd;
1840 size_t i;
1841 const struct posix_spawn_file_actions_entry *fae;
1842 pid_t ppid;
1843 register_t retval;
1844 bool have_reflock;
1845 bool parent_is_waiting = true;
1846
1847 /*
1848 * Check if we can release parent early.
1849 * We either need to have no sed_attrs, or sed_attrs does not
1850 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1851 * safe access to the parent proc (passed in sed_parent).
1852 * We then try to get the exec_lock, and only if that works, we can
1853 * release the parent here already.
1854 */
1855 ppid = spawn_data->sed_parent->p_pid;
1856 if ((!spawn_data->sed_attrs
1857 || (spawn_data->sed_attrs->sa_flags
1858 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1859 && rw_tryenter(&exec_lock, RW_READER)) {
1860 parent_is_waiting = false;
1861 mutex_enter(&spawn_data->sed_mtx_child);
1862 cv_signal(&spawn_data->sed_cv_child_ready);
1863 mutex_exit(&spawn_data->sed_mtx_child);
1864 }
1865
1866 /* don't allow debugger access yet */
1867 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1868 have_reflock = true;
1869
1870 error = 0;
1871 /* handle posix_spawn_file_actions */
1872 if (spawn_data->sed_actions != NULL) {
1873 for (i = 0; i < spawn_data->sed_actions->len; i++) {
1874 fae = &spawn_data->sed_actions->fae[i];
1875 switch (fae->fae_action) {
1876 case FAE_OPEN:
1877 if (fd_getfile(fae->fae_fildes) != NULL) {
1878 error = fd_close(fae->fae_fildes);
1879 if (error)
1880 break;
1881 }
1882 error = fd_open(fae->fae_path, fae->fae_oflag,
1883 fae->fae_mode, &newfd);
1884 if (error)
1885 break;
1886 if (newfd != fae->fae_fildes) {
1887 error = dodup(l, newfd,
1888 fae->fae_fildes, 0, &retval);
1889 if (fd_getfile(newfd) != NULL)
1890 fd_close(newfd);
1891 }
1892 break;
1893 case FAE_DUP2:
1894 error = dodup(l, fae->fae_fildes,
1895 fae->fae_newfildes, 0, &retval);
1896 break;
1897 case FAE_CLOSE:
1898 if (fd_getfile(fae->fae_fildes) == NULL) {
1899 error = EBADF;
1900 break;
1901 }
1902 error = fd_close(fae->fae_fildes);
1903 break;
1904 }
1905 if (error)
1906 goto report_error;
1907 }
1908 }
1909
1910 /* handle posix_spawnattr */
1911 if (spawn_data->sed_attrs != NULL) {
1912 int ostat;
1913 struct sigaction sigact;
1914 sigact._sa_u._sa_handler = SIG_DFL;
1915 sigact.sa_flags = 0;
1916
1917 /*
1918 * set state to SSTOP so that this proc can be found by pid.
1919 * see proc_enterprp, do_sched_setparam below
1920 */
1921 ostat = l->l_proc->p_stat;
1922 l->l_proc->p_stat = SSTOP;
1923
1924 /* Set process group */
1925 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1926 pid_t mypid = l->l_proc->p_pid,
1927 pgrp = spawn_data->sed_attrs->sa_pgroup;
1928
1929 if (pgrp == 0)
1930 pgrp = mypid;
1931
1932 error = proc_enterpgrp(spawn_data->sed_parent,
1933 mypid, pgrp, false);
1934 if (error)
1935 goto report_error;
1936 }
1937
1938 /* Set scheduler policy */
1939 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1940 error = do_sched_setparam(l->l_proc->p_pid, 0,
1941 spawn_data->sed_attrs->sa_schedpolicy,
1942 &spawn_data->sed_attrs->sa_schedparam);
1943 else if (spawn_data->sed_attrs->sa_flags
1944 & POSIX_SPAWN_SETSCHEDPARAM) {
1945 error = do_sched_setparam(ppid, 0,
1946 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
1947 }
1948 if (error)
1949 goto report_error;
1950
1951 /* Reset user ID's */
1952 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
1953 error = do_setresuid(l, -1,
1954 kauth_cred_getgid(l->l_cred), -1,
1955 ID_E_EQ_R | ID_E_EQ_S);
1956 if (error)
1957 goto report_error;
1958 error = do_setresuid(l, -1,
1959 kauth_cred_getuid(l->l_cred), -1,
1960 ID_E_EQ_R | ID_E_EQ_S);
1961 if (error)
1962 goto report_error;
1963 }
1964
1965 /* Set signal masks/defaults */
1966 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
1967 mutex_enter(l->l_proc->p_lock);
1968 error = sigprocmask1(l, SIG_SETMASK,
1969 &spawn_data->sed_attrs->sa_sigmask, NULL);
1970 mutex_exit(l->l_proc->p_lock);
1971 if (error)
1972 goto report_error;
1973 }
1974
1975 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
1976 for (i = 1; i <= NSIG; i++) {
1977 if (sigismember(
1978 &spawn_data->sed_attrs->sa_sigdefault, i))
1979 sigaction1(l, i, &sigact, NULL, NULL,
1980 0);
1981 }
1982 }
1983 l->l_proc->p_stat = ostat;
1984 }
1985
1986 /* now do the real exec */
1987 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
1988 true);
1989 have_reflock = false;
1990 if (error == EJUSTRETURN)
1991 error = 0;
1992 else if (error)
1993 goto report_error;
1994
1995 if (parent_is_waiting) {
1996 mutex_enter(&spawn_data->sed_mtx_child);
1997 cv_signal(&spawn_data->sed_cv_child_ready);
1998 mutex_exit(&spawn_data->sed_mtx_child);
1999 }
2000
2001 /* release our refcount on the data */
2002 spawn_exec_data_release(spawn_data);
2003
2004 /* and finaly: leave to userland for the first time */
2005 cpu_spawn_return(l);
2006
2007 /* NOTREACHED */
2008 return;
2009
2010 report_error:
2011 if (have_reflock) {
2012 /*
2013 * We have not passed through execve_runproc(),
2014 * which would have released the p_reflock and also
2015 * taken ownership of the sed_exec part of spawn_data,
2016 * so release/free both here.
2017 */
2018 rw_exit(&l->l_proc->p_reflock);
2019 execve_free_data(&spawn_data->sed_exec);
2020 }
2021
2022 if (parent_is_waiting) {
2023 /* pass error to parent */
2024 mutex_enter(&spawn_data->sed_mtx_child);
2025 spawn_data->sed_error = error;
2026 cv_signal(&spawn_data->sed_cv_child_ready);
2027 mutex_exit(&spawn_data->sed_mtx_child);
2028 } else {
2029 rw_exit(&exec_lock);
2030 }
2031
2032 /* release our refcount on the data */
2033 spawn_exec_data_release(spawn_data);
2034
2035 /* done, exit */
2036 mutex_enter(l->l_proc->p_lock);
2037 /*
2038 * Posix explicitly asks for an exit code of 127 if we report
2039 * errors from the child process - so, unfortunately, there
2040 * is no way to report a more exact error code.
2041 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2042 * flag bit in the attrp argument to posix_spawn(2), see above.
2043 */
2044 exit1(l, W_EXITCODE(127, 0));
2045 }
2046
2047 void
2048 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2049 {
2050
2051 for (size_t i = 0; i < len; i++) {
2052 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2053 if (fae->fae_action != FAE_OPEN)
2054 continue;
2055 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2056 }
2057 if (fa->len > 0)
2058 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2059 kmem_free(fa, sizeof(*fa));
2060 }
2061
2062 static int
2063 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2064 const struct posix_spawn_file_actions *ufa)
2065 {
2066 struct posix_spawn_file_actions *fa;
2067 struct posix_spawn_file_actions_entry *fae;
2068 char *pbuf = NULL;
2069 int error;
2070 size_t i = 0;
2071
2072 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2073 error = copyin(ufa, fa, sizeof(*fa));
2074 if (error) {
2075 fa->fae = NULL;
2076 fa->len = 0;
2077 goto out;
2078 }
2079
2080 if (fa->len == 0) {
2081 kmem_free(fa, sizeof(*fa));
2082 return 0;
2083 }
2084
2085 fa->size = fa->len;
2086 size_t fal = fa->len * sizeof(*fae);
2087 fae = fa->fae;
2088 fa->fae = kmem_alloc(fal, KM_SLEEP);
2089 error = copyin(fae, fa->fae, fal);
2090 if (error)
2091 goto out;
2092
2093 pbuf = PNBUF_GET();
2094 for (; i < fa->len; i++) {
2095 fae = &fa->fae[i];
2096 if (fae->fae_action != FAE_OPEN)
2097 continue;
2098 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2099 if (error)
2100 goto out;
2101 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2102 memcpy(fae->fae_path, pbuf, fal);
2103 }
2104 PNBUF_PUT(pbuf);
2105
2106 *fap = fa;
2107 return 0;
2108 out:
2109 if (pbuf)
2110 PNBUF_PUT(pbuf);
2111 posix_spawn_fa_free(fa, i);
2112 return error;
2113 }
2114
2115 int
2116 check_posix_spawn(struct lwp *l1)
2117 {
2118 int error, tnprocs, count;
2119 uid_t uid;
2120 struct proc *p1;
2121
2122 p1 = l1->l_proc;
2123 uid = kauth_cred_getuid(l1->l_cred);
2124 tnprocs = atomic_inc_uint_nv(&nprocs);
2125
2126 /*
2127 * Although process entries are dynamically created, we still keep
2128 * a global limit on the maximum number we will create.
2129 */
2130 if (__predict_false(tnprocs >= maxproc))
2131 error = -1;
2132 else
2133 error = kauth_authorize_process(l1->l_cred,
2134 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2135
2136 if (error) {
2137 atomic_dec_uint(&nprocs);
2138 return EAGAIN;
2139 }
2140
2141 /*
2142 * Enforce limits.
2143 */
2144 count = chgproccnt(uid, 1);
2145 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2146 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2147 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2148 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2149 (void)chgproccnt(uid, -1);
2150 atomic_dec_uint(&nprocs);
2151 return EAGAIN;
2152 }
2153
2154 return 0;
2155 }
2156
2157 int
2158 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2159 struct posix_spawn_file_actions *fa,
2160 struct posix_spawnattr *sa,
2161 char *const *argv, char *const *envp,
2162 execve_fetch_element_t fetch)
2163 {
2164
2165 struct proc *p1, *p2;
2166 struct lwp *l2;
2167 int error;
2168 struct spawn_exec_data *spawn_data;
2169 vaddr_t uaddr;
2170 pid_t pid;
2171 bool have_exec_lock = false;
2172
2173 p1 = l1->l_proc;
2174
2175 /* Allocate and init spawn_data */
2176 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2177 spawn_data->sed_refcnt = 1; /* only parent so far */
2178 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2179 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2180 mutex_enter(&spawn_data->sed_mtx_child);
2181
2182 /*
2183 * Do the first part of the exec now, collect state
2184 * in spawn_data.
2185 */
2186 error = execve_loadvm(l1, path, argv,
2187 envp, fetch, &spawn_data->sed_exec);
2188 if (error == EJUSTRETURN)
2189 error = 0;
2190 else if (error)
2191 goto error_exit;
2192
2193 have_exec_lock = true;
2194
2195 /*
2196 * Allocate virtual address space for the U-area now, while it
2197 * is still easy to abort the fork operation if we're out of
2198 * kernel virtual address space.
2199 */
2200 uaddr = uvm_uarea_alloc();
2201 if (__predict_false(uaddr == 0)) {
2202 error = ENOMEM;
2203 goto error_exit;
2204 }
2205
2206 /*
2207 * Allocate new proc. Borrow proc0 vmspace for it, we will
2208 * replace it with its own before returning to userland
2209 * in the child.
2210 * This is a point of no return, we will have to go through
2211 * the child proc to properly clean it up past this point.
2212 */
2213 p2 = proc_alloc();
2214 pid = p2->p_pid;
2215
2216 /*
2217 * Make a proc table entry for the new process.
2218 * Start by zeroing the section of proc that is zero-initialized,
2219 * then copy the section that is copied directly from the parent.
2220 */
2221 memset(&p2->p_startzero, 0,
2222 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2223 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2224 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2225 p2->p_vmspace = proc0.p_vmspace;
2226
2227 TAILQ_INIT(&p2->p_sigpend.sp_info);
2228
2229 LIST_INIT(&p2->p_lwps);
2230 LIST_INIT(&p2->p_sigwaiters);
2231
2232 /*
2233 * Duplicate sub-structures as needed.
2234 * Increase reference counts on shared objects.
2235 * Inherit flags we want to keep. The flags related to SIGCHLD
2236 * handling are important in order to keep a consistent behaviour
2237 * for the child after the fork. If we are a 32-bit process, the
2238 * child will be too.
2239 */
2240 p2->p_flag =
2241 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2242 p2->p_emul = p1->p_emul;
2243 p2->p_execsw = p1->p_execsw;
2244
2245 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2246 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2247 rw_init(&p2->p_reflock);
2248 cv_init(&p2->p_waitcv, "wait");
2249 cv_init(&p2->p_lwpcv, "lwpwait");
2250
2251 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2252
2253 kauth_proc_fork(p1, p2);
2254
2255 p2->p_raslist = NULL;
2256 p2->p_fd = fd_copy();
2257
2258 /* XXX racy */
2259 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2260
2261 p2->p_cwdi = cwdinit();
2262
2263 /*
2264 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2265 * we just need increase pl_refcnt.
2266 */
2267 if (!p1->p_limit->pl_writeable) {
2268 lim_addref(p1->p_limit);
2269 p2->p_limit = p1->p_limit;
2270 } else {
2271 p2->p_limit = lim_copy(p1->p_limit);
2272 }
2273
2274 p2->p_lflag = 0;
2275 p2->p_sflag = 0;
2276 p2->p_slflag = 0;
2277 p2->p_pptr = p1;
2278 p2->p_ppid = p1->p_pid;
2279 LIST_INIT(&p2->p_children);
2280
2281 p2->p_aio = NULL;
2282
2283 #ifdef KTRACE
2284 /*
2285 * Copy traceflag and tracefile if enabled.
2286 * If not inherited, these were zeroed above.
2287 */
2288 if (p1->p_traceflag & KTRFAC_INHERIT) {
2289 mutex_enter(&ktrace_lock);
2290 p2->p_traceflag = p1->p_traceflag;
2291 if ((p2->p_tracep = p1->p_tracep) != NULL)
2292 ktradref(p2);
2293 mutex_exit(&ktrace_lock);
2294 }
2295 #endif
2296
2297 /*
2298 * Create signal actions for the child process.
2299 */
2300 p2->p_sigacts = sigactsinit(p1, 0);
2301 mutex_enter(p1->p_lock);
2302 p2->p_sflag |=
2303 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2304 sched_proc_fork(p1, p2);
2305 mutex_exit(p1->p_lock);
2306
2307 p2->p_stflag = p1->p_stflag;
2308
2309 /*
2310 * p_stats.
2311 * Copy parts of p_stats, and zero out the rest.
2312 */
2313 p2->p_stats = pstatscopy(p1->p_stats);
2314
2315 /* copy over machdep flags to the new proc */
2316 cpu_proc_fork(p1, p2);
2317
2318 /*
2319 * Prepare remaining parts of spawn data
2320 */
2321 spawn_data->sed_actions = fa;
2322 spawn_data->sed_attrs = sa;
2323
2324 spawn_data->sed_parent = p1;
2325
2326 /* create LWP */
2327 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2328 &l2, l1->l_class);
2329 l2->l_ctxlink = NULL; /* reset ucontext link */
2330
2331 /*
2332 * Copy the credential so other references don't see our changes.
2333 * Test to see if this is necessary first, since in the common case
2334 * we won't need a private reference.
2335 */
2336 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2337 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2338 l2->l_cred = kauth_cred_copy(l2->l_cred);
2339 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2340 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2341 }
2342
2343 /* Update the master credentials. */
2344 if (l2->l_cred != p2->p_cred) {
2345 kauth_cred_t ocred;
2346
2347 kauth_cred_hold(l2->l_cred);
2348 mutex_enter(p2->p_lock);
2349 ocred = p2->p_cred;
2350 p2->p_cred = l2->l_cred;
2351 mutex_exit(p2->p_lock);
2352 kauth_cred_free(ocred);
2353 }
2354
2355 *child_ok = true;
2356 spawn_data->sed_refcnt = 2; /* child gets it as well */
2357 #if 0
2358 l2->l_nopreempt = 1; /* start it non-preemptable */
2359 #endif
2360
2361 /*
2362 * It's now safe for the scheduler and other processes to see the
2363 * child process.
2364 */
2365 mutex_enter(proc_lock);
2366
2367 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2368 p2->p_lflag |= PL_CONTROLT;
2369
2370 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2371 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2372
2373 LIST_INSERT_AFTER(p1, p2, p_pglist);
2374 LIST_INSERT_HEAD(&allproc, p2, p_list);
2375
2376 p2->p_trace_enabled = trace_is_enabled(p2);
2377 #ifdef __HAVE_SYSCALL_INTERN
2378 (*p2->p_emul->e_syscall_intern)(p2);
2379 #endif
2380
2381 /*
2382 * Make child runnable, set start time, and add to run queue except
2383 * if the parent requested the child to start in SSTOP state.
2384 */
2385 mutex_enter(p2->p_lock);
2386
2387 getmicrotime(&p2->p_stats->p_start);
2388
2389 lwp_lock(l2);
2390 KASSERT(p2->p_nrlwps == 1);
2391 p2->p_nrlwps = 1;
2392 p2->p_stat = SACTIVE;
2393 l2->l_stat = LSRUN;
2394 sched_enqueue(l2, false);
2395 lwp_unlock(l2);
2396
2397 mutex_exit(p2->p_lock);
2398 mutex_exit(proc_lock);
2399
2400 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2401 error = spawn_data->sed_error;
2402 mutex_exit(&spawn_data->sed_mtx_child);
2403 spawn_exec_data_release(spawn_data);
2404
2405 rw_exit(&p1->p_reflock);
2406 rw_exit(&exec_lock);
2407 have_exec_lock = false;
2408
2409 *pid_res = pid;
2410 return error;
2411
2412 error_exit:
2413 if (have_exec_lock) {
2414 execve_free_data(&spawn_data->sed_exec);
2415 rw_exit(&p1->p_reflock);
2416 rw_exit(&exec_lock);
2417 }
2418 mutex_exit(&spawn_data->sed_mtx_child);
2419 spawn_exec_data_release(spawn_data);
2420
2421 return error;
2422 }
2423
2424 int
2425 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2426 register_t *retval)
2427 {
2428 /* {
2429 syscallarg(pid_t *) pid;
2430 syscallarg(const char *) path;
2431 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2432 syscallarg(const struct posix_spawnattr *) attrp;
2433 syscallarg(char *const *) argv;
2434 syscallarg(char *const *) envp;
2435 } */
2436
2437 int error;
2438 struct posix_spawn_file_actions *fa = NULL;
2439 struct posix_spawnattr *sa = NULL;
2440 pid_t pid;
2441 bool child_ok = false;
2442
2443 error = check_posix_spawn(l1);
2444 if (error) {
2445 *retval = error;
2446 return 0;
2447 }
2448
2449 /* copy in file_actions struct */
2450 if (SCARG(uap, file_actions) != NULL) {
2451 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions));
2452 if (error)
2453 goto error_exit;
2454 }
2455
2456 /* copyin posix_spawnattr struct */
2457 if (SCARG(uap, attrp) != NULL) {
2458 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2459 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2460 if (error)
2461 goto error_exit;
2462 }
2463
2464 /*
2465 * Do the spawn
2466 */
2467 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2468 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2469 if (error)
2470 goto error_exit;
2471
2472 if (error == 0 && SCARG(uap, pid) != NULL)
2473 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2474
2475 *retval = error;
2476 return 0;
2477
2478 error_exit:
2479 if (!child_ok) {
2480 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2481 atomic_dec_uint(&nprocs);
2482
2483 if (sa)
2484 kmem_free(sa, sizeof(*sa));
2485 if (fa)
2486 posix_spawn_fa_free(fa, fa->len);
2487 }
2488
2489 *retval = error;
2490 return 0;
2491 }
2492
2493 void
2494 exec_free_emul_arg(struct exec_package *epp)
2495 {
2496 if (epp->ep_emul_arg_free != NULL) {
2497 KASSERT(epp->ep_emul_arg != NULL);
2498 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2499 epp->ep_emul_arg_free = NULL;
2500 epp->ep_emul_arg = NULL;
2501 } else {
2502 KASSERT(epp->ep_emul_arg == NULL);
2503 }
2504 }
2505