Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.368
      1 /*	$NetBSD: kern_exec.c,v 1.368 2013/12/24 14:47:04 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     31  * Copyright (C) 1992 Wolfgang Solfrank.
     32  * Copyright (C) 1992 TooLs GmbH.
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by TooLs GmbH.
     46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.368 2013/12/24 14:47:04 christos Exp $");
     63 
     64 #include "opt_exec.h"
     65 #include "opt_execfmt.h"
     66 #include "opt_ktrace.h"
     67 #include "opt_modular.h"
     68 #include "opt_syscall_debug.h"
     69 #include "veriexec.h"
     70 #include "opt_pax.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/filedesc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/mount.h>
     78 #include <sys/malloc.h>
     79 #include <sys/kmem.h>
     80 #include <sys/namei.h>
     81 #include <sys/vnode.h>
     82 #include <sys/file.h>
     83 #include <sys/acct.h>
     84 #include <sys/atomic.h>
     85 #include <sys/exec.h>
     86 #include <sys/ktrace.h>
     87 #include <sys/uidinfo.h>
     88 #include <sys/wait.h>
     89 #include <sys/mman.h>
     90 #include <sys/ras.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/stat.h>
     93 #include <sys/syscall.h>
     94 #include <sys/kauth.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/pax.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 #include <sys/syscallvar.h>
    100 #include <sys/syscallargs.h>
    101 #if NVERIEXEC > 0
    102 #include <sys/verified_exec.h>
    103 #endif /* NVERIEXEC > 0 */
    104 #include <sys/sdt.h>
    105 #include <sys/spawn.h>
    106 #include <sys/prot.h>
    107 #include <sys/cprng.h>
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #include <machine/reg.h>
    112 
    113 #include <compat/common/compat_util.h>
    114 
    115 #ifndef MD_TOPDOWN_INIT
    116 #ifdef __USING_TOPDOWN_VM
    117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    118 #else
    119 #define	MD_TOPDOWN_INIT(epp)
    120 #endif
    121 #endif
    122 
    123 static int exec_sigcode_map(struct proc *, const struct emul *);
    124 
    125 #ifdef DEBUG_EXEC
    126 #define DPRINTF(a) printf a
    127 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    128     __LINE__, (s), (a), (b))
    129 #else
    130 #define DPRINTF(a)
    131 #define COPYPRINTF(s, a, b)
    132 #endif /* DEBUG_EXEC */
    133 
    134 /*
    135  * DTrace SDT provider definitions
    136  */
    137 SDT_PROBE_DEFINE(proc,,,exec,exec,
    138 	    "char *", NULL,
    139 	    NULL, NULL, NULL, NULL,
    140 	    NULL, NULL, NULL, NULL);
    141 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
    142 	    "char *", NULL,
    143 	    NULL, NULL, NULL, NULL,
    144 	    NULL, NULL, NULL, NULL);
    145 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
    146 	    "int", NULL,
    147 	    NULL, NULL, NULL, NULL,
    148 	    NULL, NULL, NULL, NULL);
    149 
    150 /*
    151  * Exec function switch:
    152  *
    153  * Note that each makecmds function is responsible for loading the
    154  * exec package with the necessary functions for any exec-type-specific
    155  * handling.
    156  *
    157  * Functions for specific exec types should be defined in their own
    158  * header file.
    159  */
    160 static const struct execsw	**execsw = NULL;
    161 static int			nexecs;
    162 
    163 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    164 
    165 /* list of dynamically loaded execsw entries */
    166 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    167     LIST_HEAD_INITIALIZER(ex_head);
    168 struct exec_entry {
    169 	LIST_ENTRY(exec_entry)	ex_list;
    170 	SLIST_ENTRY(exec_entry)	ex_slist;
    171 	const struct execsw	*ex_sw;
    172 };
    173 
    174 #ifndef __HAVE_SYSCALL_INTERN
    175 void	syscall(void);
    176 #endif
    177 
    178 /* NetBSD emul struct */
    179 struct emul emul_netbsd = {
    180 	.e_name =		"netbsd",
    181 	.e_path =		NULL,
    182 #ifndef __HAVE_MINIMAL_EMUL
    183 	.e_flags =		EMUL_HAS_SYS___syscall,
    184 	.e_errno =		NULL,
    185 	.e_nosys =		SYS_syscall,
    186 	.e_nsysent =		SYS_NSYSENT,
    187 #endif
    188 	.e_sysent =		sysent,
    189 #ifdef SYSCALL_DEBUG
    190 	.e_syscallnames =	syscallnames,
    191 #else
    192 	.e_syscallnames =	NULL,
    193 #endif
    194 	.e_sendsig =		sendsig,
    195 	.e_trapsignal =		trapsignal,
    196 	.e_tracesig =		NULL,
    197 	.e_sigcode =		NULL,
    198 	.e_esigcode =		NULL,
    199 	.e_sigobject =		NULL,
    200 	.e_setregs =		setregs,
    201 	.e_proc_exec =		NULL,
    202 	.e_proc_fork =		NULL,
    203 	.e_proc_exit =		NULL,
    204 	.e_lwp_fork =		NULL,
    205 	.e_lwp_exit =		NULL,
    206 #ifdef __HAVE_SYSCALL_INTERN
    207 	.e_syscall_intern =	syscall_intern,
    208 #else
    209 	.e_syscall =		syscall,
    210 #endif
    211 	.e_sysctlovly =		NULL,
    212 	.e_fault =		NULL,
    213 	.e_vm_default_addr =	uvm_default_mapaddr,
    214 	.e_usertrap =		NULL,
    215 	.e_ucsize =		sizeof(ucontext_t),
    216 	.e_startlwp =		startlwp
    217 };
    218 
    219 /*
    220  * Exec lock. Used to control access to execsw[] structures.
    221  * This must not be static so that netbsd32 can access it, too.
    222  */
    223 krwlock_t exec_lock;
    224 
    225 static kmutex_t sigobject_lock;
    226 
    227 /*
    228  * Data used between a loadvm and execve part of an "exec" operation
    229  */
    230 struct execve_data {
    231 	struct exec_package	ed_pack;
    232 	struct pathbuf		*ed_pathbuf;
    233 	struct vattr		ed_attr;
    234 	struct ps_strings	ed_arginfo;
    235 	char			*ed_argp;
    236 	const char		*ed_pathstring;
    237 	char			*ed_resolvedpathbuf;
    238 	size_t			ed_ps_strings_sz;
    239 	int			ed_szsigcode;
    240 	long			ed_argc;
    241 	long			ed_envc;
    242 };
    243 
    244 /*
    245  * data passed from parent lwp to child during a posix_spawn()
    246  */
    247 struct spawn_exec_data {
    248 	struct execve_data	sed_exec;
    249 	struct posix_spawn_file_actions
    250 				*sed_actions;
    251 	struct posix_spawnattr	*sed_attrs;
    252 	struct proc		*sed_parent;
    253 	kcondvar_t		sed_cv_child_ready;
    254 	kmutex_t		sed_mtx_child;
    255 	int			sed_error;
    256 	volatile uint32_t	sed_refcnt;
    257 };
    258 
    259 static void *
    260 exec_pool_alloc(struct pool *pp, int flags)
    261 {
    262 
    263 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
    264 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    265 }
    266 
    267 static void
    268 exec_pool_free(struct pool *pp, void *addr)
    269 {
    270 
    271 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    272 }
    273 
    274 static struct pool exec_pool;
    275 
    276 static struct pool_allocator exec_palloc = {
    277 	.pa_alloc = exec_pool_alloc,
    278 	.pa_free = exec_pool_free,
    279 	.pa_pagesz = NCARGS
    280 };
    281 
    282 /*
    283  * check exec:
    284  * given an "executable" described in the exec package's namei info,
    285  * see what we can do with it.
    286  *
    287  * ON ENTRY:
    288  *	exec package with appropriate namei info
    289  *	lwp pointer of exec'ing lwp
    290  *	NO SELF-LOCKED VNODES
    291  *
    292  * ON EXIT:
    293  *	error:	nothing held, etc.  exec header still allocated.
    294  *	ok:	filled exec package, executable's vnode (unlocked).
    295  *
    296  * EXEC SWITCH ENTRY:
    297  * 	Locked vnode to check, exec package, proc.
    298  *
    299  * EXEC SWITCH EXIT:
    300  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    301  *	error:	destructive:
    302  *			everything deallocated execept exec header.
    303  *		non-destructive:
    304  *			error code, executable's vnode (unlocked),
    305  *			exec header unmodified.
    306  */
    307 int
    308 /*ARGSUSED*/
    309 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
    310 {
    311 	int		error, i;
    312 	struct vnode	*vp;
    313 	struct nameidata nd;
    314 	size_t		resid;
    315 
    316 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    317 
    318 	/* first get the vnode */
    319 	if ((error = namei(&nd)) != 0)
    320 		return error;
    321 	epp->ep_vp = vp = nd.ni_vp;
    322 	/* normally this can't fail */
    323 	if ((error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL)))
    324 		goto bad1;
    325 
    326 #ifdef DIAGNOSTIC
    327 	/* paranoia (take this out once namei stuff stabilizes) */
    328 	memset(nd.ni_pnbuf, '~', PATH_MAX);
    329 #endif
    330 
    331 	/* check access and type */
    332 	if (vp->v_type != VREG) {
    333 		error = EACCES;
    334 		goto bad1;
    335 	}
    336 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    337 		goto bad1;
    338 
    339 	/* get attributes */
    340 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    341 		goto bad1;
    342 
    343 	/* Check mount point */
    344 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    345 		error = EACCES;
    346 		goto bad1;
    347 	}
    348 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    349 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    350 
    351 	/* try to open it */
    352 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    353 		goto bad1;
    354 
    355 	/* unlock vp, since we need it unlocked from here on out. */
    356 	VOP_UNLOCK(vp);
    357 
    358 #if NVERIEXEC > 0
    359 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
    360 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    361 	    NULL);
    362 	if (error)
    363 		goto bad2;
    364 #endif /* NVERIEXEC > 0 */
    365 
    366 #ifdef PAX_SEGVGUARD
    367 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    368 	if (error)
    369 		goto bad2;
    370 #endif /* PAX_SEGVGUARD */
    371 
    372 	/* now we have the file, get the exec header */
    373 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    374 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
    375 	if (error)
    376 		goto bad2;
    377 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    378 
    379 	/*
    380 	 * Set up default address space limits.  Can be overridden
    381 	 * by individual exec packages.
    382 	 *
    383 	 * XXX probably should be all done in the exec packages.
    384 	 */
    385 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
    386 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    387 	/*
    388 	 * set up the vmcmds for creation of the process
    389 	 * address space
    390 	 */
    391 	error = ENOEXEC;
    392 	for (i = 0; i < nexecs; i++) {
    393 		int newerror;
    394 
    395 		epp->ep_esch = execsw[i];
    396 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    397 
    398 		if (!newerror) {
    399 			/* Seems ok: check that entry point is not too high */
    400 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
    401 #ifdef DIAGNOSTIC
    402 				printf("%s: rejecting %p due to "
    403 				    "too high entry address (> %p)\n",
    404 					 __func__, (void *)epp->ep_entry,
    405 					 (void *)epp->ep_vm_maxaddr);
    406 #endif
    407 				error = ENOEXEC;
    408 				break;
    409 			}
    410 			/* Seems ok: check that entry point is not too low */
    411 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    412 #ifdef DIAGNOSTIC
    413 				printf("%s: rejecting %p due to "
    414 				    "too low entry address (< %p)\n",
    415 				     __func__, (void *)epp->ep_entry,
    416 				     (void *)epp->ep_vm_minaddr);
    417 #endif
    418 				error = ENOEXEC;
    419 				break;
    420 			}
    421 
    422 			/* check limits */
    423 			if ((epp->ep_tsize > MAXTSIZ) ||
    424 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    425 						    [RLIMIT_DATA].rlim_cur)) {
    426 #ifdef DIAGNOSTIC
    427 				printf("%s: rejecting due to "
    428 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    429 				    __func__,
    430 				    (unsigned long long)epp->ep_tsize,
    431 				    (unsigned long long)MAXTSIZ,
    432 				    (unsigned long long)epp->ep_dsize,
    433 				    (unsigned long long)
    434 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    435 #endif
    436 				error = ENOMEM;
    437 				break;
    438 			}
    439 			return 0;
    440 		}
    441 
    442 		if (epp->ep_emul_root != NULL) {
    443 			vrele(epp->ep_emul_root);
    444 			epp->ep_emul_root = NULL;
    445 		}
    446 		if (epp->ep_interp != NULL) {
    447 			vrele(epp->ep_interp);
    448 			epp->ep_interp = NULL;
    449 		}
    450 
    451 		/* make sure the first "interesting" error code is saved. */
    452 		if (error == ENOEXEC)
    453 			error = newerror;
    454 
    455 		if (epp->ep_flags & EXEC_DESTR)
    456 			/* Error from "#!" code, tidied up by recursive call */
    457 			return error;
    458 	}
    459 
    460 	/* not found, error */
    461 
    462 	/*
    463 	 * free any vmspace-creation commands,
    464 	 * and release their references
    465 	 */
    466 	kill_vmcmds(&epp->ep_vmcmds);
    467 
    468 bad2:
    469 	/*
    470 	 * close and release the vnode, restore the old one, free the
    471 	 * pathname buf, and punt.
    472 	 */
    473 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    474 	VOP_CLOSE(vp, FREAD, l->l_cred);
    475 	vput(vp);
    476 	return error;
    477 
    478 bad1:
    479 	/*
    480 	 * free the namei pathname buffer, and put the vnode
    481 	 * (which we don't yet have open).
    482 	 */
    483 	vput(vp);				/* was still locked */
    484 	return error;
    485 }
    486 
    487 #ifdef __MACHINE_STACK_GROWS_UP
    488 #define STACK_PTHREADSPACE NBPG
    489 #else
    490 #define STACK_PTHREADSPACE 0
    491 #endif
    492 
    493 static int
    494 execve_fetch_element(char * const *array, size_t index, char **value)
    495 {
    496 	return copyin(array + index, value, sizeof(*value));
    497 }
    498 
    499 /*
    500  * exec system call
    501  */
    502 int
    503 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    504 {
    505 	/* {
    506 		syscallarg(const char *)	path;
    507 		syscallarg(char * const *)	argp;
    508 		syscallarg(char * const *)	envp;
    509 	} */
    510 
    511 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
    512 	    SCARG(uap, envp), execve_fetch_element);
    513 }
    514 
    515 int
    516 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    517     register_t *retval)
    518 {
    519 	/* {
    520 		syscallarg(int)			fd;
    521 		syscallarg(char * const *)	argp;
    522 		syscallarg(char * const *)	envp;
    523 	} */
    524 
    525 	return ENOSYS;
    526 }
    527 
    528 /*
    529  * Load modules to try and execute an image that we do not understand.
    530  * If no execsw entries are present, we load those likely to be needed
    531  * in order to run native images only.  Otherwise, we autoload all
    532  * possible modules that could let us run the binary.  XXX lame
    533  */
    534 static void
    535 exec_autoload(void)
    536 {
    537 #ifdef MODULAR
    538 	static const char * const native[] = {
    539 		"exec_elf32",
    540 		"exec_elf64",
    541 		"exec_script",
    542 		NULL
    543 	};
    544 	static const char * const compat[] = {
    545 		"exec_elf32",
    546 		"exec_elf64",
    547 		"exec_script",
    548 		"exec_aout",
    549 		"exec_coff",
    550 		"exec_ecoff",
    551 		"compat_aoutm68k",
    552 		"compat_freebsd",
    553 		"compat_ibcs2",
    554 		"compat_linux",
    555 		"compat_linux32",
    556 		"compat_netbsd32",
    557 		"compat_sunos",
    558 		"compat_sunos32",
    559 		"compat_svr4",
    560 		"compat_svr4_32",
    561 		"compat_ultrix",
    562 		NULL
    563 	};
    564 	char const * const *list;
    565 	int i;
    566 
    567 	list = (nexecs == 0 ? native : compat);
    568 	for (i = 0; list[i] != NULL; i++) {
    569 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    570 		    	continue;
    571 		}
    572 	   	yield();
    573 	}
    574 #endif
    575 }
    576 
    577 static int
    578 execve_loadvm(struct lwp *l, const char *path, char * const *args,
    579 	char * const *envs, execve_fetch_element_t fetch_element,
    580 	struct execve_data * restrict data)
    581 {
    582 	int			error;
    583 	struct proc		*p;
    584 	char			*dp, *sp;
    585 	size_t			i, len;
    586 	struct exec_fakearg	*tmpfap;
    587 	u_int			modgen;
    588 
    589 	KASSERT(data != NULL);
    590 
    591 	p = l->l_proc;
    592  	modgen = 0;
    593 
    594 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
    595 
    596 	/*
    597 	 * Check if we have exceeded our number of processes limit.
    598 	 * This is so that we handle the case where a root daemon
    599 	 * forked, ran setuid to become the desired user and is trying
    600 	 * to exec. The obvious place to do the reference counting check
    601 	 * is setuid(), but we don't do the reference counting check there
    602 	 * like other OS's do because then all the programs that use setuid()
    603 	 * must be modified to check the return code of setuid() and exit().
    604 	 * It is dangerous to make setuid() fail, because it fails open and
    605 	 * the program will continue to run as root. If we make it succeed
    606 	 * and return an error code, again we are not enforcing the limit.
    607 	 * The best place to enforce the limit is here, when the process tries
    608 	 * to execute a new image, because eventually the process will need
    609 	 * to call exec in order to do something useful.
    610 	 */
    611  retry:
    612 	if (p->p_flag & PK_SUGID) {
    613 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    614 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    615 		     &p->p_rlimit[RLIMIT_NPROC],
    616 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    617 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    618 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    619 		return EAGAIN;
    620 	}
    621 
    622 	/*
    623 	 * Drain existing references and forbid new ones.  The process
    624 	 * should be left alone until we're done here.  This is necessary
    625 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    626 	 * a local user to illicitly obtain elevated privileges.
    627 	 */
    628 	rw_enter(&p->p_reflock, RW_WRITER);
    629 
    630 	/*
    631 	 * Init the namei data to point the file user's program name.
    632 	 * This is done here rather than in check_exec(), so that it's
    633 	 * possible to override this settings if any of makecmd/probe
    634 	 * functions call check_exec() recursively - for example,
    635 	 * see exec_script_makecmds().
    636 	 */
    637 	error = pathbuf_copyin(path, &data->ed_pathbuf);
    638 	if (error) {
    639 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
    640 		    path, error));
    641 		goto clrflg;
    642 	}
    643 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    644 	data->ed_resolvedpathbuf = PNBUF_GET();
    645 
    646 	/*
    647 	 * initialize the fields of the exec package.
    648 	 */
    649 	data->ed_pack.ep_name = path;
    650 	data->ed_pack.ep_kname = data->ed_pathstring;
    651 	data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf;
    652 	data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    653 	data->ed_pack.ep_hdrlen = exec_maxhdrsz;
    654 	data->ed_pack.ep_hdrvalid = 0;
    655 	data->ed_pack.ep_emul_arg = NULL;
    656 	data->ed_pack.ep_emul_arg_free = NULL;
    657 	data->ed_pack.ep_vmcmds.evs_cnt = 0;
    658 	data->ed_pack.ep_vmcmds.evs_used = 0;
    659 	data->ed_pack.ep_vap = &data->ed_attr;
    660 	data->ed_pack.ep_flags = 0;
    661 	MD_TOPDOWN_INIT(&data->ed_pack);
    662 	data->ed_pack.ep_emul_root = NULL;
    663 	data->ed_pack.ep_interp = NULL;
    664 	data->ed_pack.ep_esch = NULL;
    665 	data->ed_pack.ep_pax_flags = 0;
    666 	memset(data->ed_pack.ep_machine_arch, 0,
    667 	    sizeof(data->ed_pack.ep_machine_arch));
    668 
    669 	rw_enter(&exec_lock, RW_READER);
    670 
    671 	/* see if we can run it. */
    672 	if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) {
    673 		if (error != ENOENT) {
    674 			DPRINTF(("%s: check exec failed %d\n",
    675 			    __func__, error));
    676 		}
    677 		goto freehdr;
    678 	}
    679 
    680 	/* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
    681 
    682 	/* allocate an argument buffer */
    683 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    684 	KASSERT(data->ed_argp != NULL);
    685 	dp = data->ed_argp;
    686 	data->ed_argc = 0;
    687 
    688 	/* copy the fake args list, if there's one, freeing it as we go */
    689 	if (data->ed_pack.ep_flags & EXEC_HASARGL) {
    690 		tmpfap = data->ed_pack.ep_fa;
    691 		while (tmpfap->fa_arg != NULL) {
    692 			const char *cp;
    693 
    694 			cp = tmpfap->fa_arg;
    695 			while (*cp)
    696 				*dp++ = *cp++;
    697 			*dp++ = '\0';
    698 			ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
    699 
    700 			kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
    701 			tmpfap++; data->ed_argc++;
    702 		}
    703 		kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len);
    704 		data->ed_pack.ep_flags &= ~EXEC_HASARGL;
    705 	}
    706 
    707 	/* Now get argv & environment */
    708 	if (args == NULL) {
    709 		DPRINTF(("%s: null args\n", __func__));
    710 		error = EINVAL;
    711 		goto bad;
    712 	}
    713 	/* 'i' will index the argp/envp element to be retrieved */
    714 	i = 0;
    715 	if (data->ed_pack.ep_flags & EXEC_SKIPARG)
    716 		i++;
    717 
    718 	while (1) {
    719 		len = data->ed_argp + ARG_MAX - dp;
    720 		if ((error = (*fetch_element)(args, i, &sp)) != 0) {
    721 			DPRINTF(("%s: fetch_element args %d\n",
    722 			    __func__, error));
    723 			goto bad;
    724 		}
    725 		if (!sp)
    726 			break;
    727 		if ((error = copyinstr(sp, dp, len, &len)) != 0) {
    728 			DPRINTF(("%s: copyinstr args %d\n", __func__, error));
    729 			if (error == ENAMETOOLONG)
    730 				error = E2BIG;
    731 			goto bad;
    732 		}
    733 		ktrexecarg(dp, len - 1);
    734 		dp += len;
    735 		i++;
    736 		data->ed_argc++;
    737 	}
    738 
    739 	data->ed_envc = 0;
    740 	/* environment need not be there */
    741 	if (envs != NULL) {
    742 		i = 0;
    743 		while (1) {
    744 			len = data->ed_argp + ARG_MAX - dp;
    745 			if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
    746 				DPRINTF(("%s: fetch_element env %d\n",
    747 				    __func__, error));
    748 				goto bad;
    749 			}
    750 			if (!sp)
    751 				break;
    752 			if ((error = copyinstr(sp, dp, len, &len)) != 0) {
    753 				DPRINTF(("%s: copyinstr env %d\n",
    754 				    __func__, error));
    755 				if (error == ENAMETOOLONG)
    756 					error = E2BIG;
    757 				goto bad;
    758 			}
    759 
    760 			ktrexecenv(dp, len - 1);
    761 			dp += len;
    762 			i++;
    763 			data->ed_envc++;
    764 		}
    765 	}
    766 
    767 	dp = (char *) ALIGN(dp);
    768 
    769 	data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode -
    770 	    data->ed_pack.ep_esch->es_emul->e_sigcode;
    771 
    772 #ifdef __MACHINE_STACK_GROWS_UP
    773 /* See big comment lower down */
    774 #define	RTLD_GAP	32
    775 #else
    776 #define	RTLD_GAP	0
    777 #endif
    778 
    779 	/* Now check if args & environ fit into new stack */
    780 	if (data->ed_pack.ep_flags & EXEC_32) {
    781 		data->ed_ps_strings_sz = sizeof(struct ps_strings32);
    782 		len = ((data->ed_argc + data->ed_envc + 2 +
    783 		    data->ed_pack.ep_esch->es_arglen) *
    784 		    sizeof(int) + sizeof(int) + dp + RTLD_GAP +
    785 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
    786 		    - data->ed_argp;
    787 	} else {
    788 		data->ed_ps_strings_sz = sizeof(struct ps_strings);
    789 		len = ((data->ed_argc + data->ed_envc + 2 +
    790 		    data->ed_pack.ep_esch->es_arglen) *
    791 		    sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
    792 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
    793 		    - data->ed_argp;
    794 	}
    795 
    796 #ifdef PAX_ASLR
    797 	if (pax_aslr_active(l))
    798 		len += (cprng_fast32() % PAGE_SIZE);
    799 #endif /* PAX_ASLR */
    800 
    801 	/* make the stack "safely" aligned */
    802 	len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES);
    803 
    804 	if (len > data->ed_pack.ep_ssize) {
    805 		/* in effect, compare to initial limit */
    806 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    807 		goto bad;
    808 	}
    809 	/* adjust "active stack depth" for process VSZ */
    810 	data->ed_pack.ep_ssize = len;
    811 
    812 	return 0;
    813 
    814  bad:
    815 	/* free the vmspace-creation commands, and release their references */
    816 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
    817 	/* kill any opened file descriptor, if necessary */
    818 	if (data->ed_pack.ep_flags & EXEC_HASFD) {
    819 		data->ed_pack.ep_flags &= ~EXEC_HASFD;
    820 		fd_close(data->ed_pack.ep_fd);
    821 	}
    822 	/* close and put the exec'd file */
    823 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
    824 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
    825 	vput(data->ed_pack.ep_vp);
    826 	pool_put(&exec_pool, data->ed_argp);
    827 
    828  freehdr:
    829 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
    830 	if (data->ed_pack.ep_emul_root != NULL)
    831 		vrele(data->ed_pack.ep_emul_root);
    832 	if (data->ed_pack.ep_interp != NULL)
    833 		vrele(data->ed_pack.ep_interp);
    834 
    835 	rw_exit(&exec_lock);
    836 
    837 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    838 	pathbuf_destroy(data->ed_pathbuf);
    839 	PNBUF_PUT(data->ed_resolvedpathbuf);
    840 
    841  clrflg:
    842 	rw_exit(&p->p_reflock);
    843 
    844 	if (modgen != module_gen && error == ENOEXEC) {
    845 		modgen = module_gen;
    846 		exec_autoload();
    847 		goto retry;
    848 	}
    849 
    850 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
    851 	return error;
    852 }
    853 
    854 static void
    855 execve_free_data(struct execve_data *data)
    856 {
    857 
    858 	/* free the vmspace-creation commands, and release their references */
    859 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
    860 	/* kill any opened file descriptor, if necessary */
    861 	if (data->ed_pack.ep_flags & EXEC_HASFD) {
    862 		data->ed_pack.ep_flags &= ~EXEC_HASFD;
    863 		fd_close(data->ed_pack.ep_fd);
    864 	}
    865 
    866 	/* close and put the exec'd file */
    867 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
    868 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, curlwp->l_cred);
    869 	vput(data->ed_pack.ep_vp);
    870 	pool_put(&exec_pool, data->ed_argp);
    871 
    872 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
    873 	if (data->ed_pack.ep_emul_root != NULL)
    874 		vrele(data->ed_pack.ep_emul_root);
    875 	if (data->ed_pack.ep_interp != NULL)
    876 		vrele(data->ed_pack.ep_interp);
    877 
    878 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    879 	pathbuf_destroy(data->ed_pathbuf);
    880 	PNBUF_PUT(data->ed_resolvedpathbuf);
    881 }
    882 
    883 static int
    884 execve_runproc(struct lwp *l, struct execve_data * restrict data,
    885 	bool no_local_exec_lock, bool is_spawn)
    886 {
    887 	int error = 0;
    888 	struct proc		*p;
    889 	size_t			i;
    890 	char			*stack, *dp;
    891 	const char		*commandname;
    892 	struct ps_strings32	arginfo32;
    893 	struct exec_vmcmd	*base_vcp;
    894 	void			*aip;
    895 	struct vmspace		*vm;
    896 	ksiginfo_t		ksi;
    897 	ksiginfoq_t		kq;
    898 
    899 	/*
    900 	 * In case of a posix_spawn operation, the child doing the exec
    901 	 * might not hold the reader lock on exec_lock, but the parent
    902 	 * will do this instead.
    903 	 */
    904 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
    905 	KASSERT(data != NULL);
    906 	if (data == NULL)
    907 		return (EINVAL);
    908 
    909 	p = l->l_proc;
    910 	if (no_local_exec_lock)
    911 		KASSERT(is_spawn);
    912 
    913 	base_vcp = NULL;
    914 
    915 	if (data->ed_pack.ep_flags & EXEC_32)
    916 		aip = &arginfo32;
    917 	else
    918 		aip = &data->ed_arginfo;
    919 
    920 	/* Get rid of other LWPs. */
    921 	if (p->p_nlwps > 1) {
    922 		mutex_enter(p->p_lock);
    923 		exit_lwps(l);
    924 		mutex_exit(p->p_lock);
    925 	}
    926 	KDASSERT(p->p_nlwps == 1);
    927 
    928 	/* Destroy any lwpctl info. */
    929 	if (p->p_lwpctl != NULL)
    930 		lwp_ctl_exit();
    931 
    932 	/* Remove POSIX timers */
    933 	timers_free(p, TIMERS_POSIX);
    934 
    935 	/*
    936 	 * Do whatever is necessary to prepare the address space
    937 	 * for remapping.  Note that this might replace the current
    938 	 * vmspace with another!
    939 	 */
    940 	if (is_spawn)
    941 		uvmspace_spawn(l, data->ed_pack.ep_vm_minaddr,
    942 		    data->ed_pack.ep_vm_maxaddr,
    943 		    data->ed_pack.ep_flags & EXEC_TOPDOWN_VM);
    944 	else
    945 		uvmspace_exec(l, data->ed_pack.ep_vm_minaddr,
    946 		    data->ed_pack.ep_vm_maxaddr,
    947 		    data->ed_pack.ep_flags & EXEC_TOPDOWN_VM);
    948 
    949 	/* record proc's vnode, for use by procfs and others */
    950         if (p->p_textvp)
    951                 vrele(p->p_textvp);
    952 	vref(data->ed_pack.ep_vp);
    953 	p->p_textvp = data->ed_pack.ep_vp;
    954 
    955 	/* Now map address space */
    956 	vm = p->p_vmspace;
    957 	vm->vm_taddr = (void *)data->ed_pack.ep_taddr;
    958 	vm->vm_tsize = btoc(data->ed_pack.ep_tsize);
    959 	vm->vm_daddr = (void*)data->ed_pack.ep_daddr;
    960 	vm->vm_dsize = btoc(data->ed_pack.ep_dsize);
    961 	vm->vm_ssize = btoc(data->ed_pack.ep_ssize);
    962 	vm->vm_issize = 0;
    963 	vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr;
    964 	vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr;
    965 
    966 #ifdef PAX_ASLR
    967 	pax_aslr_init(l, vm);
    968 #endif /* PAX_ASLR */
    969 
    970 	/* create the new process's VM space by running the vmcmds */
    971 #ifdef DIAGNOSTIC
    972 	if (data->ed_pack.ep_vmcmds.evs_used == 0)
    973 		panic("%s: no vmcmds", __func__);
    974 #endif
    975 
    976 #ifdef DEBUG_EXEC
    977 	{
    978 		size_t j;
    979 		struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0];
    980 		DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used));
    981 		for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
    982 			DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
    983 			    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
    984 			    PRIxVSIZE" prot=0%o flags=%d\n", j,
    985 			    vp[j].ev_proc == vmcmd_map_pagedvn ?
    986 			    "pagedvn" :
    987 			    vp[j].ev_proc == vmcmd_map_readvn ?
    988 			    "readvn" :
    989 			    vp[j].ev_proc == vmcmd_map_zero ?
    990 			    "zero" : "*unknown*",
    991 			    vp[j].ev_addr, vp[j].ev_len,
    992 			    vp[j].ev_offset, vp[j].ev_prot,
    993 			    vp[j].ev_flags));
    994 		}
    995 	}
    996 #endif	/* DEBUG_EXEC */
    997 
    998 	for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) {
    999 		struct exec_vmcmd *vcp;
   1000 
   1001 		vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i];
   1002 		if (vcp->ev_flags & VMCMD_RELATIVE) {
   1003 #ifdef DIAGNOSTIC
   1004 			if (base_vcp == NULL)
   1005 				panic("%s: relative vmcmd with no base",
   1006 				    __func__);
   1007 			if (vcp->ev_flags & VMCMD_BASE)
   1008 				panic("%s: illegal base & relative vmcmd",
   1009 				    __func__);
   1010 #endif
   1011 			vcp->ev_addr += base_vcp->ev_addr;
   1012 		}
   1013 		error = (*vcp->ev_proc)(l, vcp);
   1014 #ifdef DEBUG_EXEC
   1015 		if (error) {
   1016 			size_t j;
   1017 			struct exec_vmcmd *vp =
   1018 			    &data->ed_pack.ep_vmcmds.evs_cmds[0];
   1019 			DPRINTF(("vmcmds %zu/%u, error %d\n", i,
   1020 			    data->ed_pack.ep_vmcmds.evs_used, error));
   1021 			for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
   1022 				DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   1023 				    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   1024 				    PRIxVSIZE" prot=0%o flags=%d\n", j,
   1025 				    vp[j].ev_proc == vmcmd_map_pagedvn ?
   1026 				    "pagedvn" :
   1027 				    vp[j].ev_proc == vmcmd_map_readvn ?
   1028 				    "readvn" :
   1029 				    vp[j].ev_proc == vmcmd_map_zero ?
   1030 				    "zero" : "*unknown*",
   1031 				    vp[j].ev_addr, vp[j].ev_len,
   1032 				    vp[j].ev_offset, vp[j].ev_prot,
   1033 				    vp[j].ev_flags));
   1034 				if (j == i)
   1035 					DPRINTF(("     ^--- failed\n"));
   1036 			}
   1037 		}
   1038 #endif /* DEBUG_EXEC */
   1039 		if (vcp->ev_flags & VMCMD_BASE)
   1040 			base_vcp = vcp;
   1041 	}
   1042 
   1043 	/* free the vmspace-creation commands, and release their references */
   1044 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
   1045 
   1046 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
   1047 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
   1048 	vput(data->ed_pack.ep_vp);
   1049 
   1050 	/* if an error happened, deallocate and punt */
   1051 	if (error) {
   1052 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
   1053 		goto exec_abort;
   1054 	}
   1055 
   1056 	/* remember information about the process */
   1057 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1058 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1059 
   1060 	/* set command name & other accounting info */
   1061 	commandname = strrchr(data->ed_pack.ep_resolvedname, '/');
   1062 	if (commandname != NULL) {
   1063 		commandname++;
   1064 	} else {
   1065 		commandname = data->ed_pack.ep_resolvedname;
   1066 	}
   1067 	i = min(strlen(commandname), MAXCOMLEN);
   1068 	(void)memcpy(p->p_comm, commandname, i);
   1069 	p->p_comm[i] = '\0';
   1070 
   1071 	dp = PNBUF_GET();
   1072 	/*
   1073 	 * If the path starts with /, we don't need to do any work.
   1074 	 * This handles the majority of the cases.
   1075 	 * In the future perhaps we could canonicalize it?
   1076 	 */
   1077 	if (data->ed_pathstring[0] == '/')
   1078 		(void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring,
   1079 		    MAXPATHLEN);
   1080 #ifdef notyet
   1081 	/*
   1082 	 * Although this works most of the time [since the entry was just
   1083 	 * entered in the cache] we don't use it because it will fail for
   1084 	 * entries that are not placed in the cache because their name is
   1085 	 * longer than NCHNAMLEN and it is not the cleanest interface,
   1086 	 * because there could be races. When the namei cache is re-written,
   1087 	 * this can be changed to use the appropriate function.
   1088 	 */
   1089 	else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
   1090 		data->ed_pack.ep_path = dp;
   1091 #endif
   1092 	else {
   1093 #ifdef notyet
   1094 		printf("Cannot get path for pid %d [%s] (error %d)\n",
   1095 		    (int)p->p_pid, p->p_comm, error);
   1096 #endif
   1097 		data->ed_pack.ep_path = NULL;
   1098 		PNBUF_PUT(dp);
   1099 	}
   1100 
   1101 	stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
   1102 		STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
   1103 		data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
   1104 
   1105 #ifdef __MACHINE_STACK_GROWS_UP
   1106 	/*
   1107 	 * The copyargs call always copies into lower addresses
   1108 	 * first, moving towards higher addresses, starting with
   1109 	 * the stack pointer that we give.  When the stack grows
   1110 	 * down, this puts argc/argv/envp very shallow on the
   1111 	 * stack, right at the first user stack pointer.
   1112 	 * When the stack grows up, the situation is reversed.
   1113 	 *
   1114 	 * Normally, this is no big deal.  But the ld_elf.so _rtld()
   1115 	 * function expects to be called with a single pointer to
   1116 	 * a region that has a few words it can stash values into,
   1117 	 * followed by argc/argv/envp.  When the stack grows down,
   1118 	 * it's easy to decrement the stack pointer a little bit to
   1119 	 * allocate the space for these few words and pass the new
   1120 	 * stack pointer to _rtld.  When the stack grows up, however,
   1121 	 * a few words before argc is part of the signal trampoline, XXX
   1122 	 * so we have a problem.
   1123 	 *
   1124 	 * Instead of changing how _rtld works, we take the easy way
   1125 	 * out and steal 32 bytes before we call copyargs.
   1126 	 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
   1127 	 */
   1128 	stack += RTLD_GAP;
   1129 #endif /* __MACHINE_STACK_GROWS_UP */
   1130 
   1131 	/* Now copy argc, args & environ to new stack */
   1132 	error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack,
   1133 	    &data->ed_arginfo, &stack, data->ed_argp);
   1134 
   1135 	if (data->ed_pack.ep_path) {
   1136 		PNBUF_PUT(data->ed_pack.ep_path);
   1137 		data->ed_pack.ep_path = NULL;
   1138 	}
   1139 	if (error) {
   1140 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1141 		goto exec_abort;
   1142 	}
   1143 	/* Move the stack back to original point */
   1144 	stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize);
   1145 
   1146 	/* fill process ps_strings info */
   1147 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
   1148 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1149 
   1150 	if (data->ed_pack.ep_flags & EXEC_32) {
   1151 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1152 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1153 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1154 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1155 	}
   1156 
   1157 	/* copy out the process's ps_strings structure */
   1158 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1159 	    != 0) {
   1160 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1161 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1162 		goto exec_abort;
   1163 	}
   1164 
   1165 	cwdexec(p);
   1166 	fd_closeexec();		/* handle close on exec */
   1167 
   1168 	if (__predict_false(ktrace_on))
   1169 		fd_ktrexecfd();
   1170 
   1171 	execsigs(p);		/* reset catched signals */
   1172 
   1173 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1174 
   1175 
   1176 	p->p_acflag &= ~AFORK;
   1177 	mutex_enter(p->p_lock);
   1178 	p->p_flag |= PK_EXEC;
   1179 	mutex_exit(p->p_lock);
   1180 
   1181 	/*
   1182 	 * Stop profiling.
   1183 	 */
   1184 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1185 		mutex_spin_enter(&p->p_stmutex);
   1186 		stopprofclock(p);
   1187 		mutex_spin_exit(&p->p_stmutex);
   1188 	}
   1189 
   1190 	/*
   1191 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1192 	 * exited and exec()/exit() are the only places it will be cleared.
   1193 	 */
   1194 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1195 #if 0
   1196 		lwp_t *lp;
   1197 
   1198 		mutex_enter(proc_lock);
   1199 		lp = p->p_vforklwp;
   1200 		p->p_vforklwp = NULL;
   1201 
   1202 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1203 		p->p_lflag &= ~PL_PPWAIT;
   1204 
   1205 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
   1206 		cv_broadcast(&lp->l_waitcv);
   1207 		mutex_exit(proc_lock);
   1208 #else
   1209 		mutex_enter(proc_lock);
   1210 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1211 		p->p_lflag &= ~PL_PPWAIT;
   1212 		cv_broadcast(&p->p_pptr->p_waitcv);
   1213 		mutex_exit(proc_lock);
   1214 #endif
   1215 	}
   1216 
   1217 	/*
   1218 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
   1219 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
   1220 	 * out additional references on the process for the moment.
   1221 	 */
   1222 	if ((p->p_slflag & PSL_TRACED) == 0 &&
   1223 
   1224 	    (((data->ed_attr.va_mode & S_ISUID) != 0 &&
   1225 	      kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
   1226 
   1227 	     ((data->ed_attr.va_mode & S_ISGID) != 0 &&
   1228 	      kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
   1229 		/*
   1230 		 * Mark the process as SUGID before we do
   1231 		 * anything that might block.
   1232 		 */
   1233 		proc_crmod_enter();
   1234 		proc_crmod_leave(NULL, NULL, true);
   1235 
   1236 		/* Make sure file descriptors 0..2 are in use. */
   1237 		if ((error = fd_checkstd()) != 0) {
   1238 			DPRINTF(("%s: fdcheckstd failed %d\n",
   1239 			    __func__, error));
   1240 			goto exec_abort;
   1241 		}
   1242 
   1243 		/*
   1244 		 * Copy the credential so other references don't see our
   1245 		 * changes.
   1246 		 */
   1247 		l->l_cred = kauth_cred_copy(l->l_cred);
   1248 #ifdef KTRACE
   1249 		/*
   1250 		 * If the persistent trace flag isn't set, turn off.
   1251 		 */
   1252 		if (p->p_tracep) {
   1253 			mutex_enter(&ktrace_lock);
   1254 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
   1255 				ktrderef(p);
   1256 			mutex_exit(&ktrace_lock);
   1257 		}
   1258 #endif
   1259 		if (data->ed_attr.va_mode & S_ISUID)
   1260 			kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
   1261 		if (data->ed_attr.va_mode & S_ISGID)
   1262 			kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
   1263 	} else {
   1264 		if (kauth_cred_geteuid(l->l_cred) ==
   1265 		    kauth_cred_getuid(l->l_cred) &&
   1266 		    kauth_cred_getegid(l->l_cred) ==
   1267 		    kauth_cred_getgid(l->l_cred))
   1268 			p->p_flag &= ~PK_SUGID;
   1269 	}
   1270 
   1271 	/*
   1272 	 * Copy the credential so other references don't see our changes.
   1273 	 * Test to see if this is necessary first, since in the common case
   1274 	 * we won't need a private reference.
   1275 	 */
   1276 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1277 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1278 		l->l_cred = kauth_cred_copy(l->l_cred);
   1279 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1280 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1281 	}
   1282 
   1283 	/* Update the master credentials. */
   1284 	if (l->l_cred != p->p_cred) {
   1285 		kauth_cred_t ocred;
   1286 
   1287 		kauth_cred_hold(l->l_cred);
   1288 		mutex_enter(p->p_lock);
   1289 		ocred = p->p_cred;
   1290 		p->p_cred = l->l_cred;
   1291 		mutex_exit(p->p_lock);
   1292 		kauth_cred_free(ocred);
   1293 	}
   1294 
   1295 #if defined(__HAVE_RAS)
   1296 	/*
   1297 	 * Remove all RASs from the address space.
   1298 	 */
   1299 	ras_purgeall();
   1300 #endif
   1301 
   1302 	doexechooks(p);
   1303 
   1304 	/* setup new registers and do misc. setup. */
   1305 	(*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack,
   1306 	     (vaddr_t)stack);
   1307 	if (data->ed_pack.ep_esch->es_setregs)
   1308 		(*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack,
   1309 		    (vaddr_t)stack);
   1310 
   1311 	/* Provide a consistent LWP private setting */
   1312 	(void)lwp_setprivate(l, NULL);
   1313 
   1314 	/* Discard all PCU state; need to start fresh */
   1315 	pcu_discard_all(l);
   1316 
   1317 	/* map the process's signal trampoline code */
   1318 	if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) {
   1319 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1320 		goto exec_abort;
   1321 	}
   1322 
   1323 	pool_put(&exec_pool, data->ed_argp);
   1324 
   1325 	/* notify others that we exec'd */
   1326 	KNOTE(&p->p_klist, NOTE_EXEC);
   1327 
   1328 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
   1329 
   1330 	SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0);
   1331 
   1332 	/* The emulation root will usually have been found when we looked
   1333 	 * for the elf interpreter (or similar), if not look now. */
   1334 	if (data->ed_pack.ep_esch->es_emul->e_path != NULL &&
   1335 	    data->ed_pack.ep_emul_root == NULL)
   1336 		emul_find_root(l, &data->ed_pack);
   1337 
   1338 	/* Any old emulation root got removed by fdcloseexec */
   1339 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1340 	p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root;
   1341 	rw_exit(&p->p_cwdi->cwdi_lock);
   1342 	data->ed_pack.ep_emul_root = NULL;
   1343 	if (data->ed_pack.ep_interp != NULL)
   1344 		vrele(data->ed_pack.ep_interp);
   1345 
   1346 	/*
   1347 	 * Call emulation specific exec hook. This can setup per-process
   1348 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1349 	 *
   1350 	 * If we are executing process of different emulation than the
   1351 	 * original forked process, call e_proc_exit() of the old emulation
   1352 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1353 	 * same, the exec hook code should deallocate any old emulation
   1354 	 * resources held previously by this process.
   1355 	 */
   1356 	if (p->p_emul && p->p_emul->e_proc_exit
   1357 	    && p->p_emul != data->ed_pack.ep_esch->es_emul)
   1358 		(*p->p_emul->e_proc_exit)(p);
   1359 
   1360 	/*
   1361 	 * This is now LWP 1.
   1362 	 */
   1363 	mutex_enter(p->p_lock);
   1364 	p->p_nlwpid = 1;
   1365 	l->l_lid = 1;
   1366 	mutex_exit(p->p_lock);
   1367 
   1368 	/*
   1369 	 * Call exec hook. Emulation code may NOT store reference to anything
   1370 	 * from &pack.
   1371 	 */
   1372 	if (data->ed_pack.ep_esch->es_emul->e_proc_exec)
   1373 		(*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack);
   1374 
   1375 	/* update p_emul, the old value is no longer needed */
   1376 	p->p_emul = data->ed_pack.ep_esch->es_emul;
   1377 
   1378 	/* ...and the same for p_execsw */
   1379 	p->p_execsw = data->ed_pack.ep_esch;
   1380 
   1381 #ifdef __HAVE_SYSCALL_INTERN
   1382 	(*p->p_emul->e_syscall_intern)(p);
   1383 #endif
   1384 	ktremul();
   1385 
   1386 	/* Allow new references from the debugger/procfs. */
   1387 	rw_exit(&p->p_reflock);
   1388 	if (!no_local_exec_lock)
   1389 		rw_exit(&exec_lock);
   1390 
   1391 	mutex_enter(proc_lock);
   1392 
   1393 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
   1394 		KSI_INIT_EMPTY(&ksi);
   1395 		ksi.ksi_signo = SIGTRAP;
   1396 		ksi.ksi_lid = l->l_lid;
   1397 		kpsignal(p, &ksi, NULL);
   1398 	}
   1399 
   1400 	if (p->p_sflag & PS_STOPEXEC) {
   1401 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1402 		p->p_pptr->p_nstopchild++;
   1403 		p->p_pptr->p_waited = 0;
   1404 		mutex_enter(p->p_lock);
   1405 		ksiginfo_queue_init(&kq);
   1406 		sigclearall(p, &contsigmask, &kq);
   1407 		lwp_lock(l);
   1408 		l->l_stat = LSSTOP;
   1409 		p->p_stat = SSTOP;
   1410 		p->p_nrlwps--;
   1411 		lwp_unlock(l);
   1412 		mutex_exit(p->p_lock);
   1413 		mutex_exit(proc_lock);
   1414 		lwp_lock(l);
   1415 		mi_switch(l);
   1416 		ksiginfo_queue_drain(&kq);
   1417 		KERNEL_LOCK(l->l_biglocks, l);
   1418 	} else {
   1419 		mutex_exit(proc_lock);
   1420 	}
   1421 
   1422 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1423 	pathbuf_destroy(data->ed_pathbuf);
   1424 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1425 	DPRINTF(("%s finished\n", __func__));
   1426 	return (EJUSTRETURN);
   1427 
   1428  exec_abort:
   1429 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
   1430 	rw_exit(&p->p_reflock);
   1431 	if (!no_local_exec_lock)
   1432 		rw_exit(&exec_lock);
   1433 
   1434 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1435 	pathbuf_destroy(data->ed_pathbuf);
   1436 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1437 
   1438 	/*
   1439 	 * the old process doesn't exist anymore.  exit gracefully.
   1440 	 * get rid of the (new) address space we have created, if any, get rid
   1441 	 * of our namei data and vnode, and exit noting failure
   1442 	 */
   1443 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1444 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1445 
   1446 	exec_free_emul_arg(&data->ed_pack);
   1447 	pool_put(&exec_pool, data->ed_argp);
   1448 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
   1449 	if (data->ed_pack.ep_emul_root != NULL)
   1450 		vrele(data->ed_pack.ep_emul_root);
   1451 	if (data->ed_pack.ep_interp != NULL)
   1452 		vrele(data->ed_pack.ep_interp);
   1453 
   1454 	/* Acquire the sched-state mutex (exit1() will release it). */
   1455 	if (!is_spawn) {
   1456 		mutex_enter(p->p_lock);
   1457 		exit1(l, W_EXITCODE(error, SIGABRT));
   1458 	}
   1459 
   1460 	return error;
   1461 }
   1462 
   1463 int
   1464 execve1(struct lwp *l, const char *path, char * const *args,
   1465     char * const *envs, execve_fetch_element_t fetch_element)
   1466 {
   1467 	struct execve_data data;
   1468 	int error;
   1469 
   1470 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
   1471 	if (error)
   1472 		return error;
   1473 	error = execve_runproc(l, &data, false, false);
   1474 	return error;
   1475 }
   1476 
   1477 int
   1478 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1479     char **stackp, void *argp)
   1480 {
   1481 	char	**cpp, *dp, *sp;
   1482 	size_t	len;
   1483 	void	*nullp;
   1484 	long	argc, envc;
   1485 	int	error;
   1486 
   1487 	cpp = (char **)*stackp;
   1488 	nullp = NULL;
   1489 	argc = arginfo->ps_nargvstr;
   1490 	envc = arginfo->ps_nenvstr;
   1491 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1492 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1493 		return error;
   1494 	}
   1495 
   1496 	dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
   1497 	sp = argp;
   1498 
   1499 	/* XXX don't copy them out, remap them! */
   1500 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1501 
   1502 	for (; --argc >= 0; sp += len, dp += len) {
   1503 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1504 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1505 			return error;
   1506 		}
   1507 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1508 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1509 			return error;
   1510 		}
   1511 	}
   1512 
   1513 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1514 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1515 		return error;
   1516 	}
   1517 
   1518 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1519 
   1520 	for (; --envc >= 0; sp += len, dp += len) {
   1521 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1522 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1523 			return error;
   1524 		}
   1525 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1526 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1527 			return error;
   1528 		}
   1529 
   1530 	}
   1531 
   1532 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1533 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1534 		return error;
   1535 	}
   1536 
   1537 	*stackp = (char *)cpp;
   1538 	return 0;
   1539 }
   1540 
   1541 
   1542 /*
   1543  * Add execsw[] entries.
   1544  */
   1545 int
   1546 exec_add(struct execsw *esp, int count)
   1547 {
   1548 	struct exec_entry	*it;
   1549 	int			i;
   1550 
   1551 	if (count == 0) {
   1552 		return 0;
   1553 	}
   1554 
   1555 	/* Check for duplicates. */
   1556 	rw_enter(&exec_lock, RW_WRITER);
   1557 	for (i = 0; i < count; i++) {
   1558 		LIST_FOREACH(it, &ex_head, ex_list) {
   1559 			/* assume unique (makecmds, probe_func, emulation) */
   1560 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1561 			    it->ex_sw->u.elf_probe_func ==
   1562 			    esp[i].u.elf_probe_func &&
   1563 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1564 				rw_exit(&exec_lock);
   1565 				return EEXIST;
   1566 			}
   1567 		}
   1568 	}
   1569 
   1570 	/* Allocate new entries. */
   1571 	for (i = 0; i < count; i++) {
   1572 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1573 		it->ex_sw = &esp[i];
   1574 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1575 	}
   1576 
   1577 	/* update execsw[] */
   1578 	exec_init(0);
   1579 	rw_exit(&exec_lock);
   1580 	return 0;
   1581 }
   1582 
   1583 /*
   1584  * Remove execsw[] entry.
   1585  */
   1586 int
   1587 exec_remove(struct execsw *esp, int count)
   1588 {
   1589 	struct exec_entry	*it, *next;
   1590 	int			i;
   1591 	const struct proclist_desc *pd;
   1592 	proc_t			*p;
   1593 
   1594 	if (count == 0) {
   1595 		return 0;
   1596 	}
   1597 
   1598 	/* Abort if any are busy. */
   1599 	rw_enter(&exec_lock, RW_WRITER);
   1600 	for (i = 0; i < count; i++) {
   1601 		mutex_enter(proc_lock);
   1602 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1603 			PROCLIST_FOREACH(p, pd->pd_list) {
   1604 				if (p->p_execsw == &esp[i]) {
   1605 					mutex_exit(proc_lock);
   1606 					rw_exit(&exec_lock);
   1607 					return EBUSY;
   1608 				}
   1609 			}
   1610 		}
   1611 		mutex_exit(proc_lock);
   1612 	}
   1613 
   1614 	/* None are busy, so remove them all. */
   1615 	for (i = 0; i < count; i++) {
   1616 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1617 			next = LIST_NEXT(it, ex_list);
   1618 			if (it->ex_sw == &esp[i]) {
   1619 				LIST_REMOVE(it, ex_list);
   1620 				kmem_free(it, sizeof(*it));
   1621 				break;
   1622 			}
   1623 		}
   1624 	}
   1625 
   1626 	/* update execsw[] */
   1627 	exec_init(0);
   1628 	rw_exit(&exec_lock);
   1629 	return 0;
   1630 }
   1631 
   1632 /*
   1633  * Initialize exec structures. If init_boot is true, also does necessary
   1634  * one-time initialization (it's called from main() that way).
   1635  * Once system is multiuser, this should be called with exec_lock held,
   1636  * i.e. via exec_{add|remove}().
   1637  */
   1638 int
   1639 exec_init(int init_boot)
   1640 {
   1641 	const struct execsw 	**sw;
   1642 	struct exec_entry	*ex;
   1643 	SLIST_HEAD(,exec_entry)	first;
   1644 	SLIST_HEAD(,exec_entry)	any;
   1645 	SLIST_HEAD(,exec_entry)	last;
   1646 	int			i, sz;
   1647 
   1648 	if (init_boot) {
   1649 		/* do one-time initializations */
   1650 		rw_init(&exec_lock);
   1651 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1652 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1653 		    "execargs", &exec_palloc, IPL_NONE);
   1654 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1655 	} else {
   1656 		KASSERT(rw_write_held(&exec_lock));
   1657 	}
   1658 
   1659 	/* Sort each entry onto the appropriate queue. */
   1660 	SLIST_INIT(&first);
   1661 	SLIST_INIT(&any);
   1662 	SLIST_INIT(&last);
   1663 	sz = 0;
   1664 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1665 		switch(ex->ex_sw->es_prio) {
   1666 		case EXECSW_PRIO_FIRST:
   1667 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1668 			break;
   1669 		case EXECSW_PRIO_ANY:
   1670 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1671 			break;
   1672 		case EXECSW_PRIO_LAST:
   1673 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1674 			break;
   1675 		default:
   1676 			panic("%s", __func__);
   1677 			break;
   1678 		}
   1679 		sz++;
   1680 	}
   1681 
   1682 	/*
   1683 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1684 	 * allocation.
   1685 	 */
   1686 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1687 	i = 0;
   1688 	SLIST_FOREACH(ex, &first, ex_slist) {
   1689 		sw[i++] = ex->ex_sw;
   1690 	}
   1691 	SLIST_FOREACH(ex, &any, ex_slist) {
   1692 		sw[i++] = ex->ex_sw;
   1693 	}
   1694 	SLIST_FOREACH(ex, &last, ex_slist) {
   1695 		sw[i++] = ex->ex_sw;
   1696 	}
   1697 
   1698 	/* Replace old execsw[] and free used memory. */
   1699 	if (execsw != NULL) {
   1700 		kmem_free(__UNCONST(execsw),
   1701 		    nexecs * sizeof(struct execsw *) + 1);
   1702 	}
   1703 	execsw = sw;
   1704 	nexecs = sz;
   1705 
   1706 	/* Figure out the maximum size of an exec header. */
   1707 	exec_maxhdrsz = sizeof(int);
   1708 	for (i = 0; i < nexecs; i++) {
   1709 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1710 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1711 	}
   1712 
   1713 	return 0;
   1714 }
   1715 
   1716 static int
   1717 exec_sigcode_map(struct proc *p, const struct emul *e)
   1718 {
   1719 	vaddr_t va;
   1720 	vsize_t sz;
   1721 	int error;
   1722 	struct uvm_object *uobj;
   1723 
   1724 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1725 
   1726 	if (e->e_sigobject == NULL || sz == 0) {
   1727 		return 0;
   1728 	}
   1729 
   1730 	/*
   1731 	 * If we don't have a sigobject for this emulation, create one.
   1732 	 *
   1733 	 * sigobject is an anonymous memory object (just like SYSV shared
   1734 	 * memory) that we keep a permanent reference to and that we map
   1735 	 * in all processes that need this sigcode. The creation is simple,
   1736 	 * we create an object, add a permanent reference to it, map it in
   1737 	 * kernel space, copy out the sigcode to it and unmap it.
   1738 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1739 	 * the way sys_mmap() would map it.
   1740 	 */
   1741 
   1742 	uobj = *e->e_sigobject;
   1743 	if (uobj == NULL) {
   1744 		mutex_enter(&sigobject_lock);
   1745 		if ((uobj = *e->e_sigobject) == NULL) {
   1746 			uobj = uao_create(sz, 0);
   1747 			(*uobj->pgops->pgo_reference)(uobj);
   1748 			va = vm_map_min(kernel_map);
   1749 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1750 			    uobj, 0, 0,
   1751 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1752 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1753 				printf("kernel mapping failed %d\n", error);
   1754 				(*uobj->pgops->pgo_detach)(uobj);
   1755 				mutex_exit(&sigobject_lock);
   1756 				return (error);
   1757 			}
   1758 			memcpy((void *)va, e->e_sigcode, sz);
   1759 #ifdef PMAP_NEED_PROCWR
   1760 			pmap_procwr(&proc0, va, sz);
   1761 #endif
   1762 			uvm_unmap(kernel_map, va, va + round_page(sz));
   1763 			*e->e_sigobject = uobj;
   1764 		}
   1765 		mutex_exit(&sigobject_lock);
   1766 	}
   1767 
   1768 	/* Just a hint to uvm_map where to put it. */
   1769 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   1770 	    round_page(sz));
   1771 
   1772 #ifdef __alpha__
   1773 	/*
   1774 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   1775 	 * which causes the above calculation to put the sigcode at
   1776 	 * an invalid address.  Put it just below the text instead.
   1777 	 */
   1778 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   1779 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   1780 	}
   1781 #endif
   1782 
   1783 	(*uobj->pgops->pgo_reference)(uobj);
   1784 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   1785 			uobj, 0, 0,
   1786 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   1787 				    UVM_ADV_RANDOM, 0));
   1788 	if (error) {
   1789 		DPRINTF(("%s, %d: map %p "
   1790 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   1791 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   1792 		    va, error));
   1793 		(*uobj->pgops->pgo_detach)(uobj);
   1794 		return (error);
   1795 	}
   1796 	p->p_sigctx.ps_sigcode = (void *)va;
   1797 	return (0);
   1798 }
   1799 
   1800 /*
   1801  * Release a refcount on spawn_exec_data and destroy memory, if this
   1802  * was the last one.
   1803  */
   1804 static void
   1805 spawn_exec_data_release(struct spawn_exec_data *data)
   1806 {
   1807 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   1808 		return;
   1809 
   1810 	cv_destroy(&data->sed_cv_child_ready);
   1811 	mutex_destroy(&data->sed_mtx_child);
   1812 
   1813 	if (data->sed_actions)
   1814 		posix_spawn_fa_free(data->sed_actions,
   1815 		    data->sed_actions->len);
   1816 	if (data->sed_attrs)
   1817 		kmem_free(data->sed_attrs,
   1818 		    sizeof(*data->sed_attrs));
   1819 	kmem_free(data, sizeof(*data));
   1820 }
   1821 
   1822 /*
   1823  * A child lwp of a posix_spawn operation starts here and ends up in
   1824  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   1825  * manipulations in between.
   1826  * The parent waits for the child, as it is not clear wether the child
   1827  * will be able to aquire its own exec_lock. If it can, the parent can
   1828  * be released early and continue running in parallel. If not (or if the
   1829  * magic debug flag is passed in the scheduler attribute struct), the
   1830  * child rides on the parent's exec lock untill it is ready to return to
   1831  * to userland - and only then releases the parent. This method loses
   1832  * concurrency, but improves error reporting.
   1833  */
   1834 static void
   1835 spawn_return(void *arg)
   1836 {
   1837 	struct spawn_exec_data *spawn_data = arg;
   1838 	struct lwp *l = curlwp;
   1839 	int error, newfd;
   1840 	size_t i;
   1841 	const struct posix_spawn_file_actions_entry *fae;
   1842 	pid_t ppid;
   1843 	register_t retval;
   1844 	bool have_reflock;
   1845 	bool parent_is_waiting = true;
   1846 
   1847 	/*
   1848 	 * Check if we can release parent early.
   1849 	 * We either need to have no sed_attrs, or sed_attrs does not
   1850 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   1851 	 * safe access to the parent proc (passed in sed_parent).
   1852 	 * We then try to get the exec_lock, and only if that works, we can
   1853 	 * release the parent here already.
   1854 	 */
   1855 	ppid = spawn_data->sed_parent->p_pid;
   1856 	if ((!spawn_data->sed_attrs
   1857 	    || (spawn_data->sed_attrs->sa_flags
   1858 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   1859 	    && rw_tryenter(&exec_lock, RW_READER)) {
   1860 		parent_is_waiting = false;
   1861 		mutex_enter(&spawn_data->sed_mtx_child);
   1862 		cv_signal(&spawn_data->sed_cv_child_ready);
   1863 		mutex_exit(&spawn_data->sed_mtx_child);
   1864 	}
   1865 
   1866 	/* don't allow debugger access yet */
   1867 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
   1868 	have_reflock = true;
   1869 
   1870 	error = 0;
   1871 	/* handle posix_spawn_file_actions */
   1872 	if (spawn_data->sed_actions != NULL) {
   1873 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   1874 			fae = &spawn_data->sed_actions->fae[i];
   1875 			switch (fae->fae_action) {
   1876 			case FAE_OPEN:
   1877 				if (fd_getfile(fae->fae_fildes) != NULL) {
   1878 					error = fd_close(fae->fae_fildes);
   1879 					if (error)
   1880 						break;
   1881 				}
   1882 				error = fd_open(fae->fae_path, fae->fae_oflag,
   1883 				    fae->fae_mode, &newfd);
   1884  				if (error)
   1885  					break;
   1886 				if (newfd != fae->fae_fildes) {
   1887 					error = dodup(l, newfd,
   1888 					    fae->fae_fildes, 0, &retval);
   1889 					if (fd_getfile(newfd) != NULL)
   1890 						fd_close(newfd);
   1891 				}
   1892 				break;
   1893 			case FAE_DUP2:
   1894 				error = dodup(l, fae->fae_fildes,
   1895 				    fae->fae_newfildes, 0, &retval);
   1896 				break;
   1897 			case FAE_CLOSE:
   1898 				if (fd_getfile(fae->fae_fildes) == NULL) {
   1899 					error = EBADF;
   1900 					break;
   1901 				}
   1902 				error = fd_close(fae->fae_fildes);
   1903 				break;
   1904 			}
   1905 			if (error)
   1906 				goto report_error;
   1907 		}
   1908 	}
   1909 
   1910 	/* handle posix_spawnattr */
   1911 	if (spawn_data->sed_attrs != NULL) {
   1912 		int ostat;
   1913 		struct sigaction sigact;
   1914 		sigact._sa_u._sa_handler = SIG_DFL;
   1915 		sigact.sa_flags = 0;
   1916 
   1917 		/*
   1918 		 * set state to SSTOP so that this proc can be found by pid.
   1919 		 * see proc_enterprp, do_sched_setparam below
   1920 		 */
   1921 		ostat = l->l_proc->p_stat;
   1922 		l->l_proc->p_stat = SSTOP;
   1923 
   1924 		/* Set process group */
   1925 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   1926 			pid_t mypid = l->l_proc->p_pid,
   1927 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   1928 
   1929 			if (pgrp == 0)
   1930 				pgrp = mypid;
   1931 
   1932 			error = proc_enterpgrp(spawn_data->sed_parent,
   1933 			    mypid, pgrp, false);
   1934 			if (error)
   1935 				goto report_error;
   1936 		}
   1937 
   1938 		/* Set scheduler policy */
   1939 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   1940 			error = do_sched_setparam(l->l_proc->p_pid, 0,
   1941 			    spawn_data->sed_attrs->sa_schedpolicy,
   1942 			    &spawn_data->sed_attrs->sa_schedparam);
   1943 		else if (spawn_data->sed_attrs->sa_flags
   1944 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   1945 			error = do_sched_setparam(ppid, 0,
   1946 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   1947 		}
   1948 		if (error)
   1949 			goto report_error;
   1950 
   1951 		/* Reset user ID's */
   1952 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   1953 			error = do_setresuid(l, -1,
   1954 			     kauth_cred_getgid(l->l_cred), -1,
   1955 			     ID_E_EQ_R | ID_E_EQ_S);
   1956 			if (error)
   1957 				goto report_error;
   1958 			error = do_setresuid(l, -1,
   1959 			    kauth_cred_getuid(l->l_cred), -1,
   1960 			    ID_E_EQ_R | ID_E_EQ_S);
   1961 			if (error)
   1962 				goto report_error;
   1963 		}
   1964 
   1965 		/* Set signal masks/defaults */
   1966 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   1967 			mutex_enter(l->l_proc->p_lock);
   1968 			error = sigprocmask1(l, SIG_SETMASK,
   1969 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   1970 			mutex_exit(l->l_proc->p_lock);
   1971 			if (error)
   1972 				goto report_error;
   1973 		}
   1974 
   1975 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   1976 			for (i = 1; i <= NSIG; i++) {
   1977 				if (sigismember(
   1978 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   1979 					sigaction1(l, i, &sigact, NULL, NULL,
   1980 					    0);
   1981 			}
   1982 		}
   1983 		l->l_proc->p_stat = ostat;
   1984 	}
   1985 
   1986 	/* now do the real exec */
   1987 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   1988 	    true);
   1989 	have_reflock = false;
   1990 	if (error == EJUSTRETURN)
   1991 		error = 0;
   1992 	else if (error)
   1993 		goto report_error;
   1994 
   1995 	if (parent_is_waiting) {
   1996 		mutex_enter(&spawn_data->sed_mtx_child);
   1997 		cv_signal(&spawn_data->sed_cv_child_ready);
   1998 		mutex_exit(&spawn_data->sed_mtx_child);
   1999 	}
   2000 
   2001 	/* release our refcount on the data */
   2002 	spawn_exec_data_release(spawn_data);
   2003 
   2004 	/* and finaly: leave to userland for the first time */
   2005 	cpu_spawn_return(l);
   2006 
   2007 	/* NOTREACHED */
   2008 	return;
   2009 
   2010  report_error:
   2011  	if (have_reflock) {
   2012  		/*
   2013 		 * We have not passed through execve_runproc(),
   2014 		 * which would have released the p_reflock and also
   2015 		 * taken ownership of the sed_exec part of spawn_data,
   2016 		 * so release/free both here.
   2017 		 */
   2018 		rw_exit(&l->l_proc->p_reflock);
   2019 		execve_free_data(&spawn_data->sed_exec);
   2020 	}
   2021 
   2022 	if (parent_is_waiting) {
   2023 		/* pass error to parent */
   2024 		mutex_enter(&spawn_data->sed_mtx_child);
   2025 		spawn_data->sed_error = error;
   2026 		cv_signal(&spawn_data->sed_cv_child_ready);
   2027 		mutex_exit(&spawn_data->sed_mtx_child);
   2028 	} else {
   2029 		rw_exit(&exec_lock);
   2030 	}
   2031 
   2032 	/* release our refcount on the data */
   2033 	spawn_exec_data_release(spawn_data);
   2034 
   2035 	/* done, exit */
   2036 	mutex_enter(l->l_proc->p_lock);
   2037 	/*
   2038 	 * Posix explicitly asks for an exit code of 127 if we report
   2039 	 * errors from the child process - so, unfortunately, there
   2040 	 * is no way to report a more exact error code.
   2041 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2042 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2043 	 */
   2044 	exit1(l, W_EXITCODE(127, 0));
   2045 }
   2046 
   2047 void
   2048 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2049 {
   2050 
   2051 	for (size_t i = 0; i < len; i++) {
   2052 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2053 		if (fae->fae_action != FAE_OPEN)
   2054 			continue;
   2055 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
   2056 	}
   2057 	if (fa->len > 0)
   2058 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2059 	kmem_free(fa, sizeof(*fa));
   2060 }
   2061 
   2062 static int
   2063 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2064     const struct posix_spawn_file_actions *ufa)
   2065 {
   2066 	struct posix_spawn_file_actions *fa;
   2067 	struct posix_spawn_file_actions_entry *fae;
   2068 	char *pbuf = NULL;
   2069 	int error;
   2070 	size_t i = 0;
   2071 
   2072 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2073 	error = copyin(ufa, fa, sizeof(*fa));
   2074 	if (error) {
   2075 		fa->fae = NULL;
   2076 		fa->len = 0;
   2077 		goto out;
   2078 	}
   2079 
   2080 	if (fa->len == 0) {
   2081 		kmem_free(fa, sizeof(*fa));
   2082 		return 0;
   2083 	}
   2084 
   2085 	fa->size = fa->len;
   2086 	size_t fal = fa->len * sizeof(*fae);
   2087 	fae = fa->fae;
   2088 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2089 	error = copyin(fae, fa->fae, fal);
   2090 	if (error)
   2091 		goto out;
   2092 
   2093 	pbuf = PNBUF_GET();
   2094 	for (; i < fa->len; i++) {
   2095 		fae = &fa->fae[i];
   2096 		if (fae->fae_action != FAE_OPEN)
   2097 			continue;
   2098 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2099 		if (error)
   2100 			goto out;
   2101 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2102 		memcpy(fae->fae_path, pbuf, fal);
   2103 	}
   2104 	PNBUF_PUT(pbuf);
   2105 
   2106 	*fap = fa;
   2107 	return 0;
   2108 out:
   2109 	if (pbuf)
   2110 		PNBUF_PUT(pbuf);
   2111 	posix_spawn_fa_free(fa, i);
   2112 	return error;
   2113 }
   2114 
   2115 int
   2116 check_posix_spawn(struct lwp *l1)
   2117 {
   2118 	int error, tnprocs, count;
   2119 	uid_t uid;
   2120 	struct proc *p1;
   2121 
   2122 	p1 = l1->l_proc;
   2123 	uid = kauth_cred_getuid(l1->l_cred);
   2124 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2125 
   2126 	/*
   2127 	 * Although process entries are dynamically created, we still keep
   2128 	 * a global limit on the maximum number we will create.
   2129 	 */
   2130 	if (__predict_false(tnprocs >= maxproc))
   2131 		error = -1;
   2132 	else
   2133 		error = kauth_authorize_process(l1->l_cred,
   2134 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2135 
   2136 	if (error) {
   2137 		atomic_dec_uint(&nprocs);
   2138 		return EAGAIN;
   2139 	}
   2140 
   2141 	/*
   2142 	 * Enforce limits.
   2143 	 */
   2144 	count = chgproccnt(uid, 1);
   2145 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2146 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2147 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2148 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2149 		(void)chgproccnt(uid, -1);
   2150 		atomic_dec_uint(&nprocs);
   2151 		return EAGAIN;
   2152 	}
   2153 
   2154 	return 0;
   2155 }
   2156 
   2157 int
   2158 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2159 	struct posix_spawn_file_actions *fa,
   2160 	struct posix_spawnattr *sa,
   2161 	char *const *argv, char *const *envp,
   2162 	execve_fetch_element_t fetch)
   2163 {
   2164 
   2165 	struct proc *p1, *p2;
   2166 	struct lwp *l2;
   2167 	int error;
   2168 	struct spawn_exec_data *spawn_data;
   2169 	vaddr_t uaddr;
   2170 	pid_t pid;
   2171 	bool have_exec_lock = false;
   2172 
   2173 	p1 = l1->l_proc;
   2174 
   2175 	/* Allocate and init spawn_data */
   2176 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2177 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2178 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2179 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2180 	mutex_enter(&spawn_data->sed_mtx_child);
   2181 
   2182 	/*
   2183 	 * Do the first part of the exec now, collect state
   2184 	 * in spawn_data.
   2185 	 */
   2186 	error = execve_loadvm(l1, path, argv,
   2187 	    envp, fetch, &spawn_data->sed_exec);
   2188 	if (error == EJUSTRETURN)
   2189 		error = 0;
   2190 	else if (error)
   2191 		goto error_exit;
   2192 
   2193 	have_exec_lock = true;
   2194 
   2195 	/*
   2196 	 * Allocate virtual address space for the U-area now, while it
   2197 	 * is still easy to abort the fork operation if we're out of
   2198 	 * kernel virtual address space.
   2199 	 */
   2200 	uaddr = uvm_uarea_alloc();
   2201 	if (__predict_false(uaddr == 0)) {
   2202 		error = ENOMEM;
   2203 		goto error_exit;
   2204 	}
   2205 
   2206 	/*
   2207 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2208 	 * replace it with its own before returning to userland
   2209 	 * in the child.
   2210 	 * This is a point of no return, we will have to go through
   2211 	 * the child proc to properly clean it up past this point.
   2212 	 */
   2213 	p2 = proc_alloc();
   2214 	pid = p2->p_pid;
   2215 
   2216 	/*
   2217 	 * Make a proc table entry for the new process.
   2218 	 * Start by zeroing the section of proc that is zero-initialized,
   2219 	 * then copy the section that is copied directly from the parent.
   2220 	 */
   2221 	memset(&p2->p_startzero, 0,
   2222 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2223 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2224 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2225 	p2->p_vmspace = proc0.p_vmspace;
   2226 
   2227 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2228 
   2229 	LIST_INIT(&p2->p_lwps);
   2230 	LIST_INIT(&p2->p_sigwaiters);
   2231 
   2232 	/*
   2233 	 * Duplicate sub-structures as needed.
   2234 	 * Increase reference counts on shared objects.
   2235 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2236 	 * handling are important in order to keep a consistent behaviour
   2237 	 * for the child after the fork.  If we are a 32-bit process, the
   2238 	 * child will be too.
   2239 	 */
   2240 	p2->p_flag =
   2241 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2242 	p2->p_emul = p1->p_emul;
   2243 	p2->p_execsw = p1->p_execsw;
   2244 
   2245 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2246 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2247 	rw_init(&p2->p_reflock);
   2248 	cv_init(&p2->p_waitcv, "wait");
   2249 	cv_init(&p2->p_lwpcv, "lwpwait");
   2250 
   2251 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2252 
   2253 	kauth_proc_fork(p1, p2);
   2254 
   2255 	p2->p_raslist = NULL;
   2256 	p2->p_fd = fd_copy();
   2257 
   2258 	/* XXX racy */
   2259 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2260 
   2261 	p2->p_cwdi = cwdinit();
   2262 
   2263 	/*
   2264 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2265 	 * we just need increase pl_refcnt.
   2266 	 */
   2267 	if (!p1->p_limit->pl_writeable) {
   2268 		lim_addref(p1->p_limit);
   2269 		p2->p_limit = p1->p_limit;
   2270 	} else {
   2271 		p2->p_limit = lim_copy(p1->p_limit);
   2272 	}
   2273 
   2274 	p2->p_lflag = 0;
   2275 	p2->p_sflag = 0;
   2276 	p2->p_slflag = 0;
   2277 	p2->p_pptr = p1;
   2278 	p2->p_ppid = p1->p_pid;
   2279 	LIST_INIT(&p2->p_children);
   2280 
   2281 	p2->p_aio = NULL;
   2282 
   2283 #ifdef KTRACE
   2284 	/*
   2285 	 * Copy traceflag and tracefile if enabled.
   2286 	 * If not inherited, these were zeroed above.
   2287 	 */
   2288 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2289 		mutex_enter(&ktrace_lock);
   2290 		p2->p_traceflag = p1->p_traceflag;
   2291 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2292 			ktradref(p2);
   2293 		mutex_exit(&ktrace_lock);
   2294 	}
   2295 #endif
   2296 
   2297 	/*
   2298 	 * Create signal actions for the child process.
   2299 	 */
   2300 	p2->p_sigacts = sigactsinit(p1, 0);
   2301 	mutex_enter(p1->p_lock);
   2302 	p2->p_sflag |=
   2303 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2304 	sched_proc_fork(p1, p2);
   2305 	mutex_exit(p1->p_lock);
   2306 
   2307 	p2->p_stflag = p1->p_stflag;
   2308 
   2309 	/*
   2310 	 * p_stats.
   2311 	 * Copy parts of p_stats, and zero out the rest.
   2312 	 */
   2313 	p2->p_stats = pstatscopy(p1->p_stats);
   2314 
   2315 	/* copy over machdep flags to the new proc */
   2316 	cpu_proc_fork(p1, p2);
   2317 
   2318 	/*
   2319 	 * Prepare remaining parts of spawn data
   2320 	 */
   2321 	spawn_data->sed_actions = fa;
   2322 	spawn_data->sed_attrs = sa;
   2323 
   2324 	spawn_data->sed_parent = p1;
   2325 
   2326 	/* create LWP */
   2327 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2328 	    &l2, l1->l_class);
   2329 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2330 
   2331 	/*
   2332 	 * Copy the credential so other references don't see our changes.
   2333 	 * Test to see if this is necessary first, since in the common case
   2334 	 * we won't need a private reference.
   2335 	 */
   2336 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2337 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2338 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2339 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2340 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2341 	}
   2342 
   2343 	/* Update the master credentials. */
   2344 	if (l2->l_cred != p2->p_cred) {
   2345 		kauth_cred_t ocred;
   2346 
   2347 		kauth_cred_hold(l2->l_cred);
   2348 		mutex_enter(p2->p_lock);
   2349 		ocred = p2->p_cred;
   2350 		p2->p_cred = l2->l_cred;
   2351 		mutex_exit(p2->p_lock);
   2352 		kauth_cred_free(ocred);
   2353 	}
   2354 
   2355 	*child_ok = true;
   2356 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2357 #if 0
   2358 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2359 #endif
   2360 
   2361 	/*
   2362 	 * It's now safe for the scheduler and other processes to see the
   2363 	 * child process.
   2364 	 */
   2365 	mutex_enter(proc_lock);
   2366 
   2367 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2368 		p2->p_lflag |= PL_CONTROLT;
   2369 
   2370 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2371 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2372 
   2373 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2374 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2375 
   2376 	p2->p_trace_enabled = trace_is_enabled(p2);
   2377 #ifdef __HAVE_SYSCALL_INTERN
   2378 	(*p2->p_emul->e_syscall_intern)(p2);
   2379 #endif
   2380 
   2381 	/*
   2382 	 * Make child runnable, set start time, and add to run queue except
   2383 	 * if the parent requested the child to start in SSTOP state.
   2384 	 */
   2385 	mutex_enter(p2->p_lock);
   2386 
   2387 	getmicrotime(&p2->p_stats->p_start);
   2388 
   2389 	lwp_lock(l2);
   2390 	KASSERT(p2->p_nrlwps == 1);
   2391 	p2->p_nrlwps = 1;
   2392 	p2->p_stat = SACTIVE;
   2393 	l2->l_stat = LSRUN;
   2394 	sched_enqueue(l2, false);
   2395 	lwp_unlock(l2);
   2396 
   2397 	mutex_exit(p2->p_lock);
   2398 	mutex_exit(proc_lock);
   2399 
   2400 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2401 	error = spawn_data->sed_error;
   2402 	mutex_exit(&spawn_data->sed_mtx_child);
   2403 	spawn_exec_data_release(spawn_data);
   2404 
   2405 	rw_exit(&p1->p_reflock);
   2406 	rw_exit(&exec_lock);
   2407 	have_exec_lock = false;
   2408 
   2409 	*pid_res = pid;
   2410 	return error;
   2411 
   2412  error_exit:
   2413  	if (have_exec_lock) {
   2414 		execve_free_data(&spawn_data->sed_exec);
   2415 		rw_exit(&p1->p_reflock);
   2416  		rw_exit(&exec_lock);
   2417 	}
   2418 	mutex_exit(&spawn_data->sed_mtx_child);
   2419 	spawn_exec_data_release(spawn_data);
   2420 
   2421 	return error;
   2422 }
   2423 
   2424 int
   2425 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2426     register_t *retval)
   2427 {
   2428 	/* {
   2429 		syscallarg(pid_t *) pid;
   2430 		syscallarg(const char *) path;
   2431 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2432 		syscallarg(const struct posix_spawnattr *) attrp;
   2433 		syscallarg(char *const *) argv;
   2434 		syscallarg(char *const *) envp;
   2435 	} */
   2436 
   2437 	int error;
   2438 	struct posix_spawn_file_actions *fa = NULL;
   2439 	struct posix_spawnattr *sa = NULL;
   2440 	pid_t pid;
   2441 	bool child_ok = false;
   2442 
   2443 	error = check_posix_spawn(l1);
   2444 	if (error) {
   2445 		*retval = error;
   2446 		return 0;
   2447 	}
   2448 
   2449 	/* copy in file_actions struct */
   2450 	if (SCARG(uap, file_actions) != NULL) {
   2451 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions));
   2452 		if (error)
   2453 			goto error_exit;
   2454 	}
   2455 
   2456 	/* copyin posix_spawnattr struct */
   2457 	if (SCARG(uap, attrp) != NULL) {
   2458 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2459 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2460 		if (error)
   2461 			goto error_exit;
   2462 	}
   2463 
   2464 	/*
   2465 	 * Do the spawn
   2466 	 */
   2467 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2468 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2469 	if (error)
   2470 		goto error_exit;
   2471 
   2472 	if (error == 0 && SCARG(uap, pid) != NULL)
   2473 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2474 
   2475 	*retval = error;
   2476 	return 0;
   2477 
   2478  error_exit:
   2479 	if (!child_ok) {
   2480 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2481 		atomic_dec_uint(&nprocs);
   2482 
   2483 		if (sa)
   2484 			kmem_free(sa, sizeof(*sa));
   2485 		if (fa)
   2486 			posix_spawn_fa_free(fa, fa->len);
   2487 	}
   2488 
   2489 	*retval = error;
   2490 	return 0;
   2491 }
   2492 
   2493 void
   2494 exec_free_emul_arg(struct exec_package *epp)
   2495 {
   2496 	if (epp->ep_emul_arg_free != NULL) {
   2497 		KASSERT(epp->ep_emul_arg != NULL);
   2498 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2499 		epp->ep_emul_arg_free = NULL;
   2500 		epp->ep_emul_arg = NULL;
   2501 	} else {
   2502 		KASSERT(epp->ep_emul_arg == NULL);
   2503 	}
   2504 }
   2505