kern_exec.c revision 1.382 1 /* $NetBSD: kern_exec.c,v 1.382 2014/04/11 11:49:38 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.382 2014/04/11 11:49:38 uebayasi Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108
109 #include <uvm/uvm_extern.h>
110
111 #include <machine/reg.h>
112
113 #include <compat/common/compat_util.h>
114
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USE_TOPDOWN_VM
117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122
123 static int exec_sigcode_map(struct proc *, const struct emul *);
124
125 #ifdef DEBUG_EXEC
126 #define DPRINTF(a) printf a
127 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
128 __LINE__, (s), (a), (b))
129 #else
130 #define DPRINTF(a)
131 #define COPYPRINTF(s, a, b)
132 #endif /* DEBUG_EXEC */
133
134 /*
135 * DTrace SDT provider definitions
136 */
137 SDT_PROBE_DEFINE(proc,,,exec,exec,
138 "char *", NULL,
139 NULL, NULL, NULL, NULL,
140 NULL, NULL, NULL, NULL);
141 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
142 "char *", NULL,
143 NULL, NULL, NULL, NULL,
144 NULL, NULL, NULL, NULL);
145 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
146 "int", NULL,
147 NULL, NULL, NULL, NULL,
148 NULL, NULL, NULL, NULL);
149
150 /*
151 * Exec function switch:
152 *
153 * Note that each makecmds function is responsible for loading the
154 * exec package with the necessary functions for any exec-type-specific
155 * handling.
156 *
157 * Functions for specific exec types should be defined in their own
158 * header file.
159 */
160 static const struct execsw **execsw = NULL;
161 static int nexecs;
162
163 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
164
165 /* list of dynamically loaded execsw entries */
166 static LIST_HEAD(execlist_head, exec_entry) ex_head =
167 LIST_HEAD_INITIALIZER(ex_head);
168 struct exec_entry {
169 LIST_ENTRY(exec_entry) ex_list;
170 SLIST_ENTRY(exec_entry) ex_slist;
171 const struct execsw *ex_sw;
172 };
173
174 #ifndef __HAVE_SYSCALL_INTERN
175 void syscall(void);
176 #endif
177
178 /* NetBSD emul struct */
179 struct emul emul_netbsd = {
180 .e_name = "netbsd",
181 #ifdef EMUL_NATIVEROOT
182 .e_path = EMUL_NATIVEROOT,
183 #else
184 .e_path = NULL,
185 #endif
186 #ifndef __HAVE_MINIMAL_EMUL
187 .e_flags = EMUL_HAS_SYS___syscall,
188 .e_errno = NULL,
189 .e_nosys = SYS_syscall,
190 .e_nsysent = SYS_NSYSENT,
191 #endif
192 .e_sysent = sysent,
193 #ifdef SYSCALL_DEBUG
194 .e_syscallnames = syscallnames,
195 #else
196 .e_syscallnames = NULL,
197 #endif
198 .e_sendsig = sendsig,
199 .e_trapsignal = trapsignal,
200 .e_tracesig = NULL,
201 .e_sigcode = NULL,
202 .e_esigcode = NULL,
203 .e_sigobject = NULL,
204 .e_setregs = setregs,
205 .e_proc_exec = NULL,
206 .e_proc_fork = NULL,
207 .e_proc_exit = NULL,
208 .e_lwp_fork = NULL,
209 .e_lwp_exit = NULL,
210 #ifdef __HAVE_SYSCALL_INTERN
211 .e_syscall_intern = syscall_intern,
212 #else
213 .e_syscall = syscall,
214 #endif
215 .e_sysctlovly = NULL,
216 .e_fault = NULL,
217 .e_vm_default_addr = uvm_default_mapaddr,
218 .e_usertrap = NULL,
219 .e_ucsize = sizeof(ucontext_t),
220 .e_startlwp = startlwp
221 };
222
223 /*
224 * Exec lock. Used to control access to execsw[] structures.
225 * This must not be static so that netbsd32 can access it, too.
226 */
227 krwlock_t exec_lock;
228
229 static kmutex_t sigobject_lock;
230
231 /*
232 * Data used between a loadvm and execve part of an "exec" operation
233 */
234 struct execve_data {
235 struct exec_package ed_pack;
236 struct pathbuf *ed_pathbuf;
237 struct vattr ed_attr;
238 struct ps_strings ed_arginfo;
239 char *ed_argp;
240 const char *ed_pathstring;
241 char *ed_resolvedpathbuf;
242 size_t ed_ps_strings_sz;
243 int ed_szsigcode;
244 long ed_argc;
245 long ed_envc;
246 };
247
248 /*
249 * data passed from parent lwp to child during a posix_spawn()
250 */
251 struct spawn_exec_data {
252 struct execve_data sed_exec;
253 struct posix_spawn_file_actions
254 *sed_actions;
255 struct posix_spawnattr *sed_attrs;
256 struct proc *sed_parent;
257 kcondvar_t sed_cv_child_ready;
258 kmutex_t sed_mtx_child;
259 int sed_error;
260 volatile uint32_t sed_refcnt;
261 };
262
263 static void *
264 exec_pool_alloc(struct pool *pp, int flags)
265 {
266
267 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
268 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
269 }
270
271 static void
272 exec_pool_free(struct pool *pp, void *addr)
273 {
274
275 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
276 }
277
278 static struct pool exec_pool;
279
280 static struct pool_allocator exec_palloc = {
281 .pa_alloc = exec_pool_alloc,
282 .pa_free = exec_pool_free,
283 .pa_pagesz = NCARGS
284 };
285
286 /*
287 * check exec:
288 * given an "executable" described in the exec package's namei info,
289 * see what we can do with it.
290 *
291 * ON ENTRY:
292 * exec package with appropriate namei info
293 * lwp pointer of exec'ing lwp
294 * NO SELF-LOCKED VNODES
295 *
296 * ON EXIT:
297 * error: nothing held, etc. exec header still allocated.
298 * ok: filled exec package, executable's vnode (unlocked).
299 *
300 * EXEC SWITCH ENTRY:
301 * Locked vnode to check, exec package, proc.
302 *
303 * EXEC SWITCH EXIT:
304 * ok: return 0, filled exec package, executable's vnode (unlocked).
305 * error: destructive:
306 * everything deallocated execept exec header.
307 * non-destructive:
308 * error code, executable's vnode (unlocked),
309 * exec header unmodified.
310 */
311 int
312 /*ARGSUSED*/
313 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
314 {
315 int error, i;
316 struct vnode *vp;
317 struct nameidata nd;
318 size_t resid;
319
320 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
321
322 /* first get the vnode */
323 if ((error = namei(&nd)) != 0)
324 return error;
325 epp->ep_vp = vp = nd.ni_vp;
326 /* normally this can't fail */
327 if ((error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL)))
328 goto bad1;
329
330 #ifdef DIAGNOSTIC
331 /* paranoia (take this out once namei stuff stabilizes) */
332 memset(nd.ni_pnbuf, '~', PATH_MAX);
333 #endif
334
335 /* check access and type */
336 if (vp->v_type != VREG) {
337 error = EACCES;
338 goto bad1;
339 }
340 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
341 goto bad1;
342
343 /* get attributes */
344 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
345 goto bad1;
346
347 /* Check mount point */
348 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
349 error = EACCES;
350 goto bad1;
351 }
352 if (vp->v_mount->mnt_flag & MNT_NOSUID)
353 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
354
355 /* try to open it */
356 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
357 goto bad1;
358
359 /* unlock vp, since we need it unlocked from here on out. */
360 VOP_UNLOCK(vp);
361
362 #if NVERIEXEC > 0
363 error = veriexec_verify(l, vp, epp->ep_resolvedname,
364 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
365 NULL);
366 if (error)
367 goto bad2;
368 #endif /* NVERIEXEC > 0 */
369
370 #ifdef PAX_SEGVGUARD
371 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
372 if (error)
373 goto bad2;
374 #endif /* PAX_SEGVGUARD */
375
376 /* now we have the file, get the exec header */
377 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
378 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
379 if (error)
380 goto bad2;
381 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
382
383 /*
384 * Set up default address space limits. Can be overridden
385 * by individual exec packages.
386 *
387 * XXX probably should be all done in the exec packages.
388 */
389 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
390 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
391 /*
392 * set up the vmcmds for creation of the process
393 * address space
394 */
395 error = ENOEXEC;
396 for (i = 0; i < nexecs; i++) {
397 int newerror;
398
399 epp->ep_esch = execsw[i];
400 newerror = (*execsw[i]->es_makecmds)(l, epp);
401
402 if (!newerror) {
403 /* Seems ok: check that entry point is not too high */
404 if (epp->ep_entry > epp->ep_vm_maxaddr) {
405 #ifdef DIAGNOSTIC
406 printf("%s: rejecting %p due to "
407 "too high entry address (> %p)\n",
408 __func__, (void *)epp->ep_entry,
409 (void *)epp->ep_vm_maxaddr);
410 #endif
411 error = ENOEXEC;
412 break;
413 }
414 /* Seems ok: check that entry point is not too low */
415 if (epp->ep_entry < epp->ep_vm_minaddr) {
416 #ifdef DIAGNOSTIC
417 printf("%s: rejecting %p due to "
418 "too low entry address (< %p)\n",
419 __func__, (void *)epp->ep_entry,
420 (void *)epp->ep_vm_minaddr);
421 #endif
422 error = ENOEXEC;
423 break;
424 }
425
426 /* check limits */
427 if ((epp->ep_tsize > MAXTSIZ) ||
428 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
429 [RLIMIT_DATA].rlim_cur)) {
430 #ifdef DIAGNOSTIC
431 printf("%s: rejecting due to "
432 "limits (t=%llu > %llu || d=%llu > %llu)\n",
433 __func__,
434 (unsigned long long)epp->ep_tsize,
435 (unsigned long long)MAXTSIZ,
436 (unsigned long long)epp->ep_dsize,
437 (unsigned long long)
438 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
439 #endif
440 error = ENOMEM;
441 break;
442 }
443 return 0;
444 }
445
446 if (epp->ep_emul_root != NULL) {
447 vrele(epp->ep_emul_root);
448 epp->ep_emul_root = NULL;
449 }
450 if (epp->ep_interp != NULL) {
451 vrele(epp->ep_interp);
452 epp->ep_interp = NULL;
453 }
454
455 /* make sure the first "interesting" error code is saved. */
456 if (error == ENOEXEC)
457 error = newerror;
458
459 if (epp->ep_flags & EXEC_DESTR)
460 /* Error from "#!" code, tidied up by recursive call */
461 return error;
462 }
463
464 /* not found, error */
465
466 /*
467 * free any vmspace-creation commands,
468 * and release their references
469 */
470 kill_vmcmds(&epp->ep_vmcmds);
471
472 bad2:
473 /*
474 * close and release the vnode, restore the old one, free the
475 * pathname buf, and punt.
476 */
477 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
478 VOP_CLOSE(vp, FREAD, l->l_cred);
479 vput(vp);
480 return error;
481
482 bad1:
483 /*
484 * free the namei pathname buffer, and put the vnode
485 * (which we don't yet have open).
486 */
487 vput(vp); /* was still locked */
488 return error;
489 }
490
491 #ifdef __MACHINE_STACK_GROWS_UP
492 #define STACK_PTHREADSPACE NBPG
493 #else
494 #define STACK_PTHREADSPACE 0
495 #endif
496
497 static int
498 execve_fetch_element(char * const *array, size_t index, char **value)
499 {
500 return copyin(array + index, value, sizeof(*value));
501 }
502
503 /*
504 * exec system call
505 */
506 int
507 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
508 {
509 /* {
510 syscallarg(const char *) path;
511 syscallarg(char * const *) argp;
512 syscallarg(char * const *) envp;
513 } */
514
515 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
516 SCARG(uap, envp), execve_fetch_element);
517 }
518
519 int
520 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
521 register_t *retval)
522 {
523 /* {
524 syscallarg(int) fd;
525 syscallarg(char * const *) argp;
526 syscallarg(char * const *) envp;
527 } */
528
529 return ENOSYS;
530 }
531
532 /*
533 * Load modules to try and execute an image that we do not understand.
534 * If no execsw entries are present, we load those likely to be needed
535 * in order to run native images only. Otherwise, we autoload all
536 * possible modules that could let us run the binary. XXX lame
537 */
538 static void
539 exec_autoload(void)
540 {
541 #ifdef MODULAR
542 static const char * const native[] = {
543 "exec_elf32",
544 "exec_elf64",
545 "exec_script",
546 NULL
547 };
548 static const char * const compat[] = {
549 "exec_elf32",
550 "exec_elf64",
551 "exec_script",
552 "exec_aout",
553 "exec_coff",
554 "exec_ecoff",
555 "compat_aoutm68k",
556 "compat_freebsd",
557 "compat_ibcs2",
558 "compat_linux",
559 "compat_linux32",
560 "compat_netbsd32",
561 "compat_sunos",
562 "compat_sunos32",
563 "compat_svr4",
564 "compat_svr4_32",
565 "compat_ultrix",
566 NULL
567 };
568 char const * const *list;
569 int i;
570
571 list = (nexecs == 0 ? native : compat);
572 for (i = 0; list[i] != NULL; i++) {
573 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
574 continue;
575 }
576 yield();
577 }
578 #endif
579 }
580
581 static int
582 execve_loadvm(struct lwp *l, const char *path, char * const *args,
583 char * const *envs, execve_fetch_element_t fetch_element,
584 struct execve_data * restrict data)
585 {
586 struct exec_package * const epp = &data->ed_pack;
587 int error;
588 struct proc *p;
589 char *dp, *sp;
590 size_t i;
591 struct exec_fakearg *tmpfap;
592 u_int modgen;
593
594 KASSERT(data != NULL);
595
596 p = l->l_proc;
597 modgen = 0;
598
599 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
600
601 /*
602 * Check if we have exceeded our number of processes limit.
603 * This is so that we handle the case where a root daemon
604 * forked, ran setuid to become the desired user and is trying
605 * to exec. The obvious place to do the reference counting check
606 * is setuid(), but we don't do the reference counting check there
607 * like other OS's do because then all the programs that use setuid()
608 * must be modified to check the return code of setuid() and exit().
609 * It is dangerous to make setuid() fail, because it fails open and
610 * the program will continue to run as root. If we make it succeed
611 * and return an error code, again we are not enforcing the limit.
612 * The best place to enforce the limit is here, when the process tries
613 * to execute a new image, because eventually the process will need
614 * to call exec in order to do something useful.
615 */
616 retry:
617 if (p->p_flag & PK_SUGID) {
618 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
619 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
620 &p->p_rlimit[RLIMIT_NPROC],
621 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
622 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
623 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
624 return EAGAIN;
625 }
626
627 /*
628 * Drain existing references and forbid new ones. The process
629 * should be left alone until we're done here. This is necessary
630 * to avoid race conditions - e.g. in ptrace() - that might allow
631 * a local user to illicitly obtain elevated privileges.
632 */
633 rw_enter(&p->p_reflock, RW_WRITER);
634
635 /*
636 * Init the namei data to point the file user's program name.
637 * This is done here rather than in check_exec(), so that it's
638 * possible to override this settings if any of makecmd/probe
639 * functions call check_exec() recursively - for example,
640 * see exec_script_makecmds().
641 */
642 error = pathbuf_copyin(path, &data->ed_pathbuf);
643 if (error) {
644 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
645 path, error));
646 goto clrflg;
647 }
648 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
649 data->ed_resolvedpathbuf = PNBUF_GET();
650
651 /*
652 * initialize the fields of the exec package.
653 */
654 epp->ep_name = path;
655 epp->ep_kname = data->ed_pathstring;
656 epp->ep_resolvedname = data->ed_resolvedpathbuf;
657 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
658 epp->ep_hdrlen = exec_maxhdrsz;
659 epp->ep_hdrvalid = 0;
660 epp->ep_emul_arg = NULL;
661 epp->ep_emul_arg_free = NULL;
662 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
663 epp->ep_vap = &data->ed_attr;
664 epp->ep_flags = 0;
665 MD_TOPDOWN_INIT(epp);
666 epp->ep_emul_root = NULL;
667 epp->ep_interp = NULL;
668 epp->ep_esch = NULL;
669 epp->ep_pax_flags = 0;
670 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
671
672 rw_enter(&exec_lock, RW_READER);
673
674 /* see if we can run it. */
675 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
676 if (error != ENOENT) {
677 DPRINTF(("%s: check exec failed %d\n",
678 __func__, error));
679 }
680 goto freehdr;
681 }
682
683 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
684
685 /* allocate an argument buffer */
686 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
687 KASSERT(data->ed_argp != NULL);
688 dp = data->ed_argp;
689 data->ed_argc = 0;
690
691 /* copy the fake args list, if there's one, freeing it as we go */
692 if (epp->ep_flags & EXEC_HASARGL) {
693 tmpfap = epp->ep_fa;
694 while (tmpfap->fa_arg != NULL) {
695 const char *cp;
696
697 /* XXX boudary check */
698 cp = tmpfap->fa_arg;
699 while (*cp)
700 *dp++ = *cp++;
701 *dp++ = '\0';
702 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
703
704 kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
705 tmpfap++;
706 data->ed_argc++;
707 }
708 kmem_free(epp->ep_fa, epp->ep_fa_len);
709 epp->ep_flags &= ~EXEC_HASARGL;
710 }
711
712 /* Now get argv & environment */
713 if (args == NULL) {
714 DPRINTF(("%s: null args\n", __func__));
715 error = EINVAL;
716 goto bad;
717 }
718 /* 'i' will index the argp/envp element to be retrieved */
719 i = 0;
720 if (epp->ep_flags & EXEC_SKIPARG)
721 i++;
722
723 while (1) {
724 const size_t maxlen = data->ed_argp + ARG_MAX - dp;
725 size_t len;
726
727 if ((error = (*fetch_element)(args, i, &sp)) != 0) {
728 DPRINTF(("%s: fetch_element args %d\n",
729 __func__, error));
730 goto bad;
731 }
732 if (!sp)
733 break;
734 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
735 DPRINTF(("%s: copyinstr args %d\n", __func__, error));
736 if (error == ENAMETOOLONG)
737 error = E2BIG;
738 goto bad;
739 }
740 ktrexecarg(dp, len - 1);
741 dp += len;
742 i++;
743 data->ed_argc++;
744 }
745
746 data->ed_envc = 0;
747 /* environment need not be there */
748 if (envs != NULL) {
749 i = 0;
750 while (1) {
751 const size_t maxlen = data->ed_argp + ARG_MAX - dp;
752 size_t len;
753
754 if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
755 DPRINTF(("%s: fetch_element env %d\n",
756 __func__, error));
757 goto bad;
758 }
759 if (!sp)
760 break;
761 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
762 DPRINTF(("%s: copyinstr env %d\n",
763 __func__, error));
764 if (error == ENAMETOOLONG)
765 error = E2BIG;
766 goto bad;
767 }
768
769 ktrexecenv(dp, len - 1);
770 dp += len;
771 i++;
772 data->ed_envc++;
773 }
774 }
775
776 /*
777 * Calculate the new stack size.
778 */
779
780 const size_t psstrauxlen =
781 data->ed_argc + /* char *argv[] */
782 1 + /* \0 */
783 data->ed_envc + /* char *env[] */
784 1 + /* \0 */
785 epp->ep_esch->es_arglen; /* auxinfo */
786
787 const size_t ptrsz = (epp->ep_flags & EXEC_32) ?
788 sizeof(int) : sizeof(char *);
789
790 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
791
792 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
793 epp->ep_esch->es_emul->e_sigcode;
794
795 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
796 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
797
798 const size_t aslrgap =
799 #ifdef PAX_ASLR
800 pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0;
801 #else
802 0;
803 #endif
804
805 #ifdef __MACHINE_STACK_GROWS_UP
806 /* See big comment lower down */
807 #define RTLD_GAP 32
808 #else
809 #define RTLD_GAP 0
810 #endif
811
812 const size_t stacklen =
813 sizeof(int) + /* XXX argc in stack is long, not int */
814 (psstrauxlen * ptrsz) + /* XXX auxinfo multiplied by ptr size? */
815 argenvstrlen +
816 aslrgap +
817 RTLD_GAP +
818 data->ed_szsigcode +
819 data->ed_ps_strings_sz +
820 STACK_PTHREADSPACE;
821
822 /* make the stack "safely" aligned */
823 const size_t aligned_stacklen = STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
824
825 if (aligned_stacklen > epp->ep_ssize) {
826 /* in effect, compare to initial limit */
827 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, aligned_stacklen));
828 goto bad;
829 }
830 /* adjust "active stack depth" for process VSZ */
831 epp->ep_ssize = aligned_stacklen;
832
833 return 0;
834
835 bad:
836 /* free the vmspace-creation commands, and release their references */
837 kill_vmcmds(&epp->ep_vmcmds);
838 /* kill any opened file descriptor, if necessary */
839 if (epp->ep_flags & EXEC_HASFD) {
840 epp->ep_flags &= ~EXEC_HASFD;
841 fd_close(epp->ep_fd);
842 }
843 /* close and put the exec'd file */
844 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
845 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
846 vput(epp->ep_vp);
847 pool_put(&exec_pool, data->ed_argp);
848
849 freehdr:
850 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
851 if (epp->ep_emul_root != NULL)
852 vrele(epp->ep_emul_root);
853 if (epp->ep_interp != NULL)
854 vrele(epp->ep_interp);
855
856 rw_exit(&exec_lock);
857
858 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
859 pathbuf_destroy(data->ed_pathbuf);
860 PNBUF_PUT(data->ed_resolvedpathbuf);
861
862 clrflg:
863 rw_exit(&p->p_reflock);
864
865 if (modgen != module_gen && error == ENOEXEC) {
866 modgen = module_gen;
867 exec_autoload();
868 goto retry;
869 }
870
871 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
872 return error;
873 }
874
875 static void
876 execve_free_data(struct execve_data *data)
877 {
878 struct exec_package * const epp = &data->ed_pack;
879
880 /* free the vmspace-creation commands, and release their references */
881 kill_vmcmds(&epp->ep_vmcmds);
882 /* kill any opened file descriptor, if necessary */
883 if (epp->ep_flags & EXEC_HASFD) {
884 epp->ep_flags &= ~EXEC_HASFD;
885 fd_close(epp->ep_fd);
886 }
887
888 /* close and put the exec'd file */
889 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
890 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
891 vput(epp->ep_vp);
892 pool_put(&exec_pool, data->ed_argp);
893
894 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
895 if (epp->ep_emul_root != NULL)
896 vrele(epp->ep_emul_root);
897 if (epp->ep_interp != NULL)
898 vrele(epp->ep_interp);
899
900 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
901 pathbuf_destroy(data->ed_pathbuf);
902 PNBUF_PUT(data->ed_resolvedpathbuf);
903 }
904
905 static int
906 execve_runproc(struct lwp *l, struct execve_data * restrict data,
907 bool no_local_exec_lock, bool is_spawn)
908 {
909 struct exec_package * const epp = &data->ed_pack;
910 int error = 0;
911 struct proc *p;
912 size_t i;
913 char *stack, *dp;
914 const char *commandname;
915 struct ps_strings32 arginfo32;
916 struct exec_vmcmd *base_vcp;
917 void *aip;
918 struct vmspace *vm;
919 ksiginfo_t ksi;
920 ksiginfoq_t kq;
921
922 /*
923 * In case of a posix_spawn operation, the child doing the exec
924 * might not hold the reader lock on exec_lock, but the parent
925 * will do this instead.
926 */
927 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
928 KASSERT(!no_local_exec_lock || is_spawn);
929 KASSERT(data != NULL);
930
931 p = l->l_proc;
932
933 base_vcp = NULL;
934
935 if (epp->ep_flags & EXEC_32)
936 aip = &arginfo32;
937 else
938 aip = &data->ed_arginfo;
939
940 /* Get rid of other LWPs. */
941 if (p->p_nlwps > 1) {
942 mutex_enter(p->p_lock);
943 exit_lwps(l);
944 mutex_exit(p->p_lock);
945 }
946 KDASSERT(p->p_nlwps == 1);
947
948 /* Destroy any lwpctl info. */
949 if (p->p_lwpctl != NULL)
950 lwp_ctl_exit();
951
952 /* Remove POSIX timers */
953 timers_free(p, TIMERS_POSIX);
954
955 /*
956 * Do whatever is necessary to prepare the address space
957 * for remapping. Note that this might replace the current
958 * vmspace with another!
959 */
960 if (is_spawn)
961 uvmspace_spawn(l, epp->ep_vm_minaddr,
962 epp->ep_vm_maxaddr,
963 epp->ep_flags & EXEC_TOPDOWN_VM);
964 else
965 uvmspace_exec(l, epp->ep_vm_minaddr,
966 epp->ep_vm_maxaddr,
967 epp->ep_flags & EXEC_TOPDOWN_VM);
968
969 /* record proc's vnode, for use by procfs and others */
970 if (p->p_textvp)
971 vrele(p->p_textvp);
972 vref(epp->ep_vp);
973 p->p_textvp = epp->ep_vp;
974
975 /* Now map address space */
976 vm = p->p_vmspace;
977 vm->vm_taddr = (void *)epp->ep_taddr;
978 vm->vm_tsize = btoc(epp->ep_tsize);
979 vm->vm_daddr = (void*)epp->ep_daddr;
980 vm->vm_dsize = btoc(epp->ep_dsize);
981 vm->vm_ssize = btoc(epp->ep_ssize);
982 vm->vm_issize = 0;
983 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
984 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
985
986 #ifdef PAX_ASLR
987 pax_aslr_init(l, vm);
988 #endif /* PAX_ASLR */
989
990 /* create the new process's VM space by running the vmcmds */
991 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
992
993 #ifdef DEBUG_EXEC
994 {
995 size_t j;
996 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
997 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
998 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
999 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
1000 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
1001 PRIxVSIZE" prot=0%o flags=%d\n", j,
1002 vp[j].ev_proc == vmcmd_map_pagedvn ?
1003 "pagedvn" :
1004 vp[j].ev_proc == vmcmd_map_readvn ?
1005 "readvn" :
1006 vp[j].ev_proc == vmcmd_map_zero ?
1007 "zero" : "*unknown*",
1008 vp[j].ev_addr, vp[j].ev_len,
1009 vp[j].ev_offset, vp[j].ev_prot,
1010 vp[j].ev_flags));
1011 }
1012 }
1013 #endif /* DEBUG_EXEC */
1014
1015 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
1016 struct exec_vmcmd *vcp;
1017
1018 vcp = &epp->ep_vmcmds.evs_cmds[i];
1019 if (vcp->ev_flags & VMCMD_RELATIVE) {
1020 KASSERTMSG(base_vcp != NULL,
1021 "%s: relative vmcmd with no base", __func__);
1022 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
1023 "%s: illegal base & relative vmcmd", __func__);
1024 vcp->ev_addr += base_vcp->ev_addr;
1025 }
1026 error = (*vcp->ev_proc)(l, vcp);
1027 #ifdef DEBUG_EXEC
1028 if (error) {
1029 size_t j;
1030 struct exec_vmcmd *vp =
1031 &epp->ep_vmcmds.evs_cmds[0];
1032 DPRINTF(("vmcmds %zu/%u, error %d\n", i,
1033 epp->ep_vmcmds.evs_used, error));
1034 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
1035 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
1036 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
1037 PRIxVSIZE" prot=0%o flags=%d\n", j,
1038 vp[j].ev_proc == vmcmd_map_pagedvn ?
1039 "pagedvn" :
1040 vp[j].ev_proc == vmcmd_map_readvn ?
1041 "readvn" :
1042 vp[j].ev_proc == vmcmd_map_zero ?
1043 "zero" : "*unknown*",
1044 vp[j].ev_addr, vp[j].ev_len,
1045 vp[j].ev_offset, vp[j].ev_prot,
1046 vp[j].ev_flags));
1047 if (j == i)
1048 DPRINTF((" ^--- failed\n"));
1049 }
1050 }
1051 #endif /* DEBUG_EXEC */
1052 if (vcp->ev_flags & VMCMD_BASE)
1053 base_vcp = vcp;
1054 }
1055
1056 /* free the vmspace-creation commands, and release their references */
1057 kill_vmcmds(&epp->ep_vmcmds);
1058
1059 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
1060 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
1061 vput(epp->ep_vp);
1062
1063 /* if an error happened, deallocate and punt */
1064 if (error) {
1065 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
1066 goto exec_abort;
1067 }
1068
1069 /* remember information about the process */
1070 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1071 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1072
1073 /* set command name & other accounting info */
1074 commandname = strrchr(epp->ep_resolvedname, '/');
1075 if (commandname != NULL) {
1076 commandname++;
1077 } else {
1078 commandname = epp->ep_resolvedname;
1079 }
1080 i = min(strlen(commandname), MAXCOMLEN);
1081 (void)memcpy(p->p_comm, commandname, i);
1082 p->p_comm[i] = '\0';
1083
1084 dp = PNBUF_GET();
1085 /*
1086 * If the path starts with /, we don't need to do any work.
1087 * This handles the majority of the cases.
1088 * In the future perhaps we could canonicalize it?
1089 */
1090 if (data->ed_pathstring[0] == '/')
1091 (void)strlcpy(epp->ep_path = dp, data->ed_pathstring,
1092 MAXPATHLEN);
1093 #ifdef notyet
1094 /*
1095 * Although this works most of the time [since the entry was just
1096 * entered in the cache] we don't use it because it will fail for
1097 * entries that are not placed in the cache because their name is
1098 * longer than NCHNAMLEN and it is not the cleanest interface,
1099 * because there could be races. When the namei cache is re-written,
1100 * this can be changed to use the appropriate function.
1101 */
1102 else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
1103 epp->ep_path = dp;
1104 #endif
1105 else {
1106 #ifdef notyet
1107 printf("Cannot get path for pid %d [%s] (error %d)\n",
1108 (int)p->p_pid, p->p_comm, error);
1109 #endif
1110 epp->ep_path = NULL;
1111 PNBUF_PUT(dp);
1112 }
1113
1114 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1115 STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
1116 epp->ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
1117
1118 #ifdef __MACHINE_STACK_GROWS_UP
1119 /*
1120 * The copyargs call always copies into lower addresses
1121 * first, moving towards higher addresses, starting with
1122 * the stack pointer that we give. When the stack grows
1123 * down, this puts argc/argv/envp very shallow on the
1124 * stack, right at the first user stack pointer.
1125 * When the stack grows up, the situation is reversed.
1126 *
1127 * Normally, this is no big deal. But the ld_elf.so _rtld()
1128 * function expects to be called with a single pointer to
1129 * a region that has a few words it can stash values into,
1130 * followed by argc/argv/envp. When the stack grows down,
1131 * it's easy to decrement the stack pointer a little bit to
1132 * allocate the space for these few words and pass the new
1133 * stack pointer to _rtld. When the stack grows up, however,
1134 * a few words before argc is part of the signal trampoline, XXX
1135 * so we have a problem.
1136 *
1137 * Instead of changing how _rtld works, we take the easy way
1138 * out and steal 32 bytes before we call copyargs.
1139 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
1140 */
1141 stack += RTLD_GAP;
1142 #endif /* __MACHINE_STACK_GROWS_UP */
1143
1144 /* Now copy argc, args & environ to new stack */
1145 error = (*epp->ep_esch->es_copyargs)(l, epp,
1146 &data->ed_arginfo, &stack, data->ed_argp);
1147
1148 if (epp->ep_path) {
1149 PNBUF_PUT(epp->ep_path);
1150 epp->ep_path = NULL;
1151 }
1152 if (error) {
1153 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1154 goto exec_abort;
1155 }
1156 /* Move the stack back to original point */
1157 stack = (char *)STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1158
1159 /* fill process ps_strings info */
1160 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1161 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1162
1163 if (epp->ep_flags & EXEC_32) {
1164 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1165 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1166 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1167 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1168 }
1169
1170 /* copy out the process's ps_strings structure */
1171 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1172 != 0) {
1173 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1174 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1175 goto exec_abort;
1176 }
1177
1178 cwdexec(p);
1179 fd_closeexec(); /* handle close on exec */
1180
1181 if (__predict_false(ktrace_on))
1182 fd_ktrexecfd();
1183
1184 execsigs(p); /* reset catched signals */
1185
1186 mutex_enter(p->p_lock);
1187 l->l_ctxlink = NULL; /* reset ucontext link */
1188 p->p_acflag &= ~AFORK;
1189 p->p_flag |= PK_EXEC;
1190 mutex_exit(p->p_lock);
1191
1192 /*
1193 * Stop profiling.
1194 */
1195 if ((p->p_stflag & PST_PROFIL) != 0) {
1196 mutex_spin_enter(&p->p_stmutex);
1197 stopprofclock(p);
1198 mutex_spin_exit(&p->p_stmutex);
1199 }
1200
1201 /*
1202 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1203 * exited and exec()/exit() are the only places it will be cleared.
1204 */
1205 if ((p->p_lflag & PL_PPWAIT) != 0) {
1206 #if 0
1207 lwp_t *lp;
1208
1209 mutex_enter(proc_lock);
1210 lp = p->p_vforklwp;
1211 p->p_vforklwp = NULL;
1212
1213 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1214 p->p_lflag &= ~PL_PPWAIT;
1215
1216 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1217 cv_broadcast(&lp->l_waitcv);
1218 mutex_exit(proc_lock);
1219 #else
1220 mutex_enter(proc_lock);
1221 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1222 p->p_lflag &= ~PL_PPWAIT;
1223 cv_broadcast(&p->p_pptr->p_waitcv);
1224 mutex_exit(proc_lock);
1225 #endif
1226 }
1227
1228 /*
1229 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1230 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1231 * out additional references on the process for the moment.
1232 */
1233 if ((p->p_slflag & PSL_TRACED) == 0 &&
1234
1235 (((data->ed_attr.va_mode & S_ISUID) != 0 &&
1236 kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
1237
1238 ((data->ed_attr.va_mode & S_ISGID) != 0 &&
1239 kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
1240 /*
1241 * Mark the process as SUGID before we do
1242 * anything that might block.
1243 */
1244 proc_crmod_enter();
1245 proc_crmod_leave(NULL, NULL, true);
1246
1247 /* Make sure file descriptors 0..2 are in use. */
1248 if ((error = fd_checkstd()) != 0) {
1249 DPRINTF(("%s: fdcheckstd failed %d\n",
1250 __func__, error));
1251 goto exec_abort;
1252 }
1253
1254 /*
1255 * Copy the credential so other references don't see our
1256 * changes.
1257 */
1258 l->l_cred = kauth_cred_copy(l->l_cred);
1259 #ifdef KTRACE
1260 /*
1261 * If the persistent trace flag isn't set, turn off.
1262 */
1263 if (p->p_tracep) {
1264 mutex_enter(&ktrace_lock);
1265 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1266 ktrderef(p);
1267 mutex_exit(&ktrace_lock);
1268 }
1269 #endif
1270 if (data->ed_attr.va_mode & S_ISUID)
1271 kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
1272 if (data->ed_attr.va_mode & S_ISGID)
1273 kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
1274 } else {
1275 if (kauth_cred_geteuid(l->l_cred) ==
1276 kauth_cred_getuid(l->l_cred) &&
1277 kauth_cred_getegid(l->l_cred) ==
1278 kauth_cred_getgid(l->l_cred))
1279 p->p_flag &= ~PK_SUGID;
1280 }
1281
1282 /*
1283 * Copy the credential so other references don't see our changes.
1284 * Test to see if this is necessary first, since in the common case
1285 * we won't need a private reference.
1286 */
1287 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1288 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1289 l->l_cred = kauth_cred_copy(l->l_cred);
1290 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1291 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1292 }
1293
1294 /* Update the master credentials. */
1295 if (l->l_cred != p->p_cred) {
1296 kauth_cred_t ocred;
1297
1298 kauth_cred_hold(l->l_cred);
1299 mutex_enter(p->p_lock);
1300 ocred = p->p_cred;
1301 p->p_cred = l->l_cred;
1302 mutex_exit(p->p_lock);
1303 kauth_cred_free(ocred);
1304 }
1305
1306 #if defined(__HAVE_RAS)
1307 /*
1308 * Remove all RASs from the address space.
1309 */
1310 ras_purgeall();
1311 #endif
1312
1313 doexechooks(p);
1314
1315 /* setup new registers and do misc. setup. */
1316 (*epp->ep_esch->es_emul->e_setregs)(l, epp,
1317 (vaddr_t)stack);
1318 if (epp->ep_esch->es_setregs)
1319 (*epp->ep_esch->es_setregs)(l, epp,
1320 (vaddr_t)stack);
1321
1322 /* Provide a consistent LWP private setting */
1323 (void)lwp_setprivate(l, NULL);
1324
1325 /* Discard all PCU state; need to start fresh */
1326 pcu_discard_all(l);
1327
1328 /* map the process's signal trampoline code */
1329 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1330 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1331 goto exec_abort;
1332 }
1333
1334 pool_put(&exec_pool, data->ed_argp);
1335
1336 /* notify others that we exec'd */
1337 KNOTE(&p->p_klist, NOTE_EXEC);
1338
1339 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1340
1341 SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0);
1342
1343 /* The emulation root will usually have been found when we looked
1344 * for the elf interpreter (or similar), if not look now. */
1345 if (epp->ep_esch->es_emul->e_path != NULL &&
1346 epp->ep_emul_root == NULL)
1347 emul_find_root(l, epp);
1348
1349 /* Any old emulation root got removed by fdcloseexec */
1350 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1351 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1352 rw_exit(&p->p_cwdi->cwdi_lock);
1353 epp->ep_emul_root = NULL;
1354 if (epp->ep_interp != NULL)
1355 vrele(epp->ep_interp);
1356
1357 /*
1358 * Call emulation specific exec hook. This can setup per-process
1359 * p->p_emuldata or do any other per-process stuff an emulation needs.
1360 *
1361 * If we are executing process of different emulation than the
1362 * original forked process, call e_proc_exit() of the old emulation
1363 * first, then e_proc_exec() of new emulation. If the emulation is
1364 * same, the exec hook code should deallocate any old emulation
1365 * resources held previously by this process.
1366 */
1367 if (p->p_emul && p->p_emul->e_proc_exit
1368 && p->p_emul != epp->ep_esch->es_emul)
1369 (*p->p_emul->e_proc_exit)(p);
1370
1371 /*
1372 * This is now LWP 1.
1373 */
1374 mutex_enter(p->p_lock);
1375 p->p_nlwpid = 1;
1376 l->l_lid = 1;
1377 mutex_exit(p->p_lock);
1378
1379 /*
1380 * Call exec hook. Emulation code may NOT store reference to anything
1381 * from &pack.
1382 */
1383 if (epp->ep_esch->es_emul->e_proc_exec)
1384 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1385
1386 /* update p_emul, the old value is no longer needed */
1387 p->p_emul = epp->ep_esch->es_emul;
1388
1389 /* ...and the same for p_execsw */
1390 p->p_execsw = epp->ep_esch;
1391
1392 #ifdef __HAVE_SYSCALL_INTERN
1393 (*p->p_emul->e_syscall_intern)(p);
1394 #endif
1395 ktremul();
1396
1397 /* Allow new references from the debugger/procfs. */
1398 rw_exit(&p->p_reflock);
1399 if (!no_local_exec_lock)
1400 rw_exit(&exec_lock);
1401
1402 mutex_enter(proc_lock);
1403
1404 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1405 KSI_INIT_EMPTY(&ksi);
1406 ksi.ksi_signo = SIGTRAP;
1407 ksi.ksi_lid = l->l_lid;
1408 kpsignal(p, &ksi, NULL);
1409 }
1410
1411 if (p->p_sflag & PS_STOPEXEC) {
1412 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1413 p->p_pptr->p_nstopchild++;
1414 p->p_pptr->p_waited = 0;
1415 mutex_enter(p->p_lock);
1416 ksiginfo_queue_init(&kq);
1417 sigclearall(p, &contsigmask, &kq);
1418 lwp_lock(l);
1419 l->l_stat = LSSTOP;
1420 p->p_stat = SSTOP;
1421 p->p_nrlwps--;
1422 lwp_unlock(l);
1423 mutex_exit(p->p_lock);
1424 mutex_exit(proc_lock);
1425 lwp_lock(l);
1426 mi_switch(l);
1427 ksiginfo_queue_drain(&kq);
1428 KERNEL_LOCK(l->l_biglocks, l);
1429 } else {
1430 mutex_exit(proc_lock);
1431 }
1432
1433 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1434 pathbuf_destroy(data->ed_pathbuf);
1435 PNBUF_PUT(data->ed_resolvedpathbuf);
1436 DPRINTF(("%s finished\n", __func__));
1437 return EJUSTRETURN;
1438
1439 exec_abort:
1440 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1441 rw_exit(&p->p_reflock);
1442 if (!no_local_exec_lock)
1443 rw_exit(&exec_lock);
1444
1445 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1446 pathbuf_destroy(data->ed_pathbuf);
1447 PNBUF_PUT(data->ed_resolvedpathbuf);
1448
1449 /*
1450 * the old process doesn't exist anymore. exit gracefully.
1451 * get rid of the (new) address space we have created, if any, get rid
1452 * of our namei data and vnode, and exit noting failure
1453 */
1454 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1455 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1456
1457 exec_free_emul_arg(epp);
1458 pool_put(&exec_pool, data->ed_argp);
1459 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1460 if (epp->ep_emul_root != NULL)
1461 vrele(epp->ep_emul_root);
1462 if (epp->ep_interp != NULL)
1463 vrele(epp->ep_interp);
1464
1465 /* Acquire the sched-state mutex (exit1() will release it). */
1466 if (!is_spawn) {
1467 mutex_enter(p->p_lock);
1468 exit1(l, W_EXITCODE(error, SIGABRT));
1469 }
1470
1471 return error;
1472 }
1473
1474 int
1475 execve1(struct lwp *l, const char *path, char * const *args,
1476 char * const *envs, execve_fetch_element_t fetch_element)
1477 {
1478 struct execve_data data;
1479 int error;
1480
1481 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1482 if (error)
1483 return error;
1484 error = execve_runproc(l, &data, false, false);
1485 return error;
1486 }
1487
1488 /*
1489 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1490 * Those strings are located just after auxinfo.
1491 */
1492 int
1493 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1494 char **stackp, void *argp)
1495 {
1496 char **cpp, *dp, *sp;
1497 size_t len;
1498 void *nullp;
1499 long argc, envc;
1500 int error;
1501
1502 cpp = (char **)*stackp;
1503 nullp = NULL;
1504 argc = arginfo->ps_nargvstr;
1505 envc = arginfo->ps_nenvstr;
1506
1507 /* argc on stack is long */
1508 CTASSERT(sizeof(*cpp) == sizeof(argc));
1509
1510 dp = (char *)(cpp +
1511 1 + /* argc */
1512 argc + /* *argv[] */
1513 1 + /* \0 */
1514 envc + /* *env[] */
1515 1 + /* \0 */
1516 pack->ep_esch->es_arglen); /* auxinfo */
1517 sp = argp;
1518
1519 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1520 COPYPRINTF("", cpp - 1, sizeof(argc));
1521 return error;
1522 }
1523
1524 /* XXX don't copy them out, remap them! */
1525 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1526
1527 for (; --argc >= 0; sp += len, dp += len) {
1528 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1529 COPYPRINTF("", cpp - 1, sizeof(dp));
1530 return error;
1531 }
1532 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1533 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1534 return error;
1535 }
1536 }
1537
1538 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1539 COPYPRINTF("", cpp - 1, sizeof(nullp));
1540 return error;
1541 }
1542
1543 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1544
1545 for (; --envc >= 0; sp += len, dp += len) {
1546 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1547 COPYPRINTF("", cpp - 1, sizeof(dp));
1548 return error;
1549 }
1550 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1551 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1552 return error;
1553 }
1554
1555 }
1556
1557 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1558 COPYPRINTF("", cpp - 1, sizeof(nullp));
1559 return error;
1560 }
1561
1562 *stackp = (char *)cpp;
1563 return 0;
1564 }
1565
1566
1567 /*
1568 * Add execsw[] entries.
1569 */
1570 int
1571 exec_add(struct execsw *esp, int count)
1572 {
1573 struct exec_entry *it;
1574 int i;
1575
1576 if (count == 0) {
1577 return 0;
1578 }
1579
1580 /* Check for duplicates. */
1581 rw_enter(&exec_lock, RW_WRITER);
1582 for (i = 0; i < count; i++) {
1583 LIST_FOREACH(it, &ex_head, ex_list) {
1584 /* assume unique (makecmds, probe_func, emulation) */
1585 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1586 it->ex_sw->u.elf_probe_func ==
1587 esp[i].u.elf_probe_func &&
1588 it->ex_sw->es_emul == esp[i].es_emul) {
1589 rw_exit(&exec_lock);
1590 return EEXIST;
1591 }
1592 }
1593 }
1594
1595 /* Allocate new entries. */
1596 for (i = 0; i < count; i++) {
1597 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1598 it->ex_sw = &esp[i];
1599 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1600 }
1601
1602 /* update execsw[] */
1603 exec_init(0);
1604 rw_exit(&exec_lock);
1605 return 0;
1606 }
1607
1608 /*
1609 * Remove execsw[] entry.
1610 */
1611 int
1612 exec_remove(struct execsw *esp, int count)
1613 {
1614 struct exec_entry *it, *next;
1615 int i;
1616 const struct proclist_desc *pd;
1617 proc_t *p;
1618
1619 if (count == 0) {
1620 return 0;
1621 }
1622
1623 /* Abort if any are busy. */
1624 rw_enter(&exec_lock, RW_WRITER);
1625 for (i = 0; i < count; i++) {
1626 mutex_enter(proc_lock);
1627 for (pd = proclists; pd->pd_list != NULL; pd++) {
1628 PROCLIST_FOREACH(p, pd->pd_list) {
1629 if (p->p_execsw == &esp[i]) {
1630 mutex_exit(proc_lock);
1631 rw_exit(&exec_lock);
1632 return EBUSY;
1633 }
1634 }
1635 }
1636 mutex_exit(proc_lock);
1637 }
1638
1639 /* None are busy, so remove them all. */
1640 for (i = 0; i < count; i++) {
1641 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1642 next = LIST_NEXT(it, ex_list);
1643 if (it->ex_sw == &esp[i]) {
1644 LIST_REMOVE(it, ex_list);
1645 kmem_free(it, sizeof(*it));
1646 break;
1647 }
1648 }
1649 }
1650
1651 /* update execsw[] */
1652 exec_init(0);
1653 rw_exit(&exec_lock);
1654 return 0;
1655 }
1656
1657 /*
1658 * Initialize exec structures. If init_boot is true, also does necessary
1659 * one-time initialization (it's called from main() that way).
1660 * Once system is multiuser, this should be called with exec_lock held,
1661 * i.e. via exec_{add|remove}().
1662 */
1663 int
1664 exec_init(int init_boot)
1665 {
1666 const struct execsw **sw;
1667 struct exec_entry *ex;
1668 SLIST_HEAD(,exec_entry) first;
1669 SLIST_HEAD(,exec_entry) any;
1670 SLIST_HEAD(,exec_entry) last;
1671 int i, sz;
1672
1673 if (init_boot) {
1674 /* do one-time initializations */
1675 rw_init(&exec_lock);
1676 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1677 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1678 "execargs", &exec_palloc, IPL_NONE);
1679 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1680 } else {
1681 KASSERT(rw_write_held(&exec_lock));
1682 }
1683
1684 /* Sort each entry onto the appropriate queue. */
1685 SLIST_INIT(&first);
1686 SLIST_INIT(&any);
1687 SLIST_INIT(&last);
1688 sz = 0;
1689 LIST_FOREACH(ex, &ex_head, ex_list) {
1690 switch(ex->ex_sw->es_prio) {
1691 case EXECSW_PRIO_FIRST:
1692 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1693 break;
1694 case EXECSW_PRIO_ANY:
1695 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1696 break;
1697 case EXECSW_PRIO_LAST:
1698 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1699 break;
1700 default:
1701 panic("%s", __func__);
1702 break;
1703 }
1704 sz++;
1705 }
1706
1707 /*
1708 * Create new execsw[]. Ensure we do not try a zero-sized
1709 * allocation.
1710 */
1711 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1712 i = 0;
1713 SLIST_FOREACH(ex, &first, ex_slist) {
1714 sw[i++] = ex->ex_sw;
1715 }
1716 SLIST_FOREACH(ex, &any, ex_slist) {
1717 sw[i++] = ex->ex_sw;
1718 }
1719 SLIST_FOREACH(ex, &last, ex_slist) {
1720 sw[i++] = ex->ex_sw;
1721 }
1722
1723 /* Replace old execsw[] and free used memory. */
1724 if (execsw != NULL) {
1725 kmem_free(__UNCONST(execsw),
1726 nexecs * sizeof(struct execsw *) + 1);
1727 }
1728 execsw = sw;
1729 nexecs = sz;
1730
1731 /* Figure out the maximum size of an exec header. */
1732 exec_maxhdrsz = sizeof(int);
1733 for (i = 0; i < nexecs; i++) {
1734 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1735 exec_maxhdrsz = execsw[i]->es_hdrsz;
1736 }
1737
1738 return 0;
1739 }
1740
1741 static int
1742 exec_sigcode_map(struct proc *p, const struct emul *e)
1743 {
1744 vaddr_t va;
1745 vsize_t sz;
1746 int error;
1747 struct uvm_object *uobj;
1748
1749 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1750
1751 if (e->e_sigobject == NULL || sz == 0) {
1752 return 0;
1753 }
1754
1755 /*
1756 * If we don't have a sigobject for this emulation, create one.
1757 *
1758 * sigobject is an anonymous memory object (just like SYSV shared
1759 * memory) that we keep a permanent reference to and that we map
1760 * in all processes that need this sigcode. The creation is simple,
1761 * we create an object, add a permanent reference to it, map it in
1762 * kernel space, copy out the sigcode to it and unmap it.
1763 * We map it with PROT_READ|PROT_EXEC into the process just
1764 * the way sys_mmap() would map it.
1765 */
1766
1767 uobj = *e->e_sigobject;
1768 if (uobj == NULL) {
1769 mutex_enter(&sigobject_lock);
1770 if ((uobj = *e->e_sigobject) == NULL) {
1771 uobj = uao_create(sz, 0);
1772 (*uobj->pgops->pgo_reference)(uobj);
1773 va = vm_map_min(kernel_map);
1774 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1775 uobj, 0, 0,
1776 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1777 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1778 printf("kernel mapping failed %d\n", error);
1779 (*uobj->pgops->pgo_detach)(uobj);
1780 mutex_exit(&sigobject_lock);
1781 return error;
1782 }
1783 memcpy((void *)va, e->e_sigcode, sz);
1784 #ifdef PMAP_NEED_PROCWR
1785 pmap_procwr(&proc0, va, sz);
1786 #endif
1787 uvm_unmap(kernel_map, va, va + round_page(sz));
1788 *e->e_sigobject = uobj;
1789 }
1790 mutex_exit(&sigobject_lock);
1791 }
1792
1793 /* Just a hint to uvm_map where to put it. */
1794 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1795 round_page(sz));
1796
1797 #ifdef __alpha__
1798 /*
1799 * Tru64 puts /sbin/loader at the end of user virtual memory,
1800 * which causes the above calculation to put the sigcode at
1801 * an invalid address. Put it just below the text instead.
1802 */
1803 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1804 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1805 }
1806 #endif
1807
1808 (*uobj->pgops->pgo_reference)(uobj);
1809 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1810 uobj, 0, 0,
1811 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1812 UVM_ADV_RANDOM, 0));
1813 if (error) {
1814 DPRINTF(("%s, %d: map %p "
1815 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1816 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1817 va, error));
1818 (*uobj->pgops->pgo_detach)(uobj);
1819 return error;
1820 }
1821 p->p_sigctx.ps_sigcode = (void *)va;
1822 return 0;
1823 }
1824
1825 /*
1826 * Release a refcount on spawn_exec_data and destroy memory, if this
1827 * was the last one.
1828 */
1829 static void
1830 spawn_exec_data_release(struct spawn_exec_data *data)
1831 {
1832 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1833 return;
1834
1835 cv_destroy(&data->sed_cv_child_ready);
1836 mutex_destroy(&data->sed_mtx_child);
1837
1838 if (data->sed_actions)
1839 posix_spawn_fa_free(data->sed_actions,
1840 data->sed_actions->len);
1841 if (data->sed_attrs)
1842 kmem_free(data->sed_attrs,
1843 sizeof(*data->sed_attrs));
1844 kmem_free(data, sizeof(*data));
1845 }
1846
1847 /*
1848 * A child lwp of a posix_spawn operation starts here and ends up in
1849 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1850 * manipulations in between.
1851 * The parent waits for the child, as it is not clear whether the child
1852 * will be able to acquire its own exec_lock. If it can, the parent can
1853 * be released early and continue running in parallel. If not (or if the
1854 * magic debug flag is passed in the scheduler attribute struct), the
1855 * child rides on the parent's exec lock until it is ready to return to
1856 * to userland - and only then releases the parent. This method loses
1857 * concurrency, but improves error reporting.
1858 */
1859 static void
1860 spawn_return(void *arg)
1861 {
1862 struct spawn_exec_data *spawn_data = arg;
1863 struct lwp *l = curlwp;
1864 int error, newfd;
1865 size_t i;
1866 const struct posix_spawn_file_actions_entry *fae;
1867 pid_t ppid;
1868 register_t retval;
1869 bool have_reflock;
1870 bool parent_is_waiting = true;
1871
1872 /*
1873 * Check if we can release parent early.
1874 * We either need to have no sed_attrs, or sed_attrs does not
1875 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1876 * safe access to the parent proc (passed in sed_parent).
1877 * We then try to get the exec_lock, and only if that works, we can
1878 * release the parent here already.
1879 */
1880 ppid = spawn_data->sed_parent->p_pid;
1881 if ((!spawn_data->sed_attrs
1882 || (spawn_data->sed_attrs->sa_flags
1883 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1884 && rw_tryenter(&exec_lock, RW_READER)) {
1885 parent_is_waiting = false;
1886 mutex_enter(&spawn_data->sed_mtx_child);
1887 cv_signal(&spawn_data->sed_cv_child_ready);
1888 mutex_exit(&spawn_data->sed_mtx_child);
1889 }
1890
1891 /* don't allow debugger access yet */
1892 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1893 have_reflock = true;
1894
1895 error = 0;
1896 /* handle posix_spawn_file_actions */
1897 if (spawn_data->sed_actions != NULL) {
1898 for (i = 0; i < spawn_data->sed_actions->len; i++) {
1899 fae = &spawn_data->sed_actions->fae[i];
1900 switch (fae->fae_action) {
1901 case FAE_OPEN:
1902 if (fd_getfile(fae->fae_fildes) != NULL) {
1903 error = fd_close(fae->fae_fildes);
1904 if (error)
1905 break;
1906 }
1907 error = fd_open(fae->fae_path, fae->fae_oflag,
1908 fae->fae_mode, &newfd);
1909 if (error)
1910 break;
1911 if (newfd != fae->fae_fildes) {
1912 error = dodup(l, newfd,
1913 fae->fae_fildes, 0, &retval);
1914 if (fd_getfile(newfd) != NULL)
1915 fd_close(newfd);
1916 }
1917 break;
1918 case FAE_DUP2:
1919 error = dodup(l, fae->fae_fildes,
1920 fae->fae_newfildes, 0, &retval);
1921 break;
1922 case FAE_CLOSE:
1923 if (fd_getfile(fae->fae_fildes) == NULL) {
1924 error = EBADF;
1925 break;
1926 }
1927 error = fd_close(fae->fae_fildes);
1928 break;
1929 }
1930 if (error)
1931 goto report_error;
1932 }
1933 }
1934
1935 /* handle posix_spawnattr */
1936 if (spawn_data->sed_attrs != NULL) {
1937 int ostat;
1938 struct sigaction sigact;
1939 sigact._sa_u._sa_handler = SIG_DFL;
1940 sigact.sa_flags = 0;
1941
1942 /*
1943 * set state to SSTOP so that this proc can be found by pid.
1944 * see proc_enterprp, do_sched_setparam below
1945 */
1946 ostat = l->l_proc->p_stat;
1947 l->l_proc->p_stat = SSTOP;
1948
1949 /* Set process group */
1950 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1951 pid_t mypid = l->l_proc->p_pid,
1952 pgrp = spawn_data->sed_attrs->sa_pgroup;
1953
1954 if (pgrp == 0)
1955 pgrp = mypid;
1956
1957 error = proc_enterpgrp(spawn_data->sed_parent,
1958 mypid, pgrp, false);
1959 if (error)
1960 goto report_error;
1961 }
1962
1963 /* Set scheduler policy */
1964 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1965 error = do_sched_setparam(l->l_proc->p_pid, 0,
1966 spawn_data->sed_attrs->sa_schedpolicy,
1967 &spawn_data->sed_attrs->sa_schedparam);
1968 else if (spawn_data->sed_attrs->sa_flags
1969 & POSIX_SPAWN_SETSCHEDPARAM) {
1970 error = do_sched_setparam(ppid, 0,
1971 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
1972 }
1973 if (error)
1974 goto report_error;
1975
1976 /* Reset user ID's */
1977 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
1978 error = do_setresuid(l, -1,
1979 kauth_cred_getgid(l->l_cred), -1,
1980 ID_E_EQ_R | ID_E_EQ_S);
1981 if (error)
1982 goto report_error;
1983 error = do_setresuid(l, -1,
1984 kauth_cred_getuid(l->l_cred), -1,
1985 ID_E_EQ_R | ID_E_EQ_S);
1986 if (error)
1987 goto report_error;
1988 }
1989
1990 /* Set signal masks/defaults */
1991 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
1992 mutex_enter(l->l_proc->p_lock);
1993 error = sigprocmask1(l, SIG_SETMASK,
1994 &spawn_data->sed_attrs->sa_sigmask, NULL);
1995 mutex_exit(l->l_proc->p_lock);
1996 if (error)
1997 goto report_error;
1998 }
1999
2000 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2001 /*
2002 * The following sigaction call is using a sigaction
2003 * version 0 trampoline which is in the compatibility
2004 * code only. This is not a problem because for SIG_DFL
2005 * and SIG_IGN, the trampolines are now ignored. If they
2006 * were not, this would be a problem because we are
2007 * holding the exec_lock, and the compat code needs
2008 * to do the same in order to replace the trampoline
2009 * code of the process.
2010 */
2011 for (i = 1; i <= NSIG; i++) {
2012 if (sigismember(
2013 &spawn_data->sed_attrs->sa_sigdefault, i))
2014 sigaction1(l, i, &sigact, NULL, NULL,
2015 0);
2016 }
2017 }
2018 l->l_proc->p_stat = ostat;
2019 }
2020
2021 /* now do the real exec */
2022 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2023 true);
2024 have_reflock = false;
2025 if (error == EJUSTRETURN)
2026 error = 0;
2027 else if (error)
2028 goto report_error;
2029
2030 if (parent_is_waiting) {
2031 mutex_enter(&spawn_data->sed_mtx_child);
2032 cv_signal(&spawn_data->sed_cv_child_ready);
2033 mutex_exit(&spawn_data->sed_mtx_child);
2034 }
2035
2036 /* release our refcount on the data */
2037 spawn_exec_data_release(spawn_data);
2038
2039 /* and finally: leave to userland for the first time */
2040 cpu_spawn_return(l);
2041
2042 /* NOTREACHED */
2043 return;
2044
2045 report_error:
2046 if (have_reflock) {
2047 /*
2048 * We have not passed through execve_runproc(),
2049 * which would have released the p_reflock and also
2050 * taken ownership of the sed_exec part of spawn_data,
2051 * so release/free both here.
2052 */
2053 rw_exit(&l->l_proc->p_reflock);
2054 execve_free_data(&spawn_data->sed_exec);
2055 }
2056
2057 if (parent_is_waiting) {
2058 /* pass error to parent */
2059 mutex_enter(&spawn_data->sed_mtx_child);
2060 spawn_data->sed_error = error;
2061 cv_signal(&spawn_data->sed_cv_child_ready);
2062 mutex_exit(&spawn_data->sed_mtx_child);
2063 } else {
2064 rw_exit(&exec_lock);
2065 }
2066
2067 /* release our refcount on the data */
2068 spawn_exec_data_release(spawn_data);
2069
2070 /* done, exit */
2071 mutex_enter(l->l_proc->p_lock);
2072 /*
2073 * Posix explicitly asks for an exit code of 127 if we report
2074 * errors from the child process - so, unfortunately, there
2075 * is no way to report a more exact error code.
2076 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2077 * flag bit in the attrp argument to posix_spawn(2), see above.
2078 */
2079 exit1(l, W_EXITCODE(127, 0));
2080 }
2081
2082 void
2083 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2084 {
2085
2086 for (size_t i = 0; i < len; i++) {
2087 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2088 if (fae->fae_action != FAE_OPEN)
2089 continue;
2090 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2091 }
2092 if (fa->len > 0)
2093 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2094 kmem_free(fa, sizeof(*fa));
2095 }
2096
2097 static int
2098 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2099 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2100 {
2101 struct posix_spawn_file_actions *fa;
2102 struct posix_spawn_file_actions_entry *fae;
2103 char *pbuf = NULL;
2104 int error;
2105 size_t i = 0;
2106
2107 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2108 error = copyin(ufa, fa, sizeof(*fa));
2109 if (error || fa->len == 0) {
2110 kmem_free(fa, sizeof(*fa));
2111 return error; /* 0 if not an error, and len == 0 */
2112 }
2113
2114 if (fa->len > lim) {
2115 kmem_free(fa, sizeof(*fa));
2116 return EINVAL;
2117 }
2118
2119 fa->size = fa->len;
2120 size_t fal = fa->len * sizeof(*fae);
2121 fae = fa->fae;
2122 fa->fae = kmem_alloc(fal, KM_SLEEP);
2123 error = copyin(fae, fa->fae, fal);
2124 if (error)
2125 goto out;
2126
2127 pbuf = PNBUF_GET();
2128 for (; i < fa->len; i++) {
2129 fae = &fa->fae[i];
2130 if (fae->fae_action != FAE_OPEN)
2131 continue;
2132 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2133 if (error)
2134 goto out;
2135 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2136 memcpy(fae->fae_path, pbuf, fal);
2137 }
2138 PNBUF_PUT(pbuf);
2139
2140 *fap = fa;
2141 return 0;
2142 out:
2143 if (pbuf)
2144 PNBUF_PUT(pbuf);
2145 posix_spawn_fa_free(fa, i);
2146 return error;
2147 }
2148
2149 int
2150 check_posix_spawn(struct lwp *l1)
2151 {
2152 int error, tnprocs, count;
2153 uid_t uid;
2154 struct proc *p1;
2155
2156 p1 = l1->l_proc;
2157 uid = kauth_cred_getuid(l1->l_cred);
2158 tnprocs = atomic_inc_uint_nv(&nprocs);
2159
2160 /*
2161 * Although process entries are dynamically created, we still keep
2162 * a global limit on the maximum number we will create.
2163 */
2164 if (__predict_false(tnprocs >= maxproc))
2165 error = -1;
2166 else
2167 error = kauth_authorize_process(l1->l_cred,
2168 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2169
2170 if (error) {
2171 atomic_dec_uint(&nprocs);
2172 return EAGAIN;
2173 }
2174
2175 /*
2176 * Enforce limits.
2177 */
2178 count = chgproccnt(uid, 1);
2179 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2180 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2181 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2182 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2183 (void)chgproccnt(uid, -1);
2184 atomic_dec_uint(&nprocs);
2185 return EAGAIN;
2186 }
2187
2188 return 0;
2189 }
2190
2191 int
2192 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2193 struct posix_spawn_file_actions *fa,
2194 struct posix_spawnattr *sa,
2195 char *const *argv, char *const *envp,
2196 execve_fetch_element_t fetch)
2197 {
2198
2199 struct proc *p1, *p2;
2200 struct lwp *l2;
2201 int error;
2202 struct spawn_exec_data *spawn_data;
2203 vaddr_t uaddr;
2204 pid_t pid;
2205 bool have_exec_lock = false;
2206
2207 p1 = l1->l_proc;
2208
2209 /* Allocate and init spawn_data */
2210 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2211 spawn_data->sed_refcnt = 1; /* only parent so far */
2212 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2213 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2214 mutex_enter(&spawn_data->sed_mtx_child);
2215
2216 /*
2217 * Do the first part of the exec now, collect state
2218 * in spawn_data.
2219 */
2220 error = execve_loadvm(l1, path, argv,
2221 envp, fetch, &spawn_data->sed_exec);
2222 if (error == EJUSTRETURN)
2223 error = 0;
2224 else if (error)
2225 goto error_exit;
2226
2227 have_exec_lock = true;
2228
2229 /*
2230 * Allocate virtual address space for the U-area now, while it
2231 * is still easy to abort the fork operation if we're out of
2232 * kernel virtual address space.
2233 */
2234 uaddr = uvm_uarea_alloc();
2235 if (__predict_false(uaddr == 0)) {
2236 error = ENOMEM;
2237 goto error_exit;
2238 }
2239
2240 /*
2241 * Allocate new proc. Borrow proc0 vmspace for it, we will
2242 * replace it with its own before returning to userland
2243 * in the child.
2244 * This is a point of no return, we will have to go through
2245 * the child proc to properly clean it up past this point.
2246 */
2247 p2 = proc_alloc();
2248 pid = p2->p_pid;
2249
2250 /*
2251 * Make a proc table entry for the new process.
2252 * Start by zeroing the section of proc that is zero-initialized,
2253 * then copy the section that is copied directly from the parent.
2254 */
2255 memset(&p2->p_startzero, 0,
2256 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2257 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2258 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2259 p2->p_vmspace = proc0.p_vmspace;
2260
2261 TAILQ_INIT(&p2->p_sigpend.sp_info);
2262
2263 LIST_INIT(&p2->p_lwps);
2264 LIST_INIT(&p2->p_sigwaiters);
2265
2266 /*
2267 * Duplicate sub-structures as needed.
2268 * Increase reference counts on shared objects.
2269 * Inherit flags we want to keep. The flags related to SIGCHLD
2270 * handling are important in order to keep a consistent behaviour
2271 * for the child after the fork. If we are a 32-bit process, the
2272 * child will be too.
2273 */
2274 p2->p_flag =
2275 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2276 p2->p_emul = p1->p_emul;
2277 p2->p_execsw = p1->p_execsw;
2278
2279 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2280 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2281 rw_init(&p2->p_reflock);
2282 cv_init(&p2->p_waitcv, "wait");
2283 cv_init(&p2->p_lwpcv, "lwpwait");
2284
2285 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2286
2287 kauth_proc_fork(p1, p2);
2288
2289 p2->p_raslist = NULL;
2290 p2->p_fd = fd_copy();
2291
2292 /* XXX racy */
2293 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2294
2295 p2->p_cwdi = cwdinit();
2296
2297 /*
2298 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2299 * we just need increase pl_refcnt.
2300 */
2301 if (!p1->p_limit->pl_writeable) {
2302 lim_addref(p1->p_limit);
2303 p2->p_limit = p1->p_limit;
2304 } else {
2305 p2->p_limit = lim_copy(p1->p_limit);
2306 }
2307
2308 p2->p_lflag = 0;
2309 p2->p_sflag = 0;
2310 p2->p_slflag = 0;
2311 p2->p_pptr = p1;
2312 p2->p_ppid = p1->p_pid;
2313 LIST_INIT(&p2->p_children);
2314
2315 p2->p_aio = NULL;
2316
2317 #ifdef KTRACE
2318 /*
2319 * Copy traceflag and tracefile if enabled.
2320 * If not inherited, these were zeroed above.
2321 */
2322 if (p1->p_traceflag & KTRFAC_INHERIT) {
2323 mutex_enter(&ktrace_lock);
2324 p2->p_traceflag = p1->p_traceflag;
2325 if ((p2->p_tracep = p1->p_tracep) != NULL)
2326 ktradref(p2);
2327 mutex_exit(&ktrace_lock);
2328 }
2329 #endif
2330
2331 /*
2332 * Create signal actions for the child process.
2333 */
2334 p2->p_sigacts = sigactsinit(p1, 0);
2335 mutex_enter(p1->p_lock);
2336 p2->p_sflag |=
2337 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2338 sched_proc_fork(p1, p2);
2339 mutex_exit(p1->p_lock);
2340
2341 p2->p_stflag = p1->p_stflag;
2342
2343 /*
2344 * p_stats.
2345 * Copy parts of p_stats, and zero out the rest.
2346 */
2347 p2->p_stats = pstatscopy(p1->p_stats);
2348
2349 /* copy over machdep flags to the new proc */
2350 cpu_proc_fork(p1, p2);
2351
2352 /*
2353 * Prepare remaining parts of spawn data
2354 */
2355 spawn_data->sed_actions = fa;
2356 spawn_data->sed_attrs = sa;
2357
2358 spawn_data->sed_parent = p1;
2359
2360 /* create LWP */
2361 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2362 &l2, l1->l_class);
2363 l2->l_ctxlink = NULL; /* reset ucontext link */
2364
2365 /*
2366 * Copy the credential so other references don't see our changes.
2367 * Test to see if this is necessary first, since in the common case
2368 * we won't need a private reference.
2369 */
2370 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2371 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2372 l2->l_cred = kauth_cred_copy(l2->l_cred);
2373 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2374 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2375 }
2376
2377 /* Update the master credentials. */
2378 if (l2->l_cred != p2->p_cred) {
2379 kauth_cred_t ocred;
2380
2381 kauth_cred_hold(l2->l_cred);
2382 mutex_enter(p2->p_lock);
2383 ocred = p2->p_cred;
2384 p2->p_cred = l2->l_cred;
2385 mutex_exit(p2->p_lock);
2386 kauth_cred_free(ocred);
2387 }
2388
2389 *child_ok = true;
2390 spawn_data->sed_refcnt = 2; /* child gets it as well */
2391 #if 0
2392 l2->l_nopreempt = 1; /* start it non-preemptable */
2393 #endif
2394
2395 /*
2396 * It's now safe for the scheduler and other processes to see the
2397 * child process.
2398 */
2399 mutex_enter(proc_lock);
2400
2401 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2402 p2->p_lflag |= PL_CONTROLT;
2403
2404 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2405 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2406
2407 LIST_INSERT_AFTER(p1, p2, p_pglist);
2408 LIST_INSERT_HEAD(&allproc, p2, p_list);
2409
2410 p2->p_trace_enabled = trace_is_enabled(p2);
2411 #ifdef __HAVE_SYSCALL_INTERN
2412 (*p2->p_emul->e_syscall_intern)(p2);
2413 #endif
2414
2415 /*
2416 * Make child runnable, set start time, and add to run queue except
2417 * if the parent requested the child to start in SSTOP state.
2418 */
2419 mutex_enter(p2->p_lock);
2420
2421 getmicrotime(&p2->p_stats->p_start);
2422
2423 lwp_lock(l2);
2424 KASSERT(p2->p_nrlwps == 1);
2425 p2->p_nrlwps = 1;
2426 p2->p_stat = SACTIVE;
2427 l2->l_stat = LSRUN;
2428 sched_enqueue(l2, false);
2429 lwp_unlock(l2);
2430
2431 mutex_exit(p2->p_lock);
2432 mutex_exit(proc_lock);
2433
2434 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2435 error = spawn_data->sed_error;
2436 mutex_exit(&spawn_data->sed_mtx_child);
2437 spawn_exec_data_release(spawn_data);
2438
2439 rw_exit(&p1->p_reflock);
2440 rw_exit(&exec_lock);
2441 have_exec_lock = false;
2442
2443 *pid_res = pid;
2444 return error;
2445
2446 error_exit:
2447 if (have_exec_lock) {
2448 execve_free_data(&spawn_data->sed_exec);
2449 rw_exit(&p1->p_reflock);
2450 rw_exit(&exec_lock);
2451 }
2452 mutex_exit(&spawn_data->sed_mtx_child);
2453 spawn_exec_data_release(spawn_data);
2454
2455 return error;
2456 }
2457
2458 int
2459 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2460 register_t *retval)
2461 {
2462 /* {
2463 syscallarg(pid_t *) pid;
2464 syscallarg(const char *) path;
2465 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2466 syscallarg(const struct posix_spawnattr *) attrp;
2467 syscallarg(char *const *) argv;
2468 syscallarg(char *const *) envp;
2469 } */
2470
2471 int error;
2472 struct posix_spawn_file_actions *fa = NULL;
2473 struct posix_spawnattr *sa = NULL;
2474 pid_t pid;
2475 bool child_ok = false;
2476 rlim_t max_fileactions;
2477 proc_t *p = l1->l_proc;
2478
2479 error = check_posix_spawn(l1);
2480 if (error) {
2481 *retval = error;
2482 return 0;
2483 }
2484
2485 /* copy in file_actions struct */
2486 if (SCARG(uap, file_actions) != NULL) {
2487 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2488 maxfiles);
2489 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2490 max_fileactions);
2491 if (error)
2492 goto error_exit;
2493 }
2494
2495 /* copyin posix_spawnattr struct */
2496 if (SCARG(uap, attrp) != NULL) {
2497 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2498 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2499 if (error)
2500 goto error_exit;
2501 }
2502
2503 /*
2504 * Do the spawn
2505 */
2506 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2507 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2508 if (error)
2509 goto error_exit;
2510
2511 if (error == 0 && SCARG(uap, pid) != NULL)
2512 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2513
2514 *retval = error;
2515 return 0;
2516
2517 error_exit:
2518 if (!child_ok) {
2519 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2520 atomic_dec_uint(&nprocs);
2521
2522 if (sa)
2523 kmem_free(sa, sizeof(*sa));
2524 if (fa)
2525 posix_spawn_fa_free(fa, fa->len);
2526 }
2527
2528 *retval = error;
2529 return 0;
2530 }
2531
2532 void
2533 exec_free_emul_arg(struct exec_package *epp)
2534 {
2535 if (epp->ep_emul_arg_free != NULL) {
2536 KASSERT(epp->ep_emul_arg != NULL);
2537 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2538 epp->ep_emul_arg_free = NULL;
2539 epp->ep_emul_arg = NULL;
2540 } else {
2541 KASSERT(epp->ep_emul_arg == NULL);
2542 }
2543 }
2544