Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.385
      1 /*	$NetBSD: kern_exec.c,v 1.385 2014/04/11 18:02:33 uebayasi Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     31  * Copyright (C) 1992 Wolfgang Solfrank.
     32  * Copyright (C) 1992 TooLs GmbH.
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by TooLs GmbH.
     46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.385 2014/04/11 18:02:33 uebayasi Exp $");
     63 
     64 #include "opt_exec.h"
     65 #include "opt_execfmt.h"
     66 #include "opt_ktrace.h"
     67 #include "opt_modular.h"
     68 #include "opt_syscall_debug.h"
     69 #include "veriexec.h"
     70 #include "opt_pax.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/filedesc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/mount.h>
     78 #include <sys/malloc.h>
     79 #include <sys/kmem.h>
     80 #include <sys/namei.h>
     81 #include <sys/vnode.h>
     82 #include <sys/file.h>
     83 #include <sys/acct.h>
     84 #include <sys/atomic.h>
     85 #include <sys/exec.h>
     86 #include <sys/ktrace.h>
     87 #include <sys/uidinfo.h>
     88 #include <sys/wait.h>
     89 #include <sys/mman.h>
     90 #include <sys/ras.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/stat.h>
     93 #include <sys/syscall.h>
     94 #include <sys/kauth.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/pax.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 #include <sys/syscallvar.h>
    100 #include <sys/syscallargs.h>
    101 #if NVERIEXEC > 0
    102 #include <sys/verified_exec.h>
    103 #endif /* NVERIEXEC > 0 */
    104 #include <sys/sdt.h>
    105 #include <sys/spawn.h>
    106 #include <sys/prot.h>
    107 #include <sys/cprng.h>
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #include <machine/reg.h>
    112 
    113 #include <compat/common/compat_util.h>
    114 
    115 #ifndef MD_TOPDOWN_INIT
    116 #ifdef __USE_TOPDOWN_VM
    117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    118 #else
    119 #define	MD_TOPDOWN_INIT(epp)
    120 #endif
    121 #endif
    122 
    123 static int exec_sigcode_map(struct proc *, const struct emul *);
    124 
    125 #ifdef DEBUG_EXEC
    126 #define DPRINTF(a) printf a
    127 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    128     __LINE__, (s), (a), (b))
    129 #else
    130 #define DPRINTF(a)
    131 #define COPYPRINTF(s, a, b)
    132 #endif /* DEBUG_EXEC */
    133 
    134 /*
    135  * DTrace SDT provider definitions
    136  */
    137 SDT_PROBE_DEFINE(proc,,,exec,exec,
    138 	    "char *", NULL,
    139 	    NULL, NULL, NULL, NULL,
    140 	    NULL, NULL, NULL, NULL);
    141 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
    142 	    "char *", NULL,
    143 	    NULL, NULL, NULL, NULL,
    144 	    NULL, NULL, NULL, NULL);
    145 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
    146 	    "int", NULL,
    147 	    NULL, NULL, NULL, NULL,
    148 	    NULL, NULL, NULL, NULL);
    149 
    150 /*
    151  * Exec function switch:
    152  *
    153  * Note that each makecmds function is responsible for loading the
    154  * exec package with the necessary functions for any exec-type-specific
    155  * handling.
    156  *
    157  * Functions for specific exec types should be defined in their own
    158  * header file.
    159  */
    160 static const struct execsw	**execsw = NULL;
    161 static int			nexecs;
    162 
    163 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    164 
    165 /* list of dynamically loaded execsw entries */
    166 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    167     LIST_HEAD_INITIALIZER(ex_head);
    168 struct exec_entry {
    169 	LIST_ENTRY(exec_entry)	ex_list;
    170 	SLIST_ENTRY(exec_entry)	ex_slist;
    171 	const struct execsw	*ex_sw;
    172 };
    173 
    174 #ifndef __HAVE_SYSCALL_INTERN
    175 void	syscall(void);
    176 #endif
    177 
    178 /* NetBSD emul struct */
    179 struct emul emul_netbsd = {
    180 	.e_name =		"netbsd",
    181 #ifdef EMUL_NATIVEROOT
    182 	.e_path =		EMUL_NATIVEROOT,
    183 #else
    184 	.e_path =		NULL,
    185 #endif
    186 #ifndef __HAVE_MINIMAL_EMUL
    187 	.e_flags =		EMUL_HAS_SYS___syscall,
    188 	.e_errno =		NULL,
    189 	.e_nosys =		SYS_syscall,
    190 	.e_nsysent =		SYS_NSYSENT,
    191 #endif
    192 	.e_sysent =		sysent,
    193 #ifdef SYSCALL_DEBUG
    194 	.e_syscallnames =	syscallnames,
    195 #else
    196 	.e_syscallnames =	NULL,
    197 #endif
    198 	.e_sendsig =		sendsig,
    199 	.e_trapsignal =		trapsignal,
    200 	.e_tracesig =		NULL,
    201 	.e_sigcode =		NULL,
    202 	.e_esigcode =		NULL,
    203 	.e_sigobject =		NULL,
    204 	.e_setregs =		setregs,
    205 	.e_proc_exec =		NULL,
    206 	.e_proc_fork =		NULL,
    207 	.e_proc_exit =		NULL,
    208 	.e_lwp_fork =		NULL,
    209 	.e_lwp_exit =		NULL,
    210 #ifdef __HAVE_SYSCALL_INTERN
    211 	.e_syscall_intern =	syscall_intern,
    212 #else
    213 	.e_syscall =		syscall,
    214 #endif
    215 	.e_sysctlovly =		NULL,
    216 	.e_fault =		NULL,
    217 	.e_vm_default_addr =	uvm_default_mapaddr,
    218 	.e_usertrap =		NULL,
    219 	.e_ucsize =		sizeof(ucontext_t),
    220 	.e_startlwp =		startlwp
    221 };
    222 
    223 /*
    224  * Exec lock. Used to control access to execsw[] structures.
    225  * This must not be static so that netbsd32 can access it, too.
    226  */
    227 krwlock_t exec_lock;
    228 
    229 static kmutex_t sigobject_lock;
    230 
    231 /*
    232  * Data used between a loadvm and execve part of an "exec" operation
    233  */
    234 struct execve_data {
    235 	struct exec_package	ed_pack;
    236 	struct pathbuf		*ed_pathbuf;
    237 	struct vattr		ed_attr;
    238 	struct ps_strings	ed_arginfo;
    239 	char			*ed_argp;
    240 	const char		*ed_pathstring;
    241 	char			*ed_resolvedpathbuf;
    242 	size_t			ed_ps_strings_sz;
    243 	int			ed_szsigcode;
    244 	long			ed_argc;
    245 	long			ed_envc;
    246 };
    247 
    248 /*
    249  * data passed from parent lwp to child during a posix_spawn()
    250  */
    251 struct spawn_exec_data {
    252 	struct execve_data	sed_exec;
    253 	struct posix_spawn_file_actions
    254 				*sed_actions;
    255 	struct posix_spawnattr	*sed_attrs;
    256 	struct proc		*sed_parent;
    257 	kcondvar_t		sed_cv_child_ready;
    258 	kmutex_t		sed_mtx_child;
    259 	int			sed_error;
    260 	volatile uint32_t	sed_refcnt;
    261 };
    262 
    263 static void *
    264 exec_pool_alloc(struct pool *pp, int flags)
    265 {
    266 
    267 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
    268 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    269 }
    270 
    271 static void
    272 exec_pool_free(struct pool *pp, void *addr)
    273 {
    274 
    275 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    276 }
    277 
    278 static struct pool exec_pool;
    279 
    280 static struct pool_allocator exec_palloc = {
    281 	.pa_alloc = exec_pool_alloc,
    282 	.pa_free = exec_pool_free,
    283 	.pa_pagesz = NCARGS
    284 };
    285 
    286 /*
    287  * check exec:
    288  * given an "executable" described in the exec package's namei info,
    289  * see what we can do with it.
    290  *
    291  * ON ENTRY:
    292  *	exec package with appropriate namei info
    293  *	lwp pointer of exec'ing lwp
    294  *	NO SELF-LOCKED VNODES
    295  *
    296  * ON EXIT:
    297  *	error:	nothing held, etc.  exec header still allocated.
    298  *	ok:	filled exec package, executable's vnode (unlocked).
    299  *
    300  * EXEC SWITCH ENTRY:
    301  * 	Locked vnode to check, exec package, proc.
    302  *
    303  * EXEC SWITCH EXIT:
    304  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    305  *	error:	destructive:
    306  *			everything deallocated execept exec header.
    307  *		non-destructive:
    308  *			error code, executable's vnode (unlocked),
    309  *			exec header unmodified.
    310  */
    311 int
    312 /*ARGSUSED*/
    313 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
    314 {
    315 	int		error, i;
    316 	struct vnode	*vp;
    317 	struct nameidata nd;
    318 	size_t		resid;
    319 
    320 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    321 
    322 	/* first get the vnode */
    323 	if ((error = namei(&nd)) != 0)
    324 		return error;
    325 	epp->ep_vp = vp = nd.ni_vp;
    326 	/* normally this can't fail */
    327 	if ((error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL)))
    328 		goto bad1;
    329 
    330 #ifdef DIAGNOSTIC
    331 	/* paranoia (take this out once namei stuff stabilizes) */
    332 	memset(nd.ni_pnbuf, '~', PATH_MAX);
    333 #endif
    334 
    335 	/* check access and type */
    336 	if (vp->v_type != VREG) {
    337 		error = EACCES;
    338 		goto bad1;
    339 	}
    340 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    341 		goto bad1;
    342 
    343 	/* get attributes */
    344 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    345 		goto bad1;
    346 
    347 	/* Check mount point */
    348 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    349 		error = EACCES;
    350 		goto bad1;
    351 	}
    352 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    353 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    354 
    355 	/* try to open it */
    356 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    357 		goto bad1;
    358 
    359 	/* unlock vp, since we need it unlocked from here on out. */
    360 	VOP_UNLOCK(vp);
    361 
    362 #if NVERIEXEC > 0
    363 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
    364 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    365 	    NULL);
    366 	if (error)
    367 		goto bad2;
    368 #endif /* NVERIEXEC > 0 */
    369 
    370 #ifdef PAX_SEGVGUARD
    371 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    372 	if (error)
    373 		goto bad2;
    374 #endif /* PAX_SEGVGUARD */
    375 
    376 	/* now we have the file, get the exec header */
    377 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    378 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
    379 	if (error)
    380 		goto bad2;
    381 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    382 
    383 	/*
    384 	 * Set up default address space limits.  Can be overridden
    385 	 * by individual exec packages.
    386 	 *
    387 	 * XXX probably should be all done in the exec packages.
    388 	 */
    389 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
    390 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    391 	/*
    392 	 * set up the vmcmds for creation of the process
    393 	 * address space
    394 	 */
    395 	error = ENOEXEC;
    396 	for (i = 0; i < nexecs; i++) {
    397 		int newerror;
    398 
    399 		epp->ep_esch = execsw[i];
    400 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    401 
    402 		if (!newerror) {
    403 			/* Seems ok: check that entry point is not too high */
    404 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
    405 #ifdef DIAGNOSTIC
    406 				printf("%s: rejecting %p due to "
    407 				    "too high entry address (> %p)\n",
    408 					 __func__, (void *)epp->ep_entry,
    409 					 (void *)epp->ep_vm_maxaddr);
    410 #endif
    411 				error = ENOEXEC;
    412 				break;
    413 			}
    414 			/* Seems ok: check that entry point is not too low */
    415 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    416 #ifdef DIAGNOSTIC
    417 				printf("%s: rejecting %p due to "
    418 				    "too low entry address (< %p)\n",
    419 				     __func__, (void *)epp->ep_entry,
    420 				     (void *)epp->ep_vm_minaddr);
    421 #endif
    422 				error = ENOEXEC;
    423 				break;
    424 			}
    425 
    426 			/* check limits */
    427 			if ((epp->ep_tsize > MAXTSIZ) ||
    428 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    429 						    [RLIMIT_DATA].rlim_cur)) {
    430 #ifdef DIAGNOSTIC
    431 				printf("%s: rejecting due to "
    432 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    433 				    __func__,
    434 				    (unsigned long long)epp->ep_tsize,
    435 				    (unsigned long long)MAXTSIZ,
    436 				    (unsigned long long)epp->ep_dsize,
    437 				    (unsigned long long)
    438 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    439 #endif
    440 				error = ENOMEM;
    441 				break;
    442 			}
    443 			return 0;
    444 		}
    445 
    446 		if (epp->ep_emul_root != NULL) {
    447 			vrele(epp->ep_emul_root);
    448 			epp->ep_emul_root = NULL;
    449 		}
    450 		if (epp->ep_interp != NULL) {
    451 			vrele(epp->ep_interp);
    452 			epp->ep_interp = NULL;
    453 		}
    454 
    455 		/* make sure the first "interesting" error code is saved. */
    456 		if (error == ENOEXEC)
    457 			error = newerror;
    458 
    459 		if (epp->ep_flags & EXEC_DESTR)
    460 			/* Error from "#!" code, tidied up by recursive call */
    461 			return error;
    462 	}
    463 
    464 	/* not found, error */
    465 
    466 	/*
    467 	 * free any vmspace-creation commands,
    468 	 * and release their references
    469 	 */
    470 	kill_vmcmds(&epp->ep_vmcmds);
    471 
    472 bad2:
    473 	/*
    474 	 * close and release the vnode, restore the old one, free the
    475 	 * pathname buf, and punt.
    476 	 */
    477 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    478 	VOP_CLOSE(vp, FREAD, l->l_cred);
    479 	vput(vp);
    480 	return error;
    481 
    482 bad1:
    483 	/*
    484 	 * free the namei pathname buffer, and put the vnode
    485 	 * (which we don't yet have open).
    486 	 */
    487 	vput(vp);				/* was still locked */
    488 	return error;
    489 }
    490 
    491 #ifdef __MACHINE_STACK_GROWS_UP
    492 #define STACK_PTHREADSPACE NBPG
    493 #else
    494 #define STACK_PTHREADSPACE 0
    495 #endif
    496 
    497 static int
    498 execve_fetch_element(char * const *array, size_t index, char **value)
    499 {
    500 	return copyin(array + index, value, sizeof(*value));
    501 }
    502 
    503 /*
    504  * exec system call
    505  */
    506 int
    507 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    508 {
    509 	/* {
    510 		syscallarg(const char *)	path;
    511 		syscallarg(char * const *)	argp;
    512 		syscallarg(char * const *)	envp;
    513 	} */
    514 
    515 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
    516 	    SCARG(uap, envp), execve_fetch_element);
    517 }
    518 
    519 int
    520 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    521     register_t *retval)
    522 {
    523 	/* {
    524 		syscallarg(int)			fd;
    525 		syscallarg(char * const *)	argp;
    526 		syscallarg(char * const *)	envp;
    527 	} */
    528 
    529 	return ENOSYS;
    530 }
    531 
    532 /*
    533  * Load modules to try and execute an image that we do not understand.
    534  * If no execsw entries are present, we load those likely to be needed
    535  * in order to run native images only.  Otherwise, we autoload all
    536  * possible modules that could let us run the binary.  XXX lame
    537  */
    538 static void
    539 exec_autoload(void)
    540 {
    541 #ifdef MODULAR
    542 	static const char * const native[] = {
    543 		"exec_elf32",
    544 		"exec_elf64",
    545 		"exec_script",
    546 		NULL
    547 	};
    548 	static const char * const compat[] = {
    549 		"exec_elf32",
    550 		"exec_elf64",
    551 		"exec_script",
    552 		"exec_aout",
    553 		"exec_coff",
    554 		"exec_ecoff",
    555 		"compat_aoutm68k",
    556 		"compat_freebsd",
    557 		"compat_ibcs2",
    558 		"compat_linux",
    559 		"compat_linux32",
    560 		"compat_netbsd32",
    561 		"compat_sunos",
    562 		"compat_sunos32",
    563 		"compat_svr4",
    564 		"compat_svr4_32",
    565 		"compat_ultrix",
    566 		NULL
    567 	};
    568 	char const * const *list;
    569 	int i;
    570 
    571 	list = (nexecs == 0 ? native : compat);
    572 	for (i = 0; list[i] != NULL; i++) {
    573 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    574 			continue;
    575 		}
    576 		yield();
    577 	}
    578 #endif
    579 }
    580 
    581 static int
    582 execve_loadvm(struct lwp *l, const char *path, char * const *args,
    583 	char * const *envs, execve_fetch_element_t fetch_element,
    584 	struct execve_data * restrict data)
    585 {
    586 	struct exec_package	* const epp = &data->ed_pack;
    587 	int			error;
    588 	struct proc		*p;
    589 	char			*dp, *sp;
    590 	size_t			i;
    591 	struct exec_fakearg	*tmpfap;
    592 	u_int			modgen;
    593 
    594 	KASSERT(data != NULL);
    595 
    596 	p = l->l_proc;
    597 	modgen = 0;
    598 
    599 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
    600 
    601 	/*
    602 	 * Check if we have exceeded our number of processes limit.
    603 	 * This is so that we handle the case where a root daemon
    604 	 * forked, ran setuid to become the desired user and is trying
    605 	 * to exec. The obvious place to do the reference counting check
    606 	 * is setuid(), but we don't do the reference counting check there
    607 	 * like other OS's do because then all the programs that use setuid()
    608 	 * must be modified to check the return code of setuid() and exit().
    609 	 * It is dangerous to make setuid() fail, because it fails open and
    610 	 * the program will continue to run as root. If we make it succeed
    611 	 * and return an error code, again we are not enforcing the limit.
    612 	 * The best place to enforce the limit is here, when the process tries
    613 	 * to execute a new image, because eventually the process will need
    614 	 * to call exec in order to do something useful.
    615 	 */
    616  retry:
    617 	if (p->p_flag & PK_SUGID) {
    618 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    619 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    620 		     &p->p_rlimit[RLIMIT_NPROC],
    621 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    622 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    623 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    624 		return EAGAIN;
    625 	}
    626 
    627 	/*
    628 	 * Drain existing references and forbid new ones.  The process
    629 	 * should be left alone until we're done here.  This is necessary
    630 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    631 	 * a local user to illicitly obtain elevated privileges.
    632 	 */
    633 	rw_enter(&p->p_reflock, RW_WRITER);
    634 
    635 	/*
    636 	 * Init the namei data to point the file user's program name.
    637 	 * This is done here rather than in check_exec(), so that it's
    638 	 * possible to override this settings if any of makecmd/probe
    639 	 * functions call check_exec() recursively - for example,
    640 	 * see exec_script_makecmds().
    641 	 */
    642 	error = pathbuf_copyin(path, &data->ed_pathbuf);
    643 	if (error) {
    644 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
    645 		    path, error));
    646 		goto clrflg;
    647 	}
    648 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    649 	data->ed_resolvedpathbuf = PNBUF_GET();
    650 
    651 	/*
    652 	 * initialize the fields of the exec package.
    653 	 */
    654 	epp->ep_name = path;
    655 	epp->ep_kname = data->ed_pathstring;
    656 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
    657 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    658 	epp->ep_hdrlen = exec_maxhdrsz;
    659 	epp->ep_hdrvalid = 0;
    660 	epp->ep_emul_arg = NULL;
    661 	epp->ep_emul_arg_free = NULL;
    662 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    663 	epp->ep_vap = &data->ed_attr;
    664 	epp->ep_flags = 0;
    665 	MD_TOPDOWN_INIT(epp);
    666 	epp->ep_emul_root = NULL;
    667 	epp->ep_interp = NULL;
    668 	epp->ep_esch = NULL;
    669 	epp->ep_pax_flags = 0;
    670 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    671 
    672 	rw_enter(&exec_lock, RW_READER);
    673 
    674 	/* see if we can run it. */
    675 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
    676 		if (error != ENOENT) {
    677 			DPRINTF(("%s: check exec failed %d\n",
    678 			    __func__, error));
    679 		}
    680 		goto freehdr;
    681 	}
    682 
    683 	/* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
    684  	/* XXX rename this as copyinargs() */
    685 
    686 	/* allocate an argument buffer */
    687 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    688 	KASSERT(data->ed_argp != NULL);
    689 	dp = data->ed_argp;
    690 	data->ed_argc = 0;
    691 
    692 	/* copy the fake args list, if there's one, freeing it as we go */
    693 	if (epp->ep_flags & EXEC_HASARGL) {
    694 		tmpfap = epp->ep_fa;
    695 		while (tmpfap->fa_arg != NULL) {
    696 			const char *cp;
    697 
    698 			/* XXX boudary check */
    699 			cp = tmpfap->fa_arg;
    700 			while (*cp)
    701 				*dp++ = *cp++;
    702 			*dp++ = '\0';
    703 			ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
    704 
    705 			kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
    706 			tmpfap++;
    707 			data->ed_argc++;
    708 		}
    709 		kmem_free(epp->ep_fa, epp->ep_fa_len);
    710 		epp->ep_flags &= ~EXEC_HASARGL;
    711 	}
    712 
    713 	/* Now get argv & environment */
    714 	if (args == NULL) {
    715 		DPRINTF(("%s: null args\n", __func__));
    716 		error = EINVAL;
    717 		goto bad;
    718 	}
    719 	/* 'i' will index the argp/envp element to be retrieved */
    720 	i = 0;
    721 	if (epp->ep_flags & EXEC_SKIPARG)
    722 		i++;
    723 
    724 	while (1) {
    725 		const size_t maxlen = data->ed_argp + ARG_MAX - dp;
    726 		size_t len;
    727 
    728 		if ((error = (*fetch_element)(args, i, &sp)) != 0) {
    729 			DPRINTF(("%s: fetch_element args %d\n",
    730 			    __func__, error));
    731 			goto bad;
    732 		}
    733 		if (!sp)
    734 			break;
    735 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
    736 			DPRINTF(("%s: copyinstr args %d\n", __func__, error));
    737 			if (error == ENAMETOOLONG)
    738 				error = E2BIG;
    739 			goto bad;
    740 		}
    741 		ktrexecarg(dp, len - 1);
    742 		dp += len;
    743 		i++;
    744 		data->ed_argc++;
    745 	}
    746 
    747 	data->ed_envc = 0;
    748 	/* environment need not be there */
    749 	if (envs != NULL) {
    750 		i = 0;
    751 		while (1) {
    752 			const size_t maxlen = data->ed_argp + ARG_MAX - dp;
    753 			size_t len;
    754 
    755 			if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
    756 				DPRINTF(("%s: fetch_element env %d\n",
    757 				    __func__, error));
    758 				goto bad;
    759 			}
    760 			if (!sp)
    761 				break;
    762 			if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
    763 				DPRINTF(("%s: copyinstr env %d\n",
    764 				    __func__, error));
    765 				if (error == ENAMETOOLONG)
    766 					error = E2BIG;
    767 				goto bad;
    768 			}
    769 
    770 			ktrexecenv(dp, len - 1);
    771 			dp += len;
    772 			i++;
    773 			data->ed_envc++;
    774 		}
    775 	}
    776 
    777 	/*
    778 	 * Calculate the new stack size.
    779 	 */
    780 
    781 	const size_t psstrauxlen =
    782 	    data->ed_argc +		/* char *argv[] */
    783 	    1 +				/* \0 */
    784 	    data->ed_envc +		/* char *env[] */
    785 	    1 +				/* \0 */
    786 	    epp->ep_esch->es_arglen;	/* auxinfo */
    787 
    788 	const size_t ptrsz = (epp->ep_flags & EXEC_32) ?
    789 	    sizeof(int) : sizeof(char *);
    790 
    791 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    792 
    793 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
    794 	    epp->ep_esch->es_emul->e_sigcode;
    795 
    796 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
    797 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
    798 
    799 	const size_t aslrgap =
    800 #ifdef PAX_ASLR
    801 	    pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0;
    802 #else
    803 	    0;
    804 #endif
    805 
    806 #ifdef __MACHINE_STACK_GROWS_UP
    807 /* See big comment lower down */
    808 #define	RTLD_GAP	32
    809 #else
    810 #define	RTLD_GAP	0
    811 #endif
    812 
    813 	const size_t stacklen =
    814 	    sizeof(int) +		/* XXX argc in stack is long, not int */
    815 	    (psstrauxlen * ptrsz) +	/* XXX auxinfo multiplied by ptr size? */
    816 	    argenvstrlen +
    817 	    aslrgap +
    818 	    RTLD_GAP +
    819 	    data->ed_szsigcode +
    820 	    data->ed_ps_strings_sz +
    821 	    STACK_PTHREADSPACE;
    822 
    823 	/* make the stack "safely" aligned */
    824 	const size_t aligned_stacklen = STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
    825 
    826 	if (aligned_stacklen > epp->ep_ssize) {
    827 		/* in effect, compare to initial limit */
    828 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, aligned_stacklen));
    829 		goto bad;
    830 	}
    831 	/* adjust "active stack depth" for process VSZ */
    832 	epp->ep_ssize = aligned_stacklen;
    833 
    834 	return 0;
    835 
    836  bad:
    837 	/* free the vmspace-creation commands, and release their references */
    838 	kill_vmcmds(&epp->ep_vmcmds);
    839 	/* kill any opened file descriptor, if necessary */
    840 	if (epp->ep_flags & EXEC_HASFD) {
    841 		epp->ep_flags &= ~EXEC_HASFD;
    842 		fd_close(epp->ep_fd);
    843 	}
    844 	/* close and put the exec'd file */
    845 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    846 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    847 	vput(epp->ep_vp);
    848 	pool_put(&exec_pool, data->ed_argp);
    849 
    850  freehdr:
    851 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    852 	if (epp->ep_emul_root != NULL)
    853 		vrele(epp->ep_emul_root);
    854 	if (epp->ep_interp != NULL)
    855 		vrele(epp->ep_interp);
    856 
    857 	rw_exit(&exec_lock);
    858 
    859 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    860 	pathbuf_destroy(data->ed_pathbuf);
    861 	PNBUF_PUT(data->ed_resolvedpathbuf);
    862 
    863  clrflg:
    864 	rw_exit(&p->p_reflock);
    865 
    866 	if (modgen != module_gen && error == ENOEXEC) {
    867 		modgen = module_gen;
    868 		exec_autoload();
    869 		goto retry;
    870 	}
    871 
    872 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
    873 	return error;
    874 }
    875 
    876 static void
    877 execve_free_data(struct execve_data *data)
    878 {
    879 	struct exec_package	* const epp = &data->ed_pack;
    880 
    881 	/* free the vmspace-creation commands, and release their references */
    882 	kill_vmcmds(&epp->ep_vmcmds);
    883 	/* kill any opened file descriptor, if necessary */
    884 	if (epp->ep_flags & EXEC_HASFD) {
    885 		epp->ep_flags &= ~EXEC_HASFD;
    886 		fd_close(epp->ep_fd);
    887 	}
    888 
    889 	/* close and put the exec'd file */
    890 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    891 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
    892 	vput(epp->ep_vp);
    893 	pool_put(&exec_pool, data->ed_argp);
    894 
    895 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    896 	if (epp->ep_emul_root != NULL)
    897 		vrele(epp->ep_emul_root);
    898 	if (epp->ep_interp != NULL)
    899 		vrele(epp->ep_interp);
    900 
    901 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    902 	pathbuf_destroy(data->ed_pathbuf);
    903 	PNBUF_PUT(data->ed_resolvedpathbuf);
    904 }
    905 
    906 static int
    907 execve_runproc(struct lwp *l, struct execve_data * restrict data,
    908 	bool no_local_exec_lock, bool is_spawn)
    909 {
    910 	struct exec_package	* const epp = &data->ed_pack;
    911 	int error = 0;
    912 	struct proc		*p;
    913 
    914 	/*
    915 	 * In case of a posix_spawn operation, the child doing the exec
    916 	 * might not hold the reader lock on exec_lock, but the parent
    917 	 * will do this instead.
    918 	 */
    919 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
    920 	KASSERT(!no_local_exec_lock || is_spawn);
    921 	KASSERT(data != NULL);
    922 
    923 	p = l->l_proc;
    924 
    925 	/* Get rid of other LWPs. */
    926 	if (p->p_nlwps > 1) {
    927 		mutex_enter(p->p_lock);
    928 		exit_lwps(l);
    929 		mutex_exit(p->p_lock);
    930 	}
    931 	KDASSERT(p->p_nlwps == 1);
    932 
    933 	/* Destroy any lwpctl info. */
    934 	if (p->p_lwpctl != NULL)
    935 		lwp_ctl_exit();
    936 
    937 	/* Remove POSIX timers */
    938 	timers_free(p, TIMERS_POSIX);
    939 
    940 	/*
    941 	 * Do whatever is necessary to prepare the address space
    942 	 * for remapping.  Note that this might replace the current
    943 	 * vmspace with another!
    944 	 */
    945 	if (is_spawn)
    946 		uvmspace_spawn(l, epp->ep_vm_minaddr,
    947 		    epp->ep_vm_maxaddr,
    948 		    epp->ep_flags & EXEC_TOPDOWN_VM);
    949 	else
    950 		uvmspace_exec(l, epp->ep_vm_minaddr,
    951 		    epp->ep_vm_maxaddr,
    952 		    epp->ep_flags & EXEC_TOPDOWN_VM);
    953 
    954 	/* record proc's vnode, for use by procfs and others */
    955 	if (p->p_textvp)
    956 		vrele(p->p_textvp);
    957 	vref(epp->ep_vp);
    958 	p->p_textvp = epp->ep_vp;
    959 
    960 	/* Now map address space */
    961 	struct vmspace		*vm;
    962 	vm = p->p_vmspace;
    963 	vm->vm_taddr = (void *)epp->ep_taddr;
    964 	vm->vm_tsize = btoc(epp->ep_tsize);
    965 	vm->vm_daddr = (void*)epp->ep_daddr;
    966 	vm->vm_dsize = btoc(epp->ep_dsize);
    967 	vm->vm_ssize = btoc(epp->ep_ssize);
    968 	vm->vm_issize = 0;
    969 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
    970 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
    971 
    972 #ifdef PAX_ASLR
    973 	pax_aslr_init(l, vm);
    974 #endif /* PAX_ASLR */
    975 
    976 	/* create the new process's VM space by running the vmcmds */
    977 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    978 
    979 #ifdef DEBUG_EXEC
    980 	{
    981 		size_t j;
    982 		struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
    983 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
    984 		for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
    985 			DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
    986 			    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
    987 			    PRIxVSIZE" prot=0%o flags=%d\n", j,
    988 			    vp[j].ev_proc == vmcmd_map_pagedvn ?
    989 			    "pagedvn" :
    990 			    vp[j].ev_proc == vmcmd_map_readvn ?
    991 			    "readvn" :
    992 			    vp[j].ev_proc == vmcmd_map_zero ?
    993 			    "zero" : "*unknown*",
    994 			    vp[j].ev_addr, vp[j].ev_len,
    995 			    vp[j].ev_offset, vp[j].ev_prot,
    996 			    vp[j].ev_flags));
    997 		}
    998 	}
    999 #endif	/* DEBUG_EXEC */
   1000 
   1001     {
   1002 	size_t			i;
   1003 	struct exec_vmcmd	*base_vcp;
   1004 
   1005 	base_vcp = NULL;
   1006 
   1007 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
   1008 		struct exec_vmcmd *vcp;
   1009 
   1010 		vcp = &epp->ep_vmcmds.evs_cmds[i];
   1011 		if (vcp->ev_flags & VMCMD_RELATIVE) {
   1012 			KASSERTMSG(base_vcp != NULL,
   1013 			    "%s: relative vmcmd with no base", __func__);
   1014 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
   1015 			    "%s: illegal base & relative vmcmd", __func__);
   1016 			vcp->ev_addr += base_vcp->ev_addr;
   1017 		}
   1018 		error = (*vcp->ev_proc)(l, vcp);
   1019 #ifdef DEBUG_EXEC
   1020 		if (error) {
   1021 			size_t j;
   1022 			struct exec_vmcmd *vp =
   1023 			    &epp->ep_vmcmds.evs_cmds[0];
   1024 			DPRINTF(("vmcmds %zu/%u, error %d\n", i,
   1025 			    epp->ep_vmcmds.evs_used, error));
   1026 			for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   1027 				DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   1028 				    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   1029 				    PRIxVSIZE" prot=0%o flags=%d\n", j,
   1030 				    vp[j].ev_proc == vmcmd_map_pagedvn ?
   1031 				    "pagedvn" :
   1032 				    vp[j].ev_proc == vmcmd_map_readvn ?
   1033 				    "readvn" :
   1034 				    vp[j].ev_proc == vmcmd_map_zero ?
   1035 				    "zero" : "*unknown*",
   1036 				    vp[j].ev_addr, vp[j].ev_len,
   1037 				    vp[j].ev_offset, vp[j].ev_prot,
   1038 				    vp[j].ev_flags));
   1039 				if (j == i)
   1040 					DPRINTF(("     ^--- failed\n"));
   1041 			}
   1042 		}
   1043 #endif /* DEBUG_EXEC */
   1044 		if (vcp->ev_flags & VMCMD_BASE)
   1045 			base_vcp = vcp;
   1046 	}
   1047 
   1048 	/* free the vmspace-creation commands, and release their references */
   1049 	kill_vmcmds(&epp->ep_vmcmds);
   1050 
   1051 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
   1052 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
   1053 	vput(epp->ep_vp);
   1054 
   1055 	/* if an error happened, deallocate and punt */
   1056 	if (error) {
   1057 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
   1058 		goto exec_abort;
   1059 	}
   1060     }
   1061 
   1062     {
   1063 	const char		*commandname;
   1064 	size_t			commandlen;
   1065 
   1066 	/* set command name & other accounting info */
   1067 	commandname = strrchr(epp->ep_resolvedname, '/');
   1068 	if (commandname != NULL) {
   1069 		commandname++;
   1070 	} else {
   1071 		commandname = epp->ep_resolvedname;
   1072 	}
   1073 	commandlen = min(strlen(commandname), MAXCOMLEN);
   1074 	(void)memcpy(p->p_comm, commandname, commandlen);
   1075 	p->p_comm[commandlen] = '\0';
   1076     }
   1077 
   1078     {
   1079 	char			*path;
   1080 
   1081 	path = PNBUF_GET();
   1082 
   1083 	/*
   1084 	 * If the path starts with /, we don't need to do any work.
   1085 	 * This handles the majority of the cases.
   1086 	 * In the future perhaps we could canonicalize it?
   1087 	 */
   1088 	if (data->ed_pathstring[0] == '/') {
   1089 		(void)strlcpy(path, data->ed_pathstring,
   1090 		    MAXPATHLEN);
   1091 		epp->ep_path = path;
   1092 	}
   1093 #ifdef notyet
   1094 	/*
   1095 	 * Although this works most of the time [since the entry was just
   1096 	 * entered in the cache] we don't use it because it will fail for
   1097 	 * entries that are not placed in the cache because their name is
   1098 	 * longer than NCHNAMLEN and it is not the cleanest interface,
   1099 	 * because there could be races. When the namei cache is re-written,
   1100 	 * this can be changed to use the appropriate function.
   1101 	 */
   1102 	else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
   1103 		epp->ep_path = path;
   1104 #endif
   1105 	else {
   1106 #ifdef notyet
   1107 		printf("Cannot get path for pid %d [%s] (error %d)\n",
   1108 		    (int)p->p_pid, p->p_comm, error);
   1109 #endif
   1110 		epp->ep_path = NULL;
   1111 		PNBUF_PUT(path);
   1112 	}
   1113     }
   1114 
   1115 	/* remember information about the process */
   1116 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1117 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1118 
   1119     {
   1120 	char			*stack;
   1121 
   1122 	stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
   1123 		STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
   1124 		epp->ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
   1125 
   1126 #ifdef __MACHINE_STACK_GROWS_UP
   1127 	/*
   1128 	 * The copyargs call always copies into lower addresses
   1129 	 * first, moving towards higher addresses, starting with
   1130 	 * the stack pointer that we give.  When the stack grows
   1131 	 * down, this puts argc/argv/envp very shallow on the
   1132 	 * stack, right at the first user stack pointer.
   1133 	 * When the stack grows up, the situation is reversed.
   1134 	 *
   1135 	 * Normally, this is no big deal.  But the ld_elf.so _rtld()
   1136 	 * function expects to be called with a single pointer to
   1137 	 * a region that has a few words it can stash values into,
   1138 	 * followed by argc/argv/envp.  When the stack grows down,
   1139 	 * it's easy to decrement the stack pointer a little bit to
   1140 	 * allocate the space for these few words and pass the new
   1141 	 * stack pointer to _rtld.  When the stack grows up, however,
   1142 	 * a few words before argc is part of the signal trampoline, XXX
   1143 	 * so we have a problem.
   1144 	 *
   1145 	 * Instead of changing how _rtld works, we take the easy way
   1146 	 * out and steal 32 bytes before we call copyargs.
   1147 	 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
   1148 	 */
   1149 	stack += RTLD_GAP;
   1150 #endif /* __MACHINE_STACK_GROWS_UP */
   1151 
   1152 	/* Now copy argc, args & environ to new stack */
   1153 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1154 	    &data->ed_arginfo, &stack, data->ed_argp);
   1155 
   1156 	if (epp->ep_path) {
   1157 		PNBUF_PUT(epp->ep_path);
   1158 		epp->ep_path = NULL;
   1159 	}
   1160 	if (error) {
   1161 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1162 		goto exec_abort;
   1163 	}
   1164     }
   1165 
   1166 	/* fill process ps_strings info */
   1167 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
   1168 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1169 
   1170     {
   1171 	struct ps_strings32	arginfo32;
   1172 	void			*aip;
   1173 
   1174 	if (epp->ep_flags & EXEC_32) {
   1175 		aip = &arginfo32;
   1176 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1177 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1178 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1179 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1180 	} else
   1181 		aip = &data->ed_arginfo;
   1182 
   1183 	/* copy out the process's ps_strings structure */
   1184 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1185 	    != 0) {
   1186 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1187 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1188 		goto exec_abort;
   1189 	}
   1190     }
   1191 
   1192 	cwdexec(p);
   1193 	fd_closeexec();		/* handle close on exec */
   1194 
   1195 	if (__predict_false(ktrace_on))
   1196 		fd_ktrexecfd();
   1197 
   1198 	execsigs(p);		/* reset catched signals */
   1199 
   1200 	mutex_enter(p->p_lock);
   1201 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1202 	p->p_acflag &= ~AFORK;
   1203 	p->p_flag |= PK_EXEC;
   1204 	mutex_exit(p->p_lock);
   1205 
   1206 	/*
   1207 	 * Stop profiling.
   1208 	 */
   1209 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1210 		mutex_spin_enter(&p->p_stmutex);
   1211 		stopprofclock(p);
   1212 		mutex_spin_exit(&p->p_stmutex);
   1213 	}
   1214 
   1215 	/*
   1216 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1217 	 * exited and exec()/exit() are the only places it will be cleared.
   1218 	 */
   1219 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1220 #if 0
   1221 		lwp_t *lp;
   1222 
   1223 		mutex_enter(proc_lock);
   1224 		lp = p->p_vforklwp;
   1225 		p->p_vforklwp = NULL;
   1226 
   1227 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1228 		p->p_lflag &= ~PL_PPWAIT;
   1229 
   1230 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
   1231 		cv_broadcast(&lp->l_waitcv);
   1232 		mutex_exit(proc_lock);
   1233 #else
   1234 		mutex_enter(proc_lock);
   1235 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1236 		p->p_lflag &= ~PL_PPWAIT;
   1237 		cv_broadcast(&p->p_pptr->p_waitcv);
   1238 		mutex_exit(proc_lock);
   1239 #endif
   1240 	}
   1241 
   1242 	/*
   1243 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
   1244 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
   1245 	 * out additional references on the process for the moment.
   1246 	 */
   1247 	if ((p->p_slflag & PSL_TRACED) == 0 &&
   1248 
   1249 	    (((data->ed_attr.va_mode & S_ISUID) != 0 &&
   1250 	      kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
   1251 
   1252 	     ((data->ed_attr.va_mode & S_ISGID) != 0 &&
   1253 	      kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
   1254 		/*
   1255 		 * Mark the process as SUGID before we do
   1256 		 * anything that might block.
   1257 		 */
   1258 		proc_crmod_enter();
   1259 		proc_crmod_leave(NULL, NULL, true);
   1260 
   1261 		/* Make sure file descriptors 0..2 are in use. */
   1262 		if ((error = fd_checkstd()) != 0) {
   1263 			DPRINTF(("%s: fdcheckstd failed %d\n",
   1264 			    __func__, error));
   1265 			goto exec_abort;
   1266 		}
   1267 
   1268 		/*
   1269 		 * Copy the credential so other references don't see our
   1270 		 * changes.
   1271 		 */
   1272 		l->l_cred = kauth_cred_copy(l->l_cred);
   1273 #ifdef KTRACE
   1274 		/*
   1275 		 * If the persistent trace flag isn't set, turn off.
   1276 		 */
   1277 		if (p->p_tracep) {
   1278 			mutex_enter(&ktrace_lock);
   1279 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
   1280 				ktrderef(p);
   1281 			mutex_exit(&ktrace_lock);
   1282 		}
   1283 #endif
   1284 		if (data->ed_attr.va_mode & S_ISUID)
   1285 			kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
   1286 		if (data->ed_attr.va_mode & S_ISGID)
   1287 			kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
   1288 	} else {
   1289 		if (kauth_cred_geteuid(l->l_cred) ==
   1290 		    kauth_cred_getuid(l->l_cred) &&
   1291 		    kauth_cred_getegid(l->l_cred) ==
   1292 		    kauth_cred_getgid(l->l_cred))
   1293 			p->p_flag &= ~PK_SUGID;
   1294 	}
   1295 
   1296 	/*
   1297 	 * Copy the credential so other references don't see our changes.
   1298 	 * Test to see if this is necessary first, since in the common case
   1299 	 * we won't need a private reference.
   1300 	 */
   1301 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1302 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1303 		l->l_cred = kauth_cred_copy(l->l_cred);
   1304 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1305 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1306 	}
   1307 
   1308 	/* Update the master credentials. */
   1309 	if (l->l_cred != p->p_cred) {
   1310 		kauth_cred_t ocred;
   1311 
   1312 		kauth_cred_hold(l->l_cred);
   1313 		mutex_enter(p->p_lock);
   1314 		ocred = p->p_cred;
   1315 		p->p_cred = l->l_cred;
   1316 		mutex_exit(p->p_lock);
   1317 		kauth_cred_free(ocred);
   1318 	}
   1319 
   1320 #if defined(__HAVE_RAS)
   1321 	/*
   1322 	 * Remove all RASs from the address space.
   1323 	 */
   1324 	ras_purgeall();
   1325 #endif
   1326 
   1327 	doexechooks(p);
   1328 
   1329     {
   1330 	char * const stack = (char *)STACK_GROW(
   1331 	    (void *)epp->ep_minsaddr, epp->ep_ssize);
   1332 
   1333 	/* setup new registers and do misc. setup. */
   1334 	(*epp->ep_esch->es_emul->e_setregs)(l, epp,
   1335 	     (vaddr_t)stack);
   1336 	if (epp->ep_esch->es_setregs)
   1337 		(*epp->ep_esch->es_setregs)(l, epp,
   1338 		    (vaddr_t)stack);
   1339     }
   1340 
   1341 	/* Provide a consistent LWP private setting */
   1342 	(void)lwp_setprivate(l, NULL);
   1343 
   1344 	/* Discard all PCU state; need to start fresh */
   1345 	pcu_discard_all(l);
   1346 
   1347 	/* map the process's signal trampoline code */
   1348 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1349 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1350 		goto exec_abort;
   1351 	}
   1352 
   1353 	pool_put(&exec_pool, data->ed_argp);
   1354 
   1355 	/* notify others that we exec'd */
   1356 	KNOTE(&p->p_klist, NOTE_EXEC);
   1357 
   1358 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1359 
   1360 	SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0);
   1361 
   1362 	/* The emulation root will usually have been found when we looked
   1363 	 * for the elf interpreter (or similar), if not look now. */
   1364 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1365 	    epp->ep_emul_root == NULL)
   1366 		emul_find_root(l, epp);
   1367 
   1368 	/* Any old emulation root got removed by fdcloseexec */
   1369 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1370 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1371 	rw_exit(&p->p_cwdi->cwdi_lock);
   1372 	epp->ep_emul_root = NULL;
   1373 	if (epp->ep_interp != NULL)
   1374 		vrele(epp->ep_interp);
   1375 
   1376 	/*
   1377 	 * Call emulation specific exec hook. This can setup per-process
   1378 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1379 	 *
   1380 	 * If we are executing process of different emulation than the
   1381 	 * original forked process, call e_proc_exit() of the old emulation
   1382 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1383 	 * same, the exec hook code should deallocate any old emulation
   1384 	 * resources held previously by this process.
   1385 	 */
   1386 	if (p->p_emul && p->p_emul->e_proc_exit
   1387 	    && p->p_emul != epp->ep_esch->es_emul)
   1388 		(*p->p_emul->e_proc_exit)(p);
   1389 
   1390 	/*
   1391 	 * This is now LWP 1.
   1392 	 */
   1393 	mutex_enter(p->p_lock);
   1394 	p->p_nlwpid = 1;
   1395 	l->l_lid = 1;
   1396 	mutex_exit(p->p_lock);
   1397 
   1398 	/*
   1399 	 * Call exec hook. Emulation code may NOT store reference to anything
   1400 	 * from &pack.
   1401 	 */
   1402 	if (epp->ep_esch->es_emul->e_proc_exec)
   1403 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1404 
   1405 	/* update p_emul, the old value is no longer needed */
   1406 	p->p_emul = epp->ep_esch->es_emul;
   1407 
   1408 	/* ...and the same for p_execsw */
   1409 	p->p_execsw = epp->ep_esch;
   1410 
   1411 #ifdef __HAVE_SYSCALL_INTERN
   1412 	(*p->p_emul->e_syscall_intern)(p);
   1413 #endif
   1414 	ktremul();
   1415 
   1416 	/* Allow new references from the debugger/procfs. */
   1417 	rw_exit(&p->p_reflock);
   1418 	if (!no_local_exec_lock)
   1419 		rw_exit(&exec_lock);
   1420 
   1421 	mutex_enter(proc_lock);
   1422 
   1423 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
   1424 		ksiginfo_t ksi;
   1425 
   1426 		KSI_INIT_EMPTY(&ksi);
   1427 		ksi.ksi_signo = SIGTRAP;
   1428 		ksi.ksi_lid = l->l_lid;
   1429 		kpsignal(p, &ksi, NULL);
   1430 	}
   1431 
   1432 	if (p->p_sflag & PS_STOPEXEC) {
   1433 		ksiginfoq_t kq;
   1434 
   1435 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1436 		p->p_pptr->p_nstopchild++;
   1437 		p->p_pptr->p_waited = 0;
   1438 		mutex_enter(p->p_lock);
   1439 		ksiginfo_queue_init(&kq);
   1440 		sigclearall(p, &contsigmask, &kq);
   1441 		lwp_lock(l);
   1442 		l->l_stat = LSSTOP;
   1443 		p->p_stat = SSTOP;
   1444 		p->p_nrlwps--;
   1445 		lwp_unlock(l);
   1446 		mutex_exit(p->p_lock);
   1447 		mutex_exit(proc_lock);
   1448 		lwp_lock(l);
   1449 		mi_switch(l);
   1450 		ksiginfo_queue_drain(&kq);
   1451 		KERNEL_LOCK(l->l_biglocks, l);
   1452 	} else {
   1453 		mutex_exit(proc_lock);
   1454 	}
   1455 
   1456 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1457 	pathbuf_destroy(data->ed_pathbuf);
   1458 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1459 	DPRINTF(("%s finished\n", __func__));
   1460 	return EJUSTRETURN;
   1461 
   1462  exec_abort:
   1463 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
   1464 	rw_exit(&p->p_reflock);
   1465 	if (!no_local_exec_lock)
   1466 		rw_exit(&exec_lock);
   1467 
   1468 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1469 	pathbuf_destroy(data->ed_pathbuf);
   1470 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1471 
   1472 	/*
   1473 	 * the old process doesn't exist anymore.  exit gracefully.
   1474 	 * get rid of the (new) address space we have created, if any, get rid
   1475 	 * of our namei data and vnode, and exit noting failure
   1476 	 */
   1477 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1478 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1479 
   1480 	exec_free_emul_arg(epp);
   1481 	pool_put(&exec_pool, data->ed_argp);
   1482 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1483 	if (epp->ep_emul_root != NULL)
   1484 		vrele(epp->ep_emul_root);
   1485 	if (epp->ep_interp != NULL)
   1486 		vrele(epp->ep_interp);
   1487 
   1488 	/* Acquire the sched-state mutex (exit1() will release it). */
   1489 	if (!is_spawn) {
   1490 		mutex_enter(p->p_lock);
   1491 		exit1(l, W_EXITCODE(error, SIGABRT));
   1492 	}
   1493 
   1494 	return error;
   1495 }
   1496 
   1497 int
   1498 execve1(struct lwp *l, const char *path, char * const *args,
   1499     char * const *envs, execve_fetch_element_t fetch_element)
   1500 {
   1501 	struct execve_data data;
   1502 	int error;
   1503 
   1504 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
   1505 	if (error)
   1506 		return error;
   1507 	error = execve_runproc(l, &data, false, false);
   1508 	return error;
   1509 }
   1510 
   1511 /*
   1512  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1513  * Those strings are located just after auxinfo.
   1514  *
   1515  * XXX rename this as copyoutargs()
   1516  */
   1517 int
   1518 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1519     char **stackp, void *argp)
   1520 {
   1521 	char	**cpp, *dp, *sp;
   1522 	size_t	len;
   1523 	void	*nullp;
   1524 	long	argc, envc;
   1525 	int	error;
   1526 
   1527 	cpp = (char **)*stackp;
   1528 	nullp = NULL;
   1529 	argc = arginfo->ps_nargvstr;
   1530 	envc = arginfo->ps_nenvstr;
   1531 
   1532 	/* argc on stack is long */
   1533 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1534 
   1535 	dp = (char *)(cpp +
   1536 	    1 +				/* argc */
   1537 	    argc +			/* *argv[] */
   1538 	    1 +				/* \0 */
   1539 	    envc +			/* *env[] */
   1540 	    1 +				/* \0 */
   1541 	    /* XXX auxinfo multiplied by ptr size? */
   1542 	    pack->ep_esch->es_arglen);	/* auxinfo */
   1543 	sp = argp;
   1544 
   1545 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1546 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1547 		return error;
   1548 	}
   1549 
   1550 	/* XXX don't copy them out, remap them! */
   1551 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1552 
   1553 	for (; --argc >= 0; sp += len, dp += len) {
   1554 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1555 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1556 			return error;
   1557 		}
   1558 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1559 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1560 			return error;
   1561 		}
   1562 	}
   1563 
   1564 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1565 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1566 		return error;
   1567 	}
   1568 
   1569 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1570 
   1571 	for (; --envc >= 0; sp += len, dp += len) {
   1572 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1573 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1574 			return error;
   1575 		}
   1576 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1577 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1578 			return error;
   1579 		}
   1580 
   1581 	}
   1582 
   1583 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1584 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1585 		return error;
   1586 	}
   1587 
   1588 	*stackp = (char *)cpp;
   1589 	return 0;
   1590 }
   1591 
   1592 
   1593 /*
   1594  * Add execsw[] entries.
   1595  */
   1596 int
   1597 exec_add(struct execsw *esp, int count)
   1598 {
   1599 	struct exec_entry	*it;
   1600 	int			i;
   1601 
   1602 	if (count == 0) {
   1603 		return 0;
   1604 	}
   1605 
   1606 	/* Check for duplicates. */
   1607 	rw_enter(&exec_lock, RW_WRITER);
   1608 	for (i = 0; i < count; i++) {
   1609 		LIST_FOREACH(it, &ex_head, ex_list) {
   1610 			/* assume unique (makecmds, probe_func, emulation) */
   1611 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1612 			    it->ex_sw->u.elf_probe_func ==
   1613 			    esp[i].u.elf_probe_func &&
   1614 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1615 				rw_exit(&exec_lock);
   1616 				return EEXIST;
   1617 			}
   1618 		}
   1619 	}
   1620 
   1621 	/* Allocate new entries. */
   1622 	for (i = 0; i < count; i++) {
   1623 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1624 		it->ex_sw = &esp[i];
   1625 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1626 	}
   1627 
   1628 	/* update execsw[] */
   1629 	exec_init(0);
   1630 	rw_exit(&exec_lock);
   1631 	return 0;
   1632 }
   1633 
   1634 /*
   1635  * Remove execsw[] entry.
   1636  */
   1637 int
   1638 exec_remove(struct execsw *esp, int count)
   1639 {
   1640 	struct exec_entry	*it, *next;
   1641 	int			i;
   1642 	const struct proclist_desc *pd;
   1643 	proc_t			*p;
   1644 
   1645 	if (count == 0) {
   1646 		return 0;
   1647 	}
   1648 
   1649 	/* Abort if any are busy. */
   1650 	rw_enter(&exec_lock, RW_WRITER);
   1651 	for (i = 0; i < count; i++) {
   1652 		mutex_enter(proc_lock);
   1653 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1654 			PROCLIST_FOREACH(p, pd->pd_list) {
   1655 				if (p->p_execsw == &esp[i]) {
   1656 					mutex_exit(proc_lock);
   1657 					rw_exit(&exec_lock);
   1658 					return EBUSY;
   1659 				}
   1660 			}
   1661 		}
   1662 		mutex_exit(proc_lock);
   1663 	}
   1664 
   1665 	/* None are busy, so remove them all. */
   1666 	for (i = 0; i < count; i++) {
   1667 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1668 			next = LIST_NEXT(it, ex_list);
   1669 			if (it->ex_sw == &esp[i]) {
   1670 				LIST_REMOVE(it, ex_list);
   1671 				kmem_free(it, sizeof(*it));
   1672 				break;
   1673 			}
   1674 		}
   1675 	}
   1676 
   1677 	/* update execsw[] */
   1678 	exec_init(0);
   1679 	rw_exit(&exec_lock);
   1680 	return 0;
   1681 }
   1682 
   1683 /*
   1684  * Initialize exec structures. If init_boot is true, also does necessary
   1685  * one-time initialization (it's called from main() that way).
   1686  * Once system is multiuser, this should be called with exec_lock held,
   1687  * i.e. via exec_{add|remove}().
   1688  */
   1689 int
   1690 exec_init(int init_boot)
   1691 {
   1692 	const struct execsw 	**sw;
   1693 	struct exec_entry	*ex;
   1694 	SLIST_HEAD(,exec_entry)	first;
   1695 	SLIST_HEAD(,exec_entry)	any;
   1696 	SLIST_HEAD(,exec_entry)	last;
   1697 	int			i, sz;
   1698 
   1699 	if (init_boot) {
   1700 		/* do one-time initializations */
   1701 		rw_init(&exec_lock);
   1702 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1703 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1704 		    "execargs", &exec_palloc, IPL_NONE);
   1705 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1706 	} else {
   1707 		KASSERT(rw_write_held(&exec_lock));
   1708 	}
   1709 
   1710 	/* Sort each entry onto the appropriate queue. */
   1711 	SLIST_INIT(&first);
   1712 	SLIST_INIT(&any);
   1713 	SLIST_INIT(&last);
   1714 	sz = 0;
   1715 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1716 		switch(ex->ex_sw->es_prio) {
   1717 		case EXECSW_PRIO_FIRST:
   1718 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1719 			break;
   1720 		case EXECSW_PRIO_ANY:
   1721 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1722 			break;
   1723 		case EXECSW_PRIO_LAST:
   1724 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1725 			break;
   1726 		default:
   1727 			panic("%s", __func__);
   1728 			break;
   1729 		}
   1730 		sz++;
   1731 	}
   1732 
   1733 	/*
   1734 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1735 	 * allocation.
   1736 	 */
   1737 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1738 	i = 0;
   1739 	SLIST_FOREACH(ex, &first, ex_slist) {
   1740 		sw[i++] = ex->ex_sw;
   1741 	}
   1742 	SLIST_FOREACH(ex, &any, ex_slist) {
   1743 		sw[i++] = ex->ex_sw;
   1744 	}
   1745 	SLIST_FOREACH(ex, &last, ex_slist) {
   1746 		sw[i++] = ex->ex_sw;
   1747 	}
   1748 
   1749 	/* Replace old execsw[] and free used memory. */
   1750 	if (execsw != NULL) {
   1751 		kmem_free(__UNCONST(execsw),
   1752 		    nexecs * sizeof(struct execsw *) + 1);
   1753 	}
   1754 	execsw = sw;
   1755 	nexecs = sz;
   1756 
   1757 	/* Figure out the maximum size of an exec header. */
   1758 	exec_maxhdrsz = sizeof(int);
   1759 	for (i = 0; i < nexecs; i++) {
   1760 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1761 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1762 	}
   1763 
   1764 	return 0;
   1765 }
   1766 
   1767 static int
   1768 exec_sigcode_map(struct proc *p, const struct emul *e)
   1769 {
   1770 	vaddr_t va;
   1771 	vsize_t sz;
   1772 	int error;
   1773 	struct uvm_object *uobj;
   1774 
   1775 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1776 
   1777 	if (e->e_sigobject == NULL || sz == 0) {
   1778 		return 0;
   1779 	}
   1780 
   1781 	/*
   1782 	 * If we don't have a sigobject for this emulation, create one.
   1783 	 *
   1784 	 * sigobject is an anonymous memory object (just like SYSV shared
   1785 	 * memory) that we keep a permanent reference to and that we map
   1786 	 * in all processes that need this sigcode. The creation is simple,
   1787 	 * we create an object, add a permanent reference to it, map it in
   1788 	 * kernel space, copy out the sigcode to it and unmap it.
   1789 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1790 	 * the way sys_mmap() would map it.
   1791 	 */
   1792 
   1793 	uobj = *e->e_sigobject;
   1794 	if (uobj == NULL) {
   1795 		mutex_enter(&sigobject_lock);
   1796 		if ((uobj = *e->e_sigobject) == NULL) {
   1797 			uobj = uao_create(sz, 0);
   1798 			(*uobj->pgops->pgo_reference)(uobj);
   1799 			va = vm_map_min(kernel_map);
   1800 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1801 			    uobj, 0, 0,
   1802 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1803 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1804 				printf("kernel mapping failed %d\n", error);
   1805 				(*uobj->pgops->pgo_detach)(uobj);
   1806 				mutex_exit(&sigobject_lock);
   1807 				return error;
   1808 			}
   1809 			memcpy((void *)va, e->e_sigcode, sz);
   1810 #ifdef PMAP_NEED_PROCWR
   1811 			pmap_procwr(&proc0, va, sz);
   1812 #endif
   1813 			uvm_unmap(kernel_map, va, va + round_page(sz));
   1814 			*e->e_sigobject = uobj;
   1815 		}
   1816 		mutex_exit(&sigobject_lock);
   1817 	}
   1818 
   1819 	/* Just a hint to uvm_map where to put it. */
   1820 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   1821 	    round_page(sz));
   1822 
   1823 #ifdef __alpha__
   1824 	/*
   1825 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   1826 	 * which causes the above calculation to put the sigcode at
   1827 	 * an invalid address.  Put it just below the text instead.
   1828 	 */
   1829 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   1830 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   1831 	}
   1832 #endif
   1833 
   1834 	(*uobj->pgops->pgo_reference)(uobj);
   1835 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   1836 			uobj, 0, 0,
   1837 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   1838 				    UVM_ADV_RANDOM, 0));
   1839 	if (error) {
   1840 		DPRINTF(("%s, %d: map %p "
   1841 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   1842 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   1843 		    va, error));
   1844 		(*uobj->pgops->pgo_detach)(uobj);
   1845 		return error;
   1846 	}
   1847 	p->p_sigctx.ps_sigcode = (void *)va;
   1848 	return 0;
   1849 }
   1850 
   1851 /*
   1852  * Release a refcount on spawn_exec_data and destroy memory, if this
   1853  * was the last one.
   1854  */
   1855 static void
   1856 spawn_exec_data_release(struct spawn_exec_data *data)
   1857 {
   1858 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   1859 		return;
   1860 
   1861 	cv_destroy(&data->sed_cv_child_ready);
   1862 	mutex_destroy(&data->sed_mtx_child);
   1863 
   1864 	if (data->sed_actions)
   1865 		posix_spawn_fa_free(data->sed_actions,
   1866 		    data->sed_actions->len);
   1867 	if (data->sed_attrs)
   1868 		kmem_free(data->sed_attrs,
   1869 		    sizeof(*data->sed_attrs));
   1870 	kmem_free(data, sizeof(*data));
   1871 }
   1872 
   1873 /*
   1874  * A child lwp of a posix_spawn operation starts here and ends up in
   1875  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   1876  * manipulations in between.
   1877  * The parent waits for the child, as it is not clear whether the child
   1878  * will be able to acquire its own exec_lock. If it can, the parent can
   1879  * be released early and continue running in parallel. If not (or if the
   1880  * magic debug flag is passed in the scheduler attribute struct), the
   1881  * child rides on the parent's exec lock until it is ready to return to
   1882  * to userland - and only then releases the parent. This method loses
   1883  * concurrency, but improves error reporting.
   1884  */
   1885 static void
   1886 spawn_return(void *arg)
   1887 {
   1888 	struct spawn_exec_data *spawn_data = arg;
   1889 	struct lwp *l = curlwp;
   1890 	int error, newfd;
   1891 	size_t i;
   1892 	const struct posix_spawn_file_actions_entry *fae;
   1893 	pid_t ppid;
   1894 	register_t retval;
   1895 	bool have_reflock;
   1896 	bool parent_is_waiting = true;
   1897 
   1898 	/*
   1899 	 * Check if we can release parent early.
   1900 	 * We either need to have no sed_attrs, or sed_attrs does not
   1901 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   1902 	 * safe access to the parent proc (passed in sed_parent).
   1903 	 * We then try to get the exec_lock, and only if that works, we can
   1904 	 * release the parent here already.
   1905 	 */
   1906 	ppid = spawn_data->sed_parent->p_pid;
   1907 	if ((!spawn_data->sed_attrs
   1908 	    || (spawn_data->sed_attrs->sa_flags
   1909 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   1910 	    && rw_tryenter(&exec_lock, RW_READER)) {
   1911 		parent_is_waiting = false;
   1912 		mutex_enter(&spawn_data->sed_mtx_child);
   1913 		cv_signal(&spawn_data->sed_cv_child_ready);
   1914 		mutex_exit(&spawn_data->sed_mtx_child);
   1915 	}
   1916 
   1917 	/* don't allow debugger access yet */
   1918 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
   1919 	have_reflock = true;
   1920 
   1921 	error = 0;
   1922 	/* handle posix_spawn_file_actions */
   1923 	if (spawn_data->sed_actions != NULL) {
   1924 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   1925 			fae = &spawn_data->sed_actions->fae[i];
   1926 			switch (fae->fae_action) {
   1927 			case FAE_OPEN:
   1928 				if (fd_getfile(fae->fae_fildes) != NULL) {
   1929 					error = fd_close(fae->fae_fildes);
   1930 					if (error)
   1931 						break;
   1932 				}
   1933 				error = fd_open(fae->fae_path, fae->fae_oflag,
   1934 				    fae->fae_mode, &newfd);
   1935 				if (error)
   1936 					break;
   1937 				if (newfd != fae->fae_fildes) {
   1938 					error = dodup(l, newfd,
   1939 					    fae->fae_fildes, 0, &retval);
   1940 					if (fd_getfile(newfd) != NULL)
   1941 						fd_close(newfd);
   1942 				}
   1943 				break;
   1944 			case FAE_DUP2:
   1945 				error = dodup(l, fae->fae_fildes,
   1946 				    fae->fae_newfildes, 0, &retval);
   1947 				break;
   1948 			case FAE_CLOSE:
   1949 				if (fd_getfile(fae->fae_fildes) == NULL) {
   1950 					error = EBADF;
   1951 					break;
   1952 				}
   1953 				error = fd_close(fae->fae_fildes);
   1954 				break;
   1955 			}
   1956 			if (error)
   1957 				goto report_error;
   1958 		}
   1959 	}
   1960 
   1961 	/* handle posix_spawnattr */
   1962 	if (spawn_data->sed_attrs != NULL) {
   1963 		int ostat;
   1964 		struct sigaction sigact;
   1965 		sigact._sa_u._sa_handler = SIG_DFL;
   1966 		sigact.sa_flags = 0;
   1967 
   1968 		/*
   1969 		 * set state to SSTOP so that this proc can be found by pid.
   1970 		 * see proc_enterprp, do_sched_setparam below
   1971 		 */
   1972 		ostat = l->l_proc->p_stat;
   1973 		l->l_proc->p_stat = SSTOP;
   1974 
   1975 		/* Set process group */
   1976 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   1977 			pid_t mypid = l->l_proc->p_pid,
   1978 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   1979 
   1980 			if (pgrp == 0)
   1981 				pgrp = mypid;
   1982 
   1983 			error = proc_enterpgrp(spawn_data->sed_parent,
   1984 			    mypid, pgrp, false);
   1985 			if (error)
   1986 				goto report_error;
   1987 		}
   1988 
   1989 		/* Set scheduler policy */
   1990 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   1991 			error = do_sched_setparam(l->l_proc->p_pid, 0,
   1992 			    spawn_data->sed_attrs->sa_schedpolicy,
   1993 			    &spawn_data->sed_attrs->sa_schedparam);
   1994 		else if (spawn_data->sed_attrs->sa_flags
   1995 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   1996 			error = do_sched_setparam(ppid, 0,
   1997 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   1998 		}
   1999 		if (error)
   2000 			goto report_error;
   2001 
   2002 		/* Reset user ID's */
   2003 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2004 			error = do_setresuid(l, -1,
   2005 			     kauth_cred_getgid(l->l_cred), -1,
   2006 			     ID_E_EQ_R | ID_E_EQ_S);
   2007 			if (error)
   2008 				goto report_error;
   2009 			error = do_setresuid(l, -1,
   2010 			    kauth_cred_getuid(l->l_cred), -1,
   2011 			    ID_E_EQ_R | ID_E_EQ_S);
   2012 			if (error)
   2013 				goto report_error;
   2014 		}
   2015 
   2016 		/* Set signal masks/defaults */
   2017 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2018 			mutex_enter(l->l_proc->p_lock);
   2019 			error = sigprocmask1(l, SIG_SETMASK,
   2020 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   2021 			mutex_exit(l->l_proc->p_lock);
   2022 			if (error)
   2023 				goto report_error;
   2024 		}
   2025 
   2026 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2027 			/*
   2028 			 * The following sigaction call is using a sigaction
   2029 			 * version 0 trampoline which is in the compatibility
   2030 			 * code only. This is not a problem because for SIG_DFL
   2031 			 * and SIG_IGN, the trampolines are now ignored. If they
   2032 			 * were not, this would be a problem because we are
   2033 			 * holding the exec_lock, and the compat code needs
   2034 			 * to do the same in order to replace the trampoline
   2035 			 * code of the process.
   2036 			 */
   2037 			for (i = 1; i <= NSIG; i++) {
   2038 				if (sigismember(
   2039 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   2040 					sigaction1(l, i, &sigact, NULL, NULL,
   2041 					    0);
   2042 			}
   2043 		}
   2044 		l->l_proc->p_stat = ostat;
   2045 	}
   2046 
   2047 	/* now do the real exec */
   2048 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2049 	    true);
   2050 	have_reflock = false;
   2051 	if (error == EJUSTRETURN)
   2052 		error = 0;
   2053 	else if (error)
   2054 		goto report_error;
   2055 
   2056 	if (parent_is_waiting) {
   2057 		mutex_enter(&spawn_data->sed_mtx_child);
   2058 		cv_signal(&spawn_data->sed_cv_child_ready);
   2059 		mutex_exit(&spawn_data->sed_mtx_child);
   2060 	}
   2061 
   2062 	/* release our refcount on the data */
   2063 	spawn_exec_data_release(spawn_data);
   2064 
   2065 	/* and finally: leave to userland for the first time */
   2066 	cpu_spawn_return(l);
   2067 
   2068 	/* NOTREACHED */
   2069 	return;
   2070 
   2071  report_error:
   2072 	if (have_reflock) {
   2073 		/*
   2074 		 * We have not passed through execve_runproc(),
   2075 		 * which would have released the p_reflock and also
   2076 		 * taken ownership of the sed_exec part of spawn_data,
   2077 		 * so release/free both here.
   2078 		 */
   2079 		rw_exit(&l->l_proc->p_reflock);
   2080 		execve_free_data(&spawn_data->sed_exec);
   2081 	}
   2082 
   2083 	if (parent_is_waiting) {
   2084 		/* pass error to parent */
   2085 		mutex_enter(&spawn_data->sed_mtx_child);
   2086 		spawn_data->sed_error = error;
   2087 		cv_signal(&spawn_data->sed_cv_child_ready);
   2088 		mutex_exit(&spawn_data->sed_mtx_child);
   2089 	} else {
   2090 		rw_exit(&exec_lock);
   2091 	}
   2092 
   2093 	/* release our refcount on the data */
   2094 	spawn_exec_data_release(spawn_data);
   2095 
   2096 	/* done, exit */
   2097 	mutex_enter(l->l_proc->p_lock);
   2098 	/*
   2099 	 * Posix explicitly asks for an exit code of 127 if we report
   2100 	 * errors from the child process - so, unfortunately, there
   2101 	 * is no way to report a more exact error code.
   2102 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2103 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2104 	 */
   2105 	exit1(l, W_EXITCODE(127, 0));
   2106 }
   2107 
   2108 void
   2109 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2110 {
   2111 
   2112 	for (size_t i = 0; i < len; i++) {
   2113 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2114 		if (fae->fae_action != FAE_OPEN)
   2115 			continue;
   2116 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
   2117 	}
   2118 	if (fa->len > 0)
   2119 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2120 	kmem_free(fa, sizeof(*fa));
   2121 }
   2122 
   2123 static int
   2124 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2125     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2126 {
   2127 	struct posix_spawn_file_actions *fa;
   2128 	struct posix_spawn_file_actions_entry *fae;
   2129 	char *pbuf = NULL;
   2130 	int error;
   2131 	size_t i = 0;
   2132 
   2133 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2134 	error = copyin(ufa, fa, sizeof(*fa));
   2135 	if (error || fa->len == 0) {
   2136 		kmem_free(fa, sizeof(*fa));
   2137 		return error;	/* 0 if not an error, and len == 0 */
   2138 	}
   2139 
   2140 	if (fa->len > lim) {
   2141 		kmem_free(fa, sizeof(*fa));
   2142 		return EINVAL;
   2143 	}
   2144 
   2145 	fa->size = fa->len;
   2146 	size_t fal = fa->len * sizeof(*fae);
   2147 	fae = fa->fae;
   2148 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2149 	error = copyin(fae, fa->fae, fal);
   2150 	if (error)
   2151 		goto out;
   2152 
   2153 	pbuf = PNBUF_GET();
   2154 	for (; i < fa->len; i++) {
   2155 		fae = &fa->fae[i];
   2156 		if (fae->fae_action != FAE_OPEN)
   2157 			continue;
   2158 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2159 		if (error)
   2160 			goto out;
   2161 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2162 		memcpy(fae->fae_path, pbuf, fal);
   2163 	}
   2164 	PNBUF_PUT(pbuf);
   2165 
   2166 	*fap = fa;
   2167 	return 0;
   2168 out:
   2169 	if (pbuf)
   2170 		PNBUF_PUT(pbuf);
   2171 	posix_spawn_fa_free(fa, i);
   2172 	return error;
   2173 }
   2174 
   2175 int
   2176 check_posix_spawn(struct lwp *l1)
   2177 {
   2178 	int error, tnprocs, count;
   2179 	uid_t uid;
   2180 	struct proc *p1;
   2181 
   2182 	p1 = l1->l_proc;
   2183 	uid = kauth_cred_getuid(l1->l_cred);
   2184 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2185 
   2186 	/*
   2187 	 * Although process entries are dynamically created, we still keep
   2188 	 * a global limit on the maximum number we will create.
   2189 	 */
   2190 	if (__predict_false(tnprocs >= maxproc))
   2191 		error = -1;
   2192 	else
   2193 		error = kauth_authorize_process(l1->l_cred,
   2194 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2195 
   2196 	if (error) {
   2197 		atomic_dec_uint(&nprocs);
   2198 		return EAGAIN;
   2199 	}
   2200 
   2201 	/*
   2202 	 * Enforce limits.
   2203 	 */
   2204 	count = chgproccnt(uid, 1);
   2205 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2206 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2207 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2208 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2209 		(void)chgproccnt(uid, -1);
   2210 		atomic_dec_uint(&nprocs);
   2211 		return EAGAIN;
   2212 	}
   2213 
   2214 	return 0;
   2215 }
   2216 
   2217 int
   2218 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2219 	struct posix_spawn_file_actions *fa,
   2220 	struct posix_spawnattr *sa,
   2221 	char *const *argv, char *const *envp,
   2222 	execve_fetch_element_t fetch)
   2223 {
   2224 
   2225 	struct proc *p1, *p2;
   2226 	struct lwp *l2;
   2227 	int error;
   2228 	struct spawn_exec_data *spawn_data;
   2229 	vaddr_t uaddr;
   2230 	pid_t pid;
   2231 	bool have_exec_lock = false;
   2232 
   2233 	p1 = l1->l_proc;
   2234 
   2235 	/* Allocate and init spawn_data */
   2236 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2237 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2238 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2239 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2240 	mutex_enter(&spawn_data->sed_mtx_child);
   2241 
   2242 	/*
   2243 	 * Do the first part of the exec now, collect state
   2244 	 * in spawn_data.
   2245 	 */
   2246 	error = execve_loadvm(l1, path, argv,
   2247 	    envp, fetch, &spawn_data->sed_exec);
   2248 	if (error == EJUSTRETURN)
   2249 		error = 0;
   2250 	else if (error)
   2251 		goto error_exit;
   2252 
   2253 	have_exec_lock = true;
   2254 
   2255 	/*
   2256 	 * Allocate virtual address space for the U-area now, while it
   2257 	 * is still easy to abort the fork operation if we're out of
   2258 	 * kernel virtual address space.
   2259 	 */
   2260 	uaddr = uvm_uarea_alloc();
   2261 	if (__predict_false(uaddr == 0)) {
   2262 		error = ENOMEM;
   2263 		goto error_exit;
   2264 	}
   2265 
   2266 	/*
   2267 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2268 	 * replace it with its own before returning to userland
   2269 	 * in the child.
   2270 	 * This is a point of no return, we will have to go through
   2271 	 * the child proc to properly clean it up past this point.
   2272 	 */
   2273 	p2 = proc_alloc();
   2274 	pid = p2->p_pid;
   2275 
   2276 	/*
   2277 	 * Make a proc table entry for the new process.
   2278 	 * Start by zeroing the section of proc that is zero-initialized,
   2279 	 * then copy the section that is copied directly from the parent.
   2280 	 */
   2281 	memset(&p2->p_startzero, 0,
   2282 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2283 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2284 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2285 	p2->p_vmspace = proc0.p_vmspace;
   2286 
   2287 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2288 
   2289 	LIST_INIT(&p2->p_lwps);
   2290 	LIST_INIT(&p2->p_sigwaiters);
   2291 
   2292 	/*
   2293 	 * Duplicate sub-structures as needed.
   2294 	 * Increase reference counts on shared objects.
   2295 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2296 	 * handling are important in order to keep a consistent behaviour
   2297 	 * for the child after the fork.  If we are a 32-bit process, the
   2298 	 * child will be too.
   2299 	 */
   2300 	p2->p_flag =
   2301 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2302 	p2->p_emul = p1->p_emul;
   2303 	p2->p_execsw = p1->p_execsw;
   2304 
   2305 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2306 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2307 	rw_init(&p2->p_reflock);
   2308 	cv_init(&p2->p_waitcv, "wait");
   2309 	cv_init(&p2->p_lwpcv, "lwpwait");
   2310 
   2311 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2312 
   2313 	kauth_proc_fork(p1, p2);
   2314 
   2315 	p2->p_raslist = NULL;
   2316 	p2->p_fd = fd_copy();
   2317 
   2318 	/* XXX racy */
   2319 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2320 
   2321 	p2->p_cwdi = cwdinit();
   2322 
   2323 	/*
   2324 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2325 	 * we just need increase pl_refcnt.
   2326 	 */
   2327 	if (!p1->p_limit->pl_writeable) {
   2328 		lim_addref(p1->p_limit);
   2329 		p2->p_limit = p1->p_limit;
   2330 	} else {
   2331 		p2->p_limit = lim_copy(p1->p_limit);
   2332 	}
   2333 
   2334 	p2->p_lflag = 0;
   2335 	p2->p_sflag = 0;
   2336 	p2->p_slflag = 0;
   2337 	p2->p_pptr = p1;
   2338 	p2->p_ppid = p1->p_pid;
   2339 	LIST_INIT(&p2->p_children);
   2340 
   2341 	p2->p_aio = NULL;
   2342 
   2343 #ifdef KTRACE
   2344 	/*
   2345 	 * Copy traceflag and tracefile if enabled.
   2346 	 * If not inherited, these were zeroed above.
   2347 	 */
   2348 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2349 		mutex_enter(&ktrace_lock);
   2350 		p2->p_traceflag = p1->p_traceflag;
   2351 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2352 			ktradref(p2);
   2353 		mutex_exit(&ktrace_lock);
   2354 	}
   2355 #endif
   2356 
   2357 	/*
   2358 	 * Create signal actions for the child process.
   2359 	 */
   2360 	p2->p_sigacts = sigactsinit(p1, 0);
   2361 	mutex_enter(p1->p_lock);
   2362 	p2->p_sflag |=
   2363 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2364 	sched_proc_fork(p1, p2);
   2365 	mutex_exit(p1->p_lock);
   2366 
   2367 	p2->p_stflag = p1->p_stflag;
   2368 
   2369 	/*
   2370 	 * p_stats.
   2371 	 * Copy parts of p_stats, and zero out the rest.
   2372 	 */
   2373 	p2->p_stats = pstatscopy(p1->p_stats);
   2374 
   2375 	/* copy over machdep flags to the new proc */
   2376 	cpu_proc_fork(p1, p2);
   2377 
   2378 	/*
   2379 	 * Prepare remaining parts of spawn data
   2380 	 */
   2381 	spawn_data->sed_actions = fa;
   2382 	spawn_data->sed_attrs = sa;
   2383 
   2384 	spawn_data->sed_parent = p1;
   2385 
   2386 	/* create LWP */
   2387 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2388 	    &l2, l1->l_class);
   2389 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2390 
   2391 	/*
   2392 	 * Copy the credential so other references don't see our changes.
   2393 	 * Test to see if this is necessary first, since in the common case
   2394 	 * we won't need a private reference.
   2395 	 */
   2396 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2397 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2398 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2399 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2400 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2401 	}
   2402 
   2403 	/* Update the master credentials. */
   2404 	if (l2->l_cred != p2->p_cred) {
   2405 		kauth_cred_t ocred;
   2406 
   2407 		kauth_cred_hold(l2->l_cred);
   2408 		mutex_enter(p2->p_lock);
   2409 		ocred = p2->p_cred;
   2410 		p2->p_cred = l2->l_cred;
   2411 		mutex_exit(p2->p_lock);
   2412 		kauth_cred_free(ocred);
   2413 	}
   2414 
   2415 	*child_ok = true;
   2416 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2417 #if 0
   2418 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2419 #endif
   2420 
   2421 	/*
   2422 	 * It's now safe for the scheduler and other processes to see the
   2423 	 * child process.
   2424 	 */
   2425 	mutex_enter(proc_lock);
   2426 
   2427 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2428 		p2->p_lflag |= PL_CONTROLT;
   2429 
   2430 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2431 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2432 
   2433 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2434 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2435 
   2436 	p2->p_trace_enabled = trace_is_enabled(p2);
   2437 #ifdef __HAVE_SYSCALL_INTERN
   2438 	(*p2->p_emul->e_syscall_intern)(p2);
   2439 #endif
   2440 
   2441 	/*
   2442 	 * Make child runnable, set start time, and add to run queue except
   2443 	 * if the parent requested the child to start in SSTOP state.
   2444 	 */
   2445 	mutex_enter(p2->p_lock);
   2446 
   2447 	getmicrotime(&p2->p_stats->p_start);
   2448 
   2449 	lwp_lock(l2);
   2450 	KASSERT(p2->p_nrlwps == 1);
   2451 	p2->p_nrlwps = 1;
   2452 	p2->p_stat = SACTIVE;
   2453 	l2->l_stat = LSRUN;
   2454 	sched_enqueue(l2, false);
   2455 	lwp_unlock(l2);
   2456 
   2457 	mutex_exit(p2->p_lock);
   2458 	mutex_exit(proc_lock);
   2459 
   2460 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2461 	error = spawn_data->sed_error;
   2462 	mutex_exit(&spawn_data->sed_mtx_child);
   2463 	spawn_exec_data_release(spawn_data);
   2464 
   2465 	rw_exit(&p1->p_reflock);
   2466 	rw_exit(&exec_lock);
   2467 	have_exec_lock = false;
   2468 
   2469 	*pid_res = pid;
   2470 	return error;
   2471 
   2472  error_exit:
   2473 	if (have_exec_lock) {
   2474 		execve_free_data(&spawn_data->sed_exec);
   2475 		rw_exit(&p1->p_reflock);
   2476 		rw_exit(&exec_lock);
   2477 	}
   2478 	mutex_exit(&spawn_data->sed_mtx_child);
   2479 	spawn_exec_data_release(spawn_data);
   2480 
   2481 	return error;
   2482 }
   2483 
   2484 int
   2485 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2486     register_t *retval)
   2487 {
   2488 	/* {
   2489 		syscallarg(pid_t *) pid;
   2490 		syscallarg(const char *) path;
   2491 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2492 		syscallarg(const struct posix_spawnattr *) attrp;
   2493 		syscallarg(char *const *) argv;
   2494 		syscallarg(char *const *) envp;
   2495 	} */
   2496 
   2497 	int error;
   2498 	struct posix_spawn_file_actions *fa = NULL;
   2499 	struct posix_spawnattr *sa = NULL;
   2500 	pid_t pid;
   2501 	bool child_ok = false;
   2502 	rlim_t max_fileactions;
   2503 	proc_t *p = l1->l_proc;
   2504 
   2505 	error = check_posix_spawn(l1);
   2506 	if (error) {
   2507 		*retval = error;
   2508 		return 0;
   2509 	}
   2510 
   2511 	/* copy in file_actions struct */
   2512 	if (SCARG(uap, file_actions) != NULL) {
   2513 		max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2514 		    maxfiles);
   2515 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2516 		    max_fileactions);
   2517 		if (error)
   2518 			goto error_exit;
   2519 	}
   2520 
   2521 	/* copyin posix_spawnattr struct */
   2522 	if (SCARG(uap, attrp) != NULL) {
   2523 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2524 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2525 		if (error)
   2526 			goto error_exit;
   2527 	}
   2528 
   2529 	/*
   2530 	 * Do the spawn
   2531 	 */
   2532 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2533 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2534 	if (error)
   2535 		goto error_exit;
   2536 
   2537 	if (error == 0 && SCARG(uap, pid) != NULL)
   2538 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2539 
   2540 	*retval = error;
   2541 	return 0;
   2542 
   2543  error_exit:
   2544 	if (!child_ok) {
   2545 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2546 		atomic_dec_uint(&nprocs);
   2547 
   2548 		if (sa)
   2549 			kmem_free(sa, sizeof(*sa));
   2550 		if (fa)
   2551 			posix_spawn_fa_free(fa, fa->len);
   2552 	}
   2553 
   2554 	*retval = error;
   2555 	return 0;
   2556 }
   2557 
   2558 void
   2559 exec_free_emul_arg(struct exec_package *epp)
   2560 {
   2561 	if (epp->ep_emul_arg_free != NULL) {
   2562 		KASSERT(epp->ep_emul_arg != NULL);
   2563 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2564 		epp->ep_emul_arg_free = NULL;
   2565 		epp->ep_emul_arg = NULL;
   2566 	} else {
   2567 		KASSERT(epp->ep_emul_arg == NULL);
   2568 	}
   2569 }
   2570