kern_exec.c revision 1.385 1 /* $NetBSD: kern_exec.c,v 1.385 2014/04/11 18:02:33 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.385 2014/04/11 18:02:33 uebayasi Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108
109 #include <uvm/uvm_extern.h>
110
111 #include <machine/reg.h>
112
113 #include <compat/common/compat_util.h>
114
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USE_TOPDOWN_VM
117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122
123 static int exec_sigcode_map(struct proc *, const struct emul *);
124
125 #ifdef DEBUG_EXEC
126 #define DPRINTF(a) printf a
127 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
128 __LINE__, (s), (a), (b))
129 #else
130 #define DPRINTF(a)
131 #define COPYPRINTF(s, a, b)
132 #endif /* DEBUG_EXEC */
133
134 /*
135 * DTrace SDT provider definitions
136 */
137 SDT_PROBE_DEFINE(proc,,,exec,exec,
138 "char *", NULL,
139 NULL, NULL, NULL, NULL,
140 NULL, NULL, NULL, NULL);
141 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
142 "char *", NULL,
143 NULL, NULL, NULL, NULL,
144 NULL, NULL, NULL, NULL);
145 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
146 "int", NULL,
147 NULL, NULL, NULL, NULL,
148 NULL, NULL, NULL, NULL);
149
150 /*
151 * Exec function switch:
152 *
153 * Note that each makecmds function is responsible for loading the
154 * exec package with the necessary functions for any exec-type-specific
155 * handling.
156 *
157 * Functions for specific exec types should be defined in their own
158 * header file.
159 */
160 static const struct execsw **execsw = NULL;
161 static int nexecs;
162
163 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
164
165 /* list of dynamically loaded execsw entries */
166 static LIST_HEAD(execlist_head, exec_entry) ex_head =
167 LIST_HEAD_INITIALIZER(ex_head);
168 struct exec_entry {
169 LIST_ENTRY(exec_entry) ex_list;
170 SLIST_ENTRY(exec_entry) ex_slist;
171 const struct execsw *ex_sw;
172 };
173
174 #ifndef __HAVE_SYSCALL_INTERN
175 void syscall(void);
176 #endif
177
178 /* NetBSD emul struct */
179 struct emul emul_netbsd = {
180 .e_name = "netbsd",
181 #ifdef EMUL_NATIVEROOT
182 .e_path = EMUL_NATIVEROOT,
183 #else
184 .e_path = NULL,
185 #endif
186 #ifndef __HAVE_MINIMAL_EMUL
187 .e_flags = EMUL_HAS_SYS___syscall,
188 .e_errno = NULL,
189 .e_nosys = SYS_syscall,
190 .e_nsysent = SYS_NSYSENT,
191 #endif
192 .e_sysent = sysent,
193 #ifdef SYSCALL_DEBUG
194 .e_syscallnames = syscallnames,
195 #else
196 .e_syscallnames = NULL,
197 #endif
198 .e_sendsig = sendsig,
199 .e_trapsignal = trapsignal,
200 .e_tracesig = NULL,
201 .e_sigcode = NULL,
202 .e_esigcode = NULL,
203 .e_sigobject = NULL,
204 .e_setregs = setregs,
205 .e_proc_exec = NULL,
206 .e_proc_fork = NULL,
207 .e_proc_exit = NULL,
208 .e_lwp_fork = NULL,
209 .e_lwp_exit = NULL,
210 #ifdef __HAVE_SYSCALL_INTERN
211 .e_syscall_intern = syscall_intern,
212 #else
213 .e_syscall = syscall,
214 #endif
215 .e_sysctlovly = NULL,
216 .e_fault = NULL,
217 .e_vm_default_addr = uvm_default_mapaddr,
218 .e_usertrap = NULL,
219 .e_ucsize = sizeof(ucontext_t),
220 .e_startlwp = startlwp
221 };
222
223 /*
224 * Exec lock. Used to control access to execsw[] structures.
225 * This must not be static so that netbsd32 can access it, too.
226 */
227 krwlock_t exec_lock;
228
229 static kmutex_t sigobject_lock;
230
231 /*
232 * Data used between a loadvm and execve part of an "exec" operation
233 */
234 struct execve_data {
235 struct exec_package ed_pack;
236 struct pathbuf *ed_pathbuf;
237 struct vattr ed_attr;
238 struct ps_strings ed_arginfo;
239 char *ed_argp;
240 const char *ed_pathstring;
241 char *ed_resolvedpathbuf;
242 size_t ed_ps_strings_sz;
243 int ed_szsigcode;
244 long ed_argc;
245 long ed_envc;
246 };
247
248 /*
249 * data passed from parent lwp to child during a posix_spawn()
250 */
251 struct spawn_exec_data {
252 struct execve_data sed_exec;
253 struct posix_spawn_file_actions
254 *sed_actions;
255 struct posix_spawnattr *sed_attrs;
256 struct proc *sed_parent;
257 kcondvar_t sed_cv_child_ready;
258 kmutex_t sed_mtx_child;
259 int sed_error;
260 volatile uint32_t sed_refcnt;
261 };
262
263 static void *
264 exec_pool_alloc(struct pool *pp, int flags)
265 {
266
267 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
268 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
269 }
270
271 static void
272 exec_pool_free(struct pool *pp, void *addr)
273 {
274
275 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
276 }
277
278 static struct pool exec_pool;
279
280 static struct pool_allocator exec_palloc = {
281 .pa_alloc = exec_pool_alloc,
282 .pa_free = exec_pool_free,
283 .pa_pagesz = NCARGS
284 };
285
286 /*
287 * check exec:
288 * given an "executable" described in the exec package's namei info,
289 * see what we can do with it.
290 *
291 * ON ENTRY:
292 * exec package with appropriate namei info
293 * lwp pointer of exec'ing lwp
294 * NO SELF-LOCKED VNODES
295 *
296 * ON EXIT:
297 * error: nothing held, etc. exec header still allocated.
298 * ok: filled exec package, executable's vnode (unlocked).
299 *
300 * EXEC SWITCH ENTRY:
301 * Locked vnode to check, exec package, proc.
302 *
303 * EXEC SWITCH EXIT:
304 * ok: return 0, filled exec package, executable's vnode (unlocked).
305 * error: destructive:
306 * everything deallocated execept exec header.
307 * non-destructive:
308 * error code, executable's vnode (unlocked),
309 * exec header unmodified.
310 */
311 int
312 /*ARGSUSED*/
313 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
314 {
315 int error, i;
316 struct vnode *vp;
317 struct nameidata nd;
318 size_t resid;
319
320 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
321
322 /* first get the vnode */
323 if ((error = namei(&nd)) != 0)
324 return error;
325 epp->ep_vp = vp = nd.ni_vp;
326 /* normally this can't fail */
327 if ((error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL)))
328 goto bad1;
329
330 #ifdef DIAGNOSTIC
331 /* paranoia (take this out once namei stuff stabilizes) */
332 memset(nd.ni_pnbuf, '~', PATH_MAX);
333 #endif
334
335 /* check access and type */
336 if (vp->v_type != VREG) {
337 error = EACCES;
338 goto bad1;
339 }
340 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
341 goto bad1;
342
343 /* get attributes */
344 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
345 goto bad1;
346
347 /* Check mount point */
348 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
349 error = EACCES;
350 goto bad1;
351 }
352 if (vp->v_mount->mnt_flag & MNT_NOSUID)
353 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
354
355 /* try to open it */
356 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
357 goto bad1;
358
359 /* unlock vp, since we need it unlocked from here on out. */
360 VOP_UNLOCK(vp);
361
362 #if NVERIEXEC > 0
363 error = veriexec_verify(l, vp, epp->ep_resolvedname,
364 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
365 NULL);
366 if (error)
367 goto bad2;
368 #endif /* NVERIEXEC > 0 */
369
370 #ifdef PAX_SEGVGUARD
371 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
372 if (error)
373 goto bad2;
374 #endif /* PAX_SEGVGUARD */
375
376 /* now we have the file, get the exec header */
377 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
378 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
379 if (error)
380 goto bad2;
381 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
382
383 /*
384 * Set up default address space limits. Can be overridden
385 * by individual exec packages.
386 *
387 * XXX probably should be all done in the exec packages.
388 */
389 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
390 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
391 /*
392 * set up the vmcmds for creation of the process
393 * address space
394 */
395 error = ENOEXEC;
396 for (i = 0; i < nexecs; i++) {
397 int newerror;
398
399 epp->ep_esch = execsw[i];
400 newerror = (*execsw[i]->es_makecmds)(l, epp);
401
402 if (!newerror) {
403 /* Seems ok: check that entry point is not too high */
404 if (epp->ep_entry > epp->ep_vm_maxaddr) {
405 #ifdef DIAGNOSTIC
406 printf("%s: rejecting %p due to "
407 "too high entry address (> %p)\n",
408 __func__, (void *)epp->ep_entry,
409 (void *)epp->ep_vm_maxaddr);
410 #endif
411 error = ENOEXEC;
412 break;
413 }
414 /* Seems ok: check that entry point is not too low */
415 if (epp->ep_entry < epp->ep_vm_minaddr) {
416 #ifdef DIAGNOSTIC
417 printf("%s: rejecting %p due to "
418 "too low entry address (< %p)\n",
419 __func__, (void *)epp->ep_entry,
420 (void *)epp->ep_vm_minaddr);
421 #endif
422 error = ENOEXEC;
423 break;
424 }
425
426 /* check limits */
427 if ((epp->ep_tsize > MAXTSIZ) ||
428 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
429 [RLIMIT_DATA].rlim_cur)) {
430 #ifdef DIAGNOSTIC
431 printf("%s: rejecting due to "
432 "limits (t=%llu > %llu || d=%llu > %llu)\n",
433 __func__,
434 (unsigned long long)epp->ep_tsize,
435 (unsigned long long)MAXTSIZ,
436 (unsigned long long)epp->ep_dsize,
437 (unsigned long long)
438 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
439 #endif
440 error = ENOMEM;
441 break;
442 }
443 return 0;
444 }
445
446 if (epp->ep_emul_root != NULL) {
447 vrele(epp->ep_emul_root);
448 epp->ep_emul_root = NULL;
449 }
450 if (epp->ep_interp != NULL) {
451 vrele(epp->ep_interp);
452 epp->ep_interp = NULL;
453 }
454
455 /* make sure the first "interesting" error code is saved. */
456 if (error == ENOEXEC)
457 error = newerror;
458
459 if (epp->ep_flags & EXEC_DESTR)
460 /* Error from "#!" code, tidied up by recursive call */
461 return error;
462 }
463
464 /* not found, error */
465
466 /*
467 * free any vmspace-creation commands,
468 * and release their references
469 */
470 kill_vmcmds(&epp->ep_vmcmds);
471
472 bad2:
473 /*
474 * close and release the vnode, restore the old one, free the
475 * pathname buf, and punt.
476 */
477 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
478 VOP_CLOSE(vp, FREAD, l->l_cred);
479 vput(vp);
480 return error;
481
482 bad1:
483 /*
484 * free the namei pathname buffer, and put the vnode
485 * (which we don't yet have open).
486 */
487 vput(vp); /* was still locked */
488 return error;
489 }
490
491 #ifdef __MACHINE_STACK_GROWS_UP
492 #define STACK_PTHREADSPACE NBPG
493 #else
494 #define STACK_PTHREADSPACE 0
495 #endif
496
497 static int
498 execve_fetch_element(char * const *array, size_t index, char **value)
499 {
500 return copyin(array + index, value, sizeof(*value));
501 }
502
503 /*
504 * exec system call
505 */
506 int
507 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
508 {
509 /* {
510 syscallarg(const char *) path;
511 syscallarg(char * const *) argp;
512 syscallarg(char * const *) envp;
513 } */
514
515 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
516 SCARG(uap, envp), execve_fetch_element);
517 }
518
519 int
520 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
521 register_t *retval)
522 {
523 /* {
524 syscallarg(int) fd;
525 syscallarg(char * const *) argp;
526 syscallarg(char * const *) envp;
527 } */
528
529 return ENOSYS;
530 }
531
532 /*
533 * Load modules to try and execute an image that we do not understand.
534 * If no execsw entries are present, we load those likely to be needed
535 * in order to run native images only. Otherwise, we autoload all
536 * possible modules that could let us run the binary. XXX lame
537 */
538 static void
539 exec_autoload(void)
540 {
541 #ifdef MODULAR
542 static const char * const native[] = {
543 "exec_elf32",
544 "exec_elf64",
545 "exec_script",
546 NULL
547 };
548 static const char * const compat[] = {
549 "exec_elf32",
550 "exec_elf64",
551 "exec_script",
552 "exec_aout",
553 "exec_coff",
554 "exec_ecoff",
555 "compat_aoutm68k",
556 "compat_freebsd",
557 "compat_ibcs2",
558 "compat_linux",
559 "compat_linux32",
560 "compat_netbsd32",
561 "compat_sunos",
562 "compat_sunos32",
563 "compat_svr4",
564 "compat_svr4_32",
565 "compat_ultrix",
566 NULL
567 };
568 char const * const *list;
569 int i;
570
571 list = (nexecs == 0 ? native : compat);
572 for (i = 0; list[i] != NULL; i++) {
573 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
574 continue;
575 }
576 yield();
577 }
578 #endif
579 }
580
581 static int
582 execve_loadvm(struct lwp *l, const char *path, char * const *args,
583 char * const *envs, execve_fetch_element_t fetch_element,
584 struct execve_data * restrict data)
585 {
586 struct exec_package * const epp = &data->ed_pack;
587 int error;
588 struct proc *p;
589 char *dp, *sp;
590 size_t i;
591 struct exec_fakearg *tmpfap;
592 u_int modgen;
593
594 KASSERT(data != NULL);
595
596 p = l->l_proc;
597 modgen = 0;
598
599 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
600
601 /*
602 * Check if we have exceeded our number of processes limit.
603 * This is so that we handle the case where a root daemon
604 * forked, ran setuid to become the desired user and is trying
605 * to exec. The obvious place to do the reference counting check
606 * is setuid(), but we don't do the reference counting check there
607 * like other OS's do because then all the programs that use setuid()
608 * must be modified to check the return code of setuid() and exit().
609 * It is dangerous to make setuid() fail, because it fails open and
610 * the program will continue to run as root. If we make it succeed
611 * and return an error code, again we are not enforcing the limit.
612 * The best place to enforce the limit is here, when the process tries
613 * to execute a new image, because eventually the process will need
614 * to call exec in order to do something useful.
615 */
616 retry:
617 if (p->p_flag & PK_SUGID) {
618 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
619 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
620 &p->p_rlimit[RLIMIT_NPROC],
621 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
622 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
623 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
624 return EAGAIN;
625 }
626
627 /*
628 * Drain existing references and forbid new ones. The process
629 * should be left alone until we're done here. This is necessary
630 * to avoid race conditions - e.g. in ptrace() - that might allow
631 * a local user to illicitly obtain elevated privileges.
632 */
633 rw_enter(&p->p_reflock, RW_WRITER);
634
635 /*
636 * Init the namei data to point the file user's program name.
637 * This is done here rather than in check_exec(), so that it's
638 * possible to override this settings if any of makecmd/probe
639 * functions call check_exec() recursively - for example,
640 * see exec_script_makecmds().
641 */
642 error = pathbuf_copyin(path, &data->ed_pathbuf);
643 if (error) {
644 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
645 path, error));
646 goto clrflg;
647 }
648 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
649 data->ed_resolvedpathbuf = PNBUF_GET();
650
651 /*
652 * initialize the fields of the exec package.
653 */
654 epp->ep_name = path;
655 epp->ep_kname = data->ed_pathstring;
656 epp->ep_resolvedname = data->ed_resolvedpathbuf;
657 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
658 epp->ep_hdrlen = exec_maxhdrsz;
659 epp->ep_hdrvalid = 0;
660 epp->ep_emul_arg = NULL;
661 epp->ep_emul_arg_free = NULL;
662 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
663 epp->ep_vap = &data->ed_attr;
664 epp->ep_flags = 0;
665 MD_TOPDOWN_INIT(epp);
666 epp->ep_emul_root = NULL;
667 epp->ep_interp = NULL;
668 epp->ep_esch = NULL;
669 epp->ep_pax_flags = 0;
670 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
671
672 rw_enter(&exec_lock, RW_READER);
673
674 /* see if we can run it. */
675 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
676 if (error != ENOENT) {
677 DPRINTF(("%s: check exec failed %d\n",
678 __func__, error));
679 }
680 goto freehdr;
681 }
682
683 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
684 /* XXX rename this as copyinargs() */
685
686 /* allocate an argument buffer */
687 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
688 KASSERT(data->ed_argp != NULL);
689 dp = data->ed_argp;
690 data->ed_argc = 0;
691
692 /* copy the fake args list, if there's one, freeing it as we go */
693 if (epp->ep_flags & EXEC_HASARGL) {
694 tmpfap = epp->ep_fa;
695 while (tmpfap->fa_arg != NULL) {
696 const char *cp;
697
698 /* XXX boudary check */
699 cp = tmpfap->fa_arg;
700 while (*cp)
701 *dp++ = *cp++;
702 *dp++ = '\0';
703 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
704
705 kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
706 tmpfap++;
707 data->ed_argc++;
708 }
709 kmem_free(epp->ep_fa, epp->ep_fa_len);
710 epp->ep_flags &= ~EXEC_HASARGL;
711 }
712
713 /* Now get argv & environment */
714 if (args == NULL) {
715 DPRINTF(("%s: null args\n", __func__));
716 error = EINVAL;
717 goto bad;
718 }
719 /* 'i' will index the argp/envp element to be retrieved */
720 i = 0;
721 if (epp->ep_flags & EXEC_SKIPARG)
722 i++;
723
724 while (1) {
725 const size_t maxlen = data->ed_argp + ARG_MAX - dp;
726 size_t len;
727
728 if ((error = (*fetch_element)(args, i, &sp)) != 0) {
729 DPRINTF(("%s: fetch_element args %d\n",
730 __func__, error));
731 goto bad;
732 }
733 if (!sp)
734 break;
735 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
736 DPRINTF(("%s: copyinstr args %d\n", __func__, error));
737 if (error == ENAMETOOLONG)
738 error = E2BIG;
739 goto bad;
740 }
741 ktrexecarg(dp, len - 1);
742 dp += len;
743 i++;
744 data->ed_argc++;
745 }
746
747 data->ed_envc = 0;
748 /* environment need not be there */
749 if (envs != NULL) {
750 i = 0;
751 while (1) {
752 const size_t maxlen = data->ed_argp + ARG_MAX - dp;
753 size_t len;
754
755 if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
756 DPRINTF(("%s: fetch_element env %d\n",
757 __func__, error));
758 goto bad;
759 }
760 if (!sp)
761 break;
762 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
763 DPRINTF(("%s: copyinstr env %d\n",
764 __func__, error));
765 if (error == ENAMETOOLONG)
766 error = E2BIG;
767 goto bad;
768 }
769
770 ktrexecenv(dp, len - 1);
771 dp += len;
772 i++;
773 data->ed_envc++;
774 }
775 }
776
777 /*
778 * Calculate the new stack size.
779 */
780
781 const size_t psstrauxlen =
782 data->ed_argc + /* char *argv[] */
783 1 + /* \0 */
784 data->ed_envc + /* char *env[] */
785 1 + /* \0 */
786 epp->ep_esch->es_arglen; /* auxinfo */
787
788 const size_t ptrsz = (epp->ep_flags & EXEC_32) ?
789 sizeof(int) : sizeof(char *);
790
791 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
792
793 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
794 epp->ep_esch->es_emul->e_sigcode;
795
796 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
797 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
798
799 const size_t aslrgap =
800 #ifdef PAX_ASLR
801 pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0;
802 #else
803 0;
804 #endif
805
806 #ifdef __MACHINE_STACK_GROWS_UP
807 /* See big comment lower down */
808 #define RTLD_GAP 32
809 #else
810 #define RTLD_GAP 0
811 #endif
812
813 const size_t stacklen =
814 sizeof(int) + /* XXX argc in stack is long, not int */
815 (psstrauxlen * ptrsz) + /* XXX auxinfo multiplied by ptr size? */
816 argenvstrlen +
817 aslrgap +
818 RTLD_GAP +
819 data->ed_szsigcode +
820 data->ed_ps_strings_sz +
821 STACK_PTHREADSPACE;
822
823 /* make the stack "safely" aligned */
824 const size_t aligned_stacklen = STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
825
826 if (aligned_stacklen > epp->ep_ssize) {
827 /* in effect, compare to initial limit */
828 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, aligned_stacklen));
829 goto bad;
830 }
831 /* adjust "active stack depth" for process VSZ */
832 epp->ep_ssize = aligned_stacklen;
833
834 return 0;
835
836 bad:
837 /* free the vmspace-creation commands, and release their references */
838 kill_vmcmds(&epp->ep_vmcmds);
839 /* kill any opened file descriptor, if necessary */
840 if (epp->ep_flags & EXEC_HASFD) {
841 epp->ep_flags &= ~EXEC_HASFD;
842 fd_close(epp->ep_fd);
843 }
844 /* close and put the exec'd file */
845 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
846 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
847 vput(epp->ep_vp);
848 pool_put(&exec_pool, data->ed_argp);
849
850 freehdr:
851 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
852 if (epp->ep_emul_root != NULL)
853 vrele(epp->ep_emul_root);
854 if (epp->ep_interp != NULL)
855 vrele(epp->ep_interp);
856
857 rw_exit(&exec_lock);
858
859 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
860 pathbuf_destroy(data->ed_pathbuf);
861 PNBUF_PUT(data->ed_resolvedpathbuf);
862
863 clrflg:
864 rw_exit(&p->p_reflock);
865
866 if (modgen != module_gen && error == ENOEXEC) {
867 modgen = module_gen;
868 exec_autoload();
869 goto retry;
870 }
871
872 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
873 return error;
874 }
875
876 static void
877 execve_free_data(struct execve_data *data)
878 {
879 struct exec_package * const epp = &data->ed_pack;
880
881 /* free the vmspace-creation commands, and release their references */
882 kill_vmcmds(&epp->ep_vmcmds);
883 /* kill any opened file descriptor, if necessary */
884 if (epp->ep_flags & EXEC_HASFD) {
885 epp->ep_flags &= ~EXEC_HASFD;
886 fd_close(epp->ep_fd);
887 }
888
889 /* close and put the exec'd file */
890 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
891 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
892 vput(epp->ep_vp);
893 pool_put(&exec_pool, data->ed_argp);
894
895 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
896 if (epp->ep_emul_root != NULL)
897 vrele(epp->ep_emul_root);
898 if (epp->ep_interp != NULL)
899 vrele(epp->ep_interp);
900
901 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
902 pathbuf_destroy(data->ed_pathbuf);
903 PNBUF_PUT(data->ed_resolvedpathbuf);
904 }
905
906 static int
907 execve_runproc(struct lwp *l, struct execve_data * restrict data,
908 bool no_local_exec_lock, bool is_spawn)
909 {
910 struct exec_package * const epp = &data->ed_pack;
911 int error = 0;
912 struct proc *p;
913
914 /*
915 * In case of a posix_spawn operation, the child doing the exec
916 * might not hold the reader lock on exec_lock, but the parent
917 * will do this instead.
918 */
919 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
920 KASSERT(!no_local_exec_lock || is_spawn);
921 KASSERT(data != NULL);
922
923 p = l->l_proc;
924
925 /* Get rid of other LWPs. */
926 if (p->p_nlwps > 1) {
927 mutex_enter(p->p_lock);
928 exit_lwps(l);
929 mutex_exit(p->p_lock);
930 }
931 KDASSERT(p->p_nlwps == 1);
932
933 /* Destroy any lwpctl info. */
934 if (p->p_lwpctl != NULL)
935 lwp_ctl_exit();
936
937 /* Remove POSIX timers */
938 timers_free(p, TIMERS_POSIX);
939
940 /*
941 * Do whatever is necessary to prepare the address space
942 * for remapping. Note that this might replace the current
943 * vmspace with another!
944 */
945 if (is_spawn)
946 uvmspace_spawn(l, epp->ep_vm_minaddr,
947 epp->ep_vm_maxaddr,
948 epp->ep_flags & EXEC_TOPDOWN_VM);
949 else
950 uvmspace_exec(l, epp->ep_vm_minaddr,
951 epp->ep_vm_maxaddr,
952 epp->ep_flags & EXEC_TOPDOWN_VM);
953
954 /* record proc's vnode, for use by procfs and others */
955 if (p->p_textvp)
956 vrele(p->p_textvp);
957 vref(epp->ep_vp);
958 p->p_textvp = epp->ep_vp;
959
960 /* Now map address space */
961 struct vmspace *vm;
962 vm = p->p_vmspace;
963 vm->vm_taddr = (void *)epp->ep_taddr;
964 vm->vm_tsize = btoc(epp->ep_tsize);
965 vm->vm_daddr = (void*)epp->ep_daddr;
966 vm->vm_dsize = btoc(epp->ep_dsize);
967 vm->vm_ssize = btoc(epp->ep_ssize);
968 vm->vm_issize = 0;
969 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
970 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
971
972 #ifdef PAX_ASLR
973 pax_aslr_init(l, vm);
974 #endif /* PAX_ASLR */
975
976 /* create the new process's VM space by running the vmcmds */
977 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
978
979 #ifdef DEBUG_EXEC
980 {
981 size_t j;
982 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
983 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
984 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
985 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
986 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
987 PRIxVSIZE" prot=0%o flags=%d\n", j,
988 vp[j].ev_proc == vmcmd_map_pagedvn ?
989 "pagedvn" :
990 vp[j].ev_proc == vmcmd_map_readvn ?
991 "readvn" :
992 vp[j].ev_proc == vmcmd_map_zero ?
993 "zero" : "*unknown*",
994 vp[j].ev_addr, vp[j].ev_len,
995 vp[j].ev_offset, vp[j].ev_prot,
996 vp[j].ev_flags));
997 }
998 }
999 #endif /* DEBUG_EXEC */
1000
1001 {
1002 size_t i;
1003 struct exec_vmcmd *base_vcp;
1004
1005 base_vcp = NULL;
1006
1007 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
1008 struct exec_vmcmd *vcp;
1009
1010 vcp = &epp->ep_vmcmds.evs_cmds[i];
1011 if (vcp->ev_flags & VMCMD_RELATIVE) {
1012 KASSERTMSG(base_vcp != NULL,
1013 "%s: relative vmcmd with no base", __func__);
1014 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
1015 "%s: illegal base & relative vmcmd", __func__);
1016 vcp->ev_addr += base_vcp->ev_addr;
1017 }
1018 error = (*vcp->ev_proc)(l, vcp);
1019 #ifdef DEBUG_EXEC
1020 if (error) {
1021 size_t j;
1022 struct exec_vmcmd *vp =
1023 &epp->ep_vmcmds.evs_cmds[0];
1024 DPRINTF(("vmcmds %zu/%u, error %d\n", i,
1025 epp->ep_vmcmds.evs_used, error));
1026 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
1027 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
1028 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
1029 PRIxVSIZE" prot=0%o flags=%d\n", j,
1030 vp[j].ev_proc == vmcmd_map_pagedvn ?
1031 "pagedvn" :
1032 vp[j].ev_proc == vmcmd_map_readvn ?
1033 "readvn" :
1034 vp[j].ev_proc == vmcmd_map_zero ?
1035 "zero" : "*unknown*",
1036 vp[j].ev_addr, vp[j].ev_len,
1037 vp[j].ev_offset, vp[j].ev_prot,
1038 vp[j].ev_flags));
1039 if (j == i)
1040 DPRINTF((" ^--- failed\n"));
1041 }
1042 }
1043 #endif /* DEBUG_EXEC */
1044 if (vcp->ev_flags & VMCMD_BASE)
1045 base_vcp = vcp;
1046 }
1047
1048 /* free the vmspace-creation commands, and release their references */
1049 kill_vmcmds(&epp->ep_vmcmds);
1050
1051 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
1052 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
1053 vput(epp->ep_vp);
1054
1055 /* if an error happened, deallocate and punt */
1056 if (error) {
1057 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
1058 goto exec_abort;
1059 }
1060 }
1061
1062 {
1063 const char *commandname;
1064 size_t commandlen;
1065
1066 /* set command name & other accounting info */
1067 commandname = strrchr(epp->ep_resolvedname, '/');
1068 if (commandname != NULL) {
1069 commandname++;
1070 } else {
1071 commandname = epp->ep_resolvedname;
1072 }
1073 commandlen = min(strlen(commandname), MAXCOMLEN);
1074 (void)memcpy(p->p_comm, commandname, commandlen);
1075 p->p_comm[commandlen] = '\0';
1076 }
1077
1078 {
1079 char *path;
1080
1081 path = PNBUF_GET();
1082
1083 /*
1084 * If the path starts with /, we don't need to do any work.
1085 * This handles the majority of the cases.
1086 * In the future perhaps we could canonicalize it?
1087 */
1088 if (data->ed_pathstring[0] == '/') {
1089 (void)strlcpy(path, data->ed_pathstring,
1090 MAXPATHLEN);
1091 epp->ep_path = path;
1092 }
1093 #ifdef notyet
1094 /*
1095 * Although this works most of the time [since the entry was just
1096 * entered in the cache] we don't use it because it will fail for
1097 * entries that are not placed in the cache because their name is
1098 * longer than NCHNAMLEN and it is not the cleanest interface,
1099 * because there could be races. When the namei cache is re-written,
1100 * this can be changed to use the appropriate function.
1101 */
1102 else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
1103 epp->ep_path = path;
1104 #endif
1105 else {
1106 #ifdef notyet
1107 printf("Cannot get path for pid %d [%s] (error %d)\n",
1108 (int)p->p_pid, p->p_comm, error);
1109 #endif
1110 epp->ep_path = NULL;
1111 PNBUF_PUT(path);
1112 }
1113 }
1114
1115 /* remember information about the process */
1116 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1117 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1118
1119 {
1120 char *stack;
1121
1122 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1123 STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
1124 epp->ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
1125
1126 #ifdef __MACHINE_STACK_GROWS_UP
1127 /*
1128 * The copyargs call always copies into lower addresses
1129 * first, moving towards higher addresses, starting with
1130 * the stack pointer that we give. When the stack grows
1131 * down, this puts argc/argv/envp very shallow on the
1132 * stack, right at the first user stack pointer.
1133 * When the stack grows up, the situation is reversed.
1134 *
1135 * Normally, this is no big deal. But the ld_elf.so _rtld()
1136 * function expects to be called with a single pointer to
1137 * a region that has a few words it can stash values into,
1138 * followed by argc/argv/envp. When the stack grows down,
1139 * it's easy to decrement the stack pointer a little bit to
1140 * allocate the space for these few words and pass the new
1141 * stack pointer to _rtld. When the stack grows up, however,
1142 * a few words before argc is part of the signal trampoline, XXX
1143 * so we have a problem.
1144 *
1145 * Instead of changing how _rtld works, we take the easy way
1146 * out and steal 32 bytes before we call copyargs.
1147 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
1148 */
1149 stack += RTLD_GAP;
1150 #endif /* __MACHINE_STACK_GROWS_UP */
1151
1152 /* Now copy argc, args & environ to new stack */
1153 error = (*epp->ep_esch->es_copyargs)(l, epp,
1154 &data->ed_arginfo, &stack, data->ed_argp);
1155
1156 if (epp->ep_path) {
1157 PNBUF_PUT(epp->ep_path);
1158 epp->ep_path = NULL;
1159 }
1160 if (error) {
1161 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1162 goto exec_abort;
1163 }
1164 }
1165
1166 /* fill process ps_strings info */
1167 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1168 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1169
1170 {
1171 struct ps_strings32 arginfo32;
1172 void *aip;
1173
1174 if (epp->ep_flags & EXEC_32) {
1175 aip = &arginfo32;
1176 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1177 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1178 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1179 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1180 } else
1181 aip = &data->ed_arginfo;
1182
1183 /* copy out the process's ps_strings structure */
1184 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1185 != 0) {
1186 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1187 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1188 goto exec_abort;
1189 }
1190 }
1191
1192 cwdexec(p);
1193 fd_closeexec(); /* handle close on exec */
1194
1195 if (__predict_false(ktrace_on))
1196 fd_ktrexecfd();
1197
1198 execsigs(p); /* reset catched signals */
1199
1200 mutex_enter(p->p_lock);
1201 l->l_ctxlink = NULL; /* reset ucontext link */
1202 p->p_acflag &= ~AFORK;
1203 p->p_flag |= PK_EXEC;
1204 mutex_exit(p->p_lock);
1205
1206 /*
1207 * Stop profiling.
1208 */
1209 if ((p->p_stflag & PST_PROFIL) != 0) {
1210 mutex_spin_enter(&p->p_stmutex);
1211 stopprofclock(p);
1212 mutex_spin_exit(&p->p_stmutex);
1213 }
1214
1215 /*
1216 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1217 * exited and exec()/exit() are the only places it will be cleared.
1218 */
1219 if ((p->p_lflag & PL_PPWAIT) != 0) {
1220 #if 0
1221 lwp_t *lp;
1222
1223 mutex_enter(proc_lock);
1224 lp = p->p_vforklwp;
1225 p->p_vforklwp = NULL;
1226
1227 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1228 p->p_lflag &= ~PL_PPWAIT;
1229
1230 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1231 cv_broadcast(&lp->l_waitcv);
1232 mutex_exit(proc_lock);
1233 #else
1234 mutex_enter(proc_lock);
1235 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1236 p->p_lflag &= ~PL_PPWAIT;
1237 cv_broadcast(&p->p_pptr->p_waitcv);
1238 mutex_exit(proc_lock);
1239 #endif
1240 }
1241
1242 /*
1243 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1244 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1245 * out additional references on the process for the moment.
1246 */
1247 if ((p->p_slflag & PSL_TRACED) == 0 &&
1248
1249 (((data->ed_attr.va_mode & S_ISUID) != 0 &&
1250 kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
1251
1252 ((data->ed_attr.va_mode & S_ISGID) != 0 &&
1253 kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
1254 /*
1255 * Mark the process as SUGID before we do
1256 * anything that might block.
1257 */
1258 proc_crmod_enter();
1259 proc_crmod_leave(NULL, NULL, true);
1260
1261 /* Make sure file descriptors 0..2 are in use. */
1262 if ((error = fd_checkstd()) != 0) {
1263 DPRINTF(("%s: fdcheckstd failed %d\n",
1264 __func__, error));
1265 goto exec_abort;
1266 }
1267
1268 /*
1269 * Copy the credential so other references don't see our
1270 * changes.
1271 */
1272 l->l_cred = kauth_cred_copy(l->l_cred);
1273 #ifdef KTRACE
1274 /*
1275 * If the persistent trace flag isn't set, turn off.
1276 */
1277 if (p->p_tracep) {
1278 mutex_enter(&ktrace_lock);
1279 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1280 ktrderef(p);
1281 mutex_exit(&ktrace_lock);
1282 }
1283 #endif
1284 if (data->ed_attr.va_mode & S_ISUID)
1285 kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
1286 if (data->ed_attr.va_mode & S_ISGID)
1287 kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
1288 } else {
1289 if (kauth_cred_geteuid(l->l_cred) ==
1290 kauth_cred_getuid(l->l_cred) &&
1291 kauth_cred_getegid(l->l_cred) ==
1292 kauth_cred_getgid(l->l_cred))
1293 p->p_flag &= ~PK_SUGID;
1294 }
1295
1296 /*
1297 * Copy the credential so other references don't see our changes.
1298 * Test to see if this is necessary first, since in the common case
1299 * we won't need a private reference.
1300 */
1301 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1302 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1303 l->l_cred = kauth_cred_copy(l->l_cred);
1304 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1305 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1306 }
1307
1308 /* Update the master credentials. */
1309 if (l->l_cred != p->p_cred) {
1310 kauth_cred_t ocred;
1311
1312 kauth_cred_hold(l->l_cred);
1313 mutex_enter(p->p_lock);
1314 ocred = p->p_cred;
1315 p->p_cred = l->l_cred;
1316 mutex_exit(p->p_lock);
1317 kauth_cred_free(ocred);
1318 }
1319
1320 #if defined(__HAVE_RAS)
1321 /*
1322 * Remove all RASs from the address space.
1323 */
1324 ras_purgeall();
1325 #endif
1326
1327 doexechooks(p);
1328
1329 {
1330 char * const stack = (char *)STACK_GROW(
1331 (void *)epp->ep_minsaddr, epp->ep_ssize);
1332
1333 /* setup new registers and do misc. setup. */
1334 (*epp->ep_esch->es_emul->e_setregs)(l, epp,
1335 (vaddr_t)stack);
1336 if (epp->ep_esch->es_setregs)
1337 (*epp->ep_esch->es_setregs)(l, epp,
1338 (vaddr_t)stack);
1339 }
1340
1341 /* Provide a consistent LWP private setting */
1342 (void)lwp_setprivate(l, NULL);
1343
1344 /* Discard all PCU state; need to start fresh */
1345 pcu_discard_all(l);
1346
1347 /* map the process's signal trampoline code */
1348 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1349 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1350 goto exec_abort;
1351 }
1352
1353 pool_put(&exec_pool, data->ed_argp);
1354
1355 /* notify others that we exec'd */
1356 KNOTE(&p->p_klist, NOTE_EXEC);
1357
1358 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1359
1360 SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0);
1361
1362 /* The emulation root will usually have been found when we looked
1363 * for the elf interpreter (or similar), if not look now. */
1364 if (epp->ep_esch->es_emul->e_path != NULL &&
1365 epp->ep_emul_root == NULL)
1366 emul_find_root(l, epp);
1367
1368 /* Any old emulation root got removed by fdcloseexec */
1369 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1370 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1371 rw_exit(&p->p_cwdi->cwdi_lock);
1372 epp->ep_emul_root = NULL;
1373 if (epp->ep_interp != NULL)
1374 vrele(epp->ep_interp);
1375
1376 /*
1377 * Call emulation specific exec hook. This can setup per-process
1378 * p->p_emuldata or do any other per-process stuff an emulation needs.
1379 *
1380 * If we are executing process of different emulation than the
1381 * original forked process, call e_proc_exit() of the old emulation
1382 * first, then e_proc_exec() of new emulation. If the emulation is
1383 * same, the exec hook code should deallocate any old emulation
1384 * resources held previously by this process.
1385 */
1386 if (p->p_emul && p->p_emul->e_proc_exit
1387 && p->p_emul != epp->ep_esch->es_emul)
1388 (*p->p_emul->e_proc_exit)(p);
1389
1390 /*
1391 * This is now LWP 1.
1392 */
1393 mutex_enter(p->p_lock);
1394 p->p_nlwpid = 1;
1395 l->l_lid = 1;
1396 mutex_exit(p->p_lock);
1397
1398 /*
1399 * Call exec hook. Emulation code may NOT store reference to anything
1400 * from &pack.
1401 */
1402 if (epp->ep_esch->es_emul->e_proc_exec)
1403 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1404
1405 /* update p_emul, the old value is no longer needed */
1406 p->p_emul = epp->ep_esch->es_emul;
1407
1408 /* ...and the same for p_execsw */
1409 p->p_execsw = epp->ep_esch;
1410
1411 #ifdef __HAVE_SYSCALL_INTERN
1412 (*p->p_emul->e_syscall_intern)(p);
1413 #endif
1414 ktremul();
1415
1416 /* Allow new references from the debugger/procfs. */
1417 rw_exit(&p->p_reflock);
1418 if (!no_local_exec_lock)
1419 rw_exit(&exec_lock);
1420
1421 mutex_enter(proc_lock);
1422
1423 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1424 ksiginfo_t ksi;
1425
1426 KSI_INIT_EMPTY(&ksi);
1427 ksi.ksi_signo = SIGTRAP;
1428 ksi.ksi_lid = l->l_lid;
1429 kpsignal(p, &ksi, NULL);
1430 }
1431
1432 if (p->p_sflag & PS_STOPEXEC) {
1433 ksiginfoq_t kq;
1434
1435 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1436 p->p_pptr->p_nstopchild++;
1437 p->p_pptr->p_waited = 0;
1438 mutex_enter(p->p_lock);
1439 ksiginfo_queue_init(&kq);
1440 sigclearall(p, &contsigmask, &kq);
1441 lwp_lock(l);
1442 l->l_stat = LSSTOP;
1443 p->p_stat = SSTOP;
1444 p->p_nrlwps--;
1445 lwp_unlock(l);
1446 mutex_exit(p->p_lock);
1447 mutex_exit(proc_lock);
1448 lwp_lock(l);
1449 mi_switch(l);
1450 ksiginfo_queue_drain(&kq);
1451 KERNEL_LOCK(l->l_biglocks, l);
1452 } else {
1453 mutex_exit(proc_lock);
1454 }
1455
1456 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1457 pathbuf_destroy(data->ed_pathbuf);
1458 PNBUF_PUT(data->ed_resolvedpathbuf);
1459 DPRINTF(("%s finished\n", __func__));
1460 return EJUSTRETURN;
1461
1462 exec_abort:
1463 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1464 rw_exit(&p->p_reflock);
1465 if (!no_local_exec_lock)
1466 rw_exit(&exec_lock);
1467
1468 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1469 pathbuf_destroy(data->ed_pathbuf);
1470 PNBUF_PUT(data->ed_resolvedpathbuf);
1471
1472 /*
1473 * the old process doesn't exist anymore. exit gracefully.
1474 * get rid of the (new) address space we have created, if any, get rid
1475 * of our namei data and vnode, and exit noting failure
1476 */
1477 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1478 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1479
1480 exec_free_emul_arg(epp);
1481 pool_put(&exec_pool, data->ed_argp);
1482 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1483 if (epp->ep_emul_root != NULL)
1484 vrele(epp->ep_emul_root);
1485 if (epp->ep_interp != NULL)
1486 vrele(epp->ep_interp);
1487
1488 /* Acquire the sched-state mutex (exit1() will release it). */
1489 if (!is_spawn) {
1490 mutex_enter(p->p_lock);
1491 exit1(l, W_EXITCODE(error, SIGABRT));
1492 }
1493
1494 return error;
1495 }
1496
1497 int
1498 execve1(struct lwp *l, const char *path, char * const *args,
1499 char * const *envs, execve_fetch_element_t fetch_element)
1500 {
1501 struct execve_data data;
1502 int error;
1503
1504 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1505 if (error)
1506 return error;
1507 error = execve_runproc(l, &data, false, false);
1508 return error;
1509 }
1510
1511 /*
1512 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1513 * Those strings are located just after auxinfo.
1514 *
1515 * XXX rename this as copyoutargs()
1516 */
1517 int
1518 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1519 char **stackp, void *argp)
1520 {
1521 char **cpp, *dp, *sp;
1522 size_t len;
1523 void *nullp;
1524 long argc, envc;
1525 int error;
1526
1527 cpp = (char **)*stackp;
1528 nullp = NULL;
1529 argc = arginfo->ps_nargvstr;
1530 envc = arginfo->ps_nenvstr;
1531
1532 /* argc on stack is long */
1533 CTASSERT(sizeof(*cpp) == sizeof(argc));
1534
1535 dp = (char *)(cpp +
1536 1 + /* argc */
1537 argc + /* *argv[] */
1538 1 + /* \0 */
1539 envc + /* *env[] */
1540 1 + /* \0 */
1541 /* XXX auxinfo multiplied by ptr size? */
1542 pack->ep_esch->es_arglen); /* auxinfo */
1543 sp = argp;
1544
1545 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1546 COPYPRINTF("", cpp - 1, sizeof(argc));
1547 return error;
1548 }
1549
1550 /* XXX don't copy them out, remap them! */
1551 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1552
1553 for (; --argc >= 0; sp += len, dp += len) {
1554 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1555 COPYPRINTF("", cpp - 1, sizeof(dp));
1556 return error;
1557 }
1558 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1559 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1560 return error;
1561 }
1562 }
1563
1564 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1565 COPYPRINTF("", cpp - 1, sizeof(nullp));
1566 return error;
1567 }
1568
1569 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1570
1571 for (; --envc >= 0; sp += len, dp += len) {
1572 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1573 COPYPRINTF("", cpp - 1, sizeof(dp));
1574 return error;
1575 }
1576 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1577 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1578 return error;
1579 }
1580
1581 }
1582
1583 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1584 COPYPRINTF("", cpp - 1, sizeof(nullp));
1585 return error;
1586 }
1587
1588 *stackp = (char *)cpp;
1589 return 0;
1590 }
1591
1592
1593 /*
1594 * Add execsw[] entries.
1595 */
1596 int
1597 exec_add(struct execsw *esp, int count)
1598 {
1599 struct exec_entry *it;
1600 int i;
1601
1602 if (count == 0) {
1603 return 0;
1604 }
1605
1606 /* Check for duplicates. */
1607 rw_enter(&exec_lock, RW_WRITER);
1608 for (i = 0; i < count; i++) {
1609 LIST_FOREACH(it, &ex_head, ex_list) {
1610 /* assume unique (makecmds, probe_func, emulation) */
1611 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1612 it->ex_sw->u.elf_probe_func ==
1613 esp[i].u.elf_probe_func &&
1614 it->ex_sw->es_emul == esp[i].es_emul) {
1615 rw_exit(&exec_lock);
1616 return EEXIST;
1617 }
1618 }
1619 }
1620
1621 /* Allocate new entries. */
1622 for (i = 0; i < count; i++) {
1623 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1624 it->ex_sw = &esp[i];
1625 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1626 }
1627
1628 /* update execsw[] */
1629 exec_init(0);
1630 rw_exit(&exec_lock);
1631 return 0;
1632 }
1633
1634 /*
1635 * Remove execsw[] entry.
1636 */
1637 int
1638 exec_remove(struct execsw *esp, int count)
1639 {
1640 struct exec_entry *it, *next;
1641 int i;
1642 const struct proclist_desc *pd;
1643 proc_t *p;
1644
1645 if (count == 0) {
1646 return 0;
1647 }
1648
1649 /* Abort if any are busy. */
1650 rw_enter(&exec_lock, RW_WRITER);
1651 for (i = 0; i < count; i++) {
1652 mutex_enter(proc_lock);
1653 for (pd = proclists; pd->pd_list != NULL; pd++) {
1654 PROCLIST_FOREACH(p, pd->pd_list) {
1655 if (p->p_execsw == &esp[i]) {
1656 mutex_exit(proc_lock);
1657 rw_exit(&exec_lock);
1658 return EBUSY;
1659 }
1660 }
1661 }
1662 mutex_exit(proc_lock);
1663 }
1664
1665 /* None are busy, so remove them all. */
1666 for (i = 0; i < count; i++) {
1667 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1668 next = LIST_NEXT(it, ex_list);
1669 if (it->ex_sw == &esp[i]) {
1670 LIST_REMOVE(it, ex_list);
1671 kmem_free(it, sizeof(*it));
1672 break;
1673 }
1674 }
1675 }
1676
1677 /* update execsw[] */
1678 exec_init(0);
1679 rw_exit(&exec_lock);
1680 return 0;
1681 }
1682
1683 /*
1684 * Initialize exec structures. If init_boot is true, also does necessary
1685 * one-time initialization (it's called from main() that way).
1686 * Once system is multiuser, this should be called with exec_lock held,
1687 * i.e. via exec_{add|remove}().
1688 */
1689 int
1690 exec_init(int init_boot)
1691 {
1692 const struct execsw **sw;
1693 struct exec_entry *ex;
1694 SLIST_HEAD(,exec_entry) first;
1695 SLIST_HEAD(,exec_entry) any;
1696 SLIST_HEAD(,exec_entry) last;
1697 int i, sz;
1698
1699 if (init_boot) {
1700 /* do one-time initializations */
1701 rw_init(&exec_lock);
1702 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1703 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1704 "execargs", &exec_palloc, IPL_NONE);
1705 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1706 } else {
1707 KASSERT(rw_write_held(&exec_lock));
1708 }
1709
1710 /* Sort each entry onto the appropriate queue. */
1711 SLIST_INIT(&first);
1712 SLIST_INIT(&any);
1713 SLIST_INIT(&last);
1714 sz = 0;
1715 LIST_FOREACH(ex, &ex_head, ex_list) {
1716 switch(ex->ex_sw->es_prio) {
1717 case EXECSW_PRIO_FIRST:
1718 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1719 break;
1720 case EXECSW_PRIO_ANY:
1721 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1722 break;
1723 case EXECSW_PRIO_LAST:
1724 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1725 break;
1726 default:
1727 panic("%s", __func__);
1728 break;
1729 }
1730 sz++;
1731 }
1732
1733 /*
1734 * Create new execsw[]. Ensure we do not try a zero-sized
1735 * allocation.
1736 */
1737 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1738 i = 0;
1739 SLIST_FOREACH(ex, &first, ex_slist) {
1740 sw[i++] = ex->ex_sw;
1741 }
1742 SLIST_FOREACH(ex, &any, ex_slist) {
1743 sw[i++] = ex->ex_sw;
1744 }
1745 SLIST_FOREACH(ex, &last, ex_slist) {
1746 sw[i++] = ex->ex_sw;
1747 }
1748
1749 /* Replace old execsw[] and free used memory. */
1750 if (execsw != NULL) {
1751 kmem_free(__UNCONST(execsw),
1752 nexecs * sizeof(struct execsw *) + 1);
1753 }
1754 execsw = sw;
1755 nexecs = sz;
1756
1757 /* Figure out the maximum size of an exec header. */
1758 exec_maxhdrsz = sizeof(int);
1759 for (i = 0; i < nexecs; i++) {
1760 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1761 exec_maxhdrsz = execsw[i]->es_hdrsz;
1762 }
1763
1764 return 0;
1765 }
1766
1767 static int
1768 exec_sigcode_map(struct proc *p, const struct emul *e)
1769 {
1770 vaddr_t va;
1771 vsize_t sz;
1772 int error;
1773 struct uvm_object *uobj;
1774
1775 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1776
1777 if (e->e_sigobject == NULL || sz == 0) {
1778 return 0;
1779 }
1780
1781 /*
1782 * If we don't have a sigobject for this emulation, create one.
1783 *
1784 * sigobject is an anonymous memory object (just like SYSV shared
1785 * memory) that we keep a permanent reference to and that we map
1786 * in all processes that need this sigcode. The creation is simple,
1787 * we create an object, add a permanent reference to it, map it in
1788 * kernel space, copy out the sigcode to it and unmap it.
1789 * We map it with PROT_READ|PROT_EXEC into the process just
1790 * the way sys_mmap() would map it.
1791 */
1792
1793 uobj = *e->e_sigobject;
1794 if (uobj == NULL) {
1795 mutex_enter(&sigobject_lock);
1796 if ((uobj = *e->e_sigobject) == NULL) {
1797 uobj = uao_create(sz, 0);
1798 (*uobj->pgops->pgo_reference)(uobj);
1799 va = vm_map_min(kernel_map);
1800 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1801 uobj, 0, 0,
1802 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1803 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1804 printf("kernel mapping failed %d\n", error);
1805 (*uobj->pgops->pgo_detach)(uobj);
1806 mutex_exit(&sigobject_lock);
1807 return error;
1808 }
1809 memcpy((void *)va, e->e_sigcode, sz);
1810 #ifdef PMAP_NEED_PROCWR
1811 pmap_procwr(&proc0, va, sz);
1812 #endif
1813 uvm_unmap(kernel_map, va, va + round_page(sz));
1814 *e->e_sigobject = uobj;
1815 }
1816 mutex_exit(&sigobject_lock);
1817 }
1818
1819 /* Just a hint to uvm_map where to put it. */
1820 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1821 round_page(sz));
1822
1823 #ifdef __alpha__
1824 /*
1825 * Tru64 puts /sbin/loader at the end of user virtual memory,
1826 * which causes the above calculation to put the sigcode at
1827 * an invalid address. Put it just below the text instead.
1828 */
1829 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1830 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1831 }
1832 #endif
1833
1834 (*uobj->pgops->pgo_reference)(uobj);
1835 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1836 uobj, 0, 0,
1837 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1838 UVM_ADV_RANDOM, 0));
1839 if (error) {
1840 DPRINTF(("%s, %d: map %p "
1841 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1842 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1843 va, error));
1844 (*uobj->pgops->pgo_detach)(uobj);
1845 return error;
1846 }
1847 p->p_sigctx.ps_sigcode = (void *)va;
1848 return 0;
1849 }
1850
1851 /*
1852 * Release a refcount on spawn_exec_data and destroy memory, if this
1853 * was the last one.
1854 */
1855 static void
1856 spawn_exec_data_release(struct spawn_exec_data *data)
1857 {
1858 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1859 return;
1860
1861 cv_destroy(&data->sed_cv_child_ready);
1862 mutex_destroy(&data->sed_mtx_child);
1863
1864 if (data->sed_actions)
1865 posix_spawn_fa_free(data->sed_actions,
1866 data->sed_actions->len);
1867 if (data->sed_attrs)
1868 kmem_free(data->sed_attrs,
1869 sizeof(*data->sed_attrs));
1870 kmem_free(data, sizeof(*data));
1871 }
1872
1873 /*
1874 * A child lwp of a posix_spawn operation starts here and ends up in
1875 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1876 * manipulations in between.
1877 * The parent waits for the child, as it is not clear whether the child
1878 * will be able to acquire its own exec_lock. If it can, the parent can
1879 * be released early and continue running in parallel. If not (or if the
1880 * magic debug flag is passed in the scheduler attribute struct), the
1881 * child rides on the parent's exec lock until it is ready to return to
1882 * to userland - and only then releases the parent. This method loses
1883 * concurrency, but improves error reporting.
1884 */
1885 static void
1886 spawn_return(void *arg)
1887 {
1888 struct spawn_exec_data *spawn_data = arg;
1889 struct lwp *l = curlwp;
1890 int error, newfd;
1891 size_t i;
1892 const struct posix_spawn_file_actions_entry *fae;
1893 pid_t ppid;
1894 register_t retval;
1895 bool have_reflock;
1896 bool parent_is_waiting = true;
1897
1898 /*
1899 * Check if we can release parent early.
1900 * We either need to have no sed_attrs, or sed_attrs does not
1901 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1902 * safe access to the parent proc (passed in sed_parent).
1903 * We then try to get the exec_lock, and only if that works, we can
1904 * release the parent here already.
1905 */
1906 ppid = spawn_data->sed_parent->p_pid;
1907 if ((!spawn_data->sed_attrs
1908 || (spawn_data->sed_attrs->sa_flags
1909 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1910 && rw_tryenter(&exec_lock, RW_READER)) {
1911 parent_is_waiting = false;
1912 mutex_enter(&spawn_data->sed_mtx_child);
1913 cv_signal(&spawn_data->sed_cv_child_ready);
1914 mutex_exit(&spawn_data->sed_mtx_child);
1915 }
1916
1917 /* don't allow debugger access yet */
1918 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1919 have_reflock = true;
1920
1921 error = 0;
1922 /* handle posix_spawn_file_actions */
1923 if (spawn_data->sed_actions != NULL) {
1924 for (i = 0; i < spawn_data->sed_actions->len; i++) {
1925 fae = &spawn_data->sed_actions->fae[i];
1926 switch (fae->fae_action) {
1927 case FAE_OPEN:
1928 if (fd_getfile(fae->fae_fildes) != NULL) {
1929 error = fd_close(fae->fae_fildes);
1930 if (error)
1931 break;
1932 }
1933 error = fd_open(fae->fae_path, fae->fae_oflag,
1934 fae->fae_mode, &newfd);
1935 if (error)
1936 break;
1937 if (newfd != fae->fae_fildes) {
1938 error = dodup(l, newfd,
1939 fae->fae_fildes, 0, &retval);
1940 if (fd_getfile(newfd) != NULL)
1941 fd_close(newfd);
1942 }
1943 break;
1944 case FAE_DUP2:
1945 error = dodup(l, fae->fae_fildes,
1946 fae->fae_newfildes, 0, &retval);
1947 break;
1948 case FAE_CLOSE:
1949 if (fd_getfile(fae->fae_fildes) == NULL) {
1950 error = EBADF;
1951 break;
1952 }
1953 error = fd_close(fae->fae_fildes);
1954 break;
1955 }
1956 if (error)
1957 goto report_error;
1958 }
1959 }
1960
1961 /* handle posix_spawnattr */
1962 if (spawn_data->sed_attrs != NULL) {
1963 int ostat;
1964 struct sigaction sigact;
1965 sigact._sa_u._sa_handler = SIG_DFL;
1966 sigact.sa_flags = 0;
1967
1968 /*
1969 * set state to SSTOP so that this proc can be found by pid.
1970 * see proc_enterprp, do_sched_setparam below
1971 */
1972 ostat = l->l_proc->p_stat;
1973 l->l_proc->p_stat = SSTOP;
1974
1975 /* Set process group */
1976 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1977 pid_t mypid = l->l_proc->p_pid,
1978 pgrp = spawn_data->sed_attrs->sa_pgroup;
1979
1980 if (pgrp == 0)
1981 pgrp = mypid;
1982
1983 error = proc_enterpgrp(spawn_data->sed_parent,
1984 mypid, pgrp, false);
1985 if (error)
1986 goto report_error;
1987 }
1988
1989 /* Set scheduler policy */
1990 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1991 error = do_sched_setparam(l->l_proc->p_pid, 0,
1992 spawn_data->sed_attrs->sa_schedpolicy,
1993 &spawn_data->sed_attrs->sa_schedparam);
1994 else if (spawn_data->sed_attrs->sa_flags
1995 & POSIX_SPAWN_SETSCHEDPARAM) {
1996 error = do_sched_setparam(ppid, 0,
1997 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
1998 }
1999 if (error)
2000 goto report_error;
2001
2002 /* Reset user ID's */
2003 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2004 error = do_setresuid(l, -1,
2005 kauth_cred_getgid(l->l_cred), -1,
2006 ID_E_EQ_R | ID_E_EQ_S);
2007 if (error)
2008 goto report_error;
2009 error = do_setresuid(l, -1,
2010 kauth_cred_getuid(l->l_cred), -1,
2011 ID_E_EQ_R | ID_E_EQ_S);
2012 if (error)
2013 goto report_error;
2014 }
2015
2016 /* Set signal masks/defaults */
2017 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2018 mutex_enter(l->l_proc->p_lock);
2019 error = sigprocmask1(l, SIG_SETMASK,
2020 &spawn_data->sed_attrs->sa_sigmask, NULL);
2021 mutex_exit(l->l_proc->p_lock);
2022 if (error)
2023 goto report_error;
2024 }
2025
2026 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2027 /*
2028 * The following sigaction call is using a sigaction
2029 * version 0 trampoline which is in the compatibility
2030 * code only. This is not a problem because for SIG_DFL
2031 * and SIG_IGN, the trampolines are now ignored. If they
2032 * were not, this would be a problem because we are
2033 * holding the exec_lock, and the compat code needs
2034 * to do the same in order to replace the trampoline
2035 * code of the process.
2036 */
2037 for (i = 1; i <= NSIG; i++) {
2038 if (sigismember(
2039 &spawn_data->sed_attrs->sa_sigdefault, i))
2040 sigaction1(l, i, &sigact, NULL, NULL,
2041 0);
2042 }
2043 }
2044 l->l_proc->p_stat = ostat;
2045 }
2046
2047 /* now do the real exec */
2048 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2049 true);
2050 have_reflock = false;
2051 if (error == EJUSTRETURN)
2052 error = 0;
2053 else if (error)
2054 goto report_error;
2055
2056 if (parent_is_waiting) {
2057 mutex_enter(&spawn_data->sed_mtx_child);
2058 cv_signal(&spawn_data->sed_cv_child_ready);
2059 mutex_exit(&spawn_data->sed_mtx_child);
2060 }
2061
2062 /* release our refcount on the data */
2063 spawn_exec_data_release(spawn_data);
2064
2065 /* and finally: leave to userland for the first time */
2066 cpu_spawn_return(l);
2067
2068 /* NOTREACHED */
2069 return;
2070
2071 report_error:
2072 if (have_reflock) {
2073 /*
2074 * We have not passed through execve_runproc(),
2075 * which would have released the p_reflock and also
2076 * taken ownership of the sed_exec part of spawn_data,
2077 * so release/free both here.
2078 */
2079 rw_exit(&l->l_proc->p_reflock);
2080 execve_free_data(&spawn_data->sed_exec);
2081 }
2082
2083 if (parent_is_waiting) {
2084 /* pass error to parent */
2085 mutex_enter(&spawn_data->sed_mtx_child);
2086 spawn_data->sed_error = error;
2087 cv_signal(&spawn_data->sed_cv_child_ready);
2088 mutex_exit(&spawn_data->sed_mtx_child);
2089 } else {
2090 rw_exit(&exec_lock);
2091 }
2092
2093 /* release our refcount on the data */
2094 spawn_exec_data_release(spawn_data);
2095
2096 /* done, exit */
2097 mutex_enter(l->l_proc->p_lock);
2098 /*
2099 * Posix explicitly asks for an exit code of 127 if we report
2100 * errors from the child process - so, unfortunately, there
2101 * is no way to report a more exact error code.
2102 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2103 * flag bit in the attrp argument to posix_spawn(2), see above.
2104 */
2105 exit1(l, W_EXITCODE(127, 0));
2106 }
2107
2108 void
2109 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2110 {
2111
2112 for (size_t i = 0; i < len; i++) {
2113 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2114 if (fae->fae_action != FAE_OPEN)
2115 continue;
2116 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2117 }
2118 if (fa->len > 0)
2119 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2120 kmem_free(fa, sizeof(*fa));
2121 }
2122
2123 static int
2124 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2125 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2126 {
2127 struct posix_spawn_file_actions *fa;
2128 struct posix_spawn_file_actions_entry *fae;
2129 char *pbuf = NULL;
2130 int error;
2131 size_t i = 0;
2132
2133 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2134 error = copyin(ufa, fa, sizeof(*fa));
2135 if (error || fa->len == 0) {
2136 kmem_free(fa, sizeof(*fa));
2137 return error; /* 0 if not an error, and len == 0 */
2138 }
2139
2140 if (fa->len > lim) {
2141 kmem_free(fa, sizeof(*fa));
2142 return EINVAL;
2143 }
2144
2145 fa->size = fa->len;
2146 size_t fal = fa->len * sizeof(*fae);
2147 fae = fa->fae;
2148 fa->fae = kmem_alloc(fal, KM_SLEEP);
2149 error = copyin(fae, fa->fae, fal);
2150 if (error)
2151 goto out;
2152
2153 pbuf = PNBUF_GET();
2154 for (; i < fa->len; i++) {
2155 fae = &fa->fae[i];
2156 if (fae->fae_action != FAE_OPEN)
2157 continue;
2158 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2159 if (error)
2160 goto out;
2161 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2162 memcpy(fae->fae_path, pbuf, fal);
2163 }
2164 PNBUF_PUT(pbuf);
2165
2166 *fap = fa;
2167 return 0;
2168 out:
2169 if (pbuf)
2170 PNBUF_PUT(pbuf);
2171 posix_spawn_fa_free(fa, i);
2172 return error;
2173 }
2174
2175 int
2176 check_posix_spawn(struct lwp *l1)
2177 {
2178 int error, tnprocs, count;
2179 uid_t uid;
2180 struct proc *p1;
2181
2182 p1 = l1->l_proc;
2183 uid = kauth_cred_getuid(l1->l_cred);
2184 tnprocs = atomic_inc_uint_nv(&nprocs);
2185
2186 /*
2187 * Although process entries are dynamically created, we still keep
2188 * a global limit on the maximum number we will create.
2189 */
2190 if (__predict_false(tnprocs >= maxproc))
2191 error = -1;
2192 else
2193 error = kauth_authorize_process(l1->l_cred,
2194 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2195
2196 if (error) {
2197 atomic_dec_uint(&nprocs);
2198 return EAGAIN;
2199 }
2200
2201 /*
2202 * Enforce limits.
2203 */
2204 count = chgproccnt(uid, 1);
2205 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2206 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2207 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2208 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2209 (void)chgproccnt(uid, -1);
2210 atomic_dec_uint(&nprocs);
2211 return EAGAIN;
2212 }
2213
2214 return 0;
2215 }
2216
2217 int
2218 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2219 struct posix_spawn_file_actions *fa,
2220 struct posix_spawnattr *sa,
2221 char *const *argv, char *const *envp,
2222 execve_fetch_element_t fetch)
2223 {
2224
2225 struct proc *p1, *p2;
2226 struct lwp *l2;
2227 int error;
2228 struct spawn_exec_data *spawn_data;
2229 vaddr_t uaddr;
2230 pid_t pid;
2231 bool have_exec_lock = false;
2232
2233 p1 = l1->l_proc;
2234
2235 /* Allocate and init spawn_data */
2236 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2237 spawn_data->sed_refcnt = 1; /* only parent so far */
2238 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2239 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2240 mutex_enter(&spawn_data->sed_mtx_child);
2241
2242 /*
2243 * Do the first part of the exec now, collect state
2244 * in spawn_data.
2245 */
2246 error = execve_loadvm(l1, path, argv,
2247 envp, fetch, &spawn_data->sed_exec);
2248 if (error == EJUSTRETURN)
2249 error = 0;
2250 else if (error)
2251 goto error_exit;
2252
2253 have_exec_lock = true;
2254
2255 /*
2256 * Allocate virtual address space for the U-area now, while it
2257 * is still easy to abort the fork operation if we're out of
2258 * kernel virtual address space.
2259 */
2260 uaddr = uvm_uarea_alloc();
2261 if (__predict_false(uaddr == 0)) {
2262 error = ENOMEM;
2263 goto error_exit;
2264 }
2265
2266 /*
2267 * Allocate new proc. Borrow proc0 vmspace for it, we will
2268 * replace it with its own before returning to userland
2269 * in the child.
2270 * This is a point of no return, we will have to go through
2271 * the child proc to properly clean it up past this point.
2272 */
2273 p2 = proc_alloc();
2274 pid = p2->p_pid;
2275
2276 /*
2277 * Make a proc table entry for the new process.
2278 * Start by zeroing the section of proc that is zero-initialized,
2279 * then copy the section that is copied directly from the parent.
2280 */
2281 memset(&p2->p_startzero, 0,
2282 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2283 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2284 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2285 p2->p_vmspace = proc0.p_vmspace;
2286
2287 TAILQ_INIT(&p2->p_sigpend.sp_info);
2288
2289 LIST_INIT(&p2->p_lwps);
2290 LIST_INIT(&p2->p_sigwaiters);
2291
2292 /*
2293 * Duplicate sub-structures as needed.
2294 * Increase reference counts on shared objects.
2295 * Inherit flags we want to keep. The flags related to SIGCHLD
2296 * handling are important in order to keep a consistent behaviour
2297 * for the child after the fork. If we are a 32-bit process, the
2298 * child will be too.
2299 */
2300 p2->p_flag =
2301 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2302 p2->p_emul = p1->p_emul;
2303 p2->p_execsw = p1->p_execsw;
2304
2305 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2306 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2307 rw_init(&p2->p_reflock);
2308 cv_init(&p2->p_waitcv, "wait");
2309 cv_init(&p2->p_lwpcv, "lwpwait");
2310
2311 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2312
2313 kauth_proc_fork(p1, p2);
2314
2315 p2->p_raslist = NULL;
2316 p2->p_fd = fd_copy();
2317
2318 /* XXX racy */
2319 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2320
2321 p2->p_cwdi = cwdinit();
2322
2323 /*
2324 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2325 * we just need increase pl_refcnt.
2326 */
2327 if (!p1->p_limit->pl_writeable) {
2328 lim_addref(p1->p_limit);
2329 p2->p_limit = p1->p_limit;
2330 } else {
2331 p2->p_limit = lim_copy(p1->p_limit);
2332 }
2333
2334 p2->p_lflag = 0;
2335 p2->p_sflag = 0;
2336 p2->p_slflag = 0;
2337 p2->p_pptr = p1;
2338 p2->p_ppid = p1->p_pid;
2339 LIST_INIT(&p2->p_children);
2340
2341 p2->p_aio = NULL;
2342
2343 #ifdef KTRACE
2344 /*
2345 * Copy traceflag and tracefile if enabled.
2346 * If not inherited, these were zeroed above.
2347 */
2348 if (p1->p_traceflag & KTRFAC_INHERIT) {
2349 mutex_enter(&ktrace_lock);
2350 p2->p_traceflag = p1->p_traceflag;
2351 if ((p2->p_tracep = p1->p_tracep) != NULL)
2352 ktradref(p2);
2353 mutex_exit(&ktrace_lock);
2354 }
2355 #endif
2356
2357 /*
2358 * Create signal actions for the child process.
2359 */
2360 p2->p_sigacts = sigactsinit(p1, 0);
2361 mutex_enter(p1->p_lock);
2362 p2->p_sflag |=
2363 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2364 sched_proc_fork(p1, p2);
2365 mutex_exit(p1->p_lock);
2366
2367 p2->p_stflag = p1->p_stflag;
2368
2369 /*
2370 * p_stats.
2371 * Copy parts of p_stats, and zero out the rest.
2372 */
2373 p2->p_stats = pstatscopy(p1->p_stats);
2374
2375 /* copy over machdep flags to the new proc */
2376 cpu_proc_fork(p1, p2);
2377
2378 /*
2379 * Prepare remaining parts of spawn data
2380 */
2381 spawn_data->sed_actions = fa;
2382 spawn_data->sed_attrs = sa;
2383
2384 spawn_data->sed_parent = p1;
2385
2386 /* create LWP */
2387 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2388 &l2, l1->l_class);
2389 l2->l_ctxlink = NULL; /* reset ucontext link */
2390
2391 /*
2392 * Copy the credential so other references don't see our changes.
2393 * Test to see if this is necessary first, since in the common case
2394 * we won't need a private reference.
2395 */
2396 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2397 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2398 l2->l_cred = kauth_cred_copy(l2->l_cred);
2399 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2400 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2401 }
2402
2403 /* Update the master credentials. */
2404 if (l2->l_cred != p2->p_cred) {
2405 kauth_cred_t ocred;
2406
2407 kauth_cred_hold(l2->l_cred);
2408 mutex_enter(p2->p_lock);
2409 ocred = p2->p_cred;
2410 p2->p_cred = l2->l_cred;
2411 mutex_exit(p2->p_lock);
2412 kauth_cred_free(ocred);
2413 }
2414
2415 *child_ok = true;
2416 spawn_data->sed_refcnt = 2; /* child gets it as well */
2417 #if 0
2418 l2->l_nopreempt = 1; /* start it non-preemptable */
2419 #endif
2420
2421 /*
2422 * It's now safe for the scheduler and other processes to see the
2423 * child process.
2424 */
2425 mutex_enter(proc_lock);
2426
2427 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2428 p2->p_lflag |= PL_CONTROLT;
2429
2430 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2431 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2432
2433 LIST_INSERT_AFTER(p1, p2, p_pglist);
2434 LIST_INSERT_HEAD(&allproc, p2, p_list);
2435
2436 p2->p_trace_enabled = trace_is_enabled(p2);
2437 #ifdef __HAVE_SYSCALL_INTERN
2438 (*p2->p_emul->e_syscall_intern)(p2);
2439 #endif
2440
2441 /*
2442 * Make child runnable, set start time, and add to run queue except
2443 * if the parent requested the child to start in SSTOP state.
2444 */
2445 mutex_enter(p2->p_lock);
2446
2447 getmicrotime(&p2->p_stats->p_start);
2448
2449 lwp_lock(l2);
2450 KASSERT(p2->p_nrlwps == 1);
2451 p2->p_nrlwps = 1;
2452 p2->p_stat = SACTIVE;
2453 l2->l_stat = LSRUN;
2454 sched_enqueue(l2, false);
2455 lwp_unlock(l2);
2456
2457 mutex_exit(p2->p_lock);
2458 mutex_exit(proc_lock);
2459
2460 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2461 error = spawn_data->sed_error;
2462 mutex_exit(&spawn_data->sed_mtx_child);
2463 spawn_exec_data_release(spawn_data);
2464
2465 rw_exit(&p1->p_reflock);
2466 rw_exit(&exec_lock);
2467 have_exec_lock = false;
2468
2469 *pid_res = pid;
2470 return error;
2471
2472 error_exit:
2473 if (have_exec_lock) {
2474 execve_free_data(&spawn_data->sed_exec);
2475 rw_exit(&p1->p_reflock);
2476 rw_exit(&exec_lock);
2477 }
2478 mutex_exit(&spawn_data->sed_mtx_child);
2479 spawn_exec_data_release(spawn_data);
2480
2481 return error;
2482 }
2483
2484 int
2485 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2486 register_t *retval)
2487 {
2488 /* {
2489 syscallarg(pid_t *) pid;
2490 syscallarg(const char *) path;
2491 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2492 syscallarg(const struct posix_spawnattr *) attrp;
2493 syscallarg(char *const *) argv;
2494 syscallarg(char *const *) envp;
2495 } */
2496
2497 int error;
2498 struct posix_spawn_file_actions *fa = NULL;
2499 struct posix_spawnattr *sa = NULL;
2500 pid_t pid;
2501 bool child_ok = false;
2502 rlim_t max_fileactions;
2503 proc_t *p = l1->l_proc;
2504
2505 error = check_posix_spawn(l1);
2506 if (error) {
2507 *retval = error;
2508 return 0;
2509 }
2510
2511 /* copy in file_actions struct */
2512 if (SCARG(uap, file_actions) != NULL) {
2513 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2514 maxfiles);
2515 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2516 max_fileactions);
2517 if (error)
2518 goto error_exit;
2519 }
2520
2521 /* copyin posix_spawnattr struct */
2522 if (SCARG(uap, attrp) != NULL) {
2523 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2524 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2525 if (error)
2526 goto error_exit;
2527 }
2528
2529 /*
2530 * Do the spawn
2531 */
2532 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2533 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2534 if (error)
2535 goto error_exit;
2536
2537 if (error == 0 && SCARG(uap, pid) != NULL)
2538 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2539
2540 *retval = error;
2541 return 0;
2542
2543 error_exit:
2544 if (!child_ok) {
2545 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2546 atomic_dec_uint(&nprocs);
2547
2548 if (sa)
2549 kmem_free(sa, sizeof(*sa));
2550 if (fa)
2551 posix_spawn_fa_free(fa, fa->len);
2552 }
2553
2554 *retval = error;
2555 return 0;
2556 }
2557
2558 void
2559 exec_free_emul_arg(struct exec_package *epp)
2560 {
2561 if (epp->ep_emul_arg_free != NULL) {
2562 KASSERT(epp->ep_emul_arg != NULL);
2563 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2564 epp->ep_emul_arg_free = NULL;
2565 epp->ep_emul_arg = NULL;
2566 } else {
2567 KASSERT(epp->ep_emul_arg == NULL);
2568 }
2569 }
2570