kern_exec.c revision 1.391 1 /* $NetBSD: kern_exec.c,v 1.391 2014/04/13 06:03:49 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.391 2014/04/13 06:03:49 uebayasi Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108
109 #include <uvm/uvm_extern.h>
110
111 #include <machine/reg.h>
112
113 #include <compat/common/compat_util.h>
114
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USE_TOPDOWN_VM
117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122
123 struct execve_data;
124
125 static int copyinargs(struct execve_data * restrict, char * const *,
126 char * const *, execve_fetch_element_t, char **);
127 static int exec_sigcode_map(struct proc *, const struct emul *);
128
129 #ifdef DEBUG_EXEC
130 #define DPRINTF(a) printf a
131 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
132 __LINE__, (s), (a), (b))
133 static void dump_vmcmds(const struct exec_package * const, size_t, int);
134 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
135 #else
136 #define DPRINTF(a)
137 #define COPYPRINTF(s, a, b)
138 #define DUMPVMCMDS(p, x, e) do {} while (0)
139 #endif /* DEBUG_EXEC */
140
141 /*
142 * DTrace SDT provider definitions
143 */
144 SDT_PROBE_DEFINE(proc,,,exec,exec,
145 "char *", NULL,
146 NULL, NULL, NULL, NULL,
147 NULL, NULL, NULL, NULL);
148 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
149 "char *", NULL,
150 NULL, NULL, NULL, NULL,
151 NULL, NULL, NULL, NULL);
152 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
153 "int", NULL,
154 NULL, NULL, NULL, NULL,
155 NULL, NULL, NULL, NULL);
156
157 /*
158 * Exec function switch:
159 *
160 * Note that each makecmds function is responsible for loading the
161 * exec package with the necessary functions for any exec-type-specific
162 * handling.
163 *
164 * Functions for specific exec types should be defined in their own
165 * header file.
166 */
167 static const struct execsw **execsw = NULL;
168 static int nexecs;
169
170 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
171
172 /* list of dynamically loaded execsw entries */
173 static LIST_HEAD(execlist_head, exec_entry) ex_head =
174 LIST_HEAD_INITIALIZER(ex_head);
175 struct exec_entry {
176 LIST_ENTRY(exec_entry) ex_list;
177 SLIST_ENTRY(exec_entry) ex_slist;
178 const struct execsw *ex_sw;
179 };
180
181 #ifndef __HAVE_SYSCALL_INTERN
182 void syscall(void);
183 #endif
184
185 /* NetBSD emul struct */
186 struct emul emul_netbsd = {
187 .e_name = "netbsd",
188 #ifdef EMUL_NATIVEROOT
189 .e_path = EMUL_NATIVEROOT,
190 #else
191 .e_path = NULL,
192 #endif
193 #ifndef __HAVE_MINIMAL_EMUL
194 .e_flags = EMUL_HAS_SYS___syscall,
195 .e_errno = NULL,
196 .e_nosys = SYS_syscall,
197 .e_nsysent = SYS_NSYSENT,
198 #endif
199 .e_sysent = sysent,
200 #ifdef SYSCALL_DEBUG
201 .e_syscallnames = syscallnames,
202 #else
203 .e_syscallnames = NULL,
204 #endif
205 .e_sendsig = sendsig,
206 .e_trapsignal = trapsignal,
207 .e_tracesig = NULL,
208 .e_sigcode = NULL,
209 .e_esigcode = NULL,
210 .e_sigobject = NULL,
211 .e_setregs = setregs,
212 .e_proc_exec = NULL,
213 .e_proc_fork = NULL,
214 .e_proc_exit = NULL,
215 .e_lwp_fork = NULL,
216 .e_lwp_exit = NULL,
217 #ifdef __HAVE_SYSCALL_INTERN
218 .e_syscall_intern = syscall_intern,
219 #else
220 .e_syscall = syscall,
221 #endif
222 .e_sysctlovly = NULL,
223 .e_fault = NULL,
224 .e_vm_default_addr = uvm_default_mapaddr,
225 .e_usertrap = NULL,
226 .e_ucsize = sizeof(ucontext_t),
227 .e_startlwp = startlwp
228 };
229
230 /*
231 * Exec lock. Used to control access to execsw[] structures.
232 * This must not be static so that netbsd32 can access it, too.
233 */
234 krwlock_t exec_lock;
235
236 static kmutex_t sigobject_lock;
237
238 /*
239 * Data used between a loadvm and execve part of an "exec" operation
240 */
241 struct execve_data {
242 struct exec_package ed_pack;
243 struct pathbuf *ed_pathbuf;
244 struct vattr ed_attr;
245 struct ps_strings ed_arginfo;
246 char *ed_argp;
247 const char *ed_pathstring;
248 char *ed_resolvedpathbuf;
249 size_t ed_ps_strings_sz;
250 int ed_szsigcode;
251 long ed_argc;
252 long ed_envc;
253 };
254
255 /*
256 * data passed from parent lwp to child during a posix_spawn()
257 */
258 struct spawn_exec_data {
259 struct execve_data sed_exec;
260 struct posix_spawn_file_actions
261 *sed_actions;
262 struct posix_spawnattr *sed_attrs;
263 struct proc *sed_parent;
264 kcondvar_t sed_cv_child_ready;
265 kmutex_t sed_mtx_child;
266 int sed_error;
267 volatile uint32_t sed_refcnt;
268 };
269
270 static void *
271 exec_pool_alloc(struct pool *pp, int flags)
272 {
273
274 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
275 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
276 }
277
278 static void
279 exec_pool_free(struct pool *pp, void *addr)
280 {
281
282 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
283 }
284
285 static struct pool exec_pool;
286
287 static struct pool_allocator exec_palloc = {
288 .pa_alloc = exec_pool_alloc,
289 .pa_free = exec_pool_free,
290 .pa_pagesz = NCARGS
291 };
292
293 /*
294 * check exec:
295 * given an "executable" described in the exec package's namei info,
296 * see what we can do with it.
297 *
298 * ON ENTRY:
299 * exec package with appropriate namei info
300 * lwp pointer of exec'ing lwp
301 * NO SELF-LOCKED VNODES
302 *
303 * ON EXIT:
304 * error: nothing held, etc. exec header still allocated.
305 * ok: filled exec package, executable's vnode (unlocked).
306 *
307 * EXEC SWITCH ENTRY:
308 * Locked vnode to check, exec package, proc.
309 *
310 * EXEC SWITCH EXIT:
311 * ok: return 0, filled exec package, executable's vnode (unlocked).
312 * error: destructive:
313 * everything deallocated execept exec header.
314 * non-destructive:
315 * error code, executable's vnode (unlocked),
316 * exec header unmodified.
317 */
318 int
319 /*ARGSUSED*/
320 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
321 {
322 int error, i;
323 struct vnode *vp;
324 struct nameidata nd;
325 size_t resid;
326
327 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
328
329 /* first get the vnode */
330 if ((error = namei(&nd)) != 0)
331 return error;
332 epp->ep_vp = vp = nd.ni_vp;
333 /* normally this can't fail */
334 if ((error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL)))
335 goto bad1;
336
337 #ifdef DIAGNOSTIC
338 /* paranoia (take this out once namei stuff stabilizes) */
339 memset(nd.ni_pnbuf, '~', PATH_MAX);
340 #endif
341
342 /* check access and type */
343 if (vp->v_type != VREG) {
344 error = EACCES;
345 goto bad1;
346 }
347 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
348 goto bad1;
349
350 /* get attributes */
351 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
352 goto bad1;
353
354 /* Check mount point */
355 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
356 error = EACCES;
357 goto bad1;
358 }
359 if (vp->v_mount->mnt_flag & MNT_NOSUID)
360 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
361
362 /* try to open it */
363 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
364 goto bad1;
365
366 /* unlock vp, since we need it unlocked from here on out. */
367 VOP_UNLOCK(vp);
368
369 #if NVERIEXEC > 0
370 error = veriexec_verify(l, vp, epp->ep_resolvedname,
371 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
372 NULL);
373 if (error)
374 goto bad2;
375 #endif /* NVERIEXEC > 0 */
376
377 #ifdef PAX_SEGVGUARD
378 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
379 if (error)
380 goto bad2;
381 #endif /* PAX_SEGVGUARD */
382
383 /* now we have the file, get the exec header */
384 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
385 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
386 if (error)
387 goto bad2;
388 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
389
390 /*
391 * Set up default address space limits. Can be overridden
392 * by individual exec packages.
393 *
394 * XXX probably should be all done in the exec packages.
395 */
396 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
397 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
398 /*
399 * set up the vmcmds for creation of the process
400 * address space
401 */
402 error = ENOEXEC;
403 for (i = 0; i < nexecs; i++) {
404 int newerror;
405
406 epp->ep_esch = execsw[i];
407 newerror = (*execsw[i]->es_makecmds)(l, epp);
408
409 if (!newerror) {
410 /* Seems ok: check that entry point is not too high */
411 if (epp->ep_entry > epp->ep_vm_maxaddr) {
412 #ifdef DIAGNOSTIC
413 printf("%s: rejecting %p due to "
414 "too high entry address (> %p)\n",
415 __func__, (void *)epp->ep_entry,
416 (void *)epp->ep_vm_maxaddr);
417 #endif
418 error = ENOEXEC;
419 break;
420 }
421 /* Seems ok: check that entry point is not too low */
422 if (epp->ep_entry < epp->ep_vm_minaddr) {
423 #ifdef DIAGNOSTIC
424 printf("%s: rejecting %p due to "
425 "too low entry address (< %p)\n",
426 __func__, (void *)epp->ep_entry,
427 (void *)epp->ep_vm_minaddr);
428 #endif
429 error = ENOEXEC;
430 break;
431 }
432
433 /* check limits */
434 if ((epp->ep_tsize > MAXTSIZ) ||
435 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
436 [RLIMIT_DATA].rlim_cur)) {
437 #ifdef DIAGNOSTIC
438 printf("%s: rejecting due to "
439 "limits (t=%llu > %llu || d=%llu > %llu)\n",
440 __func__,
441 (unsigned long long)epp->ep_tsize,
442 (unsigned long long)MAXTSIZ,
443 (unsigned long long)epp->ep_dsize,
444 (unsigned long long)
445 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
446 #endif
447 error = ENOMEM;
448 break;
449 }
450 return 0;
451 }
452
453 if (epp->ep_emul_root != NULL) {
454 vrele(epp->ep_emul_root);
455 epp->ep_emul_root = NULL;
456 }
457 if (epp->ep_interp != NULL) {
458 vrele(epp->ep_interp);
459 epp->ep_interp = NULL;
460 }
461
462 /* make sure the first "interesting" error code is saved. */
463 if (error == ENOEXEC)
464 error = newerror;
465
466 if (epp->ep_flags & EXEC_DESTR)
467 /* Error from "#!" code, tidied up by recursive call */
468 return error;
469 }
470
471 /* not found, error */
472
473 /*
474 * free any vmspace-creation commands,
475 * and release their references
476 */
477 kill_vmcmds(&epp->ep_vmcmds);
478
479 bad2:
480 /*
481 * close and release the vnode, restore the old one, free the
482 * pathname buf, and punt.
483 */
484 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
485 VOP_CLOSE(vp, FREAD, l->l_cred);
486 vput(vp);
487 return error;
488
489 bad1:
490 /*
491 * free the namei pathname buffer, and put the vnode
492 * (which we don't yet have open).
493 */
494 vput(vp); /* was still locked */
495 return error;
496 }
497
498 #ifdef __MACHINE_STACK_GROWS_UP
499 #define STACK_PTHREADSPACE NBPG
500 #else
501 #define STACK_PTHREADSPACE 0
502 #endif
503
504 static int
505 execve_fetch_element(char * const *array, size_t index, char **value)
506 {
507 return copyin(array + index, value, sizeof(*value));
508 }
509
510 /*
511 * exec system call
512 */
513 int
514 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
515 {
516 /* {
517 syscallarg(const char *) path;
518 syscallarg(char * const *) argp;
519 syscallarg(char * const *) envp;
520 } */
521
522 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
523 SCARG(uap, envp), execve_fetch_element);
524 }
525
526 int
527 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
528 register_t *retval)
529 {
530 /* {
531 syscallarg(int) fd;
532 syscallarg(char * const *) argp;
533 syscallarg(char * const *) envp;
534 } */
535
536 return ENOSYS;
537 }
538
539 /*
540 * Load modules to try and execute an image that we do not understand.
541 * If no execsw entries are present, we load those likely to be needed
542 * in order to run native images only. Otherwise, we autoload all
543 * possible modules that could let us run the binary. XXX lame
544 */
545 static void
546 exec_autoload(void)
547 {
548 #ifdef MODULAR
549 static const char * const native[] = {
550 "exec_elf32",
551 "exec_elf64",
552 "exec_script",
553 NULL
554 };
555 static const char * const compat[] = {
556 "exec_elf32",
557 "exec_elf64",
558 "exec_script",
559 "exec_aout",
560 "exec_coff",
561 "exec_ecoff",
562 "compat_aoutm68k",
563 "compat_freebsd",
564 "compat_ibcs2",
565 "compat_linux",
566 "compat_linux32",
567 "compat_netbsd32",
568 "compat_sunos",
569 "compat_sunos32",
570 "compat_svr4",
571 "compat_svr4_32",
572 "compat_ultrix",
573 NULL
574 };
575 char const * const *list;
576 int i;
577
578 list = (nexecs == 0 ? native : compat);
579 for (i = 0; list[i] != NULL; i++) {
580 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
581 continue;
582 }
583 yield();
584 }
585 #endif
586 }
587
588 static int
589 execve_loadvm(struct lwp *l, const char *path, char * const *args,
590 char * const *envs, execve_fetch_element_t fetch_element,
591 struct execve_data * restrict data)
592 {
593 struct exec_package * const epp = &data->ed_pack;
594 int error;
595 struct proc *p;
596 char *dp;
597 u_int modgen;
598
599 KASSERT(data != NULL);
600
601 p = l->l_proc;
602 modgen = 0;
603
604 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
605
606 /*
607 * Check if we have exceeded our number of processes limit.
608 * This is so that we handle the case where a root daemon
609 * forked, ran setuid to become the desired user and is trying
610 * to exec. The obvious place to do the reference counting check
611 * is setuid(), but we don't do the reference counting check there
612 * like other OS's do because then all the programs that use setuid()
613 * must be modified to check the return code of setuid() and exit().
614 * It is dangerous to make setuid() fail, because it fails open and
615 * the program will continue to run as root. If we make it succeed
616 * and return an error code, again we are not enforcing the limit.
617 * The best place to enforce the limit is here, when the process tries
618 * to execute a new image, because eventually the process will need
619 * to call exec in order to do something useful.
620 */
621 retry:
622 if (p->p_flag & PK_SUGID) {
623 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
624 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
625 &p->p_rlimit[RLIMIT_NPROC],
626 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
627 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
628 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
629 return EAGAIN;
630 }
631
632 /*
633 * Drain existing references and forbid new ones. The process
634 * should be left alone until we're done here. This is necessary
635 * to avoid race conditions - e.g. in ptrace() - that might allow
636 * a local user to illicitly obtain elevated privileges.
637 */
638 rw_enter(&p->p_reflock, RW_WRITER);
639
640 /*
641 * Init the namei data to point the file user's program name.
642 * This is done here rather than in check_exec(), so that it's
643 * possible to override this settings if any of makecmd/probe
644 * functions call check_exec() recursively - for example,
645 * see exec_script_makecmds().
646 */
647 error = pathbuf_copyin(path, &data->ed_pathbuf);
648 if (error) {
649 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
650 path, error));
651 goto clrflg;
652 }
653 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
654 data->ed_resolvedpathbuf = PNBUF_GET();
655
656 /*
657 * initialize the fields of the exec package.
658 */
659 epp->ep_name = path;
660 epp->ep_kname = data->ed_pathstring;
661 epp->ep_resolvedname = data->ed_resolvedpathbuf;
662 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
663 epp->ep_hdrlen = exec_maxhdrsz;
664 epp->ep_hdrvalid = 0;
665 epp->ep_emul_arg = NULL;
666 epp->ep_emul_arg_free = NULL;
667 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
668 epp->ep_vap = &data->ed_attr;
669 epp->ep_flags = 0;
670 MD_TOPDOWN_INIT(epp);
671 epp->ep_emul_root = NULL;
672 epp->ep_interp = NULL;
673 epp->ep_esch = NULL;
674 epp->ep_pax_flags = 0;
675 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
676
677 rw_enter(&exec_lock, RW_READER);
678
679 /* see if we can run it. */
680 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
681 if (error != ENOENT) {
682 DPRINTF(("%s: check exec failed %d\n",
683 __func__, error));
684 }
685 goto freehdr;
686 }
687
688 /* allocate an argument buffer */
689 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
690 KASSERT(data->ed_argp != NULL);
691 dp = data->ed_argp;
692
693 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
694 goto bad;
695 }
696
697 /*
698 * Calculate the new stack size.
699 */
700
701 const size_t nargenvptrs =
702 data->ed_argc + /* char *argv[] */
703 1 + /* \0 */
704 data->ed_envc + /* char *env[] */
705 1 + /* \0 */
706 epp->ep_esch->es_arglen; /* auxinfo */
707
708 const size_t ptrsz = (epp->ep_flags & EXEC_32) ?
709 sizeof(int) : sizeof(char *);
710
711 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
712
713 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
714 epp->ep_esch->es_emul->e_sigcode;
715
716 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
717 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
718
719 const size_t aslrgap =
720 #ifdef PAX_ASLR
721 pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0;
722 #else
723 0;
724 #endif
725
726 #ifdef __MACHINE_STACK_GROWS_UP
727 /*
728 * copyargs() fills argc/argv/envp from the lower address even on
729 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
730 * so that _rtld() use it.
731 */
732 #define RTLD_GAP 32
733 #else
734 #define RTLD_GAP 0
735 #endif
736
737 const size_t argenvlen =
738 RTLD_GAP + /* reserved for _rtld() */
739 sizeof(int) + /* XXX argc in stack is long, not int */
740 (nargenvptrs * ptrsz); /* XXX auxinfo multiplied by ptr size? */
741
742 const size_t sigcode_psstr_sz =
743 data->ed_szsigcode + /* sigcode */
744 data->ed_ps_strings_sz + /* ps_strings */
745 STACK_PTHREADSPACE; /* pthread space */
746
747 const size_t stacklen =
748 argenvlen +
749 argenvstrlen +
750 aslrgap +
751 sigcode_psstr_sz;
752
753 /* make the stack "safely" aligned */
754 const size_t aligned_stacklen = STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
755
756 if (aligned_stacklen > epp->ep_ssize) {
757 /* in effect, compare to initial limit */
758 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, aligned_stacklen));
759 goto bad;
760 }
761 /* adjust "active stack depth" for process VSZ */
762 epp->ep_ssize = aligned_stacklen;
763
764 return 0;
765
766 bad:
767 /* free the vmspace-creation commands, and release their references */
768 kill_vmcmds(&epp->ep_vmcmds);
769 /* kill any opened file descriptor, if necessary */
770 if (epp->ep_flags & EXEC_HASFD) {
771 epp->ep_flags &= ~EXEC_HASFD;
772 fd_close(epp->ep_fd);
773 }
774 /* close and put the exec'd file */
775 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
776 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
777 vput(epp->ep_vp);
778 pool_put(&exec_pool, data->ed_argp);
779
780 freehdr:
781 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
782 if (epp->ep_emul_root != NULL)
783 vrele(epp->ep_emul_root);
784 if (epp->ep_interp != NULL)
785 vrele(epp->ep_interp);
786
787 rw_exit(&exec_lock);
788
789 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
790 pathbuf_destroy(data->ed_pathbuf);
791 PNBUF_PUT(data->ed_resolvedpathbuf);
792
793 clrflg:
794 rw_exit(&p->p_reflock);
795
796 if (modgen != module_gen && error == ENOEXEC) {
797 modgen = module_gen;
798 exec_autoload();
799 goto retry;
800 }
801
802 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
803 return error;
804 }
805
806 static void
807 execve_free_data(struct execve_data *data)
808 {
809 struct exec_package * const epp = &data->ed_pack;
810
811 /* free the vmspace-creation commands, and release their references */
812 kill_vmcmds(&epp->ep_vmcmds);
813 /* kill any opened file descriptor, if necessary */
814 if (epp->ep_flags & EXEC_HASFD) {
815 epp->ep_flags &= ~EXEC_HASFD;
816 fd_close(epp->ep_fd);
817 }
818
819 /* close and put the exec'd file */
820 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
821 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
822 vput(epp->ep_vp);
823 pool_put(&exec_pool, data->ed_argp);
824
825 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
826 if (epp->ep_emul_root != NULL)
827 vrele(epp->ep_emul_root);
828 if (epp->ep_interp != NULL)
829 vrele(epp->ep_interp);
830
831 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
832 pathbuf_destroy(data->ed_pathbuf);
833 PNBUF_PUT(data->ed_resolvedpathbuf);
834 }
835
836 /* XXX elsewhere */
837 static int
838 credexec(struct lwp *l, struct vattr *attr)
839 {
840 struct proc *p = l->l_proc;
841 int error;
842
843 /*
844 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
845 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
846 * out additional references on the process for the moment.
847 */
848 if ((p->p_slflag & PSL_TRACED) == 0 &&
849
850 (((attr->va_mode & S_ISUID) != 0 &&
851 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
852
853 ((attr->va_mode & S_ISGID) != 0 &&
854 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
855 /*
856 * Mark the process as SUGID before we do
857 * anything that might block.
858 */
859 proc_crmod_enter();
860 proc_crmod_leave(NULL, NULL, true);
861
862 /* Make sure file descriptors 0..2 are in use. */
863 if ((error = fd_checkstd()) != 0) {
864 DPRINTF(("%s: fdcheckstd failed %d\n",
865 __func__, error));
866 return error;
867 }
868
869 /*
870 * Copy the credential so other references don't see our
871 * changes.
872 */
873 l->l_cred = kauth_cred_copy(l->l_cred);
874 #ifdef KTRACE
875 /*
876 * If the persistent trace flag isn't set, turn off.
877 */
878 if (p->p_tracep) {
879 mutex_enter(&ktrace_lock);
880 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
881 ktrderef(p);
882 mutex_exit(&ktrace_lock);
883 }
884 #endif
885 if (attr->va_mode & S_ISUID)
886 kauth_cred_seteuid(l->l_cred, attr->va_uid);
887 if (attr->va_mode & S_ISGID)
888 kauth_cred_setegid(l->l_cred, attr->va_gid);
889 } else {
890 if (kauth_cred_geteuid(l->l_cred) ==
891 kauth_cred_getuid(l->l_cred) &&
892 kauth_cred_getegid(l->l_cred) ==
893 kauth_cred_getgid(l->l_cred))
894 p->p_flag &= ~PK_SUGID;
895 }
896
897 /*
898 * Copy the credential so other references don't see our changes.
899 * Test to see if this is necessary first, since in the common case
900 * we won't need a private reference.
901 */
902 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
903 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
904 l->l_cred = kauth_cred_copy(l->l_cred);
905 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
906 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
907 }
908
909 /* Update the master credentials. */
910 if (l->l_cred != p->p_cred) {
911 kauth_cred_t ocred;
912
913 kauth_cred_hold(l->l_cred);
914 mutex_enter(p->p_lock);
915 ocred = p->p_cred;
916 p->p_cred = l->l_cred;
917 mutex_exit(p->p_lock);
918 kauth_cred_free(ocred);
919 }
920
921 return 0;
922 }
923
924 static int
925 execve_runproc(struct lwp *l, struct execve_data * restrict data,
926 bool no_local_exec_lock, bool is_spawn)
927 {
928 struct exec_package * const epp = &data->ed_pack;
929 int error = 0;
930 struct proc *p;
931
932 /*
933 * In case of a posix_spawn operation, the child doing the exec
934 * might not hold the reader lock on exec_lock, but the parent
935 * will do this instead.
936 */
937 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
938 KASSERT(!no_local_exec_lock || is_spawn);
939 KASSERT(data != NULL);
940
941 p = l->l_proc;
942
943 /* Get rid of other LWPs. */
944 if (p->p_nlwps > 1) {
945 mutex_enter(p->p_lock);
946 exit_lwps(l);
947 mutex_exit(p->p_lock);
948 }
949 KDASSERT(p->p_nlwps == 1);
950
951 /* Destroy any lwpctl info. */
952 if (p->p_lwpctl != NULL)
953 lwp_ctl_exit();
954
955 /* Remove POSIX timers */
956 timers_free(p, TIMERS_POSIX);
957
958 /*
959 * Do whatever is necessary to prepare the address space
960 * for remapping. Note that this might replace the current
961 * vmspace with another!
962 */
963 if (is_spawn)
964 uvmspace_spawn(l, epp->ep_vm_minaddr,
965 epp->ep_vm_maxaddr,
966 epp->ep_flags & EXEC_TOPDOWN_VM);
967 else
968 uvmspace_exec(l, epp->ep_vm_minaddr,
969 epp->ep_vm_maxaddr,
970 epp->ep_flags & EXEC_TOPDOWN_VM);
971
972 /* record proc's vnode, for use by procfs and others */
973 if (p->p_textvp)
974 vrele(p->p_textvp);
975 vref(epp->ep_vp);
976 p->p_textvp = epp->ep_vp;
977
978 /* Now map address space */
979 struct vmspace *vm;
980 vm = p->p_vmspace;
981 vm->vm_taddr = (void *)epp->ep_taddr;
982 vm->vm_tsize = btoc(epp->ep_tsize);
983 vm->vm_daddr = (void*)epp->ep_daddr;
984 vm->vm_dsize = btoc(epp->ep_dsize);
985 vm->vm_ssize = btoc(epp->ep_ssize);
986 vm->vm_issize = 0;
987 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
988 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
989
990 #ifdef PAX_ASLR
991 pax_aslr_init(l, vm);
992 #endif /* PAX_ASLR */
993
994 /* create the new process's VM space by running the vmcmds */
995 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
996
997 DUMPVMCMDS(epp, 0, 0);
998
999 {
1000 size_t i;
1001 struct exec_vmcmd *base_vcp;
1002
1003 base_vcp = NULL;
1004
1005 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
1006 struct exec_vmcmd *vcp;
1007
1008 vcp = &epp->ep_vmcmds.evs_cmds[i];
1009 if (vcp->ev_flags & VMCMD_RELATIVE) {
1010 KASSERTMSG(base_vcp != NULL,
1011 "%s: relative vmcmd with no base", __func__);
1012 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
1013 "%s: illegal base & relative vmcmd", __func__);
1014 vcp->ev_addr += base_vcp->ev_addr;
1015 }
1016 error = (*vcp->ev_proc)(l, vcp);
1017 if (error)
1018 DUMPVMCMDS(epp, i, error);
1019 if (vcp->ev_flags & VMCMD_BASE)
1020 base_vcp = vcp;
1021 }
1022
1023 /* free the vmspace-creation commands, and release their references */
1024 kill_vmcmds(&epp->ep_vmcmds);
1025
1026 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
1027 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
1028 vput(epp->ep_vp);
1029
1030 /* if an error happened, deallocate and punt */
1031 if (error) {
1032 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
1033 goto exec_abort;
1034 }
1035 }
1036
1037 {
1038 const char *commandname;
1039 size_t commandlen;
1040
1041 /* set command name & other accounting info */
1042 commandname = strrchr(epp->ep_resolvedname, '/');
1043 if (commandname != NULL) {
1044 commandname++;
1045 } else {
1046 commandname = epp->ep_resolvedname;
1047 }
1048 commandlen = min(strlen(commandname), MAXCOMLEN);
1049 (void)memcpy(p->p_comm, commandname, commandlen);
1050 p->p_comm[commandlen] = '\0';
1051 }
1052
1053 {
1054 char *path;
1055
1056 path = PNBUF_GET();
1057
1058 /*
1059 * If the path starts with /, we don't need to do any work.
1060 * This handles the majority of the cases.
1061 * In the future perhaps we could canonicalize it?
1062 */
1063 if (data->ed_pathstring[0] == '/') {
1064 (void)strlcpy(path, data->ed_pathstring,
1065 MAXPATHLEN);
1066 epp->ep_path = path;
1067 }
1068 #ifdef notyet
1069 /*
1070 * Although this works most of the time [since the entry was just
1071 * entered in the cache] we don't use it because it will fail for
1072 * entries that are not placed in the cache because their name is
1073 * longer than NCHNAMLEN and it is not the cleanest interface,
1074 * because there could be races. When the namei cache is re-written,
1075 * this can be changed to use the appropriate function.
1076 */
1077 else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
1078 epp->ep_path = path;
1079 #endif
1080 else {
1081 #ifdef notyet
1082 printf("Cannot get path for pid %d [%s] (error %d)\n",
1083 (int)p->p_pid, p->p_comm, error);
1084 #endif
1085 epp->ep_path = NULL;
1086 PNBUF_PUT(path);
1087 }
1088 }
1089
1090 /* remember information about the process */
1091 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1092 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1093
1094 {
1095 /*
1096 * Allocate the stack address passed to the newly execve()'ed process.
1097 *
1098 * The new stack address will be set to the SP (stack pointer) register
1099 * in setregs().
1100 */
1101
1102 const size_t sigcode_psstr_sz =
1103 data->ed_szsigcode + /* sigcode */
1104 data->ed_ps_strings_sz + /* ps_strings */
1105 STACK_PTHREADSPACE; /* pthread space */
1106
1107 char *stack;
1108
1109 /* Top of the stack address space. */
1110 stack = vm->vm_minsaddr;
1111
1112 /* Skip pthread space, ps_strings, and sigcode. */
1113 stack = STACK_GROW(stack, sigcode_psstr_sz);
1114
1115 /* Allocate the gap for _rtld() and arguments to be filled by copyargs(). */
1116 stack = STACK_ALLOC(stack, epp->ep_ssize - sigcode_psstr_sz);
1117
1118 /* Skip a few words reserved for _rtld(). */
1119 stack = STACK_GROW(stack, RTLD_GAP);
1120
1121 /* Now copy argc, args & environ to the new stack. */
1122 error = (*epp->ep_esch->es_copyargs)(l, epp,
1123 &data->ed_arginfo, &stack, data->ed_argp);
1124
1125 if (epp->ep_path) {
1126 PNBUF_PUT(epp->ep_path);
1127 epp->ep_path = NULL;
1128 }
1129 if (error) {
1130 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1131 goto exec_abort;
1132 }
1133 }
1134
1135 /* fill process ps_strings info */
1136 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1137 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1138
1139 {
1140 struct ps_strings32 arginfo32;
1141 void *aip;
1142
1143 if (epp->ep_flags & EXEC_32) {
1144 aip = &arginfo32;
1145 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1146 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1147 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1148 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1149 } else
1150 aip = &data->ed_arginfo;
1151
1152 /* copy out the process's ps_strings structure */
1153 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1154 != 0) {
1155 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1156 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1157 goto exec_abort;
1158 }
1159 }
1160
1161 cwdexec(p);
1162 fd_closeexec(); /* handle close on exec */
1163
1164 if (__predict_false(ktrace_on))
1165 fd_ktrexecfd();
1166
1167 execsigs(p); /* reset catched signals */
1168
1169 mutex_enter(p->p_lock);
1170 l->l_ctxlink = NULL; /* reset ucontext link */
1171 p->p_acflag &= ~AFORK;
1172 p->p_flag |= PK_EXEC;
1173 mutex_exit(p->p_lock);
1174
1175 /*
1176 * Stop profiling.
1177 */
1178 if ((p->p_stflag & PST_PROFIL) != 0) {
1179 mutex_spin_enter(&p->p_stmutex);
1180 stopprofclock(p);
1181 mutex_spin_exit(&p->p_stmutex);
1182 }
1183
1184 /*
1185 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1186 * exited and exec()/exit() are the only places it will be cleared.
1187 */
1188 if ((p->p_lflag & PL_PPWAIT) != 0) {
1189 #if 0
1190 lwp_t *lp;
1191
1192 mutex_enter(proc_lock);
1193 lp = p->p_vforklwp;
1194 p->p_vforklwp = NULL;
1195
1196 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1197 p->p_lflag &= ~PL_PPWAIT;
1198
1199 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1200 cv_broadcast(&lp->l_waitcv);
1201 mutex_exit(proc_lock);
1202 #else
1203 mutex_enter(proc_lock);
1204 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1205 p->p_lflag &= ~PL_PPWAIT;
1206 cv_broadcast(&p->p_pptr->p_waitcv);
1207 mutex_exit(proc_lock);
1208 #endif
1209 }
1210
1211 error = credexec(l, &data->ed_attr);
1212 if (error)
1213 goto exec_abort;
1214
1215 #if defined(__HAVE_RAS)
1216 /*
1217 * Remove all RASs from the address space.
1218 */
1219 ras_purgeall();
1220 #endif
1221
1222 doexechooks(p);
1223
1224 {
1225 /*
1226 * Set initial SP at the top of the stack.
1227 *
1228 * Note that on machines where stack grows up (e.g. hppa), SP points to
1229 * the end of arg/env strings. Userland guesses the address of argc
1230 * via ps_strings::ps_argvstr.
1231 */
1232 const vaddr_t newstack = (vaddr_t)STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1233
1234 /* Setup new registers and do misc. setup. */
1235 (*epp->ep_esch->es_emul->e_setregs)(l, epp, newstack);
1236 if (epp->ep_esch->es_setregs)
1237 (*epp->ep_esch->es_setregs)(l, epp, newstack);
1238 }
1239
1240 /* Provide a consistent LWP private setting */
1241 (void)lwp_setprivate(l, NULL);
1242
1243 /* Discard all PCU state; need to start fresh */
1244 pcu_discard_all(l);
1245
1246 /* map the process's signal trampoline code */
1247 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1248 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1249 goto exec_abort;
1250 }
1251
1252 pool_put(&exec_pool, data->ed_argp);
1253
1254 /* notify others that we exec'd */
1255 KNOTE(&p->p_klist, NOTE_EXEC);
1256
1257 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1258
1259 SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0);
1260
1261 /* The emulation root will usually have been found when we looked
1262 * for the elf interpreter (or similar), if not look now. */
1263 if (epp->ep_esch->es_emul->e_path != NULL &&
1264 epp->ep_emul_root == NULL)
1265 emul_find_root(l, epp);
1266
1267 /* Any old emulation root got removed by fdcloseexec */
1268 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1269 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1270 rw_exit(&p->p_cwdi->cwdi_lock);
1271 epp->ep_emul_root = NULL;
1272 if (epp->ep_interp != NULL)
1273 vrele(epp->ep_interp);
1274
1275 /*
1276 * Call emulation specific exec hook. This can setup per-process
1277 * p->p_emuldata or do any other per-process stuff an emulation needs.
1278 *
1279 * If we are executing process of different emulation than the
1280 * original forked process, call e_proc_exit() of the old emulation
1281 * first, then e_proc_exec() of new emulation. If the emulation is
1282 * same, the exec hook code should deallocate any old emulation
1283 * resources held previously by this process.
1284 */
1285 if (p->p_emul && p->p_emul->e_proc_exit
1286 && p->p_emul != epp->ep_esch->es_emul)
1287 (*p->p_emul->e_proc_exit)(p);
1288
1289 /*
1290 * This is now LWP 1.
1291 */
1292 mutex_enter(p->p_lock);
1293 p->p_nlwpid = 1;
1294 l->l_lid = 1;
1295 mutex_exit(p->p_lock);
1296
1297 /*
1298 * Call exec hook. Emulation code may NOT store reference to anything
1299 * from &pack.
1300 */
1301 if (epp->ep_esch->es_emul->e_proc_exec)
1302 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1303
1304 /* update p_emul, the old value is no longer needed */
1305 p->p_emul = epp->ep_esch->es_emul;
1306
1307 /* ...and the same for p_execsw */
1308 p->p_execsw = epp->ep_esch;
1309
1310 #ifdef __HAVE_SYSCALL_INTERN
1311 (*p->p_emul->e_syscall_intern)(p);
1312 #endif
1313 ktremul();
1314
1315 /* Allow new references from the debugger/procfs. */
1316 rw_exit(&p->p_reflock);
1317 if (!no_local_exec_lock)
1318 rw_exit(&exec_lock);
1319
1320 mutex_enter(proc_lock);
1321
1322 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1323 ksiginfo_t ksi;
1324
1325 KSI_INIT_EMPTY(&ksi);
1326 ksi.ksi_signo = SIGTRAP;
1327 ksi.ksi_lid = l->l_lid;
1328 kpsignal(p, &ksi, NULL);
1329 }
1330
1331 if (p->p_sflag & PS_STOPEXEC) {
1332 ksiginfoq_t kq;
1333
1334 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1335 p->p_pptr->p_nstopchild++;
1336 p->p_pptr->p_waited = 0;
1337 mutex_enter(p->p_lock);
1338 ksiginfo_queue_init(&kq);
1339 sigclearall(p, &contsigmask, &kq);
1340 lwp_lock(l);
1341 l->l_stat = LSSTOP;
1342 p->p_stat = SSTOP;
1343 p->p_nrlwps--;
1344 lwp_unlock(l);
1345 mutex_exit(p->p_lock);
1346 mutex_exit(proc_lock);
1347 lwp_lock(l);
1348 mi_switch(l);
1349 ksiginfo_queue_drain(&kq);
1350 KERNEL_LOCK(l->l_biglocks, l);
1351 } else {
1352 mutex_exit(proc_lock);
1353 }
1354
1355 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1356 pathbuf_destroy(data->ed_pathbuf);
1357 PNBUF_PUT(data->ed_resolvedpathbuf);
1358 DPRINTF(("%s finished\n", __func__));
1359 return EJUSTRETURN;
1360
1361 exec_abort:
1362 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1363 rw_exit(&p->p_reflock);
1364 if (!no_local_exec_lock)
1365 rw_exit(&exec_lock);
1366
1367 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1368 pathbuf_destroy(data->ed_pathbuf);
1369 PNBUF_PUT(data->ed_resolvedpathbuf);
1370
1371 /*
1372 * the old process doesn't exist anymore. exit gracefully.
1373 * get rid of the (new) address space we have created, if any, get rid
1374 * of our namei data and vnode, and exit noting failure
1375 */
1376 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1377 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1378
1379 exec_free_emul_arg(epp);
1380 pool_put(&exec_pool, data->ed_argp);
1381 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1382 if (epp->ep_emul_root != NULL)
1383 vrele(epp->ep_emul_root);
1384 if (epp->ep_interp != NULL)
1385 vrele(epp->ep_interp);
1386
1387 /* Acquire the sched-state mutex (exit1() will release it). */
1388 if (!is_spawn) {
1389 mutex_enter(p->p_lock);
1390 exit1(l, W_EXITCODE(error, SIGABRT));
1391 }
1392
1393 return error;
1394 }
1395
1396 int
1397 execve1(struct lwp *l, const char *path, char * const *args,
1398 char * const *envs, execve_fetch_element_t fetch_element)
1399 {
1400 struct execve_data data;
1401 int error;
1402
1403 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1404 if (error)
1405 return error;
1406 error = execve_runproc(l, &data, false, false);
1407 return error;
1408 }
1409
1410 static int
1411 copyinargs(struct execve_data * restrict data, char * const *args,
1412 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1413 {
1414 struct exec_package * const epp = &data->ed_pack;
1415 char *dp, *sp;
1416 size_t i;
1417 int error;
1418
1419 dp = *dpp;
1420
1421 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
1422
1423 data->ed_argc = 0;
1424
1425 /* copy the fake args list, if there's one, freeing it as we go */
1426 if (epp->ep_flags & EXEC_HASARGL) {
1427 struct exec_fakearg *tmpfap = epp->ep_fa;
1428
1429 while (tmpfap->fa_arg != NULL) {
1430 const char *cp;
1431
1432 /* XXX boudary check */
1433 cp = tmpfap->fa_arg;
1434 while (*cp)
1435 *dp++ = *cp++;
1436 *dp++ = '\0';
1437 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
1438
1439 kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
1440 tmpfap++;
1441 data->ed_argc++;
1442 }
1443 kmem_free(epp->ep_fa, epp->ep_fa_len);
1444 epp->ep_flags &= ~EXEC_HASARGL;
1445 }
1446
1447 /* Now get argv & environment */
1448 if (args == NULL) {
1449 DPRINTF(("%s: null args\n", __func__));
1450 return EINVAL;
1451 }
1452 /* 'i' will index the argp/envp element to be retrieved */
1453 i = 0;
1454 if (epp->ep_flags & EXEC_SKIPARG)
1455 i++;
1456
1457 while (1) {
1458 const size_t maxlen = data->ed_argp + ARG_MAX - dp;
1459 size_t len;
1460
1461 if ((error = (*fetch_element)(args, i, &sp)) != 0) {
1462 DPRINTF(("%s: fetch_element args %d\n",
1463 __func__, error));
1464 return error;
1465 }
1466 if (!sp)
1467 break;
1468 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1469 DPRINTF(("%s: copyinstr args %d\n", __func__, error));
1470 if (error == ENAMETOOLONG)
1471 error = E2BIG;
1472 return error;
1473 }
1474 ktrexecarg(dp, len - 1);
1475 dp += len;
1476 i++;
1477 data->ed_argc++;
1478 }
1479
1480 data->ed_envc = 0;
1481 /* environment need not be there */
1482 if (envs != NULL) {
1483 i = 0;
1484 while (1) {
1485 const size_t maxlen = data->ed_argp + ARG_MAX - dp;
1486 size_t len;
1487
1488 if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
1489 DPRINTF(("%s: fetch_element env %d\n",
1490 __func__, error));
1491 return error;
1492 }
1493 if (!sp)
1494 break;
1495 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1496 DPRINTF(("%s: copyinstr env %d\n",
1497 __func__, error));
1498 if (error == ENAMETOOLONG)
1499 error = E2BIG;
1500 return error;
1501 }
1502
1503 ktrexecenv(dp, len - 1);
1504 dp += len;
1505 i++;
1506 data->ed_envc++;
1507 }
1508 }
1509
1510 *dpp = dp;
1511
1512 return 0;
1513 }
1514
1515 /*
1516 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1517 * Those strings are located just after auxinfo.
1518 *
1519 * XXX rename this as copyoutargs()
1520 */
1521 int
1522 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1523 char **stackp, void *argp)
1524 {
1525 char **cpp, *dp, *sp;
1526 size_t len;
1527 void *nullp;
1528 long argc, envc;
1529 int error;
1530
1531 cpp = (char **)*stackp;
1532 nullp = NULL;
1533 argc = arginfo->ps_nargvstr;
1534 envc = arginfo->ps_nenvstr;
1535
1536 /* argc on stack is long */
1537 CTASSERT(sizeof(*cpp) == sizeof(argc));
1538
1539 dp = (char *)(cpp +
1540 1 + /* argc */
1541 argc + /* *argv[] */
1542 1 + /* \0 */
1543 envc + /* *env[] */
1544 1 + /* \0 */
1545 /* XXX auxinfo multiplied by ptr size? */
1546 pack->ep_esch->es_arglen); /* auxinfo */
1547 sp = argp;
1548
1549 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1550 COPYPRINTF("", cpp - 1, sizeof(argc));
1551 return error;
1552 }
1553
1554 /* XXX don't copy them out, remap them! */
1555 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1556
1557 for (; --argc >= 0; sp += len, dp += len) {
1558 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1559 COPYPRINTF("", cpp - 1, sizeof(dp));
1560 return error;
1561 }
1562 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1563 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1564 return error;
1565 }
1566 }
1567
1568 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1569 COPYPRINTF("", cpp - 1, sizeof(nullp));
1570 return error;
1571 }
1572
1573 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1574
1575 for (; --envc >= 0; sp += len, dp += len) {
1576 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1577 COPYPRINTF("", cpp - 1, sizeof(dp));
1578 return error;
1579 }
1580 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1581 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1582 return error;
1583 }
1584
1585 }
1586
1587 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1588 COPYPRINTF("", cpp - 1, sizeof(nullp));
1589 return error;
1590 }
1591
1592 *stackp = (char *)cpp;
1593 return 0;
1594 }
1595
1596
1597 /*
1598 * Add execsw[] entries.
1599 */
1600 int
1601 exec_add(struct execsw *esp, int count)
1602 {
1603 struct exec_entry *it;
1604 int i;
1605
1606 if (count == 0) {
1607 return 0;
1608 }
1609
1610 /* Check for duplicates. */
1611 rw_enter(&exec_lock, RW_WRITER);
1612 for (i = 0; i < count; i++) {
1613 LIST_FOREACH(it, &ex_head, ex_list) {
1614 /* assume unique (makecmds, probe_func, emulation) */
1615 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1616 it->ex_sw->u.elf_probe_func ==
1617 esp[i].u.elf_probe_func &&
1618 it->ex_sw->es_emul == esp[i].es_emul) {
1619 rw_exit(&exec_lock);
1620 return EEXIST;
1621 }
1622 }
1623 }
1624
1625 /* Allocate new entries. */
1626 for (i = 0; i < count; i++) {
1627 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1628 it->ex_sw = &esp[i];
1629 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1630 }
1631
1632 /* update execsw[] */
1633 exec_init(0);
1634 rw_exit(&exec_lock);
1635 return 0;
1636 }
1637
1638 /*
1639 * Remove execsw[] entry.
1640 */
1641 int
1642 exec_remove(struct execsw *esp, int count)
1643 {
1644 struct exec_entry *it, *next;
1645 int i;
1646 const struct proclist_desc *pd;
1647 proc_t *p;
1648
1649 if (count == 0) {
1650 return 0;
1651 }
1652
1653 /* Abort if any are busy. */
1654 rw_enter(&exec_lock, RW_WRITER);
1655 for (i = 0; i < count; i++) {
1656 mutex_enter(proc_lock);
1657 for (pd = proclists; pd->pd_list != NULL; pd++) {
1658 PROCLIST_FOREACH(p, pd->pd_list) {
1659 if (p->p_execsw == &esp[i]) {
1660 mutex_exit(proc_lock);
1661 rw_exit(&exec_lock);
1662 return EBUSY;
1663 }
1664 }
1665 }
1666 mutex_exit(proc_lock);
1667 }
1668
1669 /* None are busy, so remove them all. */
1670 for (i = 0; i < count; i++) {
1671 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1672 next = LIST_NEXT(it, ex_list);
1673 if (it->ex_sw == &esp[i]) {
1674 LIST_REMOVE(it, ex_list);
1675 kmem_free(it, sizeof(*it));
1676 break;
1677 }
1678 }
1679 }
1680
1681 /* update execsw[] */
1682 exec_init(0);
1683 rw_exit(&exec_lock);
1684 return 0;
1685 }
1686
1687 /*
1688 * Initialize exec structures. If init_boot is true, also does necessary
1689 * one-time initialization (it's called from main() that way).
1690 * Once system is multiuser, this should be called with exec_lock held,
1691 * i.e. via exec_{add|remove}().
1692 */
1693 int
1694 exec_init(int init_boot)
1695 {
1696 const struct execsw **sw;
1697 struct exec_entry *ex;
1698 SLIST_HEAD(,exec_entry) first;
1699 SLIST_HEAD(,exec_entry) any;
1700 SLIST_HEAD(,exec_entry) last;
1701 int i, sz;
1702
1703 if (init_boot) {
1704 /* do one-time initializations */
1705 rw_init(&exec_lock);
1706 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1707 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1708 "execargs", &exec_palloc, IPL_NONE);
1709 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1710 } else {
1711 KASSERT(rw_write_held(&exec_lock));
1712 }
1713
1714 /* Sort each entry onto the appropriate queue. */
1715 SLIST_INIT(&first);
1716 SLIST_INIT(&any);
1717 SLIST_INIT(&last);
1718 sz = 0;
1719 LIST_FOREACH(ex, &ex_head, ex_list) {
1720 switch(ex->ex_sw->es_prio) {
1721 case EXECSW_PRIO_FIRST:
1722 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1723 break;
1724 case EXECSW_PRIO_ANY:
1725 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1726 break;
1727 case EXECSW_PRIO_LAST:
1728 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1729 break;
1730 default:
1731 panic("%s", __func__);
1732 break;
1733 }
1734 sz++;
1735 }
1736
1737 /*
1738 * Create new execsw[]. Ensure we do not try a zero-sized
1739 * allocation.
1740 */
1741 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1742 i = 0;
1743 SLIST_FOREACH(ex, &first, ex_slist) {
1744 sw[i++] = ex->ex_sw;
1745 }
1746 SLIST_FOREACH(ex, &any, ex_slist) {
1747 sw[i++] = ex->ex_sw;
1748 }
1749 SLIST_FOREACH(ex, &last, ex_slist) {
1750 sw[i++] = ex->ex_sw;
1751 }
1752
1753 /* Replace old execsw[] and free used memory. */
1754 if (execsw != NULL) {
1755 kmem_free(__UNCONST(execsw),
1756 nexecs * sizeof(struct execsw *) + 1);
1757 }
1758 execsw = sw;
1759 nexecs = sz;
1760
1761 /* Figure out the maximum size of an exec header. */
1762 exec_maxhdrsz = sizeof(int);
1763 for (i = 0; i < nexecs; i++) {
1764 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1765 exec_maxhdrsz = execsw[i]->es_hdrsz;
1766 }
1767
1768 return 0;
1769 }
1770
1771 static int
1772 exec_sigcode_map(struct proc *p, const struct emul *e)
1773 {
1774 vaddr_t va;
1775 vsize_t sz;
1776 int error;
1777 struct uvm_object *uobj;
1778
1779 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1780
1781 if (e->e_sigobject == NULL || sz == 0) {
1782 return 0;
1783 }
1784
1785 /*
1786 * If we don't have a sigobject for this emulation, create one.
1787 *
1788 * sigobject is an anonymous memory object (just like SYSV shared
1789 * memory) that we keep a permanent reference to and that we map
1790 * in all processes that need this sigcode. The creation is simple,
1791 * we create an object, add a permanent reference to it, map it in
1792 * kernel space, copy out the sigcode to it and unmap it.
1793 * We map it with PROT_READ|PROT_EXEC into the process just
1794 * the way sys_mmap() would map it.
1795 */
1796
1797 uobj = *e->e_sigobject;
1798 if (uobj == NULL) {
1799 mutex_enter(&sigobject_lock);
1800 if ((uobj = *e->e_sigobject) == NULL) {
1801 uobj = uao_create(sz, 0);
1802 (*uobj->pgops->pgo_reference)(uobj);
1803 va = vm_map_min(kernel_map);
1804 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1805 uobj, 0, 0,
1806 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1807 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1808 printf("kernel mapping failed %d\n", error);
1809 (*uobj->pgops->pgo_detach)(uobj);
1810 mutex_exit(&sigobject_lock);
1811 return error;
1812 }
1813 memcpy((void *)va, e->e_sigcode, sz);
1814 #ifdef PMAP_NEED_PROCWR
1815 pmap_procwr(&proc0, va, sz);
1816 #endif
1817 uvm_unmap(kernel_map, va, va + round_page(sz));
1818 *e->e_sigobject = uobj;
1819 }
1820 mutex_exit(&sigobject_lock);
1821 }
1822
1823 /* Just a hint to uvm_map where to put it. */
1824 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1825 round_page(sz));
1826
1827 #ifdef __alpha__
1828 /*
1829 * Tru64 puts /sbin/loader at the end of user virtual memory,
1830 * which causes the above calculation to put the sigcode at
1831 * an invalid address. Put it just below the text instead.
1832 */
1833 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1834 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1835 }
1836 #endif
1837
1838 (*uobj->pgops->pgo_reference)(uobj);
1839 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1840 uobj, 0, 0,
1841 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1842 UVM_ADV_RANDOM, 0));
1843 if (error) {
1844 DPRINTF(("%s, %d: map %p "
1845 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1846 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1847 va, error));
1848 (*uobj->pgops->pgo_detach)(uobj);
1849 return error;
1850 }
1851 p->p_sigctx.ps_sigcode = (void *)va;
1852 return 0;
1853 }
1854
1855 /*
1856 * Release a refcount on spawn_exec_data and destroy memory, if this
1857 * was the last one.
1858 */
1859 static void
1860 spawn_exec_data_release(struct spawn_exec_data *data)
1861 {
1862 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1863 return;
1864
1865 cv_destroy(&data->sed_cv_child_ready);
1866 mutex_destroy(&data->sed_mtx_child);
1867
1868 if (data->sed_actions)
1869 posix_spawn_fa_free(data->sed_actions,
1870 data->sed_actions->len);
1871 if (data->sed_attrs)
1872 kmem_free(data->sed_attrs,
1873 sizeof(*data->sed_attrs));
1874 kmem_free(data, sizeof(*data));
1875 }
1876
1877 /*
1878 * A child lwp of a posix_spawn operation starts here and ends up in
1879 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1880 * manipulations in between.
1881 * The parent waits for the child, as it is not clear whether the child
1882 * will be able to acquire its own exec_lock. If it can, the parent can
1883 * be released early and continue running in parallel. If not (or if the
1884 * magic debug flag is passed in the scheduler attribute struct), the
1885 * child rides on the parent's exec lock until it is ready to return to
1886 * to userland - and only then releases the parent. This method loses
1887 * concurrency, but improves error reporting.
1888 */
1889 static void
1890 spawn_return(void *arg)
1891 {
1892 struct spawn_exec_data *spawn_data = arg;
1893 struct lwp *l = curlwp;
1894 int error, newfd;
1895 size_t i;
1896 const struct posix_spawn_file_actions_entry *fae;
1897 pid_t ppid;
1898 register_t retval;
1899 bool have_reflock;
1900 bool parent_is_waiting = true;
1901
1902 /*
1903 * Check if we can release parent early.
1904 * We either need to have no sed_attrs, or sed_attrs does not
1905 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1906 * safe access to the parent proc (passed in sed_parent).
1907 * We then try to get the exec_lock, and only if that works, we can
1908 * release the parent here already.
1909 */
1910 ppid = spawn_data->sed_parent->p_pid;
1911 if ((!spawn_data->sed_attrs
1912 || (spawn_data->sed_attrs->sa_flags
1913 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1914 && rw_tryenter(&exec_lock, RW_READER)) {
1915 parent_is_waiting = false;
1916 mutex_enter(&spawn_data->sed_mtx_child);
1917 cv_signal(&spawn_data->sed_cv_child_ready);
1918 mutex_exit(&spawn_data->sed_mtx_child);
1919 }
1920
1921 /* don't allow debugger access yet */
1922 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1923 have_reflock = true;
1924
1925 error = 0;
1926 /* handle posix_spawn_file_actions */
1927 if (spawn_data->sed_actions != NULL) {
1928 for (i = 0; i < spawn_data->sed_actions->len; i++) {
1929 fae = &spawn_data->sed_actions->fae[i];
1930 switch (fae->fae_action) {
1931 case FAE_OPEN:
1932 if (fd_getfile(fae->fae_fildes) != NULL) {
1933 error = fd_close(fae->fae_fildes);
1934 if (error)
1935 break;
1936 }
1937 error = fd_open(fae->fae_path, fae->fae_oflag,
1938 fae->fae_mode, &newfd);
1939 if (error)
1940 break;
1941 if (newfd != fae->fae_fildes) {
1942 error = dodup(l, newfd,
1943 fae->fae_fildes, 0, &retval);
1944 if (fd_getfile(newfd) != NULL)
1945 fd_close(newfd);
1946 }
1947 break;
1948 case FAE_DUP2:
1949 error = dodup(l, fae->fae_fildes,
1950 fae->fae_newfildes, 0, &retval);
1951 break;
1952 case FAE_CLOSE:
1953 if (fd_getfile(fae->fae_fildes) == NULL) {
1954 error = EBADF;
1955 break;
1956 }
1957 error = fd_close(fae->fae_fildes);
1958 break;
1959 }
1960 if (error)
1961 goto report_error;
1962 }
1963 }
1964
1965 /* handle posix_spawnattr */
1966 if (spawn_data->sed_attrs != NULL) {
1967 int ostat;
1968 struct sigaction sigact;
1969 sigact._sa_u._sa_handler = SIG_DFL;
1970 sigact.sa_flags = 0;
1971
1972 /*
1973 * set state to SSTOP so that this proc can be found by pid.
1974 * see proc_enterprp, do_sched_setparam below
1975 */
1976 ostat = l->l_proc->p_stat;
1977 l->l_proc->p_stat = SSTOP;
1978
1979 /* Set process group */
1980 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1981 pid_t mypid = l->l_proc->p_pid,
1982 pgrp = spawn_data->sed_attrs->sa_pgroup;
1983
1984 if (pgrp == 0)
1985 pgrp = mypid;
1986
1987 error = proc_enterpgrp(spawn_data->sed_parent,
1988 mypid, pgrp, false);
1989 if (error)
1990 goto report_error;
1991 }
1992
1993 /* Set scheduler policy */
1994 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1995 error = do_sched_setparam(l->l_proc->p_pid, 0,
1996 spawn_data->sed_attrs->sa_schedpolicy,
1997 &spawn_data->sed_attrs->sa_schedparam);
1998 else if (spawn_data->sed_attrs->sa_flags
1999 & POSIX_SPAWN_SETSCHEDPARAM) {
2000 error = do_sched_setparam(ppid, 0,
2001 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2002 }
2003 if (error)
2004 goto report_error;
2005
2006 /* Reset user ID's */
2007 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2008 error = do_setresuid(l, -1,
2009 kauth_cred_getgid(l->l_cred), -1,
2010 ID_E_EQ_R | ID_E_EQ_S);
2011 if (error)
2012 goto report_error;
2013 error = do_setresuid(l, -1,
2014 kauth_cred_getuid(l->l_cred), -1,
2015 ID_E_EQ_R | ID_E_EQ_S);
2016 if (error)
2017 goto report_error;
2018 }
2019
2020 /* Set signal masks/defaults */
2021 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2022 mutex_enter(l->l_proc->p_lock);
2023 error = sigprocmask1(l, SIG_SETMASK,
2024 &spawn_data->sed_attrs->sa_sigmask, NULL);
2025 mutex_exit(l->l_proc->p_lock);
2026 if (error)
2027 goto report_error;
2028 }
2029
2030 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2031 /*
2032 * The following sigaction call is using a sigaction
2033 * version 0 trampoline which is in the compatibility
2034 * code only. This is not a problem because for SIG_DFL
2035 * and SIG_IGN, the trampolines are now ignored. If they
2036 * were not, this would be a problem because we are
2037 * holding the exec_lock, and the compat code needs
2038 * to do the same in order to replace the trampoline
2039 * code of the process.
2040 */
2041 for (i = 1; i <= NSIG; i++) {
2042 if (sigismember(
2043 &spawn_data->sed_attrs->sa_sigdefault, i))
2044 sigaction1(l, i, &sigact, NULL, NULL,
2045 0);
2046 }
2047 }
2048 l->l_proc->p_stat = ostat;
2049 }
2050
2051 /* now do the real exec */
2052 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2053 true);
2054 have_reflock = false;
2055 if (error == EJUSTRETURN)
2056 error = 0;
2057 else if (error)
2058 goto report_error;
2059
2060 if (parent_is_waiting) {
2061 mutex_enter(&spawn_data->sed_mtx_child);
2062 cv_signal(&spawn_data->sed_cv_child_ready);
2063 mutex_exit(&spawn_data->sed_mtx_child);
2064 }
2065
2066 /* release our refcount on the data */
2067 spawn_exec_data_release(spawn_data);
2068
2069 /* and finally: leave to userland for the first time */
2070 cpu_spawn_return(l);
2071
2072 /* NOTREACHED */
2073 return;
2074
2075 report_error:
2076 if (have_reflock) {
2077 /*
2078 * We have not passed through execve_runproc(),
2079 * which would have released the p_reflock and also
2080 * taken ownership of the sed_exec part of spawn_data,
2081 * so release/free both here.
2082 */
2083 rw_exit(&l->l_proc->p_reflock);
2084 execve_free_data(&spawn_data->sed_exec);
2085 }
2086
2087 if (parent_is_waiting) {
2088 /* pass error to parent */
2089 mutex_enter(&spawn_data->sed_mtx_child);
2090 spawn_data->sed_error = error;
2091 cv_signal(&spawn_data->sed_cv_child_ready);
2092 mutex_exit(&spawn_data->sed_mtx_child);
2093 } else {
2094 rw_exit(&exec_lock);
2095 }
2096
2097 /* release our refcount on the data */
2098 spawn_exec_data_release(spawn_data);
2099
2100 /* done, exit */
2101 mutex_enter(l->l_proc->p_lock);
2102 /*
2103 * Posix explicitly asks for an exit code of 127 if we report
2104 * errors from the child process - so, unfortunately, there
2105 * is no way to report a more exact error code.
2106 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2107 * flag bit in the attrp argument to posix_spawn(2), see above.
2108 */
2109 exit1(l, W_EXITCODE(127, 0));
2110 }
2111
2112 void
2113 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2114 {
2115
2116 for (size_t i = 0; i < len; i++) {
2117 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2118 if (fae->fae_action != FAE_OPEN)
2119 continue;
2120 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2121 }
2122 if (fa->len > 0)
2123 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2124 kmem_free(fa, sizeof(*fa));
2125 }
2126
2127 static int
2128 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2129 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2130 {
2131 struct posix_spawn_file_actions *fa;
2132 struct posix_spawn_file_actions_entry *fae;
2133 char *pbuf = NULL;
2134 int error;
2135 size_t i = 0;
2136
2137 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2138 error = copyin(ufa, fa, sizeof(*fa));
2139 if (error || fa->len == 0) {
2140 kmem_free(fa, sizeof(*fa));
2141 return error; /* 0 if not an error, and len == 0 */
2142 }
2143
2144 if (fa->len > lim) {
2145 kmem_free(fa, sizeof(*fa));
2146 return EINVAL;
2147 }
2148
2149 fa->size = fa->len;
2150 size_t fal = fa->len * sizeof(*fae);
2151 fae = fa->fae;
2152 fa->fae = kmem_alloc(fal, KM_SLEEP);
2153 error = copyin(fae, fa->fae, fal);
2154 if (error)
2155 goto out;
2156
2157 pbuf = PNBUF_GET();
2158 for (; i < fa->len; i++) {
2159 fae = &fa->fae[i];
2160 if (fae->fae_action != FAE_OPEN)
2161 continue;
2162 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2163 if (error)
2164 goto out;
2165 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2166 memcpy(fae->fae_path, pbuf, fal);
2167 }
2168 PNBUF_PUT(pbuf);
2169
2170 *fap = fa;
2171 return 0;
2172 out:
2173 if (pbuf)
2174 PNBUF_PUT(pbuf);
2175 posix_spawn_fa_free(fa, i);
2176 return error;
2177 }
2178
2179 int
2180 check_posix_spawn(struct lwp *l1)
2181 {
2182 int error, tnprocs, count;
2183 uid_t uid;
2184 struct proc *p1;
2185
2186 p1 = l1->l_proc;
2187 uid = kauth_cred_getuid(l1->l_cred);
2188 tnprocs = atomic_inc_uint_nv(&nprocs);
2189
2190 /*
2191 * Although process entries are dynamically created, we still keep
2192 * a global limit on the maximum number we will create.
2193 */
2194 if (__predict_false(tnprocs >= maxproc))
2195 error = -1;
2196 else
2197 error = kauth_authorize_process(l1->l_cred,
2198 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2199
2200 if (error) {
2201 atomic_dec_uint(&nprocs);
2202 return EAGAIN;
2203 }
2204
2205 /*
2206 * Enforce limits.
2207 */
2208 count = chgproccnt(uid, 1);
2209 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2210 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2211 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2212 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2213 (void)chgproccnt(uid, -1);
2214 atomic_dec_uint(&nprocs);
2215 return EAGAIN;
2216 }
2217
2218 return 0;
2219 }
2220
2221 int
2222 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2223 struct posix_spawn_file_actions *fa,
2224 struct posix_spawnattr *sa,
2225 char *const *argv, char *const *envp,
2226 execve_fetch_element_t fetch)
2227 {
2228
2229 struct proc *p1, *p2;
2230 struct lwp *l2;
2231 int error;
2232 struct spawn_exec_data *spawn_data;
2233 vaddr_t uaddr;
2234 pid_t pid;
2235 bool have_exec_lock = false;
2236
2237 p1 = l1->l_proc;
2238
2239 /* Allocate and init spawn_data */
2240 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2241 spawn_data->sed_refcnt = 1; /* only parent so far */
2242 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2243 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2244 mutex_enter(&spawn_data->sed_mtx_child);
2245
2246 /*
2247 * Do the first part of the exec now, collect state
2248 * in spawn_data.
2249 */
2250 error = execve_loadvm(l1, path, argv,
2251 envp, fetch, &spawn_data->sed_exec);
2252 if (error == EJUSTRETURN)
2253 error = 0;
2254 else if (error)
2255 goto error_exit;
2256
2257 have_exec_lock = true;
2258
2259 /*
2260 * Allocate virtual address space for the U-area now, while it
2261 * is still easy to abort the fork operation if we're out of
2262 * kernel virtual address space.
2263 */
2264 uaddr = uvm_uarea_alloc();
2265 if (__predict_false(uaddr == 0)) {
2266 error = ENOMEM;
2267 goto error_exit;
2268 }
2269
2270 /*
2271 * Allocate new proc. Borrow proc0 vmspace for it, we will
2272 * replace it with its own before returning to userland
2273 * in the child.
2274 * This is a point of no return, we will have to go through
2275 * the child proc to properly clean it up past this point.
2276 */
2277 p2 = proc_alloc();
2278 pid = p2->p_pid;
2279
2280 /*
2281 * Make a proc table entry for the new process.
2282 * Start by zeroing the section of proc that is zero-initialized,
2283 * then copy the section that is copied directly from the parent.
2284 */
2285 memset(&p2->p_startzero, 0,
2286 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2287 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2288 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2289 p2->p_vmspace = proc0.p_vmspace;
2290
2291 TAILQ_INIT(&p2->p_sigpend.sp_info);
2292
2293 LIST_INIT(&p2->p_lwps);
2294 LIST_INIT(&p2->p_sigwaiters);
2295
2296 /*
2297 * Duplicate sub-structures as needed.
2298 * Increase reference counts on shared objects.
2299 * Inherit flags we want to keep. The flags related to SIGCHLD
2300 * handling are important in order to keep a consistent behaviour
2301 * for the child after the fork. If we are a 32-bit process, the
2302 * child will be too.
2303 */
2304 p2->p_flag =
2305 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2306 p2->p_emul = p1->p_emul;
2307 p2->p_execsw = p1->p_execsw;
2308
2309 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2310 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2311 rw_init(&p2->p_reflock);
2312 cv_init(&p2->p_waitcv, "wait");
2313 cv_init(&p2->p_lwpcv, "lwpwait");
2314
2315 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2316
2317 kauth_proc_fork(p1, p2);
2318
2319 p2->p_raslist = NULL;
2320 p2->p_fd = fd_copy();
2321
2322 /* XXX racy */
2323 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2324
2325 p2->p_cwdi = cwdinit();
2326
2327 /*
2328 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2329 * we just need increase pl_refcnt.
2330 */
2331 if (!p1->p_limit->pl_writeable) {
2332 lim_addref(p1->p_limit);
2333 p2->p_limit = p1->p_limit;
2334 } else {
2335 p2->p_limit = lim_copy(p1->p_limit);
2336 }
2337
2338 p2->p_lflag = 0;
2339 p2->p_sflag = 0;
2340 p2->p_slflag = 0;
2341 p2->p_pptr = p1;
2342 p2->p_ppid = p1->p_pid;
2343 LIST_INIT(&p2->p_children);
2344
2345 p2->p_aio = NULL;
2346
2347 #ifdef KTRACE
2348 /*
2349 * Copy traceflag and tracefile if enabled.
2350 * If not inherited, these were zeroed above.
2351 */
2352 if (p1->p_traceflag & KTRFAC_INHERIT) {
2353 mutex_enter(&ktrace_lock);
2354 p2->p_traceflag = p1->p_traceflag;
2355 if ((p2->p_tracep = p1->p_tracep) != NULL)
2356 ktradref(p2);
2357 mutex_exit(&ktrace_lock);
2358 }
2359 #endif
2360
2361 /*
2362 * Create signal actions for the child process.
2363 */
2364 p2->p_sigacts = sigactsinit(p1, 0);
2365 mutex_enter(p1->p_lock);
2366 p2->p_sflag |=
2367 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2368 sched_proc_fork(p1, p2);
2369 mutex_exit(p1->p_lock);
2370
2371 p2->p_stflag = p1->p_stflag;
2372
2373 /*
2374 * p_stats.
2375 * Copy parts of p_stats, and zero out the rest.
2376 */
2377 p2->p_stats = pstatscopy(p1->p_stats);
2378
2379 /* copy over machdep flags to the new proc */
2380 cpu_proc_fork(p1, p2);
2381
2382 /*
2383 * Prepare remaining parts of spawn data
2384 */
2385 spawn_data->sed_actions = fa;
2386 spawn_data->sed_attrs = sa;
2387
2388 spawn_data->sed_parent = p1;
2389
2390 /* create LWP */
2391 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2392 &l2, l1->l_class);
2393 l2->l_ctxlink = NULL; /* reset ucontext link */
2394
2395 /*
2396 * Copy the credential so other references don't see our changes.
2397 * Test to see if this is necessary first, since in the common case
2398 * we won't need a private reference.
2399 */
2400 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2401 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2402 l2->l_cred = kauth_cred_copy(l2->l_cred);
2403 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2404 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2405 }
2406
2407 /* Update the master credentials. */
2408 if (l2->l_cred != p2->p_cred) {
2409 kauth_cred_t ocred;
2410
2411 kauth_cred_hold(l2->l_cred);
2412 mutex_enter(p2->p_lock);
2413 ocred = p2->p_cred;
2414 p2->p_cred = l2->l_cred;
2415 mutex_exit(p2->p_lock);
2416 kauth_cred_free(ocred);
2417 }
2418
2419 *child_ok = true;
2420 spawn_data->sed_refcnt = 2; /* child gets it as well */
2421 #if 0
2422 l2->l_nopreempt = 1; /* start it non-preemptable */
2423 #endif
2424
2425 /*
2426 * It's now safe for the scheduler and other processes to see the
2427 * child process.
2428 */
2429 mutex_enter(proc_lock);
2430
2431 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2432 p2->p_lflag |= PL_CONTROLT;
2433
2434 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2435 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2436
2437 LIST_INSERT_AFTER(p1, p2, p_pglist);
2438 LIST_INSERT_HEAD(&allproc, p2, p_list);
2439
2440 p2->p_trace_enabled = trace_is_enabled(p2);
2441 #ifdef __HAVE_SYSCALL_INTERN
2442 (*p2->p_emul->e_syscall_intern)(p2);
2443 #endif
2444
2445 /*
2446 * Make child runnable, set start time, and add to run queue except
2447 * if the parent requested the child to start in SSTOP state.
2448 */
2449 mutex_enter(p2->p_lock);
2450
2451 getmicrotime(&p2->p_stats->p_start);
2452
2453 lwp_lock(l2);
2454 KASSERT(p2->p_nrlwps == 1);
2455 p2->p_nrlwps = 1;
2456 p2->p_stat = SACTIVE;
2457 l2->l_stat = LSRUN;
2458 sched_enqueue(l2, false);
2459 lwp_unlock(l2);
2460
2461 mutex_exit(p2->p_lock);
2462 mutex_exit(proc_lock);
2463
2464 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2465 error = spawn_data->sed_error;
2466 mutex_exit(&spawn_data->sed_mtx_child);
2467 spawn_exec_data_release(spawn_data);
2468
2469 rw_exit(&p1->p_reflock);
2470 rw_exit(&exec_lock);
2471 have_exec_lock = false;
2472
2473 *pid_res = pid;
2474 return error;
2475
2476 error_exit:
2477 if (have_exec_lock) {
2478 execve_free_data(&spawn_data->sed_exec);
2479 rw_exit(&p1->p_reflock);
2480 rw_exit(&exec_lock);
2481 }
2482 mutex_exit(&spawn_data->sed_mtx_child);
2483 spawn_exec_data_release(spawn_data);
2484
2485 return error;
2486 }
2487
2488 int
2489 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2490 register_t *retval)
2491 {
2492 /* {
2493 syscallarg(pid_t *) pid;
2494 syscallarg(const char *) path;
2495 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2496 syscallarg(const struct posix_spawnattr *) attrp;
2497 syscallarg(char *const *) argv;
2498 syscallarg(char *const *) envp;
2499 } */
2500
2501 int error;
2502 struct posix_spawn_file_actions *fa = NULL;
2503 struct posix_spawnattr *sa = NULL;
2504 pid_t pid;
2505 bool child_ok = false;
2506 rlim_t max_fileactions;
2507 proc_t *p = l1->l_proc;
2508
2509 error = check_posix_spawn(l1);
2510 if (error) {
2511 *retval = error;
2512 return 0;
2513 }
2514
2515 /* copy in file_actions struct */
2516 if (SCARG(uap, file_actions) != NULL) {
2517 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2518 maxfiles);
2519 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2520 max_fileactions);
2521 if (error)
2522 goto error_exit;
2523 }
2524
2525 /* copyin posix_spawnattr struct */
2526 if (SCARG(uap, attrp) != NULL) {
2527 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2528 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2529 if (error)
2530 goto error_exit;
2531 }
2532
2533 /*
2534 * Do the spawn
2535 */
2536 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2537 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2538 if (error)
2539 goto error_exit;
2540
2541 if (error == 0 && SCARG(uap, pid) != NULL)
2542 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2543
2544 *retval = error;
2545 return 0;
2546
2547 error_exit:
2548 if (!child_ok) {
2549 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2550 atomic_dec_uint(&nprocs);
2551
2552 if (sa)
2553 kmem_free(sa, sizeof(*sa));
2554 if (fa)
2555 posix_spawn_fa_free(fa, fa->len);
2556 }
2557
2558 *retval = error;
2559 return 0;
2560 }
2561
2562 void
2563 exec_free_emul_arg(struct exec_package *epp)
2564 {
2565 if (epp->ep_emul_arg_free != NULL) {
2566 KASSERT(epp->ep_emul_arg != NULL);
2567 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2568 epp->ep_emul_arg_free = NULL;
2569 epp->ep_emul_arg = NULL;
2570 } else {
2571 KASSERT(epp->ep_emul_arg == NULL);
2572 }
2573 }
2574
2575 #ifdef DEBUG_EXEC
2576 static void
2577 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2578 {
2579 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2580 size_t j;
2581
2582 if (error == 0)
2583 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2584 else
2585 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2586 epp->ep_vmcmds.evs_used, error));
2587
2588 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2589 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2590 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2591 PRIxVSIZE" prot=0%o flags=%d\n", j,
2592 vp[j].ev_proc == vmcmd_map_pagedvn ?
2593 "pagedvn" :
2594 vp[j].ev_proc == vmcmd_map_readvn ?
2595 "readvn" :
2596 vp[j].ev_proc == vmcmd_map_zero ?
2597 "zero" : "*unknown*",
2598 vp[j].ev_addr, vp[j].ev_len,
2599 vp[j].ev_offset, vp[j].ev_prot,
2600 vp[j].ev_flags));
2601 if (error != 0 && j == x)
2602 DPRINTF((" ^--- failed\n"));
2603 }
2604 }
2605 #endif
2606