Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.392
      1 /*	$NetBSD: kern_exec.c,v 1.392 2014/04/13 09:19:42 uebayasi Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     31  * Copyright (C) 1992 Wolfgang Solfrank.
     32  * Copyright (C) 1992 TooLs GmbH.
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by TooLs GmbH.
     46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.392 2014/04/13 09:19:42 uebayasi Exp $");
     63 
     64 #include "opt_exec.h"
     65 #include "opt_execfmt.h"
     66 #include "opt_ktrace.h"
     67 #include "opt_modular.h"
     68 #include "opt_syscall_debug.h"
     69 #include "veriexec.h"
     70 #include "opt_pax.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/filedesc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/mount.h>
     78 #include <sys/malloc.h>
     79 #include <sys/kmem.h>
     80 #include <sys/namei.h>
     81 #include <sys/vnode.h>
     82 #include <sys/file.h>
     83 #include <sys/acct.h>
     84 #include <sys/atomic.h>
     85 #include <sys/exec.h>
     86 #include <sys/ktrace.h>
     87 #include <sys/uidinfo.h>
     88 #include <sys/wait.h>
     89 #include <sys/mman.h>
     90 #include <sys/ras.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/stat.h>
     93 #include <sys/syscall.h>
     94 #include <sys/kauth.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/pax.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 #include <sys/syscallvar.h>
    100 #include <sys/syscallargs.h>
    101 #if NVERIEXEC > 0
    102 #include <sys/verified_exec.h>
    103 #endif /* NVERIEXEC > 0 */
    104 #include <sys/sdt.h>
    105 #include <sys/spawn.h>
    106 #include <sys/prot.h>
    107 #include <sys/cprng.h>
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #include <machine/reg.h>
    112 
    113 #include <compat/common/compat_util.h>
    114 
    115 #ifndef MD_TOPDOWN_INIT
    116 #ifdef __USE_TOPDOWN_VM
    117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    118 #else
    119 #define	MD_TOPDOWN_INIT(epp)
    120 #endif
    121 #endif
    122 
    123 struct execve_data;
    124 
    125 static int copyinargs(struct execve_data * restrict, char * const *,
    126     char * const *, execve_fetch_element_t, char **);
    127 static int copyinargstrs(struct execve_data * restrict, char * const *,
    128     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    129 static int exec_sigcode_map(struct proc *, const struct emul *);
    130 
    131 #ifdef DEBUG_EXEC
    132 #define DPRINTF(a) printf a
    133 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    134     __LINE__, (s), (a), (b))
    135 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    136 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    137 #else
    138 #define DPRINTF(a)
    139 #define COPYPRINTF(s, a, b)
    140 #define DUMPVMCMDS(p, x, e) do {} while (0)
    141 #endif /* DEBUG_EXEC */
    142 
    143 /*
    144  * DTrace SDT provider definitions
    145  */
    146 SDT_PROBE_DEFINE(proc,,,exec,exec,
    147 	    "char *", NULL,
    148 	    NULL, NULL, NULL, NULL,
    149 	    NULL, NULL, NULL, NULL);
    150 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
    151 	    "char *", NULL,
    152 	    NULL, NULL, NULL, NULL,
    153 	    NULL, NULL, NULL, NULL);
    154 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
    155 	    "int", NULL,
    156 	    NULL, NULL, NULL, NULL,
    157 	    NULL, NULL, NULL, NULL);
    158 
    159 /*
    160  * Exec function switch:
    161  *
    162  * Note that each makecmds function is responsible for loading the
    163  * exec package with the necessary functions for any exec-type-specific
    164  * handling.
    165  *
    166  * Functions for specific exec types should be defined in their own
    167  * header file.
    168  */
    169 static const struct execsw	**execsw = NULL;
    170 static int			nexecs;
    171 
    172 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    173 
    174 /* list of dynamically loaded execsw entries */
    175 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    176     LIST_HEAD_INITIALIZER(ex_head);
    177 struct exec_entry {
    178 	LIST_ENTRY(exec_entry)	ex_list;
    179 	SLIST_ENTRY(exec_entry)	ex_slist;
    180 	const struct execsw	*ex_sw;
    181 };
    182 
    183 #ifndef __HAVE_SYSCALL_INTERN
    184 void	syscall(void);
    185 #endif
    186 
    187 /* NetBSD emul struct */
    188 struct emul emul_netbsd = {
    189 	.e_name =		"netbsd",
    190 #ifdef EMUL_NATIVEROOT
    191 	.e_path =		EMUL_NATIVEROOT,
    192 #else
    193 	.e_path =		NULL,
    194 #endif
    195 #ifndef __HAVE_MINIMAL_EMUL
    196 	.e_flags =		EMUL_HAS_SYS___syscall,
    197 	.e_errno =		NULL,
    198 	.e_nosys =		SYS_syscall,
    199 	.e_nsysent =		SYS_NSYSENT,
    200 #endif
    201 	.e_sysent =		sysent,
    202 #ifdef SYSCALL_DEBUG
    203 	.e_syscallnames =	syscallnames,
    204 #else
    205 	.e_syscallnames =	NULL,
    206 #endif
    207 	.e_sendsig =		sendsig,
    208 	.e_trapsignal =		trapsignal,
    209 	.e_tracesig =		NULL,
    210 	.e_sigcode =		NULL,
    211 	.e_esigcode =		NULL,
    212 	.e_sigobject =		NULL,
    213 	.e_setregs =		setregs,
    214 	.e_proc_exec =		NULL,
    215 	.e_proc_fork =		NULL,
    216 	.e_proc_exit =		NULL,
    217 	.e_lwp_fork =		NULL,
    218 	.e_lwp_exit =		NULL,
    219 #ifdef __HAVE_SYSCALL_INTERN
    220 	.e_syscall_intern =	syscall_intern,
    221 #else
    222 	.e_syscall =		syscall,
    223 #endif
    224 	.e_sysctlovly =		NULL,
    225 	.e_fault =		NULL,
    226 	.e_vm_default_addr =	uvm_default_mapaddr,
    227 	.e_usertrap =		NULL,
    228 	.e_ucsize =		sizeof(ucontext_t),
    229 	.e_startlwp =		startlwp
    230 };
    231 
    232 /*
    233  * Exec lock. Used to control access to execsw[] structures.
    234  * This must not be static so that netbsd32 can access it, too.
    235  */
    236 krwlock_t exec_lock;
    237 
    238 static kmutex_t sigobject_lock;
    239 
    240 /*
    241  * Data used between a loadvm and execve part of an "exec" operation
    242  */
    243 struct execve_data {
    244 	struct exec_package	ed_pack;
    245 	struct pathbuf		*ed_pathbuf;
    246 	struct vattr		ed_attr;
    247 	struct ps_strings	ed_arginfo;
    248 	char			*ed_argp;
    249 	const char		*ed_pathstring;
    250 	char			*ed_resolvedpathbuf;
    251 	size_t			ed_ps_strings_sz;
    252 	int			ed_szsigcode;
    253 	long			ed_argc;
    254 	long			ed_envc;
    255 };
    256 
    257 /*
    258  * data passed from parent lwp to child during a posix_spawn()
    259  */
    260 struct spawn_exec_data {
    261 	struct execve_data	sed_exec;
    262 	struct posix_spawn_file_actions
    263 				*sed_actions;
    264 	struct posix_spawnattr	*sed_attrs;
    265 	struct proc		*sed_parent;
    266 	kcondvar_t		sed_cv_child_ready;
    267 	kmutex_t		sed_mtx_child;
    268 	int			sed_error;
    269 	volatile uint32_t	sed_refcnt;
    270 };
    271 
    272 static void *
    273 exec_pool_alloc(struct pool *pp, int flags)
    274 {
    275 
    276 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
    277 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    278 }
    279 
    280 static void
    281 exec_pool_free(struct pool *pp, void *addr)
    282 {
    283 
    284 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    285 }
    286 
    287 static struct pool exec_pool;
    288 
    289 static struct pool_allocator exec_palloc = {
    290 	.pa_alloc = exec_pool_alloc,
    291 	.pa_free = exec_pool_free,
    292 	.pa_pagesz = NCARGS
    293 };
    294 
    295 /*
    296  * check exec:
    297  * given an "executable" described in the exec package's namei info,
    298  * see what we can do with it.
    299  *
    300  * ON ENTRY:
    301  *	exec package with appropriate namei info
    302  *	lwp pointer of exec'ing lwp
    303  *	NO SELF-LOCKED VNODES
    304  *
    305  * ON EXIT:
    306  *	error:	nothing held, etc.  exec header still allocated.
    307  *	ok:	filled exec package, executable's vnode (unlocked).
    308  *
    309  * EXEC SWITCH ENTRY:
    310  * 	Locked vnode to check, exec package, proc.
    311  *
    312  * EXEC SWITCH EXIT:
    313  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    314  *	error:	destructive:
    315  *			everything deallocated execept exec header.
    316  *		non-destructive:
    317  *			error code, executable's vnode (unlocked),
    318  *			exec header unmodified.
    319  */
    320 int
    321 /*ARGSUSED*/
    322 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
    323 {
    324 	int		error, i;
    325 	struct vnode	*vp;
    326 	struct nameidata nd;
    327 	size_t		resid;
    328 
    329 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    330 
    331 	/* first get the vnode */
    332 	if ((error = namei(&nd)) != 0)
    333 		return error;
    334 	epp->ep_vp = vp = nd.ni_vp;
    335 	/* normally this can't fail */
    336 	if ((error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL)))
    337 		goto bad1;
    338 
    339 #ifdef DIAGNOSTIC
    340 	/* paranoia (take this out once namei stuff stabilizes) */
    341 	memset(nd.ni_pnbuf, '~', PATH_MAX);
    342 #endif
    343 
    344 	/* check access and type */
    345 	if (vp->v_type != VREG) {
    346 		error = EACCES;
    347 		goto bad1;
    348 	}
    349 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    350 		goto bad1;
    351 
    352 	/* get attributes */
    353 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    354 		goto bad1;
    355 
    356 	/* Check mount point */
    357 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    358 		error = EACCES;
    359 		goto bad1;
    360 	}
    361 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    362 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    363 
    364 	/* try to open it */
    365 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    366 		goto bad1;
    367 
    368 	/* unlock vp, since we need it unlocked from here on out. */
    369 	VOP_UNLOCK(vp);
    370 
    371 #if NVERIEXEC > 0
    372 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
    373 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    374 	    NULL);
    375 	if (error)
    376 		goto bad2;
    377 #endif /* NVERIEXEC > 0 */
    378 
    379 #ifdef PAX_SEGVGUARD
    380 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    381 	if (error)
    382 		goto bad2;
    383 #endif /* PAX_SEGVGUARD */
    384 
    385 	/* now we have the file, get the exec header */
    386 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    387 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
    388 	if (error)
    389 		goto bad2;
    390 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    391 
    392 	/*
    393 	 * Set up default address space limits.  Can be overridden
    394 	 * by individual exec packages.
    395 	 *
    396 	 * XXX probably should be all done in the exec packages.
    397 	 */
    398 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
    399 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    400 	/*
    401 	 * set up the vmcmds for creation of the process
    402 	 * address space
    403 	 */
    404 	error = ENOEXEC;
    405 	for (i = 0; i < nexecs; i++) {
    406 		int newerror;
    407 
    408 		epp->ep_esch = execsw[i];
    409 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    410 
    411 		if (!newerror) {
    412 			/* Seems ok: check that entry point is not too high */
    413 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
    414 #ifdef DIAGNOSTIC
    415 				printf("%s: rejecting %p due to "
    416 				    "too high entry address (> %p)\n",
    417 					 __func__, (void *)epp->ep_entry,
    418 					 (void *)epp->ep_vm_maxaddr);
    419 #endif
    420 				error = ENOEXEC;
    421 				break;
    422 			}
    423 			/* Seems ok: check that entry point is not too low */
    424 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    425 #ifdef DIAGNOSTIC
    426 				printf("%s: rejecting %p due to "
    427 				    "too low entry address (< %p)\n",
    428 				     __func__, (void *)epp->ep_entry,
    429 				     (void *)epp->ep_vm_minaddr);
    430 #endif
    431 				error = ENOEXEC;
    432 				break;
    433 			}
    434 
    435 			/* check limits */
    436 			if ((epp->ep_tsize > MAXTSIZ) ||
    437 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    438 						    [RLIMIT_DATA].rlim_cur)) {
    439 #ifdef DIAGNOSTIC
    440 				printf("%s: rejecting due to "
    441 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    442 				    __func__,
    443 				    (unsigned long long)epp->ep_tsize,
    444 				    (unsigned long long)MAXTSIZ,
    445 				    (unsigned long long)epp->ep_dsize,
    446 				    (unsigned long long)
    447 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    448 #endif
    449 				error = ENOMEM;
    450 				break;
    451 			}
    452 			return 0;
    453 		}
    454 
    455 		if (epp->ep_emul_root != NULL) {
    456 			vrele(epp->ep_emul_root);
    457 			epp->ep_emul_root = NULL;
    458 		}
    459 		if (epp->ep_interp != NULL) {
    460 			vrele(epp->ep_interp);
    461 			epp->ep_interp = NULL;
    462 		}
    463 
    464 		/* make sure the first "interesting" error code is saved. */
    465 		if (error == ENOEXEC)
    466 			error = newerror;
    467 
    468 		if (epp->ep_flags & EXEC_DESTR)
    469 			/* Error from "#!" code, tidied up by recursive call */
    470 			return error;
    471 	}
    472 
    473 	/* not found, error */
    474 
    475 	/*
    476 	 * free any vmspace-creation commands,
    477 	 * and release their references
    478 	 */
    479 	kill_vmcmds(&epp->ep_vmcmds);
    480 
    481 bad2:
    482 	/*
    483 	 * close and release the vnode, restore the old one, free the
    484 	 * pathname buf, and punt.
    485 	 */
    486 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    487 	VOP_CLOSE(vp, FREAD, l->l_cred);
    488 	vput(vp);
    489 	return error;
    490 
    491 bad1:
    492 	/*
    493 	 * free the namei pathname buffer, and put the vnode
    494 	 * (which we don't yet have open).
    495 	 */
    496 	vput(vp);				/* was still locked */
    497 	return error;
    498 }
    499 
    500 #ifdef __MACHINE_STACK_GROWS_UP
    501 #define STACK_PTHREADSPACE NBPG
    502 #else
    503 #define STACK_PTHREADSPACE 0
    504 #endif
    505 
    506 static int
    507 execve_fetch_element(char * const *array, size_t index, char **value)
    508 {
    509 	return copyin(array + index, value, sizeof(*value));
    510 }
    511 
    512 /*
    513  * exec system call
    514  */
    515 int
    516 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    517 {
    518 	/* {
    519 		syscallarg(const char *)	path;
    520 		syscallarg(char * const *)	argp;
    521 		syscallarg(char * const *)	envp;
    522 	} */
    523 
    524 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
    525 	    SCARG(uap, envp), execve_fetch_element);
    526 }
    527 
    528 int
    529 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    530     register_t *retval)
    531 {
    532 	/* {
    533 		syscallarg(int)			fd;
    534 		syscallarg(char * const *)	argp;
    535 		syscallarg(char * const *)	envp;
    536 	} */
    537 
    538 	return ENOSYS;
    539 }
    540 
    541 /*
    542  * Load modules to try and execute an image that we do not understand.
    543  * If no execsw entries are present, we load those likely to be needed
    544  * in order to run native images only.  Otherwise, we autoload all
    545  * possible modules that could let us run the binary.  XXX lame
    546  */
    547 static void
    548 exec_autoload(void)
    549 {
    550 #ifdef MODULAR
    551 	static const char * const native[] = {
    552 		"exec_elf32",
    553 		"exec_elf64",
    554 		"exec_script",
    555 		NULL
    556 	};
    557 	static const char * const compat[] = {
    558 		"exec_elf32",
    559 		"exec_elf64",
    560 		"exec_script",
    561 		"exec_aout",
    562 		"exec_coff",
    563 		"exec_ecoff",
    564 		"compat_aoutm68k",
    565 		"compat_freebsd",
    566 		"compat_ibcs2",
    567 		"compat_linux",
    568 		"compat_linux32",
    569 		"compat_netbsd32",
    570 		"compat_sunos",
    571 		"compat_sunos32",
    572 		"compat_svr4",
    573 		"compat_svr4_32",
    574 		"compat_ultrix",
    575 		NULL
    576 	};
    577 	char const * const *list;
    578 	int i;
    579 
    580 	list = (nexecs == 0 ? native : compat);
    581 	for (i = 0; list[i] != NULL; i++) {
    582 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    583 			continue;
    584 		}
    585 		yield();
    586 	}
    587 #endif
    588 }
    589 
    590 static int
    591 execve_loadvm(struct lwp *l, const char *path, char * const *args,
    592 	char * const *envs, execve_fetch_element_t fetch_element,
    593 	struct execve_data * restrict data)
    594 {
    595 	struct exec_package	* const epp = &data->ed_pack;
    596 	int			error;
    597 	struct proc		*p;
    598 	char			*dp;
    599 	u_int			modgen;
    600 
    601 	KASSERT(data != NULL);
    602 
    603 	p = l->l_proc;
    604 	modgen = 0;
    605 
    606 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
    607 
    608 	/*
    609 	 * Check if we have exceeded our number of processes limit.
    610 	 * This is so that we handle the case where a root daemon
    611 	 * forked, ran setuid to become the desired user and is trying
    612 	 * to exec. The obvious place to do the reference counting check
    613 	 * is setuid(), but we don't do the reference counting check there
    614 	 * like other OS's do because then all the programs that use setuid()
    615 	 * must be modified to check the return code of setuid() and exit().
    616 	 * It is dangerous to make setuid() fail, because it fails open and
    617 	 * the program will continue to run as root. If we make it succeed
    618 	 * and return an error code, again we are not enforcing the limit.
    619 	 * The best place to enforce the limit is here, when the process tries
    620 	 * to execute a new image, because eventually the process will need
    621 	 * to call exec in order to do something useful.
    622 	 */
    623  retry:
    624 	if (p->p_flag & PK_SUGID) {
    625 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    626 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    627 		     &p->p_rlimit[RLIMIT_NPROC],
    628 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    629 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    630 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    631 		return EAGAIN;
    632 	}
    633 
    634 	/*
    635 	 * Drain existing references and forbid new ones.  The process
    636 	 * should be left alone until we're done here.  This is necessary
    637 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    638 	 * a local user to illicitly obtain elevated privileges.
    639 	 */
    640 	rw_enter(&p->p_reflock, RW_WRITER);
    641 
    642 	/*
    643 	 * Init the namei data to point the file user's program name.
    644 	 * This is done here rather than in check_exec(), so that it's
    645 	 * possible to override this settings if any of makecmd/probe
    646 	 * functions call check_exec() recursively - for example,
    647 	 * see exec_script_makecmds().
    648 	 */
    649 	error = pathbuf_copyin(path, &data->ed_pathbuf);
    650 	if (error) {
    651 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
    652 		    path, error));
    653 		goto clrflg;
    654 	}
    655 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    656 	data->ed_resolvedpathbuf = PNBUF_GET();
    657 
    658 	/*
    659 	 * initialize the fields of the exec package.
    660 	 */
    661 	epp->ep_name = path;
    662 	epp->ep_kname = data->ed_pathstring;
    663 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
    664 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    665 	epp->ep_hdrlen = exec_maxhdrsz;
    666 	epp->ep_hdrvalid = 0;
    667 	epp->ep_emul_arg = NULL;
    668 	epp->ep_emul_arg_free = NULL;
    669 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    670 	epp->ep_vap = &data->ed_attr;
    671 	epp->ep_flags = 0;
    672 	MD_TOPDOWN_INIT(epp);
    673 	epp->ep_emul_root = NULL;
    674 	epp->ep_interp = NULL;
    675 	epp->ep_esch = NULL;
    676 	epp->ep_pax_flags = 0;
    677 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    678 
    679 	rw_enter(&exec_lock, RW_READER);
    680 
    681 	/* see if we can run it. */
    682 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
    683 		if (error != ENOENT) {
    684 			DPRINTF(("%s: check exec failed %d\n",
    685 			    __func__, error));
    686 		}
    687 		goto freehdr;
    688 	}
    689 
    690 	/* allocate an argument buffer */
    691 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    692 	KASSERT(data->ed_argp != NULL);
    693 	dp = data->ed_argp;
    694 
    695 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    696 		goto bad;
    697 	}
    698 
    699 	/*
    700 	 * Calculate the new stack size.
    701 	 */
    702 
    703 	const size_t nargenvptrs =
    704 	    data->ed_argc +		/* char *argv[] */
    705 	    1 +				/* \0 */
    706 	    data->ed_envc +		/* char *env[] */
    707 	    1 +				/* \0 */
    708 	    epp->ep_esch->es_arglen;	/* auxinfo */
    709 
    710 	const size_t ptrsz = (epp->ep_flags & EXEC_32) ?
    711 	    sizeof(int) : sizeof(char *);
    712 
    713 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    714 
    715 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
    716 	    epp->ep_esch->es_emul->e_sigcode;
    717 
    718 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
    719 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
    720 
    721 	const size_t aslrgap =
    722 #ifdef PAX_ASLR
    723 	    pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0;
    724 #else
    725 	    0;
    726 #endif
    727 
    728 #ifdef __MACHINE_STACK_GROWS_UP
    729 /*
    730  * copyargs() fills argc/argv/envp from the lower address even on
    731  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    732  * so that _rtld() use it.
    733  */
    734 #define	RTLD_GAP	32
    735 #else
    736 #define	RTLD_GAP	0
    737 #endif
    738 
    739 	const size_t argenvlen =
    740 	    RTLD_GAP +			/* reserved for _rtld() */
    741 	    sizeof(int) +		/* XXX argc in stack is long, not int */
    742 	    (nargenvptrs * ptrsz);	/* XXX auxinfo multiplied by ptr size? */
    743 
    744 	const size_t sigcode_psstr_sz =
    745 	    data->ed_szsigcode +	/* sigcode */
    746 	    data->ed_ps_strings_sz +	/* ps_strings */
    747 	    STACK_PTHREADSPACE;		/* pthread space */
    748 
    749 	const size_t stacklen =
    750 	    argenvlen +
    751 	    argenvstrlen +
    752 	    aslrgap +
    753 	    sigcode_psstr_sz;
    754 
    755 	/* make the stack "safely" aligned */
    756 	const size_t aligned_stacklen = STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
    757 
    758 	if (aligned_stacklen > epp->ep_ssize) {
    759 		/* in effect, compare to initial limit */
    760 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, aligned_stacklen));
    761 		goto bad;
    762 	}
    763 	/* adjust "active stack depth" for process VSZ */
    764 	epp->ep_ssize = aligned_stacklen;
    765 
    766 	return 0;
    767 
    768  bad:
    769 	/* free the vmspace-creation commands, and release their references */
    770 	kill_vmcmds(&epp->ep_vmcmds);
    771 	/* kill any opened file descriptor, if necessary */
    772 	if (epp->ep_flags & EXEC_HASFD) {
    773 		epp->ep_flags &= ~EXEC_HASFD;
    774 		fd_close(epp->ep_fd);
    775 	}
    776 	/* close and put the exec'd file */
    777 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    778 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    779 	vput(epp->ep_vp);
    780 	pool_put(&exec_pool, data->ed_argp);
    781 
    782  freehdr:
    783 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    784 	if (epp->ep_emul_root != NULL)
    785 		vrele(epp->ep_emul_root);
    786 	if (epp->ep_interp != NULL)
    787 		vrele(epp->ep_interp);
    788 
    789 	rw_exit(&exec_lock);
    790 
    791 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    792 	pathbuf_destroy(data->ed_pathbuf);
    793 	PNBUF_PUT(data->ed_resolvedpathbuf);
    794 
    795  clrflg:
    796 	rw_exit(&p->p_reflock);
    797 
    798 	if (modgen != module_gen && error == ENOEXEC) {
    799 		modgen = module_gen;
    800 		exec_autoload();
    801 		goto retry;
    802 	}
    803 
    804 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
    805 	return error;
    806 }
    807 
    808 static void
    809 execve_free_data(struct execve_data *data)
    810 {
    811 	struct exec_package	* const epp = &data->ed_pack;
    812 
    813 	/* free the vmspace-creation commands, and release their references */
    814 	kill_vmcmds(&epp->ep_vmcmds);
    815 	/* kill any opened file descriptor, if necessary */
    816 	if (epp->ep_flags & EXEC_HASFD) {
    817 		epp->ep_flags &= ~EXEC_HASFD;
    818 		fd_close(epp->ep_fd);
    819 	}
    820 
    821 	/* close and put the exec'd file */
    822 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    823 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
    824 	vput(epp->ep_vp);
    825 	pool_put(&exec_pool, data->ed_argp);
    826 
    827 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    828 	if (epp->ep_emul_root != NULL)
    829 		vrele(epp->ep_emul_root);
    830 	if (epp->ep_interp != NULL)
    831 		vrele(epp->ep_interp);
    832 
    833 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    834 	pathbuf_destroy(data->ed_pathbuf);
    835 	PNBUF_PUT(data->ed_resolvedpathbuf);
    836 }
    837 
    838 /* XXX elsewhere */
    839 static int
    840 credexec(struct lwp *l, struct vattr *attr)
    841 {
    842 	struct proc *p = l->l_proc;
    843 	int error;
    844 
    845 	/*
    846 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
    847 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
    848 	 * out additional references on the process for the moment.
    849 	 */
    850 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    851 
    852 	    (((attr->va_mode & S_ISUID) != 0 &&
    853 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
    854 
    855 	     ((attr->va_mode & S_ISGID) != 0 &&
    856 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
    857 		/*
    858 		 * Mark the process as SUGID before we do
    859 		 * anything that might block.
    860 		 */
    861 		proc_crmod_enter();
    862 		proc_crmod_leave(NULL, NULL, true);
    863 
    864 		/* Make sure file descriptors 0..2 are in use. */
    865 		if ((error = fd_checkstd()) != 0) {
    866 			DPRINTF(("%s: fdcheckstd failed %d\n",
    867 			    __func__, error));
    868 			return error;
    869 		}
    870 
    871 		/*
    872 		 * Copy the credential so other references don't see our
    873 		 * changes.
    874 		 */
    875 		l->l_cred = kauth_cred_copy(l->l_cred);
    876 #ifdef KTRACE
    877 		/*
    878 		 * If the persistent trace flag isn't set, turn off.
    879 		 */
    880 		if (p->p_tracep) {
    881 			mutex_enter(&ktrace_lock);
    882 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
    883 				ktrderef(p);
    884 			mutex_exit(&ktrace_lock);
    885 		}
    886 #endif
    887 		if (attr->va_mode & S_ISUID)
    888 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
    889 		if (attr->va_mode & S_ISGID)
    890 			kauth_cred_setegid(l->l_cred, attr->va_gid);
    891 	} else {
    892 		if (kauth_cred_geteuid(l->l_cred) ==
    893 		    kauth_cred_getuid(l->l_cred) &&
    894 		    kauth_cred_getegid(l->l_cred) ==
    895 		    kauth_cred_getgid(l->l_cred))
    896 			p->p_flag &= ~PK_SUGID;
    897 	}
    898 
    899 	/*
    900 	 * Copy the credential so other references don't see our changes.
    901 	 * Test to see if this is necessary first, since in the common case
    902 	 * we won't need a private reference.
    903 	 */
    904 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
    905 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
    906 		l->l_cred = kauth_cred_copy(l->l_cred);
    907 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
    908 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
    909 	}
    910 
    911 	/* Update the master credentials. */
    912 	if (l->l_cred != p->p_cred) {
    913 		kauth_cred_t ocred;
    914 
    915 		kauth_cred_hold(l->l_cred);
    916 		mutex_enter(p->p_lock);
    917 		ocred = p->p_cred;
    918 		p->p_cred = l->l_cred;
    919 		mutex_exit(p->p_lock);
    920 		kauth_cred_free(ocred);
    921 	}
    922 
    923 	return 0;
    924 }
    925 
    926 static int
    927 execve_runproc(struct lwp *l, struct execve_data * restrict data,
    928 	bool no_local_exec_lock, bool is_spawn)
    929 {
    930 	struct exec_package	* const epp = &data->ed_pack;
    931 	int error = 0;
    932 	struct proc		*p;
    933 
    934 	/*
    935 	 * In case of a posix_spawn operation, the child doing the exec
    936 	 * might not hold the reader lock on exec_lock, but the parent
    937 	 * will do this instead.
    938 	 */
    939 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
    940 	KASSERT(!no_local_exec_lock || is_spawn);
    941 	KASSERT(data != NULL);
    942 
    943 	p = l->l_proc;
    944 
    945 	/* Get rid of other LWPs. */
    946 	if (p->p_nlwps > 1) {
    947 		mutex_enter(p->p_lock);
    948 		exit_lwps(l);
    949 		mutex_exit(p->p_lock);
    950 	}
    951 	KDASSERT(p->p_nlwps == 1);
    952 
    953 	/* Destroy any lwpctl info. */
    954 	if (p->p_lwpctl != NULL)
    955 		lwp_ctl_exit();
    956 
    957 	/* Remove POSIX timers */
    958 	timers_free(p, TIMERS_POSIX);
    959 
    960 	/*
    961 	 * Do whatever is necessary to prepare the address space
    962 	 * for remapping.  Note that this might replace the current
    963 	 * vmspace with another!
    964 	 */
    965 	if (is_spawn)
    966 		uvmspace_spawn(l, epp->ep_vm_minaddr,
    967 		    epp->ep_vm_maxaddr,
    968 		    epp->ep_flags & EXEC_TOPDOWN_VM);
    969 	else
    970 		uvmspace_exec(l, epp->ep_vm_minaddr,
    971 		    epp->ep_vm_maxaddr,
    972 		    epp->ep_flags & EXEC_TOPDOWN_VM);
    973 
    974 	/* record proc's vnode, for use by procfs and others */
    975 	if (p->p_textvp)
    976 		vrele(p->p_textvp);
    977 	vref(epp->ep_vp);
    978 	p->p_textvp = epp->ep_vp;
    979 
    980 	/* Now map address space */
    981 	struct vmspace		*vm;
    982 	vm = p->p_vmspace;
    983 	vm->vm_taddr = (void *)epp->ep_taddr;
    984 	vm->vm_tsize = btoc(epp->ep_tsize);
    985 	vm->vm_daddr = (void*)epp->ep_daddr;
    986 	vm->vm_dsize = btoc(epp->ep_dsize);
    987 	vm->vm_ssize = btoc(epp->ep_ssize);
    988 	vm->vm_issize = 0;
    989 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
    990 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
    991 
    992 #ifdef PAX_ASLR
    993 	pax_aslr_init(l, vm);
    994 #endif /* PAX_ASLR */
    995 
    996 	/* create the new process's VM space by running the vmcmds */
    997 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    998 
    999 	DUMPVMCMDS(epp, 0, 0);
   1000 
   1001     {
   1002 	size_t			i;
   1003 	struct exec_vmcmd	*base_vcp;
   1004 
   1005 	base_vcp = NULL;
   1006 
   1007 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
   1008 		struct exec_vmcmd *vcp;
   1009 
   1010 		vcp = &epp->ep_vmcmds.evs_cmds[i];
   1011 		if (vcp->ev_flags & VMCMD_RELATIVE) {
   1012 			KASSERTMSG(base_vcp != NULL,
   1013 			    "%s: relative vmcmd with no base", __func__);
   1014 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
   1015 			    "%s: illegal base & relative vmcmd", __func__);
   1016 			vcp->ev_addr += base_vcp->ev_addr;
   1017 		}
   1018 		error = (*vcp->ev_proc)(l, vcp);
   1019 		if (error)
   1020 			DUMPVMCMDS(epp, i, error);
   1021 		if (vcp->ev_flags & VMCMD_BASE)
   1022 			base_vcp = vcp;
   1023 	}
   1024 
   1025 	/* free the vmspace-creation commands, and release their references */
   1026 	kill_vmcmds(&epp->ep_vmcmds);
   1027 
   1028 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
   1029 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
   1030 	vput(epp->ep_vp);
   1031 
   1032 	/* if an error happened, deallocate and punt */
   1033 	if (error) {
   1034 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
   1035 		goto exec_abort;
   1036 	}
   1037     }
   1038 
   1039     {
   1040 	const char		*commandname;
   1041 	size_t			commandlen;
   1042 
   1043 	/* set command name & other accounting info */
   1044 	commandname = strrchr(epp->ep_resolvedname, '/');
   1045 	if (commandname != NULL) {
   1046 		commandname++;
   1047 	} else {
   1048 		commandname = epp->ep_resolvedname;
   1049 	}
   1050 	commandlen = min(strlen(commandname), MAXCOMLEN);
   1051 	(void)memcpy(p->p_comm, commandname, commandlen);
   1052 	p->p_comm[commandlen] = '\0';
   1053     }
   1054 
   1055     {
   1056 	char			*path;
   1057 
   1058 	path = PNBUF_GET();
   1059 
   1060 	/*
   1061 	 * If the path starts with /, we don't need to do any work.
   1062 	 * This handles the majority of the cases.
   1063 	 * In the future perhaps we could canonicalize it?
   1064 	 */
   1065 	if (data->ed_pathstring[0] == '/') {
   1066 		(void)strlcpy(path, data->ed_pathstring,
   1067 		    MAXPATHLEN);
   1068 		epp->ep_path = path;
   1069 	}
   1070 #ifdef notyet
   1071 	/*
   1072 	 * Although this works most of the time [since the entry was just
   1073 	 * entered in the cache] we don't use it because it will fail for
   1074 	 * entries that are not placed in the cache because their name is
   1075 	 * longer than NCHNAMLEN and it is not the cleanest interface,
   1076 	 * because there could be races. When the namei cache is re-written,
   1077 	 * this can be changed to use the appropriate function.
   1078 	 */
   1079 	else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
   1080 		epp->ep_path = path;
   1081 #endif
   1082 	else {
   1083 #ifdef notyet
   1084 		printf("Cannot get path for pid %d [%s] (error %d)\n",
   1085 		    (int)p->p_pid, p->p_comm, error);
   1086 #endif
   1087 		epp->ep_path = NULL;
   1088 		PNBUF_PUT(path);
   1089 	}
   1090     }
   1091 
   1092 	/* remember information about the process */
   1093 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1094 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1095 
   1096     {
   1097 	/*
   1098 	 * Allocate the stack address passed to the newly execve()'ed process.
   1099 	 *
   1100 	 * The new stack address will be set to the SP (stack pointer) register
   1101 	 * in setregs().
   1102 	 */
   1103 
   1104 	const size_t sigcode_psstr_sz =
   1105 	    data->ed_szsigcode +	/* sigcode */
   1106 	    data->ed_ps_strings_sz +	/* ps_strings */
   1107 	    STACK_PTHREADSPACE;		/* pthread space */
   1108 
   1109 	char			*stack;
   1110 
   1111 	/* Top of the stack address space. */
   1112 	stack = vm->vm_minsaddr;
   1113 
   1114 	/* Skip pthread space, ps_strings, and sigcode. */
   1115 	stack = STACK_GROW(stack, sigcode_psstr_sz);
   1116 
   1117 	/* Allocate the gap for _rtld() and arguments to be filled by copyargs(). */
   1118 	stack = STACK_ALLOC(stack, epp->ep_ssize - sigcode_psstr_sz);
   1119 
   1120 	/* Skip a few words reserved for _rtld(). */
   1121 	stack = STACK_GROW(stack, RTLD_GAP);
   1122 
   1123 	/* Now copy argc, args & environ to the new stack. */
   1124 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1125 	    &data->ed_arginfo, &stack, data->ed_argp);
   1126 
   1127 	if (epp->ep_path) {
   1128 		PNBUF_PUT(epp->ep_path);
   1129 		epp->ep_path = NULL;
   1130 	}
   1131 	if (error) {
   1132 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1133 		goto exec_abort;
   1134 	}
   1135     }
   1136 
   1137 	/* fill process ps_strings info */
   1138 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
   1139 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1140 
   1141     {
   1142 	struct ps_strings32	arginfo32;
   1143 	void			*aip;
   1144 
   1145 	if (epp->ep_flags & EXEC_32) {
   1146 		aip = &arginfo32;
   1147 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1148 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1149 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1150 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1151 	} else
   1152 		aip = &data->ed_arginfo;
   1153 
   1154 	/* copy out the process's ps_strings structure */
   1155 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1156 	    != 0) {
   1157 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1158 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1159 		goto exec_abort;
   1160 	}
   1161     }
   1162 
   1163 	cwdexec(p);
   1164 	fd_closeexec();		/* handle close on exec */
   1165 
   1166 	if (__predict_false(ktrace_on))
   1167 		fd_ktrexecfd();
   1168 
   1169 	execsigs(p);		/* reset catched signals */
   1170 
   1171 	mutex_enter(p->p_lock);
   1172 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1173 	p->p_acflag &= ~AFORK;
   1174 	p->p_flag |= PK_EXEC;
   1175 	mutex_exit(p->p_lock);
   1176 
   1177 	/*
   1178 	 * Stop profiling.
   1179 	 */
   1180 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1181 		mutex_spin_enter(&p->p_stmutex);
   1182 		stopprofclock(p);
   1183 		mutex_spin_exit(&p->p_stmutex);
   1184 	}
   1185 
   1186 	/*
   1187 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1188 	 * exited and exec()/exit() are the only places it will be cleared.
   1189 	 */
   1190 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1191 #if 0
   1192 		lwp_t *lp;
   1193 
   1194 		mutex_enter(proc_lock);
   1195 		lp = p->p_vforklwp;
   1196 		p->p_vforklwp = NULL;
   1197 
   1198 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1199 		p->p_lflag &= ~PL_PPWAIT;
   1200 
   1201 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
   1202 		cv_broadcast(&lp->l_waitcv);
   1203 		mutex_exit(proc_lock);
   1204 #else
   1205 		mutex_enter(proc_lock);
   1206 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1207 		p->p_lflag &= ~PL_PPWAIT;
   1208 		cv_broadcast(&p->p_pptr->p_waitcv);
   1209 		mutex_exit(proc_lock);
   1210 #endif
   1211 	}
   1212 
   1213 	error = credexec(l, &data->ed_attr);
   1214 	if (error)
   1215 		goto exec_abort;
   1216 
   1217 #if defined(__HAVE_RAS)
   1218 	/*
   1219 	 * Remove all RASs from the address space.
   1220 	 */
   1221 	ras_purgeall();
   1222 #endif
   1223 
   1224 	doexechooks(p);
   1225 
   1226     {
   1227 	/*
   1228 	 * Set initial SP at the top of the stack.
   1229 	 *
   1230 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1231 	 * the end of arg/env strings.  Userland guesses the address of argc
   1232 	 * via ps_strings::ps_argvstr.
   1233 	 */
   1234 	const vaddr_t newstack = (vaddr_t)STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1235 
   1236 	/* Setup new registers and do misc. setup. */
   1237 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, newstack);
   1238 	if (epp->ep_esch->es_setregs)
   1239 		(*epp->ep_esch->es_setregs)(l, epp, newstack);
   1240     }
   1241 
   1242 	/* Provide a consistent LWP private setting */
   1243 	(void)lwp_setprivate(l, NULL);
   1244 
   1245 	/* Discard all PCU state; need to start fresh */
   1246 	pcu_discard_all(l);
   1247 
   1248 	/* map the process's signal trampoline code */
   1249 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1250 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1251 		goto exec_abort;
   1252 	}
   1253 
   1254 	pool_put(&exec_pool, data->ed_argp);
   1255 
   1256 	/* notify others that we exec'd */
   1257 	KNOTE(&p->p_klist, NOTE_EXEC);
   1258 
   1259 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1260 
   1261 	SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0);
   1262 
   1263 	/* The emulation root will usually have been found when we looked
   1264 	 * for the elf interpreter (or similar), if not look now. */
   1265 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1266 	    epp->ep_emul_root == NULL)
   1267 		emul_find_root(l, epp);
   1268 
   1269 	/* Any old emulation root got removed by fdcloseexec */
   1270 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1271 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1272 	rw_exit(&p->p_cwdi->cwdi_lock);
   1273 	epp->ep_emul_root = NULL;
   1274 	if (epp->ep_interp != NULL)
   1275 		vrele(epp->ep_interp);
   1276 
   1277 	/*
   1278 	 * Call emulation specific exec hook. This can setup per-process
   1279 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1280 	 *
   1281 	 * If we are executing process of different emulation than the
   1282 	 * original forked process, call e_proc_exit() of the old emulation
   1283 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1284 	 * same, the exec hook code should deallocate any old emulation
   1285 	 * resources held previously by this process.
   1286 	 */
   1287 	if (p->p_emul && p->p_emul->e_proc_exit
   1288 	    && p->p_emul != epp->ep_esch->es_emul)
   1289 		(*p->p_emul->e_proc_exit)(p);
   1290 
   1291 	/*
   1292 	 * This is now LWP 1.
   1293 	 */
   1294 	mutex_enter(p->p_lock);
   1295 	p->p_nlwpid = 1;
   1296 	l->l_lid = 1;
   1297 	mutex_exit(p->p_lock);
   1298 
   1299 	/*
   1300 	 * Call exec hook. Emulation code may NOT store reference to anything
   1301 	 * from &pack.
   1302 	 */
   1303 	if (epp->ep_esch->es_emul->e_proc_exec)
   1304 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1305 
   1306 	/* update p_emul, the old value is no longer needed */
   1307 	p->p_emul = epp->ep_esch->es_emul;
   1308 
   1309 	/* ...and the same for p_execsw */
   1310 	p->p_execsw = epp->ep_esch;
   1311 
   1312 #ifdef __HAVE_SYSCALL_INTERN
   1313 	(*p->p_emul->e_syscall_intern)(p);
   1314 #endif
   1315 	ktremul();
   1316 
   1317 	/* Allow new references from the debugger/procfs. */
   1318 	rw_exit(&p->p_reflock);
   1319 	if (!no_local_exec_lock)
   1320 		rw_exit(&exec_lock);
   1321 
   1322 	mutex_enter(proc_lock);
   1323 
   1324 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
   1325 		ksiginfo_t ksi;
   1326 
   1327 		KSI_INIT_EMPTY(&ksi);
   1328 		ksi.ksi_signo = SIGTRAP;
   1329 		ksi.ksi_lid = l->l_lid;
   1330 		kpsignal(p, &ksi, NULL);
   1331 	}
   1332 
   1333 	if (p->p_sflag & PS_STOPEXEC) {
   1334 		ksiginfoq_t kq;
   1335 
   1336 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1337 		p->p_pptr->p_nstopchild++;
   1338 		p->p_pptr->p_waited = 0;
   1339 		mutex_enter(p->p_lock);
   1340 		ksiginfo_queue_init(&kq);
   1341 		sigclearall(p, &contsigmask, &kq);
   1342 		lwp_lock(l);
   1343 		l->l_stat = LSSTOP;
   1344 		p->p_stat = SSTOP;
   1345 		p->p_nrlwps--;
   1346 		lwp_unlock(l);
   1347 		mutex_exit(p->p_lock);
   1348 		mutex_exit(proc_lock);
   1349 		lwp_lock(l);
   1350 		mi_switch(l);
   1351 		ksiginfo_queue_drain(&kq);
   1352 		KERNEL_LOCK(l->l_biglocks, l);
   1353 	} else {
   1354 		mutex_exit(proc_lock);
   1355 	}
   1356 
   1357 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1358 	pathbuf_destroy(data->ed_pathbuf);
   1359 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1360 	DPRINTF(("%s finished\n", __func__));
   1361 	return EJUSTRETURN;
   1362 
   1363  exec_abort:
   1364 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
   1365 	rw_exit(&p->p_reflock);
   1366 	if (!no_local_exec_lock)
   1367 		rw_exit(&exec_lock);
   1368 
   1369 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1370 	pathbuf_destroy(data->ed_pathbuf);
   1371 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1372 
   1373 	/*
   1374 	 * the old process doesn't exist anymore.  exit gracefully.
   1375 	 * get rid of the (new) address space we have created, if any, get rid
   1376 	 * of our namei data and vnode, and exit noting failure
   1377 	 */
   1378 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1379 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1380 
   1381 	exec_free_emul_arg(epp);
   1382 	pool_put(&exec_pool, data->ed_argp);
   1383 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1384 	if (epp->ep_emul_root != NULL)
   1385 		vrele(epp->ep_emul_root);
   1386 	if (epp->ep_interp != NULL)
   1387 		vrele(epp->ep_interp);
   1388 
   1389 	/* Acquire the sched-state mutex (exit1() will release it). */
   1390 	if (!is_spawn) {
   1391 		mutex_enter(p->p_lock);
   1392 		exit1(l, W_EXITCODE(error, SIGABRT));
   1393 	}
   1394 
   1395 	return error;
   1396 }
   1397 
   1398 int
   1399 execve1(struct lwp *l, const char *path, char * const *args,
   1400     char * const *envs, execve_fetch_element_t fetch_element)
   1401 {
   1402 	struct execve_data data;
   1403 	int error;
   1404 
   1405 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
   1406 	if (error)
   1407 		return error;
   1408 	error = execve_runproc(l, &data, false, false);
   1409 	return error;
   1410 }
   1411 
   1412 static int
   1413 copyinargs(struct execve_data * restrict data, char * const *args,
   1414     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1415 {
   1416 	struct exec_package	* const epp = &data->ed_pack;
   1417 	char			*dp;
   1418 	size_t			i;
   1419 	int			error;
   1420 
   1421 	dp = *dpp;
   1422 
   1423 	/* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
   1424 
   1425 	data->ed_argc = 0;
   1426 
   1427 	/* copy the fake args list, if there's one, freeing it as we go */
   1428 	if (epp->ep_flags & EXEC_HASARGL) {
   1429 		struct exec_fakearg	*tmpfap = epp->ep_fa;
   1430 
   1431 		while (tmpfap->fa_arg != NULL) {
   1432 			const char *cp;
   1433 
   1434 			/* XXX boudary check */
   1435 			cp = tmpfap->fa_arg;
   1436 			while (*cp)
   1437 				*dp++ = *cp++;
   1438 			*dp++ = '\0';
   1439 			ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
   1440 
   1441 			kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
   1442 			tmpfap++;
   1443 			data->ed_argc++;
   1444 		}
   1445 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1446 		epp->ep_flags &= ~EXEC_HASARGL;
   1447 	}
   1448 
   1449 	/*
   1450 	 * Read and count argument strings from user.
   1451 	 */
   1452 
   1453 	if (args == NULL) {
   1454 		DPRINTF(("%s: null args\n", __func__));
   1455 		return EINVAL;
   1456 	}
   1457 	if (epp->ep_flags & EXEC_SKIPARG)
   1458 		args++;
   1459 	i = 0;
   1460 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1461 	if (error != 0) {
   1462 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1463 		return error;
   1464 	}
   1465 	data->ed_argc += i;
   1466 
   1467 	/*
   1468 	 * Read and count environment strings from user.
   1469 	 */
   1470 
   1471 	data->ed_envc = 0;
   1472 	/* environment need not be there */
   1473 	if (envs == NULL)
   1474 		goto done;
   1475 	i = 0;
   1476 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1477 	if (error != 0) {
   1478 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1479 		return error;
   1480 	}
   1481 	data->ed_envc += i;
   1482 
   1483 done:
   1484 	*dpp = dp;
   1485 
   1486 	return 0;
   1487 }
   1488 
   1489 static int
   1490 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1491     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1492     void (*ktr)(const void *, size_t))
   1493 {
   1494 	char			*dp, *sp;
   1495 	size_t			i;
   1496 	int			error;
   1497 
   1498 	dp = *dpp;
   1499 
   1500 	i = 0;
   1501 	while (1) {
   1502 		const size_t maxlen = data->ed_argp + ARG_MAX - dp;
   1503 		size_t len;
   1504 
   1505 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1506 			return error;
   1507 		}
   1508 		if (!sp)
   1509 			break;
   1510 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1511 			if (error == ENAMETOOLONG)
   1512 				error = E2BIG;
   1513 			return error;
   1514 		}
   1515 		if (__predict_false(ktrace_on))
   1516 			(*ktr)(dp, len - 1);
   1517 		dp += len;
   1518 		i++;
   1519 	}
   1520 
   1521 	*dpp = dp;
   1522 	*ip = i;
   1523 
   1524 	return 0;
   1525 }
   1526 
   1527 /*
   1528  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1529  * Those strings are located just after auxinfo.
   1530  *
   1531  * XXX rename this as copyoutargs()
   1532  */
   1533 int
   1534 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1535     char **stackp, void *argp)
   1536 {
   1537 	char	**cpp, *dp, *sp;
   1538 	size_t	len;
   1539 	void	*nullp;
   1540 	long	argc, envc;
   1541 	int	error;
   1542 
   1543 	cpp = (char **)*stackp;
   1544 	nullp = NULL;
   1545 	argc = arginfo->ps_nargvstr;
   1546 	envc = arginfo->ps_nenvstr;
   1547 
   1548 	/* argc on stack is long */
   1549 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1550 
   1551 	dp = (char *)(cpp +
   1552 	    1 +				/* argc */
   1553 	    argc +			/* *argv[] */
   1554 	    1 +				/* \0 */
   1555 	    envc +			/* *env[] */
   1556 	    1 +				/* \0 */
   1557 	    /* XXX auxinfo multiplied by ptr size? */
   1558 	    pack->ep_esch->es_arglen);	/* auxinfo */
   1559 	sp = argp;
   1560 
   1561 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1562 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1563 		return error;
   1564 	}
   1565 
   1566 	/* XXX don't copy them out, remap them! */
   1567 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1568 
   1569 	for (; --argc >= 0; sp += len, dp += len) {
   1570 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1571 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1572 			return error;
   1573 		}
   1574 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1575 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1576 			return error;
   1577 		}
   1578 	}
   1579 
   1580 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1581 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1582 		return error;
   1583 	}
   1584 
   1585 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1586 
   1587 	for (; --envc >= 0; sp += len, dp += len) {
   1588 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1589 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1590 			return error;
   1591 		}
   1592 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1593 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1594 			return error;
   1595 		}
   1596 
   1597 	}
   1598 
   1599 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1600 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1601 		return error;
   1602 	}
   1603 
   1604 	*stackp = (char *)cpp;
   1605 	return 0;
   1606 }
   1607 
   1608 
   1609 /*
   1610  * Add execsw[] entries.
   1611  */
   1612 int
   1613 exec_add(struct execsw *esp, int count)
   1614 {
   1615 	struct exec_entry	*it;
   1616 	int			i;
   1617 
   1618 	if (count == 0) {
   1619 		return 0;
   1620 	}
   1621 
   1622 	/* Check for duplicates. */
   1623 	rw_enter(&exec_lock, RW_WRITER);
   1624 	for (i = 0; i < count; i++) {
   1625 		LIST_FOREACH(it, &ex_head, ex_list) {
   1626 			/* assume unique (makecmds, probe_func, emulation) */
   1627 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1628 			    it->ex_sw->u.elf_probe_func ==
   1629 			    esp[i].u.elf_probe_func &&
   1630 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1631 				rw_exit(&exec_lock);
   1632 				return EEXIST;
   1633 			}
   1634 		}
   1635 	}
   1636 
   1637 	/* Allocate new entries. */
   1638 	for (i = 0; i < count; i++) {
   1639 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1640 		it->ex_sw = &esp[i];
   1641 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1642 	}
   1643 
   1644 	/* update execsw[] */
   1645 	exec_init(0);
   1646 	rw_exit(&exec_lock);
   1647 	return 0;
   1648 }
   1649 
   1650 /*
   1651  * Remove execsw[] entry.
   1652  */
   1653 int
   1654 exec_remove(struct execsw *esp, int count)
   1655 {
   1656 	struct exec_entry	*it, *next;
   1657 	int			i;
   1658 	const struct proclist_desc *pd;
   1659 	proc_t			*p;
   1660 
   1661 	if (count == 0) {
   1662 		return 0;
   1663 	}
   1664 
   1665 	/* Abort if any are busy. */
   1666 	rw_enter(&exec_lock, RW_WRITER);
   1667 	for (i = 0; i < count; i++) {
   1668 		mutex_enter(proc_lock);
   1669 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1670 			PROCLIST_FOREACH(p, pd->pd_list) {
   1671 				if (p->p_execsw == &esp[i]) {
   1672 					mutex_exit(proc_lock);
   1673 					rw_exit(&exec_lock);
   1674 					return EBUSY;
   1675 				}
   1676 			}
   1677 		}
   1678 		mutex_exit(proc_lock);
   1679 	}
   1680 
   1681 	/* None are busy, so remove them all. */
   1682 	for (i = 0; i < count; i++) {
   1683 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1684 			next = LIST_NEXT(it, ex_list);
   1685 			if (it->ex_sw == &esp[i]) {
   1686 				LIST_REMOVE(it, ex_list);
   1687 				kmem_free(it, sizeof(*it));
   1688 				break;
   1689 			}
   1690 		}
   1691 	}
   1692 
   1693 	/* update execsw[] */
   1694 	exec_init(0);
   1695 	rw_exit(&exec_lock);
   1696 	return 0;
   1697 }
   1698 
   1699 /*
   1700  * Initialize exec structures. If init_boot is true, also does necessary
   1701  * one-time initialization (it's called from main() that way).
   1702  * Once system is multiuser, this should be called with exec_lock held,
   1703  * i.e. via exec_{add|remove}().
   1704  */
   1705 int
   1706 exec_init(int init_boot)
   1707 {
   1708 	const struct execsw 	**sw;
   1709 	struct exec_entry	*ex;
   1710 	SLIST_HEAD(,exec_entry)	first;
   1711 	SLIST_HEAD(,exec_entry)	any;
   1712 	SLIST_HEAD(,exec_entry)	last;
   1713 	int			i, sz;
   1714 
   1715 	if (init_boot) {
   1716 		/* do one-time initializations */
   1717 		rw_init(&exec_lock);
   1718 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1719 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1720 		    "execargs", &exec_palloc, IPL_NONE);
   1721 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1722 	} else {
   1723 		KASSERT(rw_write_held(&exec_lock));
   1724 	}
   1725 
   1726 	/* Sort each entry onto the appropriate queue. */
   1727 	SLIST_INIT(&first);
   1728 	SLIST_INIT(&any);
   1729 	SLIST_INIT(&last);
   1730 	sz = 0;
   1731 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1732 		switch(ex->ex_sw->es_prio) {
   1733 		case EXECSW_PRIO_FIRST:
   1734 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1735 			break;
   1736 		case EXECSW_PRIO_ANY:
   1737 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1738 			break;
   1739 		case EXECSW_PRIO_LAST:
   1740 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1741 			break;
   1742 		default:
   1743 			panic("%s", __func__);
   1744 			break;
   1745 		}
   1746 		sz++;
   1747 	}
   1748 
   1749 	/*
   1750 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1751 	 * allocation.
   1752 	 */
   1753 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1754 	i = 0;
   1755 	SLIST_FOREACH(ex, &first, ex_slist) {
   1756 		sw[i++] = ex->ex_sw;
   1757 	}
   1758 	SLIST_FOREACH(ex, &any, ex_slist) {
   1759 		sw[i++] = ex->ex_sw;
   1760 	}
   1761 	SLIST_FOREACH(ex, &last, ex_slist) {
   1762 		sw[i++] = ex->ex_sw;
   1763 	}
   1764 
   1765 	/* Replace old execsw[] and free used memory. */
   1766 	if (execsw != NULL) {
   1767 		kmem_free(__UNCONST(execsw),
   1768 		    nexecs * sizeof(struct execsw *) + 1);
   1769 	}
   1770 	execsw = sw;
   1771 	nexecs = sz;
   1772 
   1773 	/* Figure out the maximum size of an exec header. */
   1774 	exec_maxhdrsz = sizeof(int);
   1775 	for (i = 0; i < nexecs; i++) {
   1776 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1777 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1778 	}
   1779 
   1780 	return 0;
   1781 }
   1782 
   1783 static int
   1784 exec_sigcode_map(struct proc *p, const struct emul *e)
   1785 {
   1786 	vaddr_t va;
   1787 	vsize_t sz;
   1788 	int error;
   1789 	struct uvm_object *uobj;
   1790 
   1791 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1792 
   1793 	if (e->e_sigobject == NULL || sz == 0) {
   1794 		return 0;
   1795 	}
   1796 
   1797 	/*
   1798 	 * If we don't have a sigobject for this emulation, create one.
   1799 	 *
   1800 	 * sigobject is an anonymous memory object (just like SYSV shared
   1801 	 * memory) that we keep a permanent reference to and that we map
   1802 	 * in all processes that need this sigcode. The creation is simple,
   1803 	 * we create an object, add a permanent reference to it, map it in
   1804 	 * kernel space, copy out the sigcode to it and unmap it.
   1805 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1806 	 * the way sys_mmap() would map it.
   1807 	 */
   1808 
   1809 	uobj = *e->e_sigobject;
   1810 	if (uobj == NULL) {
   1811 		mutex_enter(&sigobject_lock);
   1812 		if ((uobj = *e->e_sigobject) == NULL) {
   1813 			uobj = uao_create(sz, 0);
   1814 			(*uobj->pgops->pgo_reference)(uobj);
   1815 			va = vm_map_min(kernel_map);
   1816 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1817 			    uobj, 0, 0,
   1818 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1819 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1820 				printf("kernel mapping failed %d\n", error);
   1821 				(*uobj->pgops->pgo_detach)(uobj);
   1822 				mutex_exit(&sigobject_lock);
   1823 				return error;
   1824 			}
   1825 			memcpy((void *)va, e->e_sigcode, sz);
   1826 #ifdef PMAP_NEED_PROCWR
   1827 			pmap_procwr(&proc0, va, sz);
   1828 #endif
   1829 			uvm_unmap(kernel_map, va, va + round_page(sz));
   1830 			*e->e_sigobject = uobj;
   1831 		}
   1832 		mutex_exit(&sigobject_lock);
   1833 	}
   1834 
   1835 	/* Just a hint to uvm_map where to put it. */
   1836 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   1837 	    round_page(sz));
   1838 
   1839 #ifdef __alpha__
   1840 	/*
   1841 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   1842 	 * which causes the above calculation to put the sigcode at
   1843 	 * an invalid address.  Put it just below the text instead.
   1844 	 */
   1845 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   1846 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   1847 	}
   1848 #endif
   1849 
   1850 	(*uobj->pgops->pgo_reference)(uobj);
   1851 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   1852 			uobj, 0, 0,
   1853 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   1854 				    UVM_ADV_RANDOM, 0));
   1855 	if (error) {
   1856 		DPRINTF(("%s, %d: map %p "
   1857 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   1858 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   1859 		    va, error));
   1860 		(*uobj->pgops->pgo_detach)(uobj);
   1861 		return error;
   1862 	}
   1863 	p->p_sigctx.ps_sigcode = (void *)va;
   1864 	return 0;
   1865 }
   1866 
   1867 /*
   1868  * Release a refcount on spawn_exec_data and destroy memory, if this
   1869  * was the last one.
   1870  */
   1871 static void
   1872 spawn_exec_data_release(struct spawn_exec_data *data)
   1873 {
   1874 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   1875 		return;
   1876 
   1877 	cv_destroy(&data->sed_cv_child_ready);
   1878 	mutex_destroy(&data->sed_mtx_child);
   1879 
   1880 	if (data->sed_actions)
   1881 		posix_spawn_fa_free(data->sed_actions,
   1882 		    data->sed_actions->len);
   1883 	if (data->sed_attrs)
   1884 		kmem_free(data->sed_attrs,
   1885 		    sizeof(*data->sed_attrs));
   1886 	kmem_free(data, sizeof(*data));
   1887 }
   1888 
   1889 /*
   1890  * A child lwp of a posix_spawn operation starts here and ends up in
   1891  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   1892  * manipulations in between.
   1893  * The parent waits for the child, as it is not clear whether the child
   1894  * will be able to acquire its own exec_lock. If it can, the parent can
   1895  * be released early and continue running in parallel. If not (or if the
   1896  * magic debug flag is passed in the scheduler attribute struct), the
   1897  * child rides on the parent's exec lock until it is ready to return to
   1898  * to userland - and only then releases the parent. This method loses
   1899  * concurrency, but improves error reporting.
   1900  */
   1901 static void
   1902 spawn_return(void *arg)
   1903 {
   1904 	struct spawn_exec_data *spawn_data = arg;
   1905 	struct lwp *l = curlwp;
   1906 	int error, newfd;
   1907 	size_t i;
   1908 	const struct posix_spawn_file_actions_entry *fae;
   1909 	pid_t ppid;
   1910 	register_t retval;
   1911 	bool have_reflock;
   1912 	bool parent_is_waiting = true;
   1913 
   1914 	/*
   1915 	 * Check if we can release parent early.
   1916 	 * We either need to have no sed_attrs, or sed_attrs does not
   1917 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   1918 	 * safe access to the parent proc (passed in sed_parent).
   1919 	 * We then try to get the exec_lock, and only if that works, we can
   1920 	 * release the parent here already.
   1921 	 */
   1922 	ppid = spawn_data->sed_parent->p_pid;
   1923 	if ((!spawn_data->sed_attrs
   1924 	    || (spawn_data->sed_attrs->sa_flags
   1925 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   1926 	    && rw_tryenter(&exec_lock, RW_READER)) {
   1927 		parent_is_waiting = false;
   1928 		mutex_enter(&spawn_data->sed_mtx_child);
   1929 		cv_signal(&spawn_data->sed_cv_child_ready);
   1930 		mutex_exit(&spawn_data->sed_mtx_child);
   1931 	}
   1932 
   1933 	/* don't allow debugger access yet */
   1934 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
   1935 	have_reflock = true;
   1936 
   1937 	error = 0;
   1938 	/* handle posix_spawn_file_actions */
   1939 	if (spawn_data->sed_actions != NULL) {
   1940 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   1941 			fae = &spawn_data->sed_actions->fae[i];
   1942 			switch (fae->fae_action) {
   1943 			case FAE_OPEN:
   1944 				if (fd_getfile(fae->fae_fildes) != NULL) {
   1945 					error = fd_close(fae->fae_fildes);
   1946 					if (error)
   1947 						break;
   1948 				}
   1949 				error = fd_open(fae->fae_path, fae->fae_oflag,
   1950 				    fae->fae_mode, &newfd);
   1951 				if (error)
   1952 					break;
   1953 				if (newfd != fae->fae_fildes) {
   1954 					error = dodup(l, newfd,
   1955 					    fae->fae_fildes, 0, &retval);
   1956 					if (fd_getfile(newfd) != NULL)
   1957 						fd_close(newfd);
   1958 				}
   1959 				break;
   1960 			case FAE_DUP2:
   1961 				error = dodup(l, fae->fae_fildes,
   1962 				    fae->fae_newfildes, 0, &retval);
   1963 				break;
   1964 			case FAE_CLOSE:
   1965 				if (fd_getfile(fae->fae_fildes) == NULL) {
   1966 					error = EBADF;
   1967 					break;
   1968 				}
   1969 				error = fd_close(fae->fae_fildes);
   1970 				break;
   1971 			}
   1972 			if (error)
   1973 				goto report_error;
   1974 		}
   1975 	}
   1976 
   1977 	/* handle posix_spawnattr */
   1978 	if (spawn_data->sed_attrs != NULL) {
   1979 		int ostat;
   1980 		struct sigaction sigact;
   1981 		sigact._sa_u._sa_handler = SIG_DFL;
   1982 		sigact.sa_flags = 0;
   1983 
   1984 		/*
   1985 		 * set state to SSTOP so that this proc can be found by pid.
   1986 		 * see proc_enterprp, do_sched_setparam below
   1987 		 */
   1988 		ostat = l->l_proc->p_stat;
   1989 		l->l_proc->p_stat = SSTOP;
   1990 
   1991 		/* Set process group */
   1992 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   1993 			pid_t mypid = l->l_proc->p_pid,
   1994 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   1995 
   1996 			if (pgrp == 0)
   1997 				pgrp = mypid;
   1998 
   1999 			error = proc_enterpgrp(spawn_data->sed_parent,
   2000 			    mypid, pgrp, false);
   2001 			if (error)
   2002 				goto report_error;
   2003 		}
   2004 
   2005 		/* Set scheduler policy */
   2006 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2007 			error = do_sched_setparam(l->l_proc->p_pid, 0,
   2008 			    spawn_data->sed_attrs->sa_schedpolicy,
   2009 			    &spawn_data->sed_attrs->sa_schedparam);
   2010 		else if (spawn_data->sed_attrs->sa_flags
   2011 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   2012 			error = do_sched_setparam(ppid, 0,
   2013 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   2014 		}
   2015 		if (error)
   2016 			goto report_error;
   2017 
   2018 		/* Reset user ID's */
   2019 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2020 			error = do_setresuid(l, -1,
   2021 			     kauth_cred_getgid(l->l_cred), -1,
   2022 			     ID_E_EQ_R | ID_E_EQ_S);
   2023 			if (error)
   2024 				goto report_error;
   2025 			error = do_setresuid(l, -1,
   2026 			    kauth_cred_getuid(l->l_cred), -1,
   2027 			    ID_E_EQ_R | ID_E_EQ_S);
   2028 			if (error)
   2029 				goto report_error;
   2030 		}
   2031 
   2032 		/* Set signal masks/defaults */
   2033 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2034 			mutex_enter(l->l_proc->p_lock);
   2035 			error = sigprocmask1(l, SIG_SETMASK,
   2036 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   2037 			mutex_exit(l->l_proc->p_lock);
   2038 			if (error)
   2039 				goto report_error;
   2040 		}
   2041 
   2042 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2043 			/*
   2044 			 * The following sigaction call is using a sigaction
   2045 			 * version 0 trampoline which is in the compatibility
   2046 			 * code only. This is not a problem because for SIG_DFL
   2047 			 * and SIG_IGN, the trampolines are now ignored. If they
   2048 			 * were not, this would be a problem because we are
   2049 			 * holding the exec_lock, and the compat code needs
   2050 			 * to do the same in order to replace the trampoline
   2051 			 * code of the process.
   2052 			 */
   2053 			for (i = 1; i <= NSIG; i++) {
   2054 				if (sigismember(
   2055 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   2056 					sigaction1(l, i, &sigact, NULL, NULL,
   2057 					    0);
   2058 			}
   2059 		}
   2060 		l->l_proc->p_stat = ostat;
   2061 	}
   2062 
   2063 	/* now do the real exec */
   2064 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2065 	    true);
   2066 	have_reflock = false;
   2067 	if (error == EJUSTRETURN)
   2068 		error = 0;
   2069 	else if (error)
   2070 		goto report_error;
   2071 
   2072 	if (parent_is_waiting) {
   2073 		mutex_enter(&spawn_data->sed_mtx_child);
   2074 		cv_signal(&spawn_data->sed_cv_child_ready);
   2075 		mutex_exit(&spawn_data->sed_mtx_child);
   2076 	}
   2077 
   2078 	/* release our refcount on the data */
   2079 	spawn_exec_data_release(spawn_data);
   2080 
   2081 	/* and finally: leave to userland for the first time */
   2082 	cpu_spawn_return(l);
   2083 
   2084 	/* NOTREACHED */
   2085 	return;
   2086 
   2087  report_error:
   2088 	if (have_reflock) {
   2089 		/*
   2090 		 * We have not passed through execve_runproc(),
   2091 		 * which would have released the p_reflock and also
   2092 		 * taken ownership of the sed_exec part of spawn_data,
   2093 		 * so release/free both here.
   2094 		 */
   2095 		rw_exit(&l->l_proc->p_reflock);
   2096 		execve_free_data(&spawn_data->sed_exec);
   2097 	}
   2098 
   2099 	if (parent_is_waiting) {
   2100 		/* pass error to parent */
   2101 		mutex_enter(&spawn_data->sed_mtx_child);
   2102 		spawn_data->sed_error = error;
   2103 		cv_signal(&spawn_data->sed_cv_child_ready);
   2104 		mutex_exit(&spawn_data->sed_mtx_child);
   2105 	} else {
   2106 		rw_exit(&exec_lock);
   2107 	}
   2108 
   2109 	/* release our refcount on the data */
   2110 	spawn_exec_data_release(spawn_data);
   2111 
   2112 	/* done, exit */
   2113 	mutex_enter(l->l_proc->p_lock);
   2114 	/*
   2115 	 * Posix explicitly asks for an exit code of 127 if we report
   2116 	 * errors from the child process - so, unfortunately, there
   2117 	 * is no way to report a more exact error code.
   2118 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2119 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2120 	 */
   2121 	exit1(l, W_EXITCODE(127, 0));
   2122 }
   2123 
   2124 void
   2125 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2126 {
   2127 
   2128 	for (size_t i = 0; i < len; i++) {
   2129 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2130 		if (fae->fae_action != FAE_OPEN)
   2131 			continue;
   2132 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
   2133 	}
   2134 	if (fa->len > 0)
   2135 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2136 	kmem_free(fa, sizeof(*fa));
   2137 }
   2138 
   2139 static int
   2140 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2141     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2142 {
   2143 	struct posix_spawn_file_actions *fa;
   2144 	struct posix_spawn_file_actions_entry *fae;
   2145 	char *pbuf = NULL;
   2146 	int error;
   2147 	size_t i = 0;
   2148 
   2149 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2150 	error = copyin(ufa, fa, sizeof(*fa));
   2151 	if (error || fa->len == 0) {
   2152 		kmem_free(fa, sizeof(*fa));
   2153 		return error;	/* 0 if not an error, and len == 0 */
   2154 	}
   2155 
   2156 	if (fa->len > lim) {
   2157 		kmem_free(fa, sizeof(*fa));
   2158 		return EINVAL;
   2159 	}
   2160 
   2161 	fa->size = fa->len;
   2162 	size_t fal = fa->len * sizeof(*fae);
   2163 	fae = fa->fae;
   2164 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2165 	error = copyin(fae, fa->fae, fal);
   2166 	if (error)
   2167 		goto out;
   2168 
   2169 	pbuf = PNBUF_GET();
   2170 	for (; i < fa->len; i++) {
   2171 		fae = &fa->fae[i];
   2172 		if (fae->fae_action != FAE_OPEN)
   2173 			continue;
   2174 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2175 		if (error)
   2176 			goto out;
   2177 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2178 		memcpy(fae->fae_path, pbuf, fal);
   2179 	}
   2180 	PNBUF_PUT(pbuf);
   2181 
   2182 	*fap = fa;
   2183 	return 0;
   2184 out:
   2185 	if (pbuf)
   2186 		PNBUF_PUT(pbuf);
   2187 	posix_spawn_fa_free(fa, i);
   2188 	return error;
   2189 }
   2190 
   2191 int
   2192 check_posix_spawn(struct lwp *l1)
   2193 {
   2194 	int error, tnprocs, count;
   2195 	uid_t uid;
   2196 	struct proc *p1;
   2197 
   2198 	p1 = l1->l_proc;
   2199 	uid = kauth_cred_getuid(l1->l_cred);
   2200 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2201 
   2202 	/*
   2203 	 * Although process entries are dynamically created, we still keep
   2204 	 * a global limit on the maximum number we will create.
   2205 	 */
   2206 	if (__predict_false(tnprocs >= maxproc))
   2207 		error = -1;
   2208 	else
   2209 		error = kauth_authorize_process(l1->l_cred,
   2210 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2211 
   2212 	if (error) {
   2213 		atomic_dec_uint(&nprocs);
   2214 		return EAGAIN;
   2215 	}
   2216 
   2217 	/*
   2218 	 * Enforce limits.
   2219 	 */
   2220 	count = chgproccnt(uid, 1);
   2221 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2222 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2223 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2224 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2225 		(void)chgproccnt(uid, -1);
   2226 		atomic_dec_uint(&nprocs);
   2227 		return EAGAIN;
   2228 	}
   2229 
   2230 	return 0;
   2231 }
   2232 
   2233 int
   2234 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2235 	struct posix_spawn_file_actions *fa,
   2236 	struct posix_spawnattr *sa,
   2237 	char *const *argv, char *const *envp,
   2238 	execve_fetch_element_t fetch)
   2239 {
   2240 
   2241 	struct proc *p1, *p2;
   2242 	struct lwp *l2;
   2243 	int error;
   2244 	struct spawn_exec_data *spawn_data;
   2245 	vaddr_t uaddr;
   2246 	pid_t pid;
   2247 	bool have_exec_lock = false;
   2248 
   2249 	p1 = l1->l_proc;
   2250 
   2251 	/* Allocate and init spawn_data */
   2252 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2253 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2254 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2255 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2256 	mutex_enter(&spawn_data->sed_mtx_child);
   2257 
   2258 	/*
   2259 	 * Do the first part of the exec now, collect state
   2260 	 * in spawn_data.
   2261 	 */
   2262 	error = execve_loadvm(l1, path, argv,
   2263 	    envp, fetch, &spawn_data->sed_exec);
   2264 	if (error == EJUSTRETURN)
   2265 		error = 0;
   2266 	else if (error)
   2267 		goto error_exit;
   2268 
   2269 	have_exec_lock = true;
   2270 
   2271 	/*
   2272 	 * Allocate virtual address space for the U-area now, while it
   2273 	 * is still easy to abort the fork operation if we're out of
   2274 	 * kernel virtual address space.
   2275 	 */
   2276 	uaddr = uvm_uarea_alloc();
   2277 	if (__predict_false(uaddr == 0)) {
   2278 		error = ENOMEM;
   2279 		goto error_exit;
   2280 	}
   2281 
   2282 	/*
   2283 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2284 	 * replace it with its own before returning to userland
   2285 	 * in the child.
   2286 	 * This is a point of no return, we will have to go through
   2287 	 * the child proc to properly clean it up past this point.
   2288 	 */
   2289 	p2 = proc_alloc();
   2290 	pid = p2->p_pid;
   2291 
   2292 	/*
   2293 	 * Make a proc table entry for the new process.
   2294 	 * Start by zeroing the section of proc that is zero-initialized,
   2295 	 * then copy the section that is copied directly from the parent.
   2296 	 */
   2297 	memset(&p2->p_startzero, 0,
   2298 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2299 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2300 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2301 	p2->p_vmspace = proc0.p_vmspace;
   2302 
   2303 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2304 
   2305 	LIST_INIT(&p2->p_lwps);
   2306 	LIST_INIT(&p2->p_sigwaiters);
   2307 
   2308 	/*
   2309 	 * Duplicate sub-structures as needed.
   2310 	 * Increase reference counts on shared objects.
   2311 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2312 	 * handling are important in order to keep a consistent behaviour
   2313 	 * for the child after the fork.  If we are a 32-bit process, the
   2314 	 * child will be too.
   2315 	 */
   2316 	p2->p_flag =
   2317 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2318 	p2->p_emul = p1->p_emul;
   2319 	p2->p_execsw = p1->p_execsw;
   2320 
   2321 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2322 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2323 	rw_init(&p2->p_reflock);
   2324 	cv_init(&p2->p_waitcv, "wait");
   2325 	cv_init(&p2->p_lwpcv, "lwpwait");
   2326 
   2327 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2328 
   2329 	kauth_proc_fork(p1, p2);
   2330 
   2331 	p2->p_raslist = NULL;
   2332 	p2->p_fd = fd_copy();
   2333 
   2334 	/* XXX racy */
   2335 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2336 
   2337 	p2->p_cwdi = cwdinit();
   2338 
   2339 	/*
   2340 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2341 	 * we just need increase pl_refcnt.
   2342 	 */
   2343 	if (!p1->p_limit->pl_writeable) {
   2344 		lim_addref(p1->p_limit);
   2345 		p2->p_limit = p1->p_limit;
   2346 	} else {
   2347 		p2->p_limit = lim_copy(p1->p_limit);
   2348 	}
   2349 
   2350 	p2->p_lflag = 0;
   2351 	p2->p_sflag = 0;
   2352 	p2->p_slflag = 0;
   2353 	p2->p_pptr = p1;
   2354 	p2->p_ppid = p1->p_pid;
   2355 	LIST_INIT(&p2->p_children);
   2356 
   2357 	p2->p_aio = NULL;
   2358 
   2359 #ifdef KTRACE
   2360 	/*
   2361 	 * Copy traceflag and tracefile if enabled.
   2362 	 * If not inherited, these were zeroed above.
   2363 	 */
   2364 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2365 		mutex_enter(&ktrace_lock);
   2366 		p2->p_traceflag = p1->p_traceflag;
   2367 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2368 			ktradref(p2);
   2369 		mutex_exit(&ktrace_lock);
   2370 	}
   2371 #endif
   2372 
   2373 	/*
   2374 	 * Create signal actions for the child process.
   2375 	 */
   2376 	p2->p_sigacts = sigactsinit(p1, 0);
   2377 	mutex_enter(p1->p_lock);
   2378 	p2->p_sflag |=
   2379 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2380 	sched_proc_fork(p1, p2);
   2381 	mutex_exit(p1->p_lock);
   2382 
   2383 	p2->p_stflag = p1->p_stflag;
   2384 
   2385 	/*
   2386 	 * p_stats.
   2387 	 * Copy parts of p_stats, and zero out the rest.
   2388 	 */
   2389 	p2->p_stats = pstatscopy(p1->p_stats);
   2390 
   2391 	/* copy over machdep flags to the new proc */
   2392 	cpu_proc_fork(p1, p2);
   2393 
   2394 	/*
   2395 	 * Prepare remaining parts of spawn data
   2396 	 */
   2397 	spawn_data->sed_actions = fa;
   2398 	spawn_data->sed_attrs = sa;
   2399 
   2400 	spawn_data->sed_parent = p1;
   2401 
   2402 	/* create LWP */
   2403 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2404 	    &l2, l1->l_class);
   2405 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2406 
   2407 	/*
   2408 	 * Copy the credential so other references don't see our changes.
   2409 	 * Test to see if this is necessary first, since in the common case
   2410 	 * we won't need a private reference.
   2411 	 */
   2412 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2413 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2414 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2415 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2416 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2417 	}
   2418 
   2419 	/* Update the master credentials. */
   2420 	if (l2->l_cred != p2->p_cred) {
   2421 		kauth_cred_t ocred;
   2422 
   2423 		kauth_cred_hold(l2->l_cred);
   2424 		mutex_enter(p2->p_lock);
   2425 		ocred = p2->p_cred;
   2426 		p2->p_cred = l2->l_cred;
   2427 		mutex_exit(p2->p_lock);
   2428 		kauth_cred_free(ocred);
   2429 	}
   2430 
   2431 	*child_ok = true;
   2432 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2433 #if 0
   2434 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2435 #endif
   2436 
   2437 	/*
   2438 	 * It's now safe for the scheduler and other processes to see the
   2439 	 * child process.
   2440 	 */
   2441 	mutex_enter(proc_lock);
   2442 
   2443 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2444 		p2->p_lflag |= PL_CONTROLT;
   2445 
   2446 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2447 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2448 
   2449 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2450 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2451 
   2452 	p2->p_trace_enabled = trace_is_enabled(p2);
   2453 #ifdef __HAVE_SYSCALL_INTERN
   2454 	(*p2->p_emul->e_syscall_intern)(p2);
   2455 #endif
   2456 
   2457 	/*
   2458 	 * Make child runnable, set start time, and add to run queue except
   2459 	 * if the parent requested the child to start in SSTOP state.
   2460 	 */
   2461 	mutex_enter(p2->p_lock);
   2462 
   2463 	getmicrotime(&p2->p_stats->p_start);
   2464 
   2465 	lwp_lock(l2);
   2466 	KASSERT(p2->p_nrlwps == 1);
   2467 	p2->p_nrlwps = 1;
   2468 	p2->p_stat = SACTIVE;
   2469 	l2->l_stat = LSRUN;
   2470 	sched_enqueue(l2, false);
   2471 	lwp_unlock(l2);
   2472 
   2473 	mutex_exit(p2->p_lock);
   2474 	mutex_exit(proc_lock);
   2475 
   2476 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2477 	error = spawn_data->sed_error;
   2478 	mutex_exit(&spawn_data->sed_mtx_child);
   2479 	spawn_exec_data_release(spawn_data);
   2480 
   2481 	rw_exit(&p1->p_reflock);
   2482 	rw_exit(&exec_lock);
   2483 	have_exec_lock = false;
   2484 
   2485 	*pid_res = pid;
   2486 	return error;
   2487 
   2488  error_exit:
   2489 	if (have_exec_lock) {
   2490 		execve_free_data(&spawn_data->sed_exec);
   2491 		rw_exit(&p1->p_reflock);
   2492 		rw_exit(&exec_lock);
   2493 	}
   2494 	mutex_exit(&spawn_data->sed_mtx_child);
   2495 	spawn_exec_data_release(spawn_data);
   2496 
   2497 	return error;
   2498 }
   2499 
   2500 int
   2501 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2502     register_t *retval)
   2503 {
   2504 	/* {
   2505 		syscallarg(pid_t *) pid;
   2506 		syscallarg(const char *) path;
   2507 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2508 		syscallarg(const struct posix_spawnattr *) attrp;
   2509 		syscallarg(char *const *) argv;
   2510 		syscallarg(char *const *) envp;
   2511 	} */
   2512 
   2513 	int error;
   2514 	struct posix_spawn_file_actions *fa = NULL;
   2515 	struct posix_spawnattr *sa = NULL;
   2516 	pid_t pid;
   2517 	bool child_ok = false;
   2518 	rlim_t max_fileactions;
   2519 	proc_t *p = l1->l_proc;
   2520 
   2521 	error = check_posix_spawn(l1);
   2522 	if (error) {
   2523 		*retval = error;
   2524 		return 0;
   2525 	}
   2526 
   2527 	/* copy in file_actions struct */
   2528 	if (SCARG(uap, file_actions) != NULL) {
   2529 		max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2530 		    maxfiles);
   2531 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2532 		    max_fileactions);
   2533 		if (error)
   2534 			goto error_exit;
   2535 	}
   2536 
   2537 	/* copyin posix_spawnattr struct */
   2538 	if (SCARG(uap, attrp) != NULL) {
   2539 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2540 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2541 		if (error)
   2542 			goto error_exit;
   2543 	}
   2544 
   2545 	/*
   2546 	 * Do the spawn
   2547 	 */
   2548 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2549 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2550 	if (error)
   2551 		goto error_exit;
   2552 
   2553 	if (error == 0 && SCARG(uap, pid) != NULL)
   2554 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2555 
   2556 	*retval = error;
   2557 	return 0;
   2558 
   2559  error_exit:
   2560 	if (!child_ok) {
   2561 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2562 		atomic_dec_uint(&nprocs);
   2563 
   2564 		if (sa)
   2565 			kmem_free(sa, sizeof(*sa));
   2566 		if (fa)
   2567 			posix_spawn_fa_free(fa, fa->len);
   2568 	}
   2569 
   2570 	*retval = error;
   2571 	return 0;
   2572 }
   2573 
   2574 void
   2575 exec_free_emul_arg(struct exec_package *epp)
   2576 {
   2577 	if (epp->ep_emul_arg_free != NULL) {
   2578 		KASSERT(epp->ep_emul_arg != NULL);
   2579 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2580 		epp->ep_emul_arg_free = NULL;
   2581 		epp->ep_emul_arg = NULL;
   2582 	} else {
   2583 		KASSERT(epp->ep_emul_arg == NULL);
   2584 	}
   2585 }
   2586 
   2587 #ifdef DEBUG_EXEC
   2588 static void
   2589 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2590 {
   2591 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2592 	size_t j;
   2593 
   2594 	if (error == 0)
   2595 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2596 	else
   2597 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2598 		    epp->ep_vmcmds.evs_used, error));
   2599 
   2600 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2601 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2602 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2603 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2604 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2605 		    "pagedvn" :
   2606 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2607 		    "readvn" :
   2608 		    vp[j].ev_proc == vmcmd_map_zero ?
   2609 		    "zero" : "*unknown*",
   2610 		    vp[j].ev_addr, vp[j].ev_len,
   2611 		    vp[j].ev_offset, vp[j].ev_prot,
   2612 		    vp[j].ev_flags));
   2613 		if (error != 0 && j == x)
   2614 			DPRINTF(("     ^--- failed\n"));
   2615 	}
   2616 }
   2617 #endif
   2618