kern_exec.c revision 1.401 1 /* $NetBSD: kern_exec.c,v 1.401 2014/04/16 02:22:38 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.401 2014/04/16 02:22:38 uebayasi Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108
109 #include <uvm/uvm_extern.h>
110
111 #include <machine/reg.h>
112
113 #include <compat/common/compat_util.h>
114
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USE_TOPDOWN_VM
117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122
123 struct execve_data;
124
125 static size_t calcargs(struct execve_data * restrict, const size_t);
126 static size_t calcstack(struct execve_data * restrict, const size_t);
127 static int copyoutargs(struct execve_data * restrict, struct lwp *,
128 char * const);
129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
130 static int copyinargs(struct execve_data * restrict, char * const *,
131 char * const *, execve_fetch_element_t, char **);
132 static int copyinargstrs(struct execve_data * restrict, char * const *,
133 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
134 static int exec_sigcode_map(struct proc *, const struct emul *);
135
136 #ifdef DEBUG_EXEC
137 #define DPRINTF(a) printf a
138 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
139 __LINE__, (s), (a), (b))
140 static void dump_vmcmds(const struct exec_package * const, size_t, int);
141 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
142 #else
143 #define DPRINTF(a)
144 #define COPYPRINTF(s, a, b)
145 #define DUMPVMCMDS(p, x, e) do {} while (0)
146 #endif /* DEBUG_EXEC */
147
148 /*
149 * DTrace SDT provider definitions
150 */
151 SDT_PROBE_DEFINE(proc,,,exec,exec,
152 "char *", NULL,
153 NULL, NULL, NULL, NULL,
154 NULL, NULL, NULL, NULL);
155 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
156 "char *", NULL,
157 NULL, NULL, NULL, NULL,
158 NULL, NULL, NULL, NULL);
159 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
160 "int", NULL,
161 NULL, NULL, NULL, NULL,
162 NULL, NULL, NULL, NULL);
163
164 /*
165 * Exec function switch:
166 *
167 * Note that each makecmds function is responsible for loading the
168 * exec package with the necessary functions for any exec-type-specific
169 * handling.
170 *
171 * Functions for specific exec types should be defined in their own
172 * header file.
173 */
174 static const struct execsw **execsw = NULL;
175 static int nexecs;
176
177 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
178
179 /* list of dynamically loaded execsw entries */
180 static LIST_HEAD(execlist_head, exec_entry) ex_head =
181 LIST_HEAD_INITIALIZER(ex_head);
182 struct exec_entry {
183 LIST_ENTRY(exec_entry) ex_list;
184 SLIST_ENTRY(exec_entry) ex_slist;
185 const struct execsw *ex_sw;
186 };
187
188 #ifndef __HAVE_SYSCALL_INTERN
189 void syscall(void);
190 #endif
191
192 /* NetBSD emul struct */
193 struct emul emul_netbsd = {
194 .e_name = "netbsd",
195 #ifdef EMUL_NATIVEROOT
196 .e_path = EMUL_NATIVEROOT,
197 #else
198 .e_path = NULL,
199 #endif
200 #ifndef __HAVE_MINIMAL_EMUL
201 .e_flags = EMUL_HAS_SYS___syscall,
202 .e_errno = NULL,
203 .e_nosys = SYS_syscall,
204 .e_nsysent = SYS_NSYSENT,
205 #endif
206 .e_sysent = sysent,
207 #ifdef SYSCALL_DEBUG
208 .e_syscallnames = syscallnames,
209 #else
210 .e_syscallnames = NULL,
211 #endif
212 .e_sendsig = sendsig,
213 .e_trapsignal = trapsignal,
214 .e_tracesig = NULL,
215 .e_sigcode = NULL,
216 .e_esigcode = NULL,
217 .e_sigobject = NULL,
218 .e_setregs = setregs,
219 .e_proc_exec = NULL,
220 .e_proc_fork = NULL,
221 .e_proc_exit = NULL,
222 .e_lwp_fork = NULL,
223 .e_lwp_exit = NULL,
224 #ifdef __HAVE_SYSCALL_INTERN
225 .e_syscall_intern = syscall_intern,
226 #else
227 .e_syscall = syscall,
228 #endif
229 .e_sysctlovly = NULL,
230 .e_fault = NULL,
231 .e_vm_default_addr = uvm_default_mapaddr,
232 .e_usertrap = NULL,
233 .e_ucsize = sizeof(ucontext_t),
234 .e_startlwp = startlwp
235 };
236
237 /*
238 * Exec lock. Used to control access to execsw[] structures.
239 * This must not be static so that netbsd32 can access it, too.
240 */
241 krwlock_t exec_lock;
242
243 static kmutex_t sigobject_lock;
244
245 /*
246 * Data used between a loadvm and execve part of an "exec" operation
247 */
248 struct execve_data {
249 struct exec_package ed_pack;
250 struct pathbuf *ed_pathbuf;
251 struct vattr ed_attr;
252 struct ps_strings ed_arginfo;
253 char *ed_argp;
254 const char *ed_pathstring;
255 char *ed_resolvedpathbuf;
256 size_t ed_ps_strings_sz;
257 int ed_szsigcode;
258 size_t ed_argslen;
259 long ed_argc;
260 long ed_envc;
261 };
262
263 /*
264 * data passed from parent lwp to child during a posix_spawn()
265 */
266 struct spawn_exec_data {
267 struct execve_data sed_exec;
268 struct posix_spawn_file_actions
269 *sed_actions;
270 struct posix_spawnattr *sed_attrs;
271 struct proc *sed_parent;
272 kcondvar_t sed_cv_child_ready;
273 kmutex_t sed_mtx_child;
274 int sed_error;
275 volatile uint32_t sed_refcnt;
276 };
277
278 static void *
279 exec_pool_alloc(struct pool *pp, int flags)
280 {
281
282 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
283 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
284 }
285
286 static void
287 exec_pool_free(struct pool *pp, void *addr)
288 {
289
290 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
291 }
292
293 static struct pool exec_pool;
294
295 static struct pool_allocator exec_palloc = {
296 .pa_alloc = exec_pool_alloc,
297 .pa_free = exec_pool_free,
298 .pa_pagesz = NCARGS
299 };
300
301 /*
302 * check exec:
303 * given an "executable" described in the exec package's namei info,
304 * see what we can do with it.
305 *
306 * ON ENTRY:
307 * exec package with appropriate namei info
308 * lwp pointer of exec'ing lwp
309 * NO SELF-LOCKED VNODES
310 *
311 * ON EXIT:
312 * error: nothing held, etc. exec header still allocated.
313 * ok: filled exec package, executable's vnode (unlocked).
314 *
315 * EXEC SWITCH ENTRY:
316 * Locked vnode to check, exec package, proc.
317 *
318 * EXEC SWITCH EXIT:
319 * ok: return 0, filled exec package, executable's vnode (unlocked).
320 * error: destructive:
321 * everything deallocated execept exec header.
322 * non-destructive:
323 * error code, executable's vnode (unlocked),
324 * exec header unmodified.
325 */
326 int
327 /*ARGSUSED*/
328 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
329 {
330 int error, i;
331 struct vnode *vp;
332 struct nameidata nd;
333 size_t resid;
334
335 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
336
337 /* first get the vnode */
338 if ((error = namei(&nd)) != 0)
339 return error;
340 epp->ep_vp = vp = nd.ni_vp;
341 /* normally this can't fail */
342 if ((error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL)))
343 goto bad1;
344
345 #ifdef DIAGNOSTIC
346 /* paranoia (take this out once namei stuff stabilizes) */
347 memset(nd.ni_pnbuf, '~', PATH_MAX);
348 #endif
349
350 /* check access and type */
351 if (vp->v_type != VREG) {
352 error = EACCES;
353 goto bad1;
354 }
355 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
356 goto bad1;
357
358 /* get attributes */
359 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
360 goto bad1;
361
362 /* Check mount point */
363 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
364 error = EACCES;
365 goto bad1;
366 }
367 if (vp->v_mount->mnt_flag & MNT_NOSUID)
368 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
369
370 /* try to open it */
371 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
372 goto bad1;
373
374 /* unlock vp, since we need it unlocked from here on out. */
375 VOP_UNLOCK(vp);
376
377 #if NVERIEXEC > 0
378 error = veriexec_verify(l, vp, epp->ep_resolvedname,
379 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
380 NULL);
381 if (error)
382 goto bad2;
383 #endif /* NVERIEXEC > 0 */
384
385 #ifdef PAX_SEGVGUARD
386 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
387 if (error)
388 goto bad2;
389 #endif /* PAX_SEGVGUARD */
390
391 /* now we have the file, get the exec header */
392 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
393 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
394 if (error)
395 goto bad2;
396 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
397
398 /*
399 * Set up default address space limits. Can be overridden
400 * by individual exec packages.
401 *
402 * XXX probably should be all done in the exec packages.
403 */
404 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
405 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
406 /*
407 * set up the vmcmds for creation of the process
408 * address space
409 */
410 error = ENOEXEC;
411 for (i = 0; i < nexecs; i++) {
412 int newerror;
413
414 epp->ep_esch = execsw[i];
415 newerror = (*execsw[i]->es_makecmds)(l, epp);
416
417 if (!newerror) {
418 /* Seems ok: check that entry point is not too high */
419 if (epp->ep_entry > epp->ep_vm_maxaddr) {
420 #ifdef DIAGNOSTIC
421 printf("%s: rejecting %p due to "
422 "too high entry address (> %p)\n",
423 __func__, (void *)epp->ep_entry,
424 (void *)epp->ep_vm_maxaddr);
425 #endif
426 error = ENOEXEC;
427 break;
428 }
429 /* Seems ok: check that entry point is not too low */
430 if (epp->ep_entry < epp->ep_vm_minaddr) {
431 #ifdef DIAGNOSTIC
432 printf("%s: rejecting %p due to "
433 "too low entry address (< %p)\n",
434 __func__, (void *)epp->ep_entry,
435 (void *)epp->ep_vm_minaddr);
436 #endif
437 error = ENOEXEC;
438 break;
439 }
440
441 /* check limits */
442 if ((epp->ep_tsize > MAXTSIZ) ||
443 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
444 [RLIMIT_DATA].rlim_cur)) {
445 #ifdef DIAGNOSTIC
446 printf("%s: rejecting due to "
447 "limits (t=%llu > %llu || d=%llu > %llu)\n",
448 __func__,
449 (unsigned long long)epp->ep_tsize,
450 (unsigned long long)MAXTSIZ,
451 (unsigned long long)epp->ep_dsize,
452 (unsigned long long)
453 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
454 #endif
455 error = ENOMEM;
456 break;
457 }
458 return 0;
459 }
460
461 if (epp->ep_emul_root != NULL) {
462 vrele(epp->ep_emul_root);
463 epp->ep_emul_root = NULL;
464 }
465 if (epp->ep_interp != NULL) {
466 vrele(epp->ep_interp);
467 epp->ep_interp = NULL;
468 }
469
470 /* make sure the first "interesting" error code is saved. */
471 if (error == ENOEXEC)
472 error = newerror;
473
474 if (epp->ep_flags & EXEC_DESTR)
475 /* Error from "#!" code, tidied up by recursive call */
476 return error;
477 }
478
479 /* not found, error */
480
481 /*
482 * free any vmspace-creation commands,
483 * and release their references
484 */
485 kill_vmcmds(&epp->ep_vmcmds);
486
487 bad2:
488 /*
489 * close and release the vnode, restore the old one, free the
490 * pathname buf, and punt.
491 */
492 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
493 VOP_CLOSE(vp, FREAD, l->l_cred);
494 vput(vp);
495 return error;
496
497 bad1:
498 /*
499 * free the namei pathname buffer, and put the vnode
500 * (which we don't yet have open).
501 */
502 vput(vp); /* was still locked */
503 return error;
504 }
505
506 #ifdef __MACHINE_STACK_GROWS_UP
507 #define STACK_PTHREADSPACE NBPG
508 #else
509 #define STACK_PTHREADSPACE 0
510 #endif
511
512 static int
513 execve_fetch_element(char * const *array, size_t index, char **value)
514 {
515 return copyin(array + index, value, sizeof(*value));
516 }
517
518 /*
519 * exec system call
520 */
521 int
522 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
523 {
524 /* {
525 syscallarg(const char *) path;
526 syscallarg(char * const *) argp;
527 syscallarg(char * const *) envp;
528 } */
529
530 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
531 SCARG(uap, envp), execve_fetch_element);
532 }
533
534 int
535 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
536 register_t *retval)
537 {
538 /* {
539 syscallarg(int) fd;
540 syscallarg(char * const *) argp;
541 syscallarg(char * const *) envp;
542 } */
543
544 return ENOSYS;
545 }
546
547 /*
548 * Load modules to try and execute an image that we do not understand.
549 * If no execsw entries are present, we load those likely to be needed
550 * in order to run native images only. Otherwise, we autoload all
551 * possible modules that could let us run the binary. XXX lame
552 */
553 static void
554 exec_autoload(void)
555 {
556 #ifdef MODULAR
557 static const char * const native[] = {
558 "exec_elf32",
559 "exec_elf64",
560 "exec_script",
561 NULL
562 };
563 static const char * const compat[] = {
564 "exec_elf32",
565 "exec_elf64",
566 "exec_script",
567 "exec_aout",
568 "exec_coff",
569 "exec_ecoff",
570 "compat_aoutm68k",
571 "compat_freebsd",
572 "compat_ibcs2",
573 "compat_linux",
574 "compat_linux32",
575 "compat_netbsd32",
576 "compat_sunos",
577 "compat_sunos32",
578 "compat_svr4",
579 "compat_svr4_32",
580 "compat_ultrix",
581 NULL
582 };
583 char const * const *list;
584 int i;
585
586 list = (nexecs == 0 ? native : compat);
587 for (i = 0; list[i] != NULL; i++) {
588 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
589 continue;
590 }
591 yield();
592 }
593 #endif
594 }
595
596 static int
597 execve_loadvm(struct lwp *l, const char *path, char * const *args,
598 char * const *envs, execve_fetch_element_t fetch_element,
599 struct execve_data * restrict data)
600 {
601 struct exec_package * const epp = &data->ed_pack;
602 int error;
603 struct proc *p;
604 char *dp;
605 u_int modgen;
606
607 KASSERT(data != NULL);
608
609 p = l->l_proc;
610 modgen = 0;
611
612 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
613
614 /*
615 * Check if we have exceeded our number of processes limit.
616 * This is so that we handle the case where a root daemon
617 * forked, ran setuid to become the desired user and is trying
618 * to exec. The obvious place to do the reference counting check
619 * is setuid(), but we don't do the reference counting check there
620 * like other OS's do because then all the programs that use setuid()
621 * must be modified to check the return code of setuid() and exit().
622 * It is dangerous to make setuid() fail, because it fails open and
623 * the program will continue to run as root. If we make it succeed
624 * and return an error code, again we are not enforcing the limit.
625 * The best place to enforce the limit is here, when the process tries
626 * to execute a new image, because eventually the process will need
627 * to call exec in order to do something useful.
628 */
629 retry:
630 if (p->p_flag & PK_SUGID) {
631 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
632 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
633 &p->p_rlimit[RLIMIT_NPROC],
634 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
635 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
636 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
637 return EAGAIN;
638 }
639
640 /*
641 * Drain existing references and forbid new ones. The process
642 * should be left alone until we're done here. This is necessary
643 * to avoid race conditions - e.g. in ptrace() - that might allow
644 * a local user to illicitly obtain elevated privileges.
645 */
646 rw_enter(&p->p_reflock, RW_WRITER);
647
648 /*
649 * Init the namei data to point the file user's program name.
650 * This is done here rather than in check_exec(), so that it's
651 * possible to override this settings if any of makecmd/probe
652 * functions call check_exec() recursively - for example,
653 * see exec_script_makecmds().
654 */
655 error = pathbuf_copyin(path, &data->ed_pathbuf);
656 if (error) {
657 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
658 path, error));
659 goto clrflg;
660 }
661 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
662 data->ed_resolvedpathbuf = PNBUF_GET();
663
664 /*
665 * initialize the fields of the exec package.
666 */
667 epp->ep_name = path;
668 epp->ep_kname = data->ed_pathstring;
669 epp->ep_resolvedname = data->ed_resolvedpathbuf;
670 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
671 epp->ep_hdrlen = exec_maxhdrsz;
672 epp->ep_hdrvalid = 0;
673 epp->ep_emul_arg = NULL;
674 epp->ep_emul_arg_free = NULL;
675 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
676 epp->ep_vap = &data->ed_attr;
677 epp->ep_flags = 0;
678 MD_TOPDOWN_INIT(epp);
679 epp->ep_emul_root = NULL;
680 epp->ep_interp = NULL;
681 epp->ep_esch = NULL;
682 epp->ep_pax_flags = 0;
683 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
684
685 rw_enter(&exec_lock, RW_READER);
686
687 /* see if we can run it. */
688 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
689 if (error != ENOENT) {
690 DPRINTF(("%s: check exec failed %d\n",
691 __func__, error));
692 }
693 goto freehdr;
694 }
695
696 /* allocate an argument buffer */
697 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
698 KASSERT(data->ed_argp != NULL);
699 dp = data->ed_argp;
700
701 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
702 goto bad;
703 }
704
705 /*
706 * Calculate the new stack size.
707 */
708
709 #ifdef PAX_ASLR
710 #define ASLR_GAP(l) (pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0)
711 #else
712 #define ASLR_GAP(l) 0
713 #endif
714
715 #ifdef __MACHINE_STACK_GROWS_UP
716 /*
717 * copyargs() fills argc/argv/envp from the lower address even on
718 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
719 * so that _rtld() use it.
720 */
721 #define RTLD_GAP 32
722 #else
723 #define RTLD_GAP 0
724 #endif
725
726 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
727
728 data->ed_argslen = calcargs(data, argenvstrlen);
729
730 const size_t len = calcstack(data, ASLR_GAP(l) + RTLD_GAP);
731
732 if (len > epp->ep_ssize) {
733 /* in effect, compare to initial limit */
734 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
735 goto bad;
736 }
737 /* adjust "active stack depth" for process VSZ */
738 epp->ep_ssize = len;
739
740 return 0;
741
742 bad:
743 /* free the vmspace-creation commands, and release their references */
744 kill_vmcmds(&epp->ep_vmcmds);
745 /* kill any opened file descriptor, if necessary */
746 if (epp->ep_flags & EXEC_HASFD) {
747 epp->ep_flags &= ~EXEC_HASFD;
748 fd_close(epp->ep_fd);
749 }
750 /* close and put the exec'd file */
751 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
752 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
753 vput(epp->ep_vp);
754 pool_put(&exec_pool, data->ed_argp);
755
756 freehdr:
757 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
758 if (epp->ep_emul_root != NULL)
759 vrele(epp->ep_emul_root);
760 if (epp->ep_interp != NULL)
761 vrele(epp->ep_interp);
762
763 rw_exit(&exec_lock);
764
765 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
766 pathbuf_destroy(data->ed_pathbuf);
767 PNBUF_PUT(data->ed_resolvedpathbuf);
768
769 clrflg:
770 rw_exit(&p->p_reflock);
771
772 if (modgen != module_gen && error == ENOEXEC) {
773 modgen = module_gen;
774 exec_autoload();
775 goto retry;
776 }
777
778 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
779 return error;
780 }
781
782 static int
783 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
784 {
785 struct exec_package * const epp = &data->ed_pack;
786 struct proc *p = l->l_proc;
787 struct exec_vmcmd *base_vcp;
788 int error = 0;
789 int i;
790
791 /* record proc's vnode, for use by procfs and others */
792 if (p->p_textvp)
793 vrele(p->p_textvp);
794 vref(epp->ep_vp);
795 p->p_textvp = epp->ep_vp;
796
797 /* create the new process's VM space by running the vmcmds */
798 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
799
800 DUMPVMCMDS(epp, 0, 0);
801
802 base_vcp = NULL;
803
804 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
805 struct exec_vmcmd *vcp;
806
807 vcp = &epp->ep_vmcmds.evs_cmds[i];
808 if (vcp->ev_flags & VMCMD_RELATIVE) {
809 KASSERTMSG(base_vcp != NULL,
810 "%s: relative vmcmd with no base", __func__);
811 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
812 "%s: illegal base & relative vmcmd", __func__);
813 vcp->ev_addr += base_vcp->ev_addr;
814 }
815 error = (*vcp->ev_proc)(l, vcp);
816 if (error)
817 DUMPVMCMDS(epp, i, error);
818 if (vcp->ev_flags & VMCMD_BASE)
819 base_vcp = vcp;
820 }
821
822 /* free the vmspace-creation commands, and release their references */
823 kill_vmcmds(&epp->ep_vmcmds);
824
825 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
826 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
827 vput(epp->ep_vp);
828
829 /* if an error happened, deallocate and punt */
830 if (error != 0) {
831 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
832 }
833 return error;
834 }
835
836 static void
837 execve_free_data(struct execve_data *data)
838 {
839 struct exec_package * const epp = &data->ed_pack;
840
841 /* free the vmspace-creation commands, and release their references */
842 kill_vmcmds(&epp->ep_vmcmds);
843 /* kill any opened file descriptor, if necessary */
844 if (epp->ep_flags & EXEC_HASFD) {
845 epp->ep_flags &= ~EXEC_HASFD;
846 fd_close(epp->ep_fd);
847 }
848
849 /* close and put the exec'd file */
850 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
851 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
852 vput(epp->ep_vp);
853 pool_put(&exec_pool, data->ed_argp);
854
855 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
856 if (epp->ep_emul_root != NULL)
857 vrele(epp->ep_emul_root);
858 if (epp->ep_interp != NULL)
859 vrele(epp->ep_interp);
860
861 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
862 pathbuf_destroy(data->ed_pathbuf);
863 PNBUF_PUT(data->ed_resolvedpathbuf);
864 }
865
866 static void
867 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring)
868 {
869 const char *commandname;
870 size_t commandlen;
871 char *path;
872
873 /* set command name & other accounting info */
874 commandname = strrchr(epp->ep_resolvedname, '/');
875 if (commandname != NULL) {
876 commandname++;
877 } else {
878 commandname = epp->ep_resolvedname;
879 }
880 commandlen = min(strlen(commandname), MAXCOMLEN);
881 (void)memcpy(p->p_comm, commandname, commandlen);
882 p->p_comm[commandlen] = '\0';
883
884 path = PNBUF_GET();
885
886 /*
887 * If the path starts with /, we don't need to do any work.
888 * This handles the majority of the cases.
889 * In the future perhaps we could canonicalize it?
890 */
891 if (pathstring[0] == '/') {
892 (void)strlcpy(path, pathstring,
893 MAXPATHLEN);
894 epp->ep_path = path;
895 }
896 #ifdef notyet
897 /*
898 * Although this works most of the time [since the entry was just
899 * entered in the cache] we don't use it because it will fail for
900 * entries that are not placed in the cache because their name is
901 * longer than NCHNAMLEN and it is not the cleanest interface,
902 * because there could be races. When the namei cache is re-written,
903 * this can be changed to use the appropriate function.
904 */
905 else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
906 epp->ep_path = path;
907 #endif
908 else {
909 #ifdef notyet
910 printf("Cannot get path for pid %d [%s] (error %d)\n",
911 (int)p->p_pid, p->p_comm, error);
912 #endif
913 epp->ep_path = NULL;
914 PNBUF_PUT(path);
915 }
916 }
917
918 /* XXX elsewhere */
919 static int
920 credexec(struct lwp *l, struct vattr *attr)
921 {
922 struct proc *p = l->l_proc;
923 int error;
924
925 /*
926 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
927 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
928 * out additional references on the process for the moment.
929 */
930 if ((p->p_slflag & PSL_TRACED) == 0 &&
931
932 (((attr->va_mode & S_ISUID) != 0 &&
933 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
934
935 ((attr->va_mode & S_ISGID) != 0 &&
936 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
937 /*
938 * Mark the process as SUGID before we do
939 * anything that might block.
940 */
941 proc_crmod_enter();
942 proc_crmod_leave(NULL, NULL, true);
943
944 /* Make sure file descriptors 0..2 are in use. */
945 if ((error = fd_checkstd()) != 0) {
946 DPRINTF(("%s: fdcheckstd failed %d\n",
947 __func__, error));
948 return error;
949 }
950
951 /*
952 * Copy the credential so other references don't see our
953 * changes.
954 */
955 l->l_cred = kauth_cred_copy(l->l_cred);
956 #ifdef KTRACE
957 /*
958 * If the persistent trace flag isn't set, turn off.
959 */
960 if (p->p_tracep) {
961 mutex_enter(&ktrace_lock);
962 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
963 ktrderef(p);
964 mutex_exit(&ktrace_lock);
965 }
966 #endif
967 if (attr->va_mode & S_ISUID)
968 kauth_cred_seteuid(l->l_cred, attr->va_uid);
969 if (attr->va_mode & S_ISGID)
970 kauth_cred_setegid(l->l_cred, attr->va_gid);
971 } else {
972 if (kauth_cred_geteuid(l->l_cred) ==
973 kauth_cred_getuid(l->l_cred) &&
974 kauth_cred_getegid(l->l_cred) ==
975 kauth_cred_getgid(l->l_cred))
976 p->p_flag &= ~PK_SUGID;
977 }
978
979 /*
980 * Copy the credential so other references don't see our changes.
981 * Test to see if this is necessary first, since in the common case
982 * we won't need a private reference.
983 */
984 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
985 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
986 l->l_cred = kauth_cred_copy(l->l_cred);
987 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
988 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
989 }
990
991 /* Update the master credentials. */
992 if (l->l_cred != p->p_cred) {
993 kauth_cred_t ocred;
994
995 kauth_cred_hold(l->l_cred);
996 mutex_enter(p->p_lock);
997 ocred = p->p_cred;
998 p->p_cred = l->l_cred;
999 mutex_exit(p->p_lock);
1000 kauth_cred_free(ocred);
1001 }
1002
1003 return 0;
1004 }
1005
1006 static int
1007 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1008 bool no_local_exec_lock, bool is_spawn)
1009 {
1010 struct exec_package * const epp = &data->ed_pack;
1011 int error = 0;
1012 struct proc *p;
1013
1014 /*
1015 * In case of a posix_spawn operation, the child doing the exec
1016 * might not hold the reader lock on exec_lock, but the parent
1017 * will do this instead.
1018 */
1019 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1020 KASSERT(!no_local_exec_lock || is_spawn);
1021 KASSERT(data != NULL);
1022
1023 p = l->l_proc;
1024
1025 /* Get rid of other LWPs. */
1026 if (p->p_nlwps > 1) {
1027 mutex_enter(p->p_lock);
1028 exit_lwps(l);
1029 mutex_exit(p->p_lock);
1030 }
1031 KDASSERT(p->p_nlwps == 1);
1032
1033 /* Destroy any lwpctl info. */
1034 if (p->p_lwpctl != NULL)
1035 lwp_ctl_exit();
1036
1037 /* Remove POSIX timers */
1038 timers_free(p, TIMERS_POSIX);
1039
1040 /*
1041 * Do whatever is necessary to prepare the address space
1042 * for remapping. Note that this might replace the current
1043 * vmspace with another!
1044 */
1045 if (is_spawn)
1046 uvmspace_spawn(l, epp->ep_vm_minaddr,
1047 epp->ep_vm_maxaddr,
1048 epp->ep_flags & EXEC_TOPDOWN_VM);
1049 else
1050 uvmspace_exec(l, epp->ep_vm_minaddr,
1051 epp->ep_vm_maxaddr,
1052 epp->ep_flags & EXEC_TOPDOWN_VM);
1053
1054 struct vmspace *vm;
1055 vm = p->p_vmspace;
1056 vm->vm_taddr = (void *)epp->ep_taddr;
1057 vm->vm_tsize = btoc(epp->ep_tsize);
1058 vm->vm_daddr = (void*)epp->ep_daddr;
1059 vm->vm_dsize = btoc(epp->ep_dsize);
1060 vm->vm_ssize = btoc(epp->ep_ssize);
1061 vm->vm_issize = 0;
1062 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1063 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1064
1065 #ifdef PAX_ASLR
1066 pax_aslr_init(l, vm);
1067 #endif /* PAX_ASLR */
1068
1069 /* Now map address space. */
1070 error = execve_dovmcmds(l, data);
1071 if (error != 0)
1072 goto exec_abort;
1073
1074 pathexec(epp, p, data->ed_pathstring);
1075
1076 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1077
1078 error = copyoutargs(data, l, newstack);
1079 if (error != 0)
1080 goto exec_abort;
1081
1082 cwdexec(p);
1083 fd_closeexec(); /* handle close on exec */
1084
1085 if (__predict_false(ktrace_on))
1086 fd_ktrexecfd();
1087
1088 execsigs(p); /* reset catched signals */
1089
1090 mutex_enter(p->p_lock);
1091 l->l_ctxlink = NULL; /* reset ucontext link */
1092 p->p_acflag &= ~AFORK;
1093 p->p_flag |= PK_EXEC;
1094 mutex_exit(p->p_lock);
1095
1096 /*
1097 * Stop profiling.
1098 */
1099 if ((p->p_stflag & PST_PROFIL) != 0) {
1100 mutex_spin_enter(&p->p_stmutex);
1101 stopprofclock(p);
1102 mutex_spin_exit(&p->p_stmutex);
1103 }
1104
1105 /*
1106 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1107 * exited and exec()/exit() are the only places it will be cleared.
1108 */
1109 if ((p->p_lflag & PL_PPWAIT) != 0) {
1110 #if 0
1111 lwp_t *lp;
1112
1113 mutex_enter(proc_lock);
1114 lp = p->p_vforklwp;
1115 p->p_vforklwp = NULL;
1116
1117 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1118 p->p_lflag &= ~PL_PPWAIT;
1119
1120 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1121 cv_broadcast(&lp->l_waitcv);
1122 mutex_exit(proc_lock);
1123 #else
1124 mutex_enter(proc_lock);
1125 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1126 p->p_lflag &= ~PL_PPWAIT;
1127 cv_broadcast(&p->p_pptr->p_waitcv);
1128 mutex_exit(proc_lock);
1129 #endif
1130 }
1131
1132 error = credexec(l, &data->ed_attr);
1133 if (error)
1134 goto exec_abort;
1135
1136 #if defined(__HAVE_RAS)
1137 /*
1138 * Remove all RASs from the address space.
1139 */
1140 ras_purgeall();
1141 #endif
1142
1143 doexechooks(p);
1144
1145 /*
1146 * Set initial SP at the top of the stack.
1147 *
1148 * Note that on machines where stack grows up (e.g. hppa), SP points to
1149 * the end of arg/env strings. Userland guesses the address of argc
1150 * via ps_strings::ps_argvstr.
1151 */
1152
1153 /* Setup new registers and do misc. setup. */
1154 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1155 if (epp->ep_esch->es_setregs)
1156 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1157
1158 /* Provide a consistent LWP private setting */
1159 (void)lwp_setprivate(l, NULL);
1160
1161 /* Discard all PCU state; need to start fresh */
1162 pcu_discard_all(l);
1163
1164 /* map the process's signal trampoline code */
1165 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1166 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1167 goto exec_abort;
1168 }
1169
1170 pool_put(&exec_pool, data->ed_argp);
1171
1172 /* notify others that we exec'd */
1173 KNOTE(&p->p_klist, NOTE_EXEC);
1174
1175 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1176
1177 SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0);
1178
1179 /* The emulation root will usually have been found when we looked
1180 * for the elf interpreter (or similar), if not look now. */
1181 if (epp->ep_esch->es_emul->e_path != NULL &&
1182 epp->ep_emul_root == NULL)
1183 emul_find_root(l, epp);
1184
1185 /* Any old emulation root got removed by fdcloseexec */
1186 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1187 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1188 rw_exit(&p->p_cwdi->cwdi_lock);
1189 epp->ep_emul_root = NULL;
1190 if (epp->ep_interp != NULL)
1191 vrele(epp->ep_interp);
1192
1193 /*
1194 * Call emulation specific exec hook. This can setup per-process
1195 * p->p_emuldata or do any other per-process stuff an emulation needs.
1196 *
1197 * If we are executing process of different emulation than the
1198 * original forked process, call e_proc_exit() of the old emulation
1199 * first, then e_proc_exec() of new emulation. If the emulation is
1200 * same, the exec hook code should deallocate any old emulation
1201 * resources held previously by this process.
1202 */
1203 if (p->p_emul && p->p_emul->e_proc_exit
1204 && p->p_emul != epp->ep_esch->es_emul)
1205 (*p->p_emul->e_proc_exit)(p);
1206
1207 /*
1208 * This is now LWP 1.
1209 */
1210 mutex_enter(p->p_lock);
1211 p->p_nlwpid = 1;
1212 l->l_lid = 1;
1213 mutex_exit(p->p_lock);
1214
1215 /*
1216 * Call exec hook. Emulation code may NOT store reference to anything
1217 * from &pack.
1218 */
1219 if (epp->ep_esch->es_emul->e_proc_exec)
1220 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1221
1222 /* update p_emul, the old value is no longer needed */
1223 p->p_emul = epp->ep_esch->es_emul;
1224
1225 /* ...and the same for p_execsw */
1226 p->p_execsw = epp->ep_esch;
1227
1228 #ifdef __HAVE_SYSCALL_INTERN
1229 (*p->p_emul->e_syscall_intern)(p);
1230 #endif
1231 ktremul();
1232
1233 /* Allow new references from the debugger/procfs. */
1234 rw_exit(&p->p_reflock);
1235 if (!no_local_exec_lock)
1236 rw_exit(&exec_lock);
1237
1238 mutex_enter(proc_lock);
1239
1240 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1241 ksiginfo_t ksi;
1242
1243 KSI_INIT_EMPTY(&ksi);
1244 ksi.ksi_signo = SIGTRAP;
1245 ksi.ksi_lid = l->l_lid;
1246 kpsignal(p, &ksi, NULL);
1247 }
1248
1249 if (p->p_sflag & PS_STOPEXEC) {
1250 ksiginfoq_t kq;
1251
1252 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1253 p->p_pptr->p_nstopchild++;
1254 p->p_pptr->p_waited = 0;
1255 mutex_enter(p->p_lock);
1256 ksiginfo_queue_init(&kq);
1257 sigclearall(p, &contsigmask, &kq);
1258 lwp_lock(l);
1259 l->l_stat = LSSTOP;
1260 p->p_stat = SSTOP;
1261 p->p_nrlwps--;
1262 lwp_unlock(l);
1263 mutex_exit(p->p_lock);
1264 mutex_exit(proc_lock);
1265 lwp_lock(l);
1266 mi_switch(l);
1267 ksiginfo_queue_drain(&kq);
1268 KERNEL_LOCK(l->l_biglocks, l);
1269 } else {
1270 mutex_exit(proc_lock);
1271 }
1272
1273 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1274 pathbuf_destroy(data->ed_pathbuf);
1275 PNBUF_PUT(data->ed_resolvedpathbuf);
1276 DPRINTF(("%s finished\n", __func__));
1277 return EJUSTRETURN;
1278
1279 exec_abort:
1280 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1281 rw_exit(&p->p_reflock);
1282 if (!no_local_exec_lock)
1283 rw_exit(&exec_lock);
1284
1285 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1286 pathbuf_destroy(data->ed_pathbuf);
1287 PNBUF_PUT(data->ed_resolvedpathbuf);
1288
1289 /*
1290 * the old process doesn't exist anymore. exit gracefully.
1291 * get rid of the (new) address space we have created, if any, get rid
1292 * of our namei data and vnode, and exit noting failure
1293 */
1294 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1295 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1296
1297 exec_free_emul_arg(epp);
1298 pool_put(&exec_pool, data->ed_argp);
1299 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1300 if (epp->ep_emul_root != NULL)
1301 vrele(epp->ep_emul_root);
1302 if (epp->ep_interp != NULL)
1303 vrele(epp->ep_interp);
1304
1305 /* Acquire the sched-state mutex (exit1() will release it). */
1306 if (!is_spawn) {
1307 mutex_enter(p->p_lock);
1308 exit1(l, W_EXITCODE(error, SIGABRT));
1309 }
1310
1311 return error;
1312 }
1313
1314 int
1315 execve1(struct lwp *l, const char *path, char * const *args,
1316 char * const *envs, execve_fetch_element_t fetch_element)
1317 {
1318 struct execve_data data;
1319 int error;
1320
1321 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1322 if (error)
1323 return error;
1324 error = execve_runproc(l, &data, false, false);
1325 return error;
1326 }
1327
1328 static size_t
1329 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1330 {
1331 struct exec_package * const epp = &data->ed_pack;
1332
1333 const size_t nargenvptrs =
1334 data->ed_argc + /* char *argv[] */
1335 1 + /* \0 */
1336 data->ed_envc + /* char *env[] */
1337 1 + /* \0 */
1338 epp->ep_esch->es_arglen; /* auxinfo */
1339
1340 const size_t ptrsz = (epp->ep_flags & EXEC_32) ?
1341 sizeof(int) : sizeof(char *);
1342
1343 const size_t argenvlen =
1344 sizeof(int) + /* XXX argc in stack is long, not int */
1345 (nargenvptrs * ptrsz); /* XXX auxinfo multiplied by ptr size? */
1346
1347 return argenvlen + argenvstrlen;
1348 }
1349
1350 static size_t
1351 calcstack(struct execve_data * restrict data, const size_t gaplen)
1352 {
1353 struct exec_package * const epp = &data->ed_pack;
1354
1355 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1356 epp->ep_esch->es_emul->e_sigcode;
1357
1358 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1359 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1360
1361 const size_t sigcode_psstr_sz =
1362 data->ed_szsigcode + /* sigcode */
1363 data->ed_ps_strings_sz + /* ps_strings */
1364 STACK_PTHREADSPACE; /* pthread space */
1365
1366 const size_t stacklen =
1367 data->ed_argslen +
1368 gaplen +
1369 sigcode_psstr_sz;
1370
1371 /* make the stack "safely" aligned */
1372 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1373 }
1374
1375 static int
1376 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1377 char * const newstack)
1378 {
1379 struct exec_package * const epp = &data->ed_pack;
1380 struct proc *p = l->l_proc;
1381 int error;
1382
1383 /* remember information about the process */
1384 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1385 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1386
1387 /*
1388 * Allocate the stack address passed to the newly execve()'ed process.
1389 *
1390 * The new stack address will be set to the SP (stack pointer) register
1391 * in setregs().
1392 */
1393
1394 char *newargs = STACK_ALLOC(
1395 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1396
1397 error = (*epp->ep_esch->es_copyargs)(l, epp,
1398 &data->ed_arginfo, &newargs, data->ed_argp);
1399
1400 if (epp->ep_path) {
1401 PNBUF_PUT(epp->ep_path);
1402 epp->ep_path = NULL;
1403 }
1404 if (error) {
1405 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1406 return error;
1407 }
1408
1409 error = copyoutpsstrs(data, p);
1410 if (error != 0)
1411 return error;
1412
1413 return 0;
1414 }
1415
1416 static int
1417 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1418 {
1419 struct exec_package * const epp = &data->ed_pack;
1420 struct ps_strings32 arginfo32;
1421 void *aip;
1422 int error;
1423
1424 /* fill process ps_strings info */
1425 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1426 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1427
1428 if (epp->ep_flags & EXEC_32) {
1429 aip = &arginfo32;
1430 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1431 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1432 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1433 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1434 } else
1435 aip = &data->ed_arginfo;
1436
1437 /* copy out the process's ps_strings structure */
1438 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1439 != 0) {
1440 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1441 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1442 return error;
1443 }
1444
1445 return 0;
1446 }
1447
1448 static int
1449 copyinargs(struct execve_data * restrict data, char * const *args,
1450 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1451 {
1452 struct exec_package * const epp = &data->ed_pack;
1453 char *dp;
1454 size_t i;
1455 int error;
1456
1457 dp = *dpp;
1458
1459 data->ed_argc = 0;
1460
1461 /* copy the fake args list, if there's one, freeing it as we go */
1462 if (epp->ep_flags & EXEC_HASARGL) {
1463 struct exec_fakearg *tmpfap = epp->ep_fa;
1464
1465 while (tmpfap->fa_arg != NULL) {
1466 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1467 size_t len;
1468
1469 len = strlcpy(dp, tmpfap->fa_arg, maxlen);
1470 /* Count NUL into len. */
1471 if (len < maxlen)
1472 len++;
1473 else
1474 return E2BIG;
1475 ktrexecarg(tmpfap->fa_arg, len - 1);
1476 dp += len;
1477
1478 kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
1479 tmpfap++;
1480 data->ed_argc++;
1481 }
1482 kmem_free(epp->ep_fa, epp->ep_fa_len);
1483 epp->ep_flags &= ~EXEC_HASARGL;
1484 }
1485
1486 /*
1487 * Read and count argument strings from user.
1488 */
1489
1490 if (args == NULL) {
1491 DPRINTF(("%s: null args\n", __func__));
1492 return EINVAL;
1493 }
1494 if (epp->ep_flags & EXEC_SKIPARG)
1495 args++;
1496 i = 0;
1497 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1498 if (error != 0) {
1499 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1500 return error;
1501 }
1502 data->ed_argc += i;
1503
1504 /*
1505 * Read and count environment strings from user.
1506 */
1507
1508 data->ed_envc = 0;
1509 /* environment need not be there */
1510 if (envs == NULL)
1511 goto done;
1512 i = 0;
1513 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1514 if (error != 0) {
1515 DPRINTF(("%s: copyin env %d\n", __func__, error));
1516 return error;
1517 }
1518 data->ed_envc += i;
1519
1520 done:
1521 *dpp = dp;
1522
1523 return 0;
1524 }
1525
1526 static int
1527 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1528 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1529 void (*ktr)(const void *, size_t))
1530 {
1531 char *dp, *sp;
1532 size_t i;
1533 int error;
1534
1535 dp = *dpp;
1536
1537 i = 0;
1538 while (1) {
1539 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1540 size_t len;
1541
1542 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1543 return error;
1544 }
1545 if (!sp)
1546 break;
1547 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1548 if (error == ENAMETOOLONG)
1549 error = E2BIG;
1550 return error;
1551 }
1552 if (__predict_false(ktrace_on))
1553 (*ktr)(dp, len - 1);
1554 dp += len;
1555 i++;
1556 }
1557
1558 *dpp = dp;
1559 *ip = i;
1560
1561 return 0;
1562 }
1563
1564 /*
1565 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1566 * Those strings are located just after auxinfo.
1567 */
1568 int
1569 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1570 char **stackp, void *argp)
1571 {
1572 char **cpp, *dp, *sp;
1573 size_t len;
1574 void *nullp;
1575 long argc, envc;
1576 int error;
1577
1578 cpp = (char **)*stackp;
1579 nullp = NULL;
1580 argc = arginfo->ps_nargvstr;
1581 envc = arginfo->ps_nenvstr;
1582
1583 /* argc on stack is long */
1584 CTASSERT(sizeof(*cpp) == sizeof(argc));
1585
1586 dp = (char *)(cpp +
1587 1 + /* argc */
1588 argc + /* *argv[] */
1589 1 + /* \0 */
1590 envc + /* *env[] */
1591 1 + /* \0 */
1592 /* XXX auxinfo multiplied by ptr size? */
1593 pack->ep_esch->es_arglen); /* auxinfo */
1594 sp = argp;
1595
1596 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1597 COPYPRINTF("", cpp - 1, sizeof(argc));
1598 return error;
1599 }
1600
1601 /* XXX don't copy them out, remap them! */
1602 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1603
1604 for (; --argc >= 0; sp += len, dp += len) {
1605 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1606 COPYPRINTF("", cpp - 1, sizeof(dp));
1607 return error;
1608 }
1609 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1610 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1611 return error;
1612 }
1613 }
1614
1615 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1616 COPYPRINTF("", cpp - 1, sizeof(nullp));
1617 return error;
1618 }
1619
1620 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1621
1622 for (; --envc >= 0; sp += len, dp += len) {
1623 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1624 COPYPRINTF("", cpp - 1, sizeof(dp));
1625 return error;
1626 }
1627 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1628 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1629 return error;
1630 }
1631
1632 }
1633
1634 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1635 COPYPRINTF("", cpp - 1, sizeof(nullp));
1636 return error;
1637 }
1638
1639 *stackp = (char *)cpp;
1640 return 0;
1641 }
1642
1643
1644 /*
1645 * Add execsw[] entries.
1646 */
1647 int
1648 exec_add(struct execsw *esp, int count)
1649 {
1650 struct exec_entry *it;
1651 int i;
1652
1653 if (count == 0) {
1654 return 0;
1655 }
1656
1657 /* Check for duplicates. */
1658 rw_enter(&exec_lock, RW_WRITER);
1659 for (i = 0; i < count; i++) {
1660 LIST_FOREACH(it, &ex_head, ex_list) {
1661 /* assume unique (makecmds, probe_func, emulation) */
1662 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1663 it->ex_sw->u.elf_probe_func ==
1664 esp[i].u.elf_probe_func &&
1665 it->ex_sw->es_emul == esp[i].es_emul) {
1666 rw_exit(&exec_lock);
1667 return EEXIST;
1668 }
1669 }
1670 }
1671
1672 /* Allocate new entries. */
1673 for (i = 0; i < count; i++) {
1674 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1675 it->ex_sw = &esp[i];
1676 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1677 }
1678
1679 /* update execsw[] */
1680 exec_init(0);
1681 rw_exit(&exec_lock);
1682 return 0;
1683 }
1684
1685 /*
1686 * Remove execsw[] entry.
1687 */
1688 int
1689 exec_remove(struct execsw *esp, int count)
1690 {
1691 struct exec_entry *it, *next;
1692 int i;
1693 const struct proclist_desc *pd;
1694 proc_t *p;
1695
1696 if (count == 0) {
1697 return 0;
1698 }
1699
1700 /* Abort if any are busy. */
1701 rw_enter(&exec_lock, RW_WRITER);
1702 for (i = 0; i < count; i++) {
1703 mutex_enter(proc_lock);
1704 for (pd = proclists; pd->pd_list != NULL; pd++) {
1705 PROCLIST_FOREACH(p, pd->pd_list) {
1706 if (p->p_execsw == &esp[i]) {
1707 mutex_exit(proc_lock);
1708 rw_exit(&exec_lock);
1709 return EBUSY;
1710 }
1711 }
1712 }
1713 mutex_exit(proc_lock);
1714 }
1715
1716 /* None are busy, so remove them all. */
1717 for (i = 0; i < count; i++) {
1718 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1719 next = LIST_NEXT(it, ex_list);
1720 if (it->ex_sw == &esp[i]) {
1721 LIST_REMOVE(it, ex_list);
1722 kmem_free(it, sizeof(*it));
1723 break;
1724 }
1725 }
1726 }
1727
1728 /* update execsw[] */
1729 exec_init(0);
1730 rw_exit(&exec_lock);
1731 return 0;
1732 }
1733
1734 /*
1735 * Initialize exec structures. If init_boot is true, also does necessary
1736 * one-time initialization (it's called from main() that way).
1737 * Once system is multiuser, this should be called with exec_lock held,
1738 * i.e. via exec_{add|remove}().
1739 */
1740 int
1741 exec_init(int init_boot)
1742 {
1743 const struct execsw **sw;
1744 struct exec_entry *ex;
1745 SLIST_HEAD(,exec_entry) first;
1746 SLIST_HEAD(,exec_entry) any;
1747 SLIST_HEAD(,exec_entry) last;
1748 int i, sz;
1749
1750 if (init_boot) {
1751 /* do one-time initializations */
1752 rw_init(&exec_lock);
1753 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1754 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1755 "execargs", &exec_palloc, IPL_NONE);
1756 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1757 } else {
1758 KASSERT(rw_write_held(&exec_lock));
1759 }
1760
1761 /* Sort each entry onto the appropriate queue. */
1762 SLIST_INIT(&first);
1763 SLIST_INIT(&any);
1764 SLIST_INIT(&last);
1765 sz = 0;
1766 LIST_FOREACH(ex, &ex_head, ex_list) {
1767 switch(ex->ex_sw->es_prio) {
1768 case EXECSW_PRIO_FIRST:
1769 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1770 break;
1771 case EXECSW_PRIO_ANY:
1772 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1773 break;
1774 case EXECSW_PRIO_LAST:
1775 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1776 break;
1777 default:
1778 panic("%s", __func__);
1779 break;
1780 }
1781 sz++;
1782 }
1783
1784 /*
1785 * Create new execsw[]. Ensure we do not try a zero-sized
1786 * allocation.
1787 */
1788 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1789 i = 0;
1790 SLIST_FOREACH(ex, &first, ex_slist) {
1791 sw[i++] = ex->ex_sw;
1792 }
1793 SLIST_FOREACH(ex, &any, ex_slist) {
1794 sw[i++] = ex->ex_sw;
1795 }
1796 SLIST_FOREACH(ex, &last, ex_slist) {
1797 sw[i++] = ex->ex_sw;
1798 }
1799
1800 /* Replace old execsw[] and free used memory. */
1801 if (execsw != NULL) {
1802 kmem_free(__UNCONST(execsw),
1803 nexecs * sizeof(struct execsw *) + 1);
1804 }
1805 execsw = sw;
1806 nexecs = sz;
1807
1808 /* Figure out the maximum size of an exec header. */
1809 exec_maxhdrsz = sizeof(int);
1810 for (i = 0; i < nexecs; i++) {
1811 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1812 exec_maxhdrsz = execsw[i]->es_hdrsz;
1813 }
1814
1815 return 0;
1816 }
1817
1818 static int
1819 exec_sigcode_map(struct proc *p, const struct emul *e)
1820 {
1821 vaddr_t va;
1822 vsize_t sz;
1823 int error;
1824 struct uvm_object *uobj;
1825
1826 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1827
1828 if (e->e_sigobject == NULL || sz == 0) {
1829 return 0;
1830 }
1831
1832 /*
1833 * If we don't have a sigobject for this emulation, create one.
1834 *
1835 * sigobject is an anonymous memory object (just like SYSV shared
1836 * memory) that we keep a permanent reference to and that we map
1837 * in all processes that need this sigcode. The creation is simple,
1838 * we create an object, add a permanent reference to it, map it in
1839 * kernel space, copy out the sigcode to it and unmap it.
1840 * We map it with PROT_READ|PROT_EXEC into the process just
1841 * the way sys_mmap() would map it.
1842 */
1843
1844 uobj = *e->e_sigobject;
1845 if (uobj == NULL) {
1846 mutex_enter(&sigobject_lock);
1847 if ((uobj = *e->e_sigobject) == NULL) {
1848 uobj = uao_create(sz, 0);
1849 (*uobj->pgops->pgo_reference)(uobj);
1850 va = vm_map_min(kernel_map);
1851 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1852 uobj, 0, 0,
1853 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1854 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1855 printf("kernel mapping failed %d\n", error);
1856 (*uobj->pgops->pgo_detach)(uobj);
1857 mutex_exit(&sigobject_lock);
1858 return error;
1859 }
1860 memcpy((void *)va, e->e_sigcode, sz);
1861 #ifdef PMAP_NEED_PROCWR
1862 pmap_procwr(&proc0, va, sz);
1863 #endif
1864 uvm_unmap(kernel_map, va, va + round_page(sz));
1865 *e->e_sigobject = uobj;
1866 }
1867 mutex_exit(&sigobject_lock);
1868 }
1869
1870 /* Just a hint to uvm_map where to put it. */
1871 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1872 round_page(sz));
1873
1874 #ifdef __alpha__
1875 /*
1876 * Tru64 puts /sbin/loader at the end of user virtual memory,
1877 * which causes the above calculation to put the sigcode at
1878 * an invalid address. Put it just below the text instead.
1879 */
1880 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1881 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1882 }
1883 #endif
1884
1885 (*uobj->pgops->pgo_reference)(uobj);
1886 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1887 uobj, 0, 0,
1888 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1889 UVM_ADV_RANDOM, 0));
1890 if (error) {
1891 DPRINTF(("%s, %d: map %p "
1892 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1893 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1894 va, error));
1895 (*uobj->pgops->pgo_detach)(uobj);
1896 return error;
1897 }
1898 p->p_sigctx.ps_sigcode = (void *)va;
1899 return 0;
1900 }
1901
1902 /*
1903 * Release a refcount on spawn_exec_data and destroy memory, if this
1904 * was the last one.
1905 */
1906 static void
1907 spawn_exec_data_release(struct spawn_exec_data *data)
1908 {
1909 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1910 return;
1911
1912 cv_destroy(&data->sed_cv_child_ready);
1913 mutex_destroy(&data->sed_mtx_child);
1914
1915 if (data->sed_actions)
1916 posix_spawn_fa_free(data->sed_actions,
1917 data->sed_actions->len);
1918 if (data->sed_attrs)
1919 kmem_free(data->sed_attrs,
1920 sizeof(*data->sed_attrs));
1921 kmem_free(data, sizeof(*data));
1922 }
1923
1924 /*
1925 * A child lwp of a posix_spawn operation starts here and ends up in
1926 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1927 * manipulations in between.
1928 * The parent waits for the child, as it is not clear whether the child
1929 * will be able to acquire its own exec_lock. If it can, the parent can
1930 * be released early and continue running in parallel. If not (or if the
1931 * magic debug flag is passed in the scheduler attribute struct), the
1932 * child rides on the parent's exec lock until it is ready to return to
1933 * to userland - and only then releases the parent. This method loses
1934 * concurrency, but improves error reporting.
1935 */
1936 static void
1937 spawn_return(void *arg)
1938 {
1939 struct spawn_exec_data *spawn_data = arg;
1940 struct lwp *l = curlwp;
1941 int error, newfd;
1942 size_t i;
1943 const struct posix_spawn_file_actions_entry *fae;
1944 pid_t ppid;
1945 register_t retval;
1946 bool have_reflock;
1947 bool parent_is_waiting = true;
1948
1949 /*
1950 * Check if we can release parent early.
1951 * We either need to have no sed_attrs, or sed_attrs does not
1952 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1953 * safe access to the parent proc (passed in sed_parent).
1954 * We then try to get the exec_lock, and only if that works, we can
1955 * release the parent here already.
1956 */
1957 ppid = spawn_data->sed_parent->p_pid;
1958 if ((!spawn_data->sed_attrs
1959 || (spawn_data->sed_attrs->sa_flags
1960 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1961 && rw_tryenter(&exec_lock, RW_READER)) {
1962 parent_is_waiting = false;
1963 mutex_enter(&spawn_data->sed_mtx_child);
1964 cv_signal(&spawn_data->sed_cv_child_ready);
1965 mutex_exit(&spawn_data->sed_mtx_child);
1966 }
1967
1968 /* don't allow debugger access yet */
1969 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1970 have_reflock = true;
1971
1972 error = 0;
1973 /* handle posix_spawn_file_actions */
1974 if (spawn_data->sed_actions != NULL) {
1975 for (i = 0; i < spawn_data->sed_actions->len; i++) {
1976 fae = &spawn_data->sed_actions->fae[i];
1977 switch (fae->fae_action) {
1978 case FAE_OPEN:
1979 if (fd_getfile(fae->fae_fildes) != NULL) {
1980 error = fd_close(fae->fae_fildes);
1981 if (error)
1982 break;
1983 }
1984 error = fd_open(fae->fae_path, fae->fae_oflag,
1985 fae->fae_mode, &newfd);
1986 if (error)
1987 break;
1988 if (newfd != fae->fae_fildes) {
1989 error = dodup(l, newfd,
1990 fae->fae_fildes, 0, &retval);
1991 if (fd_getfile(newfd) != NULL)
1992 fd_close(newfd);
1993 }
1994 break;
1995 case FAE_DUP2:
1996 error = dodup(l, fae->fae_fildes,
1997 fae->fae_newfildes, 0, &retval);
1998 break;
1999 case FAE_CLOSE:
2000 if (fd_getfile(fae->fae_fildes) == NULL) {
2001 error = EBADF;
2002 break;
2003 }
2004 error = fd_close(fae->fae_fildes);
2005 break;
2006 }
2007 if (error)
2008 goto report_error;
2009 }
2010 }
2011
2012 /* handle posix_spawnattr */
2013 if (spawn_data->sed_attrs != NULL) {
2014 int ostat;
2015 struct sigaction sigact;
2016 sigact._sa_u._sa_handler = SIG_DFL;
2017 sigact.sa_flags = 0;
2018
2019 /*
2020 * set state to SSTOP so that this proc can be found by pid.
2021 * see proc_enterprp, do_sched_setparam below
2022 */
2023 ostat = l->l_proc->p_stat;
2024 l->l_proc->p_stat = SSTOP;
2025
2026 /* Set process group */
2027 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2028 pid_t mypid = l->l_proc->p_pid,
2029 pgrp = spawn_data->sed_attrs->sa_pgroup;
2030
2031 if (pgrp == 0)
2032 pgrp = mypid;
2033
2034 error = proc_enterpgrp(spawn_data->sed_parent,
2035 mypid, pgrp, false);
2036 if (error)
2037 goto report_error;
2038 }
2039
2040 /* Set scheduler policy */
2041 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2042 error = do_sched_setparam(l->l_proc->p_pid, 0,
2043 spawn_data->sed_attrs->sa_schedpolicy,
2044 &spawn_data->sed_attrs->sa_schedparam);
2045 else if (spawn_data->sed_attrs->sa_flags
2046 & POSIX_SPAWN_SETSCHEDPARAM) {
2047 error = do_sched_setparam(ppid, 0,
2048 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2049 }
2050 if (error)
2051 goto report_error;
2052
2053 /* Reset user ID's */
2054 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2055 error = do_setresuid(l, -1,
2056 kauth_cred_getgid(l->l_cred), -1,
2057 ID_E_EQ_R | ID_E_EQ_S);
2058 if (error)
2059 goto report_error;
2060 error = do_setresuid(l, -1,
2061 kauth_cred_getuid(l->l_cred), -1,
2062 ID_E_EQ_R | ID_E_EQ_S);
2063 if (error)
2064 goto report_error;
2065 }
2066
2067 /* Set signal masks/defaults */
2068 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2069 mutex_enter(l->l_proc->p_lock);
2070 error = sigprocmask1(l, SIG_SETMASK,
2071 &spawn_data->sed_attrs->sa_sigmask, NULL);
2072 mutex_exit(l->l_proc->p_lock);
2073 if (error)
2074 goto report_error;
2075 }
2076
2077 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2078 /*
2079 * The following sigaction call is using a sigaction
2080 * version 0 trampoline which is in the compatibility
2081 * code only. This is not a problem because for SIG_DFL
2082 * and SIG_IGN, the trampolines are now ignored. If they
2083 * were not, this would be a problem because we are
2084 * holding the exec_lock, and the compat code needs
2085 * to do the same in order to replace the trampoline
2086 * code of the process.
2087 */
2088 for (i = 1; i <= NSIG; i++) {
2089 if (sigismember(
2090 &spawn_data->sed_attrs->sa_sigdefault, i))
2091 sigaction1(l, i, &sigact, NULL, NULL,
2092 0);
2093 }
2094 }
2095 l->l_proc->p_stat = ostat;
2096 }
2097
2098 /* now do the real exec */
2099 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2100 true);
2101 have_reflock = false;
2102 if (error == EJUSTRETURN)
2103 error = 0;
2104 else if (error)
2105 goto report_error;
2106
2107 if (parent_is_waiting) {
2108 mutex_enter(&spawn_data->sed_mtx_child);
2109 cv_signal(&spawn_data->sed_cv_child_ready);
2110 mutex_exit(&spawn_data->sed_mtx_child);
2111 }
2112
2113 /* release our refcount on the data */
2114 spawn_exec_data_release(spawn_data);
2115
2116 /* and finally: leave to userland for the first time */
2117 cpu_spawn_return(l);
2118
2119 /* NOTREACHED */
2120 return;
2121
2122 report_error:
2123 if (have_reflock) {
2124 /*
2125 * We have not passed through execve_runproc(),
2126 * which would have released the p_reflock and also
2127 * taken ownership of the sed_exec part of spawn_data,
2128 * so release/free both here.
2129 */
2130 rw_exit(&l->l_proc->p_reflock);
2131 execve_free_data(&spawn_data->sed_exec);
2132 }
2133
2134 if (parent_is_waiting) {
2135 /* pass error to parent */
2136 mutex_enter(&spawn_data->sed_mtx_child);
2137 spawn_data->sed_error = error;
2138 cv_signal(&spawn_data->sed_cv_child_ready);
2139 mutex_exit(&spawn_data->sed_mtx_child);
2140 } else {
2141 rw_exit(&exec_lock);
2142 }
2143
2144 /* release our refcount on the data */
2145 spawn_exec_data_release(spawn_data);
2146
2147 /* done, exit */
2148 mutex_enter(l->l_proc->p_lock);
2149 /*
2150 * Posix explicitly asks for an exit code of 127 if we report
2151 * errors from the child process - so, unfortunately, there
2152 * is no way to report a more exact error code.
2153 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2154 * flag bit in the attrp argument to posix_spawn(2), see above.
2155 */
2156 exit1(l, W_EXITCODE(127, 0));
2157 }
2158
2159 void
2160 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2161 {
2162
2163 for (size_t i = 0; i < len; i++) {
2164 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2165 if (fae->fae_action != FAE_OPEN)
2166 continue;
2167 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2168 }
2169 if (fa->len > 0)
2170 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2171 kmem_free(fa, sizeof(*fa));
2172 }
2173
2174 static int
2175 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2176 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2177 {
2178 struct posix_spawn_file_actions *fa;
2179 struct posix_spawn_file_actions_entry *fae;
2180 char *pbuf = NULL;
2181 int error;
2182 size_t i = 0;
2183
2184 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2185 error = copyin(ufa, fa, sizeof(*fa));
2186 if (error || fa->len == 0) {
2187 kmem_free(fa, sizeof(*fa));
2188 return error; /* 0 if not an error, and len == 0 */
2189 }
2190
2191 if (fa->len > lim) {
2192 kmem_free(fa, sizeof(*fa));
2193 return EINVAL;
2194 }
2195
2196 fa->size = fa->len;
2197 size_t fal = fa->len * sizeof(*fae);
2198 fae = fa->fae;
2199 fa->fae = kmem_alloc(fal, KM_SLEEP);
2200 error = copyin(fae, fa->fae, fal);
2201 if (error)
2202 goto out;
2203
2204 pbuf = PNBUF_GET();
2205 for (; i < fa->len; i++) {
2206 fae = &fa->fae[i];
2207 if (fae->fae_action != FAE_OPEN)
2208 continue;
2209 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2210 if (error)
2211 goto out;
2212 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2213 memcpy(fae->fae_path, pbuf, fal);
2214 }
2215 PNBUF_PUT(pbuf);
2216
2217 *fap = fa;
2218 return 0;
2219 out:
2220 if (pbuf)
2221 PNBUF_PUT(pbuf);
2222 posix_spawn_fa_free(fa, i);
2223 return error;
2224 }
2225
2226 int
2227 check_posix_spawn(struct lwp *l1)
2228 {
2229 int error, tnprocs, count;
2230 uid_t uid;
2231 struct proc *p1;
2232
2233 p1 = l1->l_proc;
2234 uid = kauth_cred_getuid(l1->l_cred);
2235 tnprocs = atomic_inc_uint_nv(&nprocs);
2236
2237 /*
2238 * Although process entries are dynamically created, we still keep
2239 * a global limit on the maximum number we will create.
2240 */
2241 if (__predict_false(tnprocs >= maxproc))
2242 error = -1;
2243 else
2244 error = kauth_authorize_process(l1->l_cred,
2245 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2246
2247 if (error) {
2248 atomic_dec_uint(&nprocs);
2249 return EAGAIN;
2250 }
2251
2252 /*
2253 * Enforce limits.
2254 */
2255 count = chgproccnt(uid, 1);
2256 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2257 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2258 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2259 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2260 (void)chgproccnt(uid, -1);
2261 atomic_dec_uint(&nprocs);
2262 return EAGAIN;
2263 }
2264
2265 return 0;
2266 }
2267
2268 int
2269 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2270 struct posix_spawn_file_actions *fa,
2271 struct posix_spawnattr *sa,
2272 char *const *argv, char *const *envp,
2273 execve_fetch_element_t fetch)
2274 {
2275
2276 struct proc *p1, *p2;
2277 struct lwp *l2;
2278 int error;
2279 struct spawn_exec_data *spawn_data;
2280 vaddr_t uaddr;
2281 pid_t pid;
2282 bool have_exec_lock = false;
2283
2284 p1 = l1->l_proc;
2285
2286 /* Allocate and init spawn_data */
2287 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2288 spawn_data->sed_refcnt = 1; /* only parent so far */
2289 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2290 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2291 mutex_enter(&spawn_data->sed_mtx_child);
2292
2293 /*
2294 * Do the first part of the exec now, collect state
2295 * in spawn_data.
2296 */
2297 error = execve_loadvm(l1, path, argv,
2298 envp, fetch, &spawn_data->sed_exec);
2299 if (error == EJUSTRETURN)
2300 error = 0;
2301 else if (error)
2302 goto error_exit;
2303
2304 have_exec_lock = true;
2305
2306 /*
2307 * Allocate virtual address space for the U-area now, while it
2308 * is still easy to abort the fork operation if we're out of
2309 * kernel virtual address space.
2310 */
2311 uaddr = uvm_uarea_alloc();
2312 if (__predict_false(uaddr == 0)) {
2313 error = ENOMEM;
2314 goto error_exit;
2315 }
2316
2317 /*
2318 * Allocate new proc. Borrow proc0 vmspace for it, we will
2319 * replace it with its own before returning to userland
2320 * in the child.
2321 * This is a point of no return, we will have to go through
2322 * the child proc to properly clean it up past this point.
2323 */
2324 p2 = proc_alloc();
2325 pid = p2->p_pid;
2326
2327 /*
2328 * Make a proc table entry for the new process.
2329 * Start by zeroing the section of proc that is zero-initialized,
2330 * then copy the section that is copied directly from the parent.
2331 */
2332 memset(&p2->p_startzero, 0,
2333 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2334 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2335 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2336 p2->p_vmspace = proc0.p_vmspace;
2337
2338 TAILQ_INIT(&p2->p_sigpend.sp_info);
2339
2340 LIST_INIT(&p2->p_lwps);
2341 LIST_INIT(&p2->p_sigwaiters);
2342
2343 /*
2344 * Duplicate sub-structures as needed.
2345 * Increase reference counts on shared objects.
2346 * Inherit flags we want to keep. The flags related to SIGCHLD
2347 * handling are important in order to keep a consistent behaviour
2348 * for the child after the fork. If we are a 32-bit process, the
2349 * child will be too.
2350 */
2351 p2->p_flag =
2352 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2353 p2->p_emul = p1->p_emul;
2354 p2->p_execsw = p1->p_execsw;
2355
2356 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2357 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2358 rw_init(&p2->p_reflock);
2359 cv_init(&p2->p_waitcv, "wait");
2360 cv_init(&p2->p_lwpcv, "lwpwait");
2361
2362 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2363
2364 kauth_proc_fork(p1, p2);
2365
2366 p2->p_raslist = NULL;
2367 p2->p_fd = fd_copy();
2368
2369 /* XXX racy */
2370 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2371
2372 p2->p_cwdi = cwdinit();
2373
2374 /*
2375 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2376 * we just need increase pl_refcnt.
2377 */
2378 if (!p1->p_limit->pl_writeable) {
2379 lim_addref(p1->p_limit);
2380 p2->p_limit = p1->p_limit;
2381 } else {
2382 p2->p_limit = lim_copy(p1->p_limit);
2383 }
2384
2385 p2->p_lflag = 0;
2386 p2->p_sflag = 0;
2387 p2->p_slflag = 0;
2388 p2->p_pptr = p1;
2389 p2->p_ppid = p1->p_pid;
2390 LIST_INIT(&p2->p_children);
2391
2392 p2->p_aio = NULL;
2393
2394 #ifdef KTRACE
2395 /*
2396 * Copy traceflag and tracefile if enabled.
2397 * If not inherited, these were zeroed above.
2398 */
2399 if (p1->p_traceflag & KTRFAC_INHERIT) {
2400 mutex_enter(&ktrace_lock);
2401 p2->p_traceflag = p1->p_traceflag;
2402 if ((p2->p_tracep = p1->p_tracep) != NULL)
2403 ktradref(p2);
2404 mutex_exit(&ktrace_lock);
2405 }
2406 #endif
2407
2408 /*
2409 * Create signal actions for the child process.
2410 */
2411 p2->p_sigacts = sigactsinit(p1, 0);
2412 mutex_enter(p1->p_lock);
2413 p2->p_sflag |=
2414 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2415 sched_proc_fork(p1, p2);
2416 mutex_exit(p1->p_lock);
2417
2418 p2->p_stflag = p1->p_stflag;
2419
2420 /*
2421 * p_stats.
2422 * Copy parts of p_stats, and zero out the rest.
2423 */
2424 p2->p_stats = pstatscopy(p1->p_stats);
2425
2426 /* copy over machdep flags to the new proc */
2427 cpu_proc_fork(p1, p2);
2428
2429 /*
2430 * Prepare remaining parts of spawn data
2431 */
2432 spawn_data->sed_actions = fa;
2433 spawn_data->sed_attrs = sa;
2434
2435 spawn_data->sed_parent = p1;
2436
2437 /* create LWP */
2438 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2439 &l2, l1->l_class);
2440 l2->l_ctxlink = NULL; /* reset ucontext link */
2441
2442 /*
2443 * Copy the credential so other references don't see our changes.
2444 * Test to see if this is necessary first, since in the common case
2445 * we won't need a private reference.
2446 */
2447 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2448 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2449 l2->l_cred = kauth_cred_copy(l2->l_cred);
2450 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2451 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2452 }
2453
2454 /* Update the master credentials. */
2455 if (l2->l_cred != p2->p_cred) {
2456 kauth_cred_t ocred;
2457
2458 kauth_cred_hold(l2->l_cred);
2459 mutex_enter(p2->p_lock);
2460 ocred = p2->p_cred;
2461 p2->p_cred = l2->l_cred;
2462 mutex_exit(p2->p_lock);
2463 kauth_cred_free(ocred);
2464 }
2465
2466 *child_ok = true;
2467 spawn_data->sed_refcnt = 2; /* child gets it as well */
2468 #if 0
2469 l2->l_nopreempt = 1; /* start it non-preemptable */
2470 #endif
2471
2472 /*
2473 * It's now safe for the scheduler and other processes to see the
2474 * child process.
2475 */
2476 mutex_enter(proc_lock);
2477
2478 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2479 p2->p_lflag |= PL_CONTROLT;
2480
2481 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2482 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2483
2484 LIST_INSERT_AFTER(p1, p2, p_pglist);
2485 LIST_INSERT_HEAD(&allproc, p2, p_list);
2486
2487 p2->p_trace_enabled = trace_is_enabled(p2);
2488 #ifdef __HAVE_SYSCALL_INTERN
2489 (*p2->p_emul->e_syscall_intern)(p2);
2490 #endif
2491
2492 /*
2493 * Make child runnable, set start time, and add to run queue except
2494 * if the parent requested the child to start in SSTOP state.
2495 */
2496 mutex_enter(p2->p_lock);
2497
2498 getmicrotime(&p2->p_stats->p_start);
2499
2500 lwp_lock(l2);
2501 KASSERT(p2->p_nrlwps == 1);
2502 p2->p_nrlwps = 1;
2503 p2->p_stat = SACTIVE;
2504 l2->l_stat = LSRUN;
2505 sched_enqueue(l2, false);
2506 lwp_unlock(l2);
2507
2508 mutex_exit(p2->p_lock);
2509 mutex_exit(proc_lock);
2510
2511 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2512 error = spawn_data->sed_error;
2513 mutex_exit(&spawn_data->sed_mtx_child);
2514 spawn_exec_data_release(spawn_data);
2515
2516 rw_exit(&p1->p_reflock);
2517 rw_exit(&exec_lock);
2518 have_exec_lock = false;
2519
2520 *pid_res = pid;
2521 return error;
2522
2523 error_exit:
2524 if (have_exec_lock) {
2525 execve_free_data(&spawn_data->sed_exec);
2526 rw_exit(&p1->p_reflock);
2527 rw_exit(&exec_lock);
2528 }
2529 mutex_exit(&spawn_data->sed_mtx_child);
2530 spawn_exec_data_release(spawn_data);
2531
2532 return error;
2533 }
2534
2535 int
2536 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2537 register_t *retval)
2538 {
2539 /* {
2540 syscallarg(pid_t *) pid;
2541 syscallarg(const char *) path;
2542 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2543 syscallarg(const struct posix_spawnattr *) attrp;
2544 syscallarg(char *const *) argv;
2545 syscallarg(char *const *) envp;
2546 } */
2547
2548 int error;
2549 struct posix_spawn_file_actions *fa = NULL;
2550 struct posix_spawnattr *sa = NULL;
2551 pid_t pid;
2552 bool child_ok = false;
2553 rlim_t max_fileactions;
2554 proc_t *p = l1->l_proc;
2555
2556 error = check_posix_spawn(l1);
2557 if (error) {
2558 *retval = error;
2559 return 0;
2560 }
2561
2562 /* copy in file_actions struct */
2563 if (SCARG(uap, file_actions) != NULL) {
2564 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2565 maxfiles);
2566 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2567 max_fileactions);
2568 if (error)
2569 goto error_exit;
2570 }
2571
2572 /* copyin posix_spawnattr struct */
2573 if (SCARG(uap, attrp) != NULL) {
2574 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2575 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2576 if (error)
2577 goto error_exit;
2578 }
2579
2580 /*
2581 * Do the spawn
2582 */
2583 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2584 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2585 if (error)
2586 goto error_exit;
2587
2588 if (error == 0 && SCARG(uap, pid) != NULL)
2589 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2590
2591 *retval = error;
2592 return 0;
2593
2594 error_exit:
2595 if (!child_ok) {
2596 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2597 atomic_dec_uint(&nprocs);
2598
2599 if (sa)
2600 kmem_free(sa, sizeof(*sa));
2601 if (fa)
2602 posix_spawn_fa_free(fa, fa->len);
2603 }
2604
2605 *retval = error;
2606 return 0;
2607 }
2608
2609 void
2610 exec_free_emul_arg(struct exec_package *epp)
2611 {
2612 if (epp->ep_emul_arg_free != NULL) {
2613 KASSERT(epp->ep_emul_arg != NULL);
2614 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2615 epp->ep_emul_arg_free = NULL;
2616 epp->ep_emul_arg = NULL;
2617 } else {
2618 KASSERT(epp->ep_emul_arg == NULL);
2619 }
2620 }
2621
2622 #ifdef DEBUG_EXEC
2623 static void
2624 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2625 {
2626 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2627 size_t j;
2628
2629 if (error == 0)
2630 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2631 else
2632 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2633 epp->ep_vmcmds.evs_used, error));
2634
2635 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2636 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2637 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2638 PRIxVSIZE" prot=0%o flags=%d\n", j,
2639 vp[j].ev_proc == vmcmd_map_pagedvn ?
2640 "pagedvn" :
2641 vp[j].ev_proc == vmcmd_map_readvn ?
2642 "readvn" :
2643 vp[j].ev_proc == vmcmd_map_zero ?
2644 "zero" : "*unknown*",
2645 vp[j].ev_addr, vp[j].ev_len,
2646 vp[j].ev_offset, vp[j].ev_prot,
2647 vp[j].ev_flags));
2648 if (error != 0 && j == x)
2649 DPRINTF((" ^--- failed\n"));
2650 }
2651 }
2652 #endif
2653