kern_exec.c revision 1.409 1 /* $NetBSD: kern_exec.c,v 1.409 2014/10/24 21:13:30 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.409 2014/10/24 21:13:30 christos Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108
109 #include <uvm/uvm_extern.h>
110
111 #include <machine/reg.h>
112
113 #include <compat/common/compat_util.h>
114
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USE_TOPDOWN_VM
117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122
123 struct execve_data;
124
125 static size_t calcargs(struct execve_data * restrict, const size_t);
126 static size_t calcstack(struct execve_data * restrict, const size_t);
127 static int copyoutargs(struct execve_data * restrict, struct lwp *,
128 char * const);
129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
130 static int copyinargs(struct execve_data * restrict, char * const *,
131 char * const *, execve_fetch_element_t, char **);
132 static int copyinargstrs(struct execve_data * restrict, char * const *,
133 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
134 static int exec_sigcode_map(struct proc *, const struct emul *);
135
136 #ifdef DEBUG_EXEC
137 #define DPRINTF(a) printf a
138 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
139 __LINE__, (s), (a), (b))
140 static void dump_vmcmds(const struct exec_package * const, size_t, int);
141 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
142 #else
143 #define DPRINTF(a)
144 #define COPYPRINTF(s, a, b)
145 #define DUMPVMCMDS(p, x, e) do {} while (0)
146 #endif /* DEBUG_EXEC */
147
148 /*
149 * DTrace SDT provider definitions
150 */
151 SDT_PROBE_DEFINE(proc,,,exec,exec,
152 "char *", NULL,
153 NULL, NULL, NULL, NULL,
154 NULL, NULL, NULL, NULL);
155 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
156 "char *", NULL,
157 NULL, NULL, NULL, NULL,
158 NULL, NULL, NULL, NULL);
159 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
160 "int", NULL,
161 NULL, NULL, NULL, NULL,
162 NULL, NULL, NULL, NULL);
163
164 /*
165 * Exec function switch:
166 *
167 * Note that each makecmds function is responsible for loading the
168 * exec package with the necessary functions for any exec-type-specific
169 * handling.
170 *
171 * Functions for specific exec types should be defined in their own
172 * header file.
173 */
174 static const struct execsw **execsw = NULL;
175 static int nexecs;
176
177 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
178
179 /* list of dynamically loaded execsw entries */
180 static LIST_HEAD(execlist_head, exec_entry) ex_head =
181 LIST_HEAD_INITIALIZER(ex_head);
182 struct exec_entry {
183 LIST_ENTRY(exec_entry) ex_list;
184 SLIST_ENTRY(exec_entry) ex_slist;
185 const struct execsw *ex_sw;
186 };
187
188 #ifndef __HAVE_SYSCALL_INTERN
189 void syscall(void);
190 #endif
191
192 /* NetBSD emul struct */
193 struct emul emul_netbsd = {
194 .e_name = "netbsd",
195 #ifdef EMUL_NATIVEROOT
196 .e_path = EMUL_NATIVEROOT,
197 #else
198 .e_path = NULL,
199 #endif
200 #ifndef __HAVE_MINIMAL_EMUL
201 .e_flags = EMUL_HAS_SYS___syscall,
202 .e_errno = NULL,
203 .e_nosys = SYS_syscall,
204 .e_nsysent = SYS_NSYSENT,
205 #endif
206 .e_sysent = sysent,
207 #ifdef SYSCALL_DEBUG
208 .e_syscallnames = syscallnames,
209 #else
210 .e_syscallnames = NULL,
211 #endif
212 .e_sendsig = sendsig,
213 .e_trapsignal = trapsignal,
214 .e_tracesig = NULL,
215 .e_sigcode = NULL,
216 .e_esigcode = NULL,
217 .e_sigobject = NULL,
218 .e_setregs = setregs,
219 .e_proc_exec = NULL,
220 .e_proc_fork = NULL,
221 .e_proc_exit = NULL,
222 .e_lwp_fork = NULL,
223 .e_lwp_exit = NULL,
224 #ifdef __HAVE_SYSCALL_INTERN
225 .e_syscall_intern = syscall_intern,
226 #else
227 .e_syscall = syscall,
228 #endif
229 .e_sysctlovly = NULL,
230 .e_fault = NULL,
231 .e_vm_default_addr = uvm_default_mapaddr,
232 .e_usertrap = NULL,
233 .e_ucsize = sizeof(ucontext_t),
234 .e_startlwp = startlwp
235 };
236
237 /*
238 * Exec lock. Used to control access to execsw[] structures.
239 * This must not be static so that netbsd32 can access it, too.
240 */
241 krwlock_t exec_lock;
242
243 static kmutex_t sigobject_lock;
244
245 /*
246 * Data used between a loadvm and execve part of an "exec" operation
247 */
248 struct execve_data {
249 struct exec_package ed_pack;
250 struct pathbuf *ed_pathbuf;
251 struct vattr ed_attr;
252 struct ps_strings ed_arginfo;
253 char *ed_argp;
254 const char *ed_pathstring;
255 char *ed_resolvedpathbuf;
256 size_t ed_ps_strings_sz;
257 int ed_szsigcode;
258 size_t ed_argslen;
259 long ed_argc;
260 long ed_envc;
261 };
262
263 /*
264 * data passed from parent lwp to child during a posix_spawn()
265 */
266 struct spawn_exec_data {
267 struct execve_data sed_exec;
268 struct posix_spawn_file_actions
269 *sed_actions;
270 struct posix_spawnattr *sed_attrs;
271 struct proc *sed_parent;
272 kcondvar_t sed_cv_child_ready;
273 kmutex_t sed_mtx_child;
274 int sed_error;
275 volatile uint32_t sed_refcnt;
276 };
277
278 static void *
279 exec_pool_alloc(struct pool *pp, int flags)
280 {
281
282 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
283 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
284 }
285
286 static void
287 exec_pool_free(struct pool *pp, void *addr)
288 {
289
290 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
291 }
292
293 static struct pool exec_pool;
294
295 static struct pool_allocator exec_palloc = {
296 .pa_alloc = exec_pool_alloc,
297 .pa_free = exec_pool_free,
298 .pa_pagesz = NCARGS
299 };
300
301 /*
302 * check exec:
303 * given an "executable" described in the exec package's namei info,
304 * see what we can do with it.
305 *
306 * ON ENTRY:
307 * exec package with appropriate namei info
308 * lwp pointer of exec'ing lwp
309 * NO SELF-LOCKED VNODES
310 *
311 * ON EXIT:
312 * error: nothing held, etc. exec header still allocated.
313 * ok: filled exec package, executable's vnode (unlocked).
314 *
315 * EXEC SWITCH ENTRY:
316 * Locked vnode to check, exec package, proc.
317 *
318 * EXEC SWITCH EXIT:
319 * ok: return 0, filled exec package, executable's vnode (unlocked).
320 * error: destructive:
321 * everything deallocated execept exec header.
322 * non-destructive:
323 * error code, executable's vnode (unlocked),
324 * exec header unmodified.
325 */
326 int
327 /*ARGSUSED*/
328 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
329 {
330 int error, i;
331 struct vnode *vp;
332 struct nameidata nd;
333 size_t resid;
334
335 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
336
337 /* first get the vnode */
338 if ((error = namei(&nd)) != 0)
339 return error;
340 epp->ep_vp = vp = nd.ni_vp;
341 /* normally this can't fail */
342 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
343 KASSERT(error == 0);
344
345 #ifdef DIAGNOSTIC
346 /* paranoia (take this out once namei stuff stabilizes) */
347 memset(nd.ni_pnbuf, '~', PATH_MAX);
348 #endif
349
350 /* check access and type */
351 if (vp->v_type != VREG) {
352 error = EACCES;
353 goto bad1;
354 }
355 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
356 goto bad1;
357
358 /* get attributes */
359 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
360 goto bad1;
361
362 /* Check mount point */
363 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
364 error = EACCES;
365 goto bad1;
366 }
367 if (vp->v_mount->mnt_flag & MNT_NOSUID)
368 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
369
370 /* try to open it */
371 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
372 goto bad1;
373
374 /* unlock vp, since we need it unlocked from here on out. */
375 VOP_UNLOCK(vp);
376
377 #if NVERIEXEC > 0
378 error = veriexec_verify(l, vp, epp->ep_resolvedname,
379 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
380 NULL);
381 if (error)
382 goto bad2;
383 #endif /* NVERIEXEC > 0 */
384
385 #ifdef PAX_SEGVGUARD
386 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
387 if (error)
388 goto bad2;
389 #endif /* PAX_SEGVGUARD */
390
391 /* now we have the file, get the exec header */
392 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
393 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
394 if (error)
395 goto bad2;
396 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
397
398 /*
399 * Set up default address space limits. Can be overridden
400 * by individual exec packages.
401 *
402 * XXX probably should be all done in the exec packages.
403 */
404 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
405 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
406 /*
407 * set up the vmcmds for creation of the process
408 * address space
409 */
410 error = ENOEXEC;
411 for (i = 0; i < nexecs; i++) {
412 int newerror;
413
414 epp->ep_esch = execsw[i];
415 newerror = (*execsw[i]->es_makecmds)(l, epp);
416
417 if (!newerror) {
418 /* Seems ok: check that entry point is not too high */
419 if (epp->ep_entry > epp->ep_vm_maxaddr) {
420 #ifdef DIAGNOSTIC
421 printf("%s: rejecting %p due to "
422 "too high entry address (> %p)\n",
423 __func__, (void *)epp->ep_entry,
424 (void *)epp->ep_vm_maxaddr);
425 #endif
426 error = ENOEXEC;
427 break;
428 }
429 /* Seems ok: check that entry point is not too low */
430 if (epp->ep_entry < epp->ep_vm_minaddr) {
431 #ifdef DIAGNOSTIC
432 printf("%s: rejecting %p due to "
433 "too low entry address (< %p)\n",
434 __func__, (void *)epp->ep_entry,
435 (void *)epp->ep_vm_minaddr);
436 #endif
437 error = ENOEXEC;
438 break;
439 }
440
441 /* check limits */
442 if ((epp->ep_tsize > MAXTSIZ) ||
443 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
444 [RLIMIT_DATA].rlim_cur)) {
445 #ifdef DIAGNOSTIC
446 printf("%s: rejecting due to "
447 "limits (t=%llu > %llu || d=%llu > %llu)\n",
448 __func__,
449 (unsigned long long)epp->ep_tsize,
450 (unsigned long long)MAXTSIZ,
451 (unsigned long long)epp->ep_dsize,
452 (unsigned long long)
453 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
454 #endif
455 error = ENOMEM;
456 break;
457 }
458 return 0;
459 }
460
461 if (epp->ep_emul_root != NULL) {
462 vrele(epp->ep_emul_root);
463 epp->ep_emul_root = NULL;
464 }
465 if (epp->ep_interp != NULL) {
466 vrele(epp->ep_interp);
467 epp->ep_interp = NULL;
468 }
469
470 /* make sure the first "interesting" error code is saved. */
471 if (error == ENOEXEC)
472 error = newerror;
473
474 if (epp->ep_flags & EXEC_DESTR)
475 /* Error from "#!" code, tidied up by recursive call */
476 return error;
477 }
478
479 /* not found, error */
480
481 /*
482 * free any vmspace-creation commands,
483 * and release their references
484 */
485 kill_vmcmds(&epp->ep_vmcmds);
486
487 bad2:
488 /*
489 * close and release the vnode, restore the old one, free the
490 * pathname buf, and punt.
491 */
492 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
493 VOP_CLOSE(vp, FREAD, l->l_cred);
494 vput(vp);
495 return error;
496
497 bad1:
498 /*
499 * free the namei pathname buffer, and put the vnode
500 * (which we don't yet have open).
501 */
502 vput(vp); /* was still locked */
503 return error;
504 }
505
506 #ifdef __MACHINE_STACK_GROWS_UP
507 #define STACK_PTHREADSPACE NBPG
508 #else
509 #define STACK_PTHREADSPACE 0
510 #endif
511
512 static int
513 execve_fetch_element(char * const *array, size_t index, char **value)
514 {
515 return copyin(array + index, value, sizeof(*value));
516 }
517
518 /*
519 * exec system call
520 */
521 int
522 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
523 {
524 /* {
525 syscallarg(const char *) path;
526 syscallarg(char * const *) argp;
527 syscallarg(char * const *) envp;
528 } */
529
530 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
531 SCARG(uap, envp), execve_fetch_element);
532 }
533
534 int
535 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
536 register_t *retval)
537 {
538 /* {
539 syscallarg(int) fd;
540 syscallarg(char * const *) argp;
541 syscallarg(char * const *) envp;
542 } */
543
544 return ENOSYS;
545 }
546
547 /*
548 * Load modules to try and execute an image that we do not understand.
549 * If no execsw entries are present, we load those likely to be needed
550 * in order to run native images only. Otherwise, we autoload all
551 * possible modules that could let us run the binary. XXX lame
552 */
553 static void
554 exec_autoload(void)
555 {
556 #ifdef MODULAR
557 static const char * const native[] = {
558 "exec_elf32",
559 "exec_elf64",
560 "exec_script",
561 NULL
562 };
563 static const char * const compat[] = {
564 "exec_elf32",
565 "exec_elf64",
566 "exec_script",
567 "exec_aout",
568 "exec_coff",
569 "exec_ecoff",
570 "compat_aoutm68k",
571 "compat_freebsd",
572 "compat_ibcs2",
573 "compat_linux",
574 "compat_linux32",
575 "compat_netbsd32",
576 "compat_sunos",
577 "compat_sunos32",
578 "compat_svr4",
579 "compat_svr4_32",
580 "compat_ultrix",
581 NULL
582 };
583 char const * const *list;
584 int i;
585
586 list = (nexecs == 0 ? native : compat);
587 for (i = 0; list[i] != NULL; i++) {
588 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
589 continue;
590 }
591 yield();
592 }
593 #endif
594 }
595
596 static int
597 execve_loadvm(struct lwp *l, const char *path, char * const *args,
598 char * const *envs, execve_fetch_element_t fetch_element,
599 struct execve_data * restrict data)
600 {
601 struct exec_package * const epp = &data->ed_pack;
602 int error;
603 struct proc *p;
604 char *dp;
605 u_int modgen;
606
607 KASSERT(data != NULL);
608
609 p = l->l_proc;
610 modgen = 0;
611
612 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
613
614 /*
615 * Check if we have exceeded our number of processes limit.
616 * This is so that we handle the case where a root daemon
617 * forked, ran setuid to become the desired user and is trying
618 * to exec. The obvious place to do the reference counting check
619 * is setuid(), but we don't do the reference counting check there
620 * like other OS's do because then all the programs that use setuid()
621 * must be modified to check the return code of setuid() and exit().
622 * It is dangerous to make setuid() fail, because it fails open and
623 * the program will continue to run as root. If we make it succeed
624 * and return an error code, again we are not enforcing the limit.
625 * The best place to enforce the limit is here, when the process tries
626 * to execute a new image, because eventually the process will need
627 * to call exec in order to do something useful.
628 */
629 retry:
630 if (p->p_flag & PK_SUGID) {
631 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
632 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
633 &p->p_rlimit[RLIMIT_NPROC],
634 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
635 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
636 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
637 return EAGAIN;
638 }
639
640 /*
641 * Drain existing references and forbid new ones. The process
642 * should be left alone until we're done here. This is necessary
643 * to avoid race conditions - e.g. in ptrace() - that might allow
644 * a local user to illicitly obtain elevated privileges.
645 */
646 rw_enter(&p->p_reflock, RW_WRITER);
647
648 /*
649 * Init the namei data to point the file user's program name.
650 * This is done here rather than in check_exec(), so that it's
651 * possible to override this settings if any of makecmd/probe
652 * functions call check_exec() recursively - for example,
653 * see exec_script_makecmds().
654 */
655 error = pathbuf_copyin(path, &data->ed_pathbuf);
656 if (error) {
657 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
658 path, error));
659 goto clrflg;
660 }
661 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
662 data->ed_resolvedpathbuf = PNBUF_GET();
663
664 /*
665 * initialize the fields of the exec package.
666 */
667 epp->ep_name = path;
668 epp->ep_kname = data->ed_pathstring;
669 epp->ep_resolvedname = data->ed_resolvedpathbuf;
670 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
671 epp->ep_hdrlen = exec_maxhdrsz;
672 epp->ep_hdrvalid = 0;
673 epp->ep_emul_arg = NULL;
674 epp->ep_emul_arg_free = NULL;
675 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
676 epp->ep_vap = &data->ed_attr;
677 epp->ep_flags = 0;
678 MD_TOPDOWN_INIT(epp);
679 epp->ep_emul_root = NULL;
680 epp->ep_interp = NULL;
681 epp->ep_esch = NULL;
682 epp->ep_pax_flags = 0;
683 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
684
685 rw_enter(&exec_lock, RW_READER);
686
687 /* see if we can run it. */
688 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
689 if (error != ENOENT) {
690 DPRINTF(("%s: check exec failed %d\n",
691 __func__, error));
692 }
693 goto freehdr;
694 }
695
696 /* allocate an argument buffer */
697 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
698 KASSERT(data->ed_argp != NULL);
699 dp = data->ed_argp;
700
701 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
702 goto bad;
703 }
704
705 /*
706 * Calculate the new stack size.
707 */
708
709 #ifdef PAX_ASLR
710 #define ASLR_GAP(l) (pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0)
711 #else
712 #define ASLR_GAP(l) 0
713 #endif
714
715 #ifdef __MACHINE_STACK_GROWS_UP
716 /*
717 * copyargs() fills argc/argv/envp from the lower address even on
718 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
719 * so that _rtld() use it.
720 */
721 #define RTLD_GAP 32
722 #else
723 #define RTLD_GAP 0
724 #endif
725
726 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
727
728 data->ed_argslen = calcargs(data, argenvstrlen);
729
730 const size_t len = calcstack(data, ASLR_GAP(l) + RTLD_GAP);
731
732 if (len > epp->ep_ssize) {
733 /* in effect, compare to initial limit */
734 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
735 error = ENOMEM;
736 goto bad;
737 }
738 /* adjust "active stack depth" for process VSZ */
739 epp->ep_ssize = len;
740
741 return 0;
742
743 bad:
744 /* free the vmspace-creation commands, and release their references */
745 kill_vmcmds(&epp->ep_vmcmds);
746 /* kill any opened file descriptor, if necessary */
747 if (epp->ep_flags & EXEC_HASFD) {
748 epp->ep_flags &= ~EXEC_HASFD;
749 fd_close(epp->ep_fd);
750 }
751 /* close and put the exec'd file */
752 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
753 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
754 vput(epp->ep_vp);
755 pool_put(&exec_pool, data->ed_argp);
756
757 freehdr:
758 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
759 if (epp->ep_emul_root != NULL)
760 vrele(epp->ep_emul_root);
761 if (epp->ep_interp != NULL)
762 vrele(epp->ep_interp);
763
764 rw_exit(&exec_lock);
765
766 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
767 pathbuf_destroy(data->ed_pathbuf);
768 PNBUF_PUT(data->ed_resolvedpathbuf);
769
770 clrflg:
771 rw_exit(&p->p_reflock);
772
773 if (modgen != module_gen && error == ENOEXEC) {
774 modgen = module_gen;
775 exec_autoload();
776 goto retry;
777 }
778
779 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
780 return error;
781 }
782
783 static int
784 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
785 {
786 struct exec_package * const epp = &data->ed_pack;
787 struct proc *p = l->l_proc;
788 struct exec_vmcmd *base_vcp;
789 int error = 0;
790 size_t i;
791
792 /* record proc's vnode, for use by procfs and others */
793 if (p->p_textvp)
794 vrele(p->p_textvp);
795 vref(epp->ep_vp);
796 p->p_textvp = epp->ep_vp;
797
798 /* create the new process's VM space by running the vmcmds */
799 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
800
801 DUMPVMCMDS(epp, 0, 0);
802
803 base_vcp = NULL;
804
805 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
806 struct exec_vmcmd *vcp;
807
808 vcp = &epp->ep_vmcmds.evs_cmds[i];
809 if (vcp->ev_flags & VMCMD_RELATIVE) {
810 KASSERTMSG(base_vcp != NULL,
811 "%s: relative vmcmd with no base", __func__);
812 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
813 "%s: illegal base & relative vmcmd", __func__);
814 vcp->ev_addr += base_vcp->ev_addr;
815 }
816 error = (*vcp->ev_proc)(l, vcp);
817 if (error)
818 DUMPVMCMDS(epp, i, error);
819 if (vcp->ev_flags & VMCMD_BASE)
820 base_vcp = vcp;
821 }
822
823 /* free the vmspace-creation commands, and release their references */
824 kill_vmcmds(&epp->ep_vmcmds);
825
826 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
827 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
828 vput(epp->ep_vp);
829
830 /* if an error happened, deallocate and punt */
831 if (error != 0) {
832 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
833 }
834 return error;
835 }
836
837 static void
838 execve_free_data(struct execve_data *data)
839 {
840 struct exec_package * const epp = &data->ed_pack;
841
842 /* free the vmspace-creation commands, and release their references */
843 kill_vmcmds(&epp->ep_vmcmds);
844 /* kill any opened file descriptor, if necessary */
845 if (epp->ep_flags & EXEC_HASFD) {
846 epp->ep_flags &= ~EXEC_HASFD;
847 fd_close(epp->ep_fd);
848 }
849
850 /* close and put the exec'd file */
851 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
852 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
853 vput(epp->ep_vp);
854 pool_put(&exec_pool, data->ed_argp);
855
856 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
857 if (epp->ep_emul_root != NULL)
858 vrele(epp->ep_emul_root);
859 if (epp->ep_interp != NULL)
860 vrele(epp->ep_interp);
861
862 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
863 pathbuf_destroy(data->ed_pathbuf);
864 PNBUF_PUT(data->ed_resolvedpathbuf);
865 }
866
867 static void
868 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring)
869 {
870 const char *commandname;
871 size_t commandlen;
872 char *path;
873
874 /* set command name & other accounting info */
875 commandname = strrchr(epp->ep_resolvedname, '/');
876 if (commandname != NULL) {
877 commandname++;
878 } else {
879 commandname = epp->ep_resolvedname;
880 }
881 commandlen = min(strlen(commandname), MAXCOMLEN);
882 (void)memcpy(p->p_comm, commandname, commandlen);
883 p->p_comm[commandlen] = '\0';
884
885 path = PNBUF_GET();
886
887 /*
888 * If the path starts with /, we don't need to do any work.
889 * This handles the majority of the cases.
890 * In the future perhaps we could canonicalize it?
891 */
892 if (pathstring[0] == '/') {
893 (void)strlcpy(path, pathstring,
894 MAXPATHLEN);
895 epp->ep_path = path;
896 }
897 #ifdef notyet
898 /*
899 * Although this works most of the time [since the entry was just
900 * entered in the cache] we don't use it because it will fail for
901 * entries that are not placed in the cache because their name is
902 * longer than NCHNAMLEN and it is not the cleanest interface,
903 * because there could be races. When the namei cache is re-written,
904 * this can be changed to use the appropriate function.
905 */
906 else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
907 epp->ep_path = path;
908 #endif
909 else {
910 #ifdef notyet
911 printf("Cannot get path for pid %d [%s] (error %d)\n",
912 (int)p->p_pid, p->p_comm, error);
913 #endif
914 epp->ep_path = NULL;
915 PNBUF_PUT(path);
916 }
917 }
918
919 /* XXX elsewhere */
920 static int
921 credexec(struct lwp *l, struct vattr *attr)
922 {
923 struct proc *p = l->l_proc;
924 int error;
925
926 /*
927 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
928 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
929 * out additional references on the process for the moment.
930 */
931 if ((p->p_slflag & PSL_TRACED) == 0 &&
932
933 (((attr->va_mode & S_ISUID) != 0 &&
934 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
935
936 ((attr->va_mode & S_ISGID) != 0 &&
937 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
938 /*
939 * Mark the process as SUGID before we do
940 * anything that might block.
941 */
942 proc_crmod_enter();
943 proc_crmod_leave(NULL, NULL, true);
944
945 /* Make sure file descriptors 0..2 are in use. */
946 if ((error = fd_checkstd()) != 0) {
947 DPRINTF(("%s: fdcheckstd failed %d\n",
948 __func__, error));
949 return error;
950 }
951
952 /*
953 * Copy the credential so other references don't see our
954 * changes.
955 */
956 l->l_cred = kauth_cred_copy(l->l_cred);
957 #ifdef KTRACE
958 /*
959 * If the persistent trace flag isn't set, turn off.
960 */
961 if (p->p_tracep) {
962 mutex_enter(&ktrace_lock);
963 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
964 ktrderef(p);
965 mutex_exit(&ktrace_lock);
966 }
967 #endif
968 if (attr->va_mode & S_ISUID)
969 kauth_cred_seteuid(l->l_cred, attr->va_uid);
970 if (attr->va_mode & S_ISGID)
971 kauth_cred_setegid(l->l_cred, attr->va_gid);
972 } else {
973 if (kauth_cred_geteuid(l->l_cred) ==
974 kauth_cred_getuid(l->l_cred) &&
975 kauth_cred_getegid(l->l_cred) ==
976 kauth_cred_getgid(l->l_cred))
977 p->p_flag &= ~PK_SUGID;
978 }
979
980 /*
981 * Copy the credential so other references don't see our changes.
982 * Test to see if this is necessary first, since in the common case
983 * we won't need a private reference.
984 */
985 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
986 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
987 l->l_cred = kauth_cred_copy(l->l_cred);
988 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
989 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
990 }
991
992 /* Update the master credentials. */
993 if (l->l_cred != p->p_cred) {
994 kauth_cred_t ocred;
995
996 kauth_cred_hold(l->l_cred);
997 mutex_enter(p->p_lock);
998 ocred = p->p_cred;
999 p->p_cred = l->l_cred;
1000 mutex_exit(p->p_lock);
1001 kauth_cred_free(ocred);
1002 }
1003
1004 return 0;
1005 }
1006
1007 static void
1008 emulexec(struct lwp *l, struct exec_package *epp)
1009 {
1010 struct proc *p = l->l_proc;
1011
1012 /* The emulation root will usually have been found when we looked
1013 * for the elf interpreter (or similar), if not look now. */
1014 if (epp->ep_esch->es_emul->e_path != NULL &&
1015 epp->ep_emul_root == NULL)
1016 emul_find_root(l, epp);
1017
1018 /* Any old emulation root got removed by fdcloseexec */
1019 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1020 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1021 rw_exit(&p->p_cwdi->cwdi_lock);
1022 epp->ep_emul_root = NULL;
1023 if (epp->ep_interp != NULL)
1024 vrele(epp->ep_interp);
1025
1026 /*
1027 * Call emulation specific exec hook. This can setup per-process
1028 * p->p_emuldata or do any other per-process stuff an emulation needs.
1029 *
1030 * If we are executing process of different emulation than the
1031 * original forked process, call e_proc_exit() of the old emulation
1032 * first, then e_proc_exec() of new emulation. If the emulation is
1033 * same, the exec hook code should deallocate any old emulation
1034 * resources held previously by this process.
1035 */
1036 if (p->p_emul && p->p_emul->e_proc_exit
1037 && p->p_emul != epp->ep_esch->es_emul)
1038 (*p->p_emul->e_proc_exit)(p);
1039
1040 /*
1041 * This is now LWP 1.
1042 */
1043 /* XXX elsewhere */
1044 mutex_enter(p->p_lock);
1045 p->p_nlwpid = 1;
1046 l->l_lid = 1;
1047 mutex_exit(p->p_lock);
1048
1049 /*
1050 * Call exec hook. Emulation code may NOT store reference to anything
1051 * from &pack.
1052 */
1053 if (epp->ep_esch->es_emul->e_proc_exec)
1054 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1055
1056 /* update p_emul, the old value is no longer needed */
1057 p->p_emul = epp->ep_esch->es_emul;
1058
1059 /* ...and the same for p_execsw */
1060 p->p_execsw = epp->ep_esch;
1061
1062 #ifdef __HAVE_SYSCALL_INTERN
1063 (*p->p_emul->e_syscall_intern)(p);
1064 #endif
1065 ktremul();
1066 }
1067
1068 static int
1069 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1070 bool no_local_exec_lock, bool is_spawn)
1071 {
1072 struct exec_package * const epp = &data->ed_pack;
1073 int error = 0;
1074 struct proc *p;
1075
1076 /*
1077 * In case of a posix_spawn operation, the child doing the exec
1078 * might not hold the reader lock on exec_lock, but the parent
1079 * will do this instead.
1080 */
1081 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1082 KASSERT(!no_local_exec_lock || is_spawn);
1083 KASSERT(data != NULL);
1084
1085 p = l->l_proc;
1086
1087 /* Get rid of other LWPs. */
1088 if (p->p_nlwps > 1) {
1089 mutex_enter(p->p_lock);
1090 exit_lwps(l);
1091 mutex_exit(p->p_lock);
1092 }
1093 KDASSERT(p->p_nlwps == 1);
1094
1095 /* Destroy any lwpctl info. */
1096 if (p->p_lwpctl != NULL)
1097 lwp_ctl_exit();
1098
1099 /* Remove POSIX timers */
1100 timers_free(p, TIMERS_POSIX);
1101
1102 /*
1103 * Do whatever is necessary to prepare the address space
1104 * for remapping. Note that this might replace the current
1105 * vmspace with another!
1106 */
1107 if (is_spawn)
1108 uvmspace_spawn(l, epp->ep_vm_minaddr,
1109 epp->ep_vm_maxaddr,
1110 epp->ep_flags & EXEC_TOPDOWN_VM);
1111 else
1112 uvmspace_exec(l, epp->ep_vm_minaddr,
1113 epp->ep_vm_maxaddr,
1114 epp->ep_flags & EXEC_TOPDOWN_VM);
1115
1116 struct vmspace *vm;
1117 vm = p->p_vmspace;
1118 vm->vm_taddr = (void *)epp->ep_taddr;
1119 vm->vm_tsize = btoc(epp->ep_tsize);
1120 vm->vm_daddr = (void*)epp->ep_daddr;
1121 vm->vm_dsize = btoc(epp->ep_dsize);
1122 vm->vm_ssize = btoc(epp->ep_ssize);
1123 vm->vm_issize = 0;
1124 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1125 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1126
1127 #ifdef PAX_ASLR
1128 pax_aslr_init(l, vm);
1129 #endif /* PAX_ASLR */
1130
1131 /* Now map address space. */
1132 error = execve_dovmcmds(l, data);
1133 if (error != 0)
1134 goto exec_abort;
1135
1136 pathexec(epp, p, data->ed_pathstring);
1137
1138 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1139
1140 error = copyoutargs(data, l, newstack);
1141 if (error != 0)
1142 goto exec_abort;
1143
1144 cwdexec(p);
1145 fd_closeexec(); /* handle close on exec */
1146
1147 if (__predict_false(ktrace_on))
1148 fd_ktrexecfd();
1149
1150 execsigs(p); /* reset catched signals */
1151
1152 mutex_enter(p->p_lock);
1153 l->l_ctxlink = NULL; /* reset ucontext link */
1154 p->p_acflag &= ~AFORK;
1155 p->p_flag |= PK_EXEC;
1156 mutex_exit(p->p_lock);
1157
1158 /*
1159 * Stop profiling.
1160 */
1161 if ((p->p_stflag & PST_PROFIL) != 0) {
1162 mutex_spin_enter(&p->p_stmutex);
1163 stopprofclock(p);
1164 mutex_spin_exit(&p->p_stmutex);
1165 }
1166
1167 /*
1168 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1169 * exited and exec()/exit() are the only places it will be cleared.
1170 */
1171 if ((p->p_lflag & PL_PPWAIT) != 0) {
1172 #if 0
1173 lwp_t *lp;
1174
1175 mutex_enter(proc_lock);
1176 lp = p->p_vforklwp;
1177 p->p_vforklwp = NULL;
1178
1179 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1180 p->p_lflag &= ~PL_PPWAIT;
1181
1182 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1183 cv_broadcast(&lp->l_waitcv);
1184 mutex_exit(proc_lock);
1185 #else
1186 mutex_enter(proc_lock);
1187 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1188 p->p_lflag &= ~PL_PPWAIT;
1189 cv_broadcast(&p->p_pptr->p_waitcv);
1190 mutex_exit(proc_lock);
1191 #endif
1192 }
1193
1194 error = credexec(l, &data->ed_attr);
1195 if (error)
1196 goto exec_abort;
1197
1198 #if defined(__HAVE_RAS)
1199 /*
1200 * Remove all RASs from the address space.
1201 */
1202 ras_purgeall();
1203 #endif
1204
1205 doexechooks(p);
1206
1207 /*
1208 * Set initial SP at the top of the stack.
1209 *
1210 * Note that on machines where stack grows up (e.g. hppa), SP points to
1211 * the end of arg/env strings. Userland guesses the address of argc
1212 * via ps_strings::ps_argvstr.
1213 */
1214
1215 /* Setup new registers and do misc. setup. */
1216 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1217 if (epp->ep_esch->es_setregs)
1218 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1219
1220 /* Provide a consistent LWP private setting */
1221 (void)lwp_setprivate(l, NULL);
1222
1223 /* Discard all PCU state; need to start fresh */
1224 pcu_discard_all(l);
1225
1226 /* map the process's signal trampoline code */
1227 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1228 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1229 goto exec_abort;
1230 }
1231
1232 pool_put(&exec_pool, data->ed_argp);
1233
1234 /* notify others that we exec'd */
1235 KNOTE(&p->p_klist, NOTE_EXEC);
1236
1237 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1238
1239 SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0);
1240
1241 emulexec(l, epp);
1242
1243 /* Allow new references from the debugger/procfs. */
1244 rw_exit(&p->p_reflock);
1245 if (!no_local_exec_lock)
1246 rw_exit(&exec_lock);
1247
1248 mutex_enter(proc_lock);
1249
1250 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1251 ksiginfo_t ksi;
1252
1253 KSI_INIT_EMPTY(&ksi);
1254 ksi.ksi_signo = SIGTRAP;
1255 ksi.ksi_lid = l->l_lid;
1256 kpsignal(p, &ksi, NULL);
1257 }
1258
1259 if (p->p_sflag & PS_STOPEXEC) {
1260 ksiginfoq_t kq;
1261
1262 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1263 p->p_pptr->p_nstopchild++;
1264 p->p_pptr->p_waited = 0;
1265 mutex_enter(p->p_lock);
1266 ksiginfo_queue_init(&kq);
1267 sigclearall(p, &contsigmask, &kq);
1268 lwp_lock(l);
1269 l->l_stat = LSSTOP;
1270 p->p_stat = SSTOP;
1271 p->p_nrlwps--;
1272 lwp_unlock(l);
1273 mutex_exit(p->p_lock);
1274 mutex_exit(proc_lock);
1275 lwp_lock(l);
1276 mi_switch(l);
1277 ksiginfo_queue_drain(&kq);
1278 KERNEL_LOCK(l->l_biglocks, l);
1279 } else {
1280 mutex_exit(proc_lock);
1281 }
1282
1283 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1284 pathbuf_destroy(data->ed_pathbuf);
1285 PNBUF_PUT(data->ed_resolvedpathbuf);
1286 DPRINTF(("%s finished\n", __func__));
1287 return EJUSTRETURN;
1288
1289 exec_abort:
1290 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1291 rw_exit(&p->p_reflock);
1292 if (!no_local_exec_lock)
1293 rw_exit(&exec_lock);
1294
1295 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1296 pathbuf_destroy(data->ed_pathbuf);
1297 PNBUF_PUT(data->ed_resolvedpathbuf);
1298
1299 /*
1300 * the old process doesn't exist anymore. exit gracefully.
1301 * get rid of the (new) address space we have created, if any, get rid
1302 * of our namei data and vnode, and exit noting failure
1303 */
1304 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1305 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1306
1307 exec_free_emul_arg(epp);
1308 pool_put(&exec_pool, data->ed_argp);
1309 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1310 if (epp->ep_emul_root != NULL)
1311 vrele(epp->ep_emul_root);
1312 if (epp->ep_interp != NULL)
1313 vrele(epp->ep_interp);
1314
1315 /* Acquire the sched-state mutex (exit1() will release it). */
1316 if (!is_spawn) {
1317 mutex_enter(p->p_lock);
1318 exit1(l, W_EXITCODE(error, SIGABRT));
1319 }
1320
1321 return error;
1322 }
1323
1324 int
1325 execve1(struct lwp *l, const char *path, char * const *args,
1326 char * const *envs, execve_fetch_element_t fetch_element)
1327 {
1328 struct execve_data data;
1329 int error;
1330
1331 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1332 if (error)
1333 return error;
1334 error = execve_runproc(l, &data, false, false);
1335 return error;
1336 }
1337
1338 static size_t
1339 ptrsz(const struct exec_package *epp)
1340 {
1341 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1342 }
1343
1344 static size_t
1345 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1346 {
1347 struct exec_package * const epp = &data->ed_pack;
1348
1349 const size_t nargenvptrs =
1350 1 + /* long argc */
1351 data->ed_argc + /* char *argv[] */
1352 1 + /* \0 */
1353 data->ed_envc + /* char *env[] */
1354 1 + /* \0 */
1355 epp->ep_esch->es_arglen; /* auxinfo */
1356
1357 return (nargenvptrs * ptrsz(epp)) + argenvstrlen;
1358 }
1359
1360 static size_t
1361 calcstack(struct execve_data * restrict data, const size_t gaplen)
1362 {
1363 struct exec_package * const epp = &data->ed_pack;
1364
1365 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1366 epp->ep_esch->es_emul->e_sigcode;
1367
1368 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1369 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1370
1371 const size_t sigcode_psstr_sz =
1372 data->ed_szsigcode + /* sigcode */
1373 data->ed_ps_strings_sz + /* ps_strings */
1374 STACK_PTHREADSPACE; /* pthread space */
1375
1376 const size_t stacklen =
1377 data->ed_argslen +
1378 gaplen +
1379 sigcode_psstr_sz;
1380
1381 /* make the stack "safely" aligned */
1382 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1383 }
1384
1385 static int
1386 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1387 char * const newstack)
1388 {
1389 struct exec_package * const epp = &data->ed_pack;
1390 struct proc *p = l->l_proc;
1391 int error;
1392
1393 /* remember information about the process */
1394 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1395 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1396
1397 /*
1398 * Allocate the stack address passed to the newly execve()'ed process.
1399 *
1400 * The new stack address will be set to the SP (stack pointer) register
1401 * in setregs().
1402 */
1403
1404 char *newargs = STACK_ALLOC(
1405 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1406
1407 error = (*epp->ep_esch->es_copyargs)(l, epp,
1408 &data->ed_arginfo, &newargs, data->ed_argp);
1409
1410 if (epp->ep_path) {
1411 PNBUF_PUT(epp->ep_path);
1412 epp->ep_path = NULL;
1413 }
1414 if (error) {
1415 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1416 return error;
1417 }
1418
1419 error = copyoutpsstrs(data, p);
1420 if (error != 0)
1421 return error;
1422
1423 return 0;
1424 }
1425
1426 static int
1427 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1428 {
1429 struct exec_package * const epp = &data->ed_pack;
1430 struct ps_strings32 arginfo32;
1431 void *aip;
1432 int error;
1433
1434 /* fill process ps_strings info */
1435 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1436 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1437
1438 if (epp->ep_flags & EXEC_32) {
1439 aip = &arginfo32;
1440 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1441 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1442 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1443 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1444 } else
1445 aip = &data->ed_arginfo;
1446
1447 /* copy out the process's ps_strings structure */
1448 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1449 != 0) {
1450 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1451 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1452 return error;
1453 }
1454
1455 return 0;
1456 }
1457
1458 static int
1459 copyinargs(struct execve_data * restrict data, char * const *args,
1460 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1461 {
1462 struct exec_package * const epp = &data->ed_pack;
1463 char *dp;
1464 size_t i;
1465 int error;
1466
1467 dp = *dpp;
1468
1469 data->ed_argc = 0;
1470
1471 /* copy the fake args list, if there's one, freeing it as we go */
1472 if (epp->ep_flags & EXEC_HASARGL) {
1473 struct exec_fakearg *fa = epp->ep_fa;
1474
1475 while (fa->fa_arg != NULL) {
1476 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1477 size_t len;
1478
1479 len = strlcpy(dp, fa->fa_arg, maxlen);
1480 /* Count NUL into len. */
1481 if (len < maxlen)
1482 len++;
1483 else {
1484 while (fa->fa_arg != NULL) {
1485 kmem_free(fa->fa_arg, fa->fa_len);
1486 fa++;
1487 }
1488 kmem_free(epp->ep_fa, epp->ep_fa_len);
1489 epp->ep_flags &= ~EXEC_HASARGL;
1490 return E2BIG;
1491 }
1492 ktrexecarg(fa->fa_arg, len - 1);
1493 dp += len;
1494
1495 kmem_free(fa->fa_arg, fa->fa_len);
1496 fa++;
1497 data->ed_argc++;
1498 }
1499 kmem_free(epp->ep_fa, epp->ep_fa_len);
1500 epp->ep_flags &= ~EXEC_HASARGL;
1501 }
1502
1503 /*
1504 * Read and count argument strings from user.
1505 */
1506
1507 if (args == NULL) {
1508 DPRINTF(("%s: null args\n", __func__));
1509 return EINVAL;
1510 }
1511 if (epp->ep_flags & EXEC_SKIPARG)
1512 args = (const void *)((const char *)args + ptrsz(epp));
1513 i = 0;
1514 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1515 if (error != 0) {
1516 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1517 return error;
1518 }
1519 data->ed_argc += i;
1520
1521 /*
1522 * Read and count environment strings from user.
1523 */
1524
1525 data->ed_envc = 0;
1526 /* environment need not be there */
1527 if (envs == NULL)
1528 goto done;
1529 i = 0;
1530 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1531 if (error != 0) {
1532 DPRINTF(("%s: copyin env %d\n", __func__, error));
1533 return error;
1534 }
1535 data->ed_envc += i;
1536
1537 done:
1538 *dpp = dp;
1539
1540 return 0;
1541 }
1542
1543 static int
1544 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1545 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1546 void (*ktr)(const void *, size_t))
1547 {
1548 char *dp, *sp;
1549 size_t i;
1550 int error;
1551
1552 dp = *dpp;
1553
1554 i = 0;
1555 while (1) {
1556 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1557 size_t len;
1558
1559 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1560 return error;
1561 }
1562 if (!sp)
1563 break;
1564 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1565 if (error == ENAMETOOLONG)
1566 error = E2BIG;
1567 return error;
1568 }
1569 if (__predict_false(ktrace_on))
1570 (*ktr)(dp, len - 1);
1571 dp += len;
1572 i++;
1573 }
1574
1575 *dpp = dp;
1576 *ip = i;
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1583 * Those strings are located just after auxinfo.
1584 */
1585 int
1586 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1587 char **stackp, void *argp)
1588 {
1589 char **cpp, *dp, *sp;
1590 size_t len;
1591 void *nullp;
1592 long argc, envc;
1593 int error;
1594
1595 cpp = (char **)*stackp;
1596 nullp = NULL;
1597 argc = arginfo->ps_nargvstr;
1598 envc = arginfo->ps_nenvstr;
1599
1600 /* argc on stack is long */
1601 CTASSERT(sizeof(*cpp) == sizeof(argc));
1602
1603 dp = (char *)(cpp +
1604 1 + /* long argc */
1605 argc + /* char *argv[] */
1606 1 + /* \0 */
1607 envc + /* char *env[] */
1608 1 + /* \0 */
1609 /* XXX auxinfo multiplied by ptr size? */
1610 pack->ep_esch->es_arglen); /* auxinfo */
1611 sp = argp;
1612
1613 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1614 COPYPRINTF("", cpp - 1, sizeof(argc));
1615 return error;
1616 }
1617
1618 /* XXX don't copy them out, remap them! */
1619 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1620
1621 for (; --argc >= 0; sp += len, dp += len) {
1622 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1623 COPYPRINTF("", cpp - 1, sizeof(dp));
1624 return error;
1625 }
1626 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1627 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1628 return error;
1629 }
1630 }
1631
1632 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1633 COPYPRINTF("", cpp - 1, sizeof(nullp));
1634 return error;
1635 }
1636
1637 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1638
1639 for (; --envc >= 0; sp += len, dp += len) {
1640 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1641 COPYPRINTF("", cpp - 1, sizeof(dp));
1642 return error;
1643 }
1644 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1645 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1646 return error;
1647 }
1648
1649 }
1650
1651 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1652 COPYPRINTF("", cpp - 1, sizeof(nullp));
1653 return error;
1654 }
1655
1656 *stackp = (char *)cpp;
1657 return 0;
1658 }
1659
1660
1661 /*
1662 * Add execsw[] entries.
1663 */
1664 int
1665 exec_add(struct execsw *esp, int count)
1666 {
1667 struct exec_entry *it;
1668 int i;
1669
1670 if (count == 0) {
1671 return 0;
1672 }
1673
1674 /* Check for duplicates. */
1675 rw_enter(&exec_lock, RW_WRITER);
1676 for (i = 0; i < count; i++) {
1677 LIST_FOREACH(it, &ex_head, ex_list) {
1678 /* assume unique (makecmds, probe_func, emulation) */
1679 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1680 it->ex_sw->u.elf_probe_func ==
1681 esp[i].u.elf_probe_func &&
1682 it->ex_sw->es_emul == esp[i].es_emul) {
1683 rw_exit(&exec_lock);
1684 return EEXIST;
1685 }
1686 }
1687 }
1688
1689 /* Allocate new entries. */
1690 for (i = 0; i < count; i++) {
1691 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1692 it->ex_sw = &esp[i];
1693 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1694 }
1695
1696 /* update execsw[] */
1697 exec_init(0);
1698 rw_exit(&exec_lock);
1699 return 0;
1700 }
1701
1702 /*
1703 * Remove execsw[] entry.
1704 */
1705 int
1706 exec_remove(struct execsw *esp, int count)
1707 {
1708 struct exec_entry *it, *next;
1709 int i;
1710 const struct proclist_desc *pd;
1711 proc_t *p;
1712
1713 if (count == 0) {
1714 return 0;
1715 }
1716
1717 /* Abort if any are busy. */
1718 rw_enter(&exec_lock, RW_WRITER);
1719 for (i = 0; i < count; i++) {
1720 mutex_enter(proc_lock);
1721 for (pd = proclists; pd->pd_list != NULL; pd++) {
1722 PROCLIST_FOREACH(p, pd->pd_list) {
1723 if (p->p_execsw == &esp[i]) {
1724 mutex_exit(proc_lock);
1725 rw_exit(&exec_lock);
1726 return EBUSY;
1727 }
1728 }
1729 }
1730 mutex_exit(proc_lock);
1731 }
1732
1733 /* None are busy, so remove them all. */
1734 for (i = 0; i < count; i++) {
1735 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1736 next = LIST_NEXT(it, ex_list);
1737 if (it->ex_sw == &esp[i]) {
1738 LIST_REMOVE(it, ex_list);
1739 kmem_free(it, sizeof(*it));
1740 break;
1741 }
1742 }
1743 }
1744
1745 /* update execsw[] */
1746 exec_init(0);
1747 rw_exit(&exec_lock);
1748 return 0;
1749 }
1750
1751 /*
1752 * Initialize exec structures. If init_boot is true, also does necessary
1753 * one-time initialization (it's called from main() that way).
1754 * Once system is multiuser, this should be called with exec_lock held,
1755 * i.e. via exec_{add|remove}().
1756 */
1757 int
1758 exec_init(int init_boot)
1759 {
1760 const struct execsw **sw;
1761 struct exec_entry *ex;
1762 SLIST_HEAD(,exec_entry) first;
1763 SLIST_HEAD(,exec_entry) any;
1764 SLIST_HEAD(,exec_entry) last;
1765 int i, sz;
1766
1767 if (init_boot) {
1768 /* do one-time initializations */
1769 rw_init(&exec_lock);
1770 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1771 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1772 "execargs", &exec_palloc, IPL_NONE);
1773 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1774 } else {
1775 KASSERT(rw_write_held(&exec_lock));
1776 }
1777
1778 /* Sort each entry onto the appropriate queue. */
1779 SLIST_INIT(&first);
1780 SLIST_INIT(&any);
1781 SLIST_INIT(&last);
1782 sz = 0;
1783 LIST_FOREACH(ex, &ex_head, ex_list) {
1784 switch(ex->ex_sw->es_prio) {
1785 case EXECSW_PRIO_FIRST:
1786 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1787 break;
1788 case EXECSW_PRIO_ANY:
1789 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1790 break;
1791 case EXECSW_PRIO_LAST:
1792 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1793 break;
1794 default:
1795 panic("%s", __func__);
1796 break;
1797 }
1798 sz++;
1799 }
1800
1801 /*
1802 * Create new execsw[]. Ensure we do not try a zero-sized
1803 * allocation.
1804 */
1805 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1806 i = 0;
1807 SLIST_FOREACH(ex, &first, ex_slist) {
1808 sw[i++] = ex->ex_sw;
1809 }
1810 SLIST_FOREACH(ex, &any, ex_slist) {
1811 sw[i++] = ex->ex_sw;
1812 }
1813 SLIST_FOREACH(ex, &last, ex_slist) {
1814 sw[i++] = ex->ex_sw;
1815 }
1816
1817 /* Replace old execsw[] and free used memory. */
1818 if (execsw != NULL) {
1819 kmem_free(__UNCONST(execsw),
1820 nexecs * sizeof(struct execsw *) + 1);
1821 }
1822 execsw = sw;
1823 nexecs = sz;
1824
1825 /* Figure out the maximum size of an exec header. */
1826 exec_maxhdrsz = sizeof(int);
1827 for (i = 0; i < nexecs; i++) {
1828 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1829 exec_maxhdrsz = execsw[i]->es_hdrsz;
1830 }
1831
1832 return 0;
1833 }
1834
1835 static int
1836 exec_sigcode_map(struct proc *p, const struct emul *e)
1837 {
1838 vaddr_t va;
1839 vsize_t sz;
1840 int error;
1841 struct uvm_object *uobj;
1842
1843 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1844
1845 if (e->e_sigobject == NULL || sz == 0) {
1846 return 0;
1847 }
1848
1849 /*
1850 * If we don't have a sigobject for this emulation, create one.
1851 *
1852 * sigobject is an anonymous memory object (just like SYSV shared
1853 * memory) that we keep a permanent reference to and that we map
1854 * in all processes that need this sigcode. The creation is simple,
1855 * we create an object, add a permanent reference to it, map it in
1856 * kernel space, copy out the sigcode to it and unmap it.
1857 * We map it with PROT_READ|PROT_EXEC into the process just
1858 * the way sys_mmap() would map it.
1859 */
1860
1861 uobj = *e->e_sigobject;
1862 if (uobj == NULL) {
1863 mutex_enter(&sigobject_lock);
1864 if ((uobj = *e->e_sigobject) == NULL) {
1865 uobj = uao_create(sz, 0);
1866 (*uobj->pgops->pgo_reference)(uobj);
1867 va = vm_map_min(kernel_map);
1868 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1869 uobj, 0, 0,
1870 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1871 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1872 printf("kernel mapping failed %d\n", error);
1873 (*uobj->pgops->pgo_detach)(uobj);
1874 mutex_exit(&sigobject_lock);
1875 return error;
1876 }
1877 memcpy((void *)va, e->e_sigcode, sz);
1878 #ifdef PMAP_NEED_PROCWR
1879 pmap_procwr(&proc0, va, sz);
1880 #endif
1881 uvm_unmap(kernel_map, va, va + round_page(sz));
1882 *e->e_sigobject = uobj;
1883 }
1884 mutex_exit(&sigobject_lock);
1885 }
1886
1887 /* Just a hint to uvm_map where to put it. */
1888 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1889 round_page(sz));
1890
1891 #ifdef __alpha__
1892 /*
1893 * Tru64 puts /sbin/loader at the end of user virtual memory,
1894 * which causes the above calculation to put the sigcode at
1895 * an invalid address. Put it just below the text instead.
1896 */
1897 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1898 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1899 }
1900 #endif
1901
1902 (*uobj->pgops->pgo_reference)(uobj);
1903 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1904 uobj, 0, 0,
1905 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1906 UVM_ADV_RANDOM, 0));
1907 if (error) {
1908 DPRINTF(("%s, %d: map %p "
1909 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1910 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1911 va, error));
1912 (*uobj->pgops->pgo_detach)(uobj);
1913 return error;
1914 }
1915 p->p_sigctx.ps_sigcode = (void *)va;
1916 return 0;
1917 }
1918
1919 /*
1920 * Release a refcount on spawn_exec_data and destroy memory, if this
1921 * was the last one.
1922 */
1923 static void
1924 spawn_exec_data_release(struct spawn_exec_data *data)
1925 {
1926 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1927 return;
1928
1929 cv_destroy(&data->sed_cv_child_ready);
1930 mutex_destroy(&data->sed_mtx_child);
1931
1932 if (data->sed_actions)
1933 posix_spawn_fa_free(data->sed_actions,
1934 data->sed_actions->len);
1935 if (data->sed_attrs)
1936 kmem_free(data->sed_attrs,
1937 sizeof(*data->sed_attrs));
1938 kmem_free(data, sizeof(*data));
1939 }
1940
1941 /*
1942 * A child lwp of a posix_spawn operation starts here and ends up in
1943 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1944 * manipulations in between.
1945 * The parent waits for the child, as it is not clear whether the child
1946 * will be able to acquire its own exec_lock. If it can, the parent can
1947 * be released early and continue running in parallel. If not (or if the
1948 * magic debug flag is passed in the scheduler attribute struct), the
1949 * child rides on the parent's exec lock until it is ready to return to
1950 * to userland - and only then releases the parent. This method loses
1951 * concurrency, but improves error reporting.
1952 */
1953 static void
1954 spawn_return(void *arg)
1955 {
1956 struct spawn_exec_data *spawn_data = arg;
1957 struct lwp *l = curlwp;
1958 int error, newfd;
1959 size_t i;
1960 const struct posix_spawn_file_actions_entry *fae;
1961 pid_t ppid;
1962 register_t retval;
1963 bool have_reflock;
1964 bool parent_is_waiting = true;
1965
1966 /*
1967 * Check if we can release parent early.
1968 * We either need to have no sed_attrs, or sed_attrs does not
1969 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1970 * safe access to the parent proc (passed in sed_parent).
1971 * We then try to get the exec_lock, and only if that works, we can
1972 * release the parent here already.
1973 */
1974 ppid = spawn_data->sed_parent->p_pid;
1975 if ((!spawn_data->sed_attrs
1976 || (spawn_data->sed_attrs->sa_flags
1977 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1978 && rw_tryenter(&exec_lock, RW_READER)) {
1979 parent_is_waiting = false;
1980 mutex_enter(&spawn_data->sed_mtx_child);
1981 cv_signal(&spawn_data->sed_cv_child_ready);
1982 mutex_exit(&spawn_data->sed_mtx_child);
1983 }
1984
1985 /* don't allow debugger access yet */
1986 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1987 have_reflock = true;
1988
1989 error = 0;
1990 /* handle posix_spawn_file_actions */
1991 if (spawn_data->sed_actions != NULL) {
1992 for (i = 0; i < spawn_data->sed_actions->len; i++) {
1993 fae = &spawn_data->sed_actions->fae[i];
1994 switch (fae->fae_action) {
1995 case FAE_OPEN:
1996 if (fd_getfile(fae->fae_fildes) != NULL) {
1997 error = fd_close(fae->fae_fildes);
1998 if (error)
1999 break;
2000 }
2001 error = fd_open(fae->fae_path, fae->fae_oflag,
2002 fae->fae_mode, &newfd);
2003 if (error)
2004 break;
2005 if (newfd != fae->fae_fildes) {
2006 error = dodup(l, newfd,
2007 fae->fae_fildes, 0, &retval);
2008 if (fd_getfile(newfd) != NULL)
2009 fd_close(newfd);
2010 }
2011 break;
2012 case FAE_DUP2:
2013 error = dodup(l, fae->fae_fildes,
2014 fae->fae_newfildes, 0, &retval);
2015 break;
2016 case FAE_CLOSE:
2017 if (fd_getfile(fae->fae_fildes) == NULL) {
2018 error = EBADF;
2019 break;
2020 }
2021 error = fd_close(fae->fae_fildes);
2022 break;
2023 }
2024 if (error)
2025 goto report_error;
2026 }
2027 }
2028
2029 /* handle posix_spawnattr */
2030 if (spawn_data->sed_attrs != NULL) {
2031 int ostat;
2032 struct sigaction sigact;
2033 sigact._sa_u._sa_handler = SIG_DFL;
2034 sigact.sa_flags = 0;
2035
2036 /*
2037 * set state to SSTOP so that this proc can be found by pid.
2038 * see proc_enterprp, do_sched_setparam below
2039 */
2040 ostat = l->l_proc->p_stat;
2041 l->l_proc->p_stat = SSTOP;
2042
2043 /* Set process group */
2044 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2045 pid_t mypid = l->l_proc->p_pid,
2046 pgrp = spawn_data->sed_attrs->sa_pgroup;
2047
2048 if (pgrp == 0)
2049 pgrp = mypid;
2050
2051 error = proc_enterpgrp(spawn_data->sed_parent,
2052 mypid, pgrp, false);
2053 if (error)
2054 goto report_error;
2055 }
2056
2057 /* Set scheduler policy */
2058 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2059 error = do_sched_setparam(l->l_proc->p_pid, 0,
2060 spawn_data->sed_attrs->sa_schedpolicy,
2061 &spawn_data->sed_attrs->sa_schedparam);
2062 else if (spawn_data->sed_attrs->sa_flags
2063 & POSIX_SPAWN_SETSCHEDPARAM) {
2064 error = do_sched_setparam(ppid, 0,
2065 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2066 }
2067 if (error)
2068 goto report_error;
2069
2070 /* Reset user ID's */
2071 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2072 error = do_setresuid(l, -1,
2073 kauth_cred_getgid(l->l_cred), -1,
2074 ID_E_EQ_R | ID_E_EQ_S);
2075 if (error)
2076 goto report_error;
2077 error = do_setresuid(l, -1,
2078 kauth_cred_getuid(l->l_cred), -1,
2079 ID_E_EQ_R | ID_E_EQ_S);
2080 if (error)
2081 goto report_error;
2082 }
2083
2084 /* Set signal masks/defaults */
2085 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2086 mutex_enter(l->l_proc->p_lock);
2087 error = sigprocmask1(l, SIG_SETMASK,
2088 &spawn_data->sed_attrs->sa_sigmask, NULL);
2089 mutex_exit(l->l_proc->p_lock);
2090 if (error)
2091 goto report_error;
2092 }
2093
2094 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2095 /*
2096 * The following sigaction call is using a sigaction
2097 * version 0 trampoline which is in the compatibility
2098 * code only. This is not a problem because for SIG_DFL
2099 * and SIG_IGN, the trampolines are now ignored. If they
2100 * were not, this would be a problem because we are
2101 * holding the exec_lock, and the compat code needs
2102 * to do the same in order to replace the trampoline
2103 * code of the process.
2104 */
2105 for (i = 1; i <= NSIG; i++) {
2106 if (sigismember(
2107 &spawn_data->sed_attrs->sa_sigdefault, i))
2108 sigaction1(l, i, &sigact, NULL, NULL,
2109 0);
2110 }
2111 }
2112 l->l_proc->p_stat = ostat;
2113 }
2114
2115 /* now do the real exec */
2116 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2117 true);
2118 have_reflock = false;
2119 if (error == EJUSTRETURN)
2120 error = 0;
2121 else if (error)
2122 goto report_error;
2123
2124 if (parent_is_waiting) {
2125 mutex_enter(&spawn_data->sed_mtx_child);
2126 cv_signal(&spawn_data->sed_cv_child_ready);
2127 mutex_exit(&spawn_data->sed_mtx_child);
2128 }
2129
2130 /* release our refcount on the data */
2131 spawn_exec_data_release(spawn_data);
2132
2133 /* and finally: leave to userland for the first time */
2134 cpu_spawn_return(l);
2135
2136 /* NOTREACHED */
2137 return;
2138
2139 report_error:
2140 if (have_reflock) {
2141 /*
2142 * We have not passed through execve_runproc(),
2143 * which would have released the p_reflock and also
2144 * taken ownership of the sed_exec part of spawn_data,
2145 * so release/free both here.
2146 */
2147 rw_exit(&l->l_proc->p_reflock);
2148 execve_free_data(&spawn_data->sed_exec);
2149 }
2150
2151 if (parent_is_waiting) {
2152 /* pass error to parent */
2153 mutex_enter(&spawn_data->sed_mtx_child);
2154 spawn_data->sed_error = error;
2155 cv_signal(&spawn_data->sed_cv_child_ready);
2156 mutex_exit(&spawn_data->sed_mtx_child);
2157 } else {
2158 rw_exit(&exec_lock);
2159 }
2160
2161 /* release our refcount on the data */
2162 spawn_exec_data_release(spawn_data);
2163
2164 /* done, exit */
2165 mutex_enter(l->l_proc->p_lock);
2166 /*
2167 * Posix explicitly asks for an exit code of 127 if we report
2168 * errors from the child process - so, unfortunately, there
2169 * is no way to report a more exact error code.
2170 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2171 * flag bit in the attrp argument to posix_spawn(2), see above.
2172 */
2173 exit1(l, W_EXITCODE(127, 0));
2174 }
2175
2176 void
2177 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2178 {
2179
2180 for (size_t i = 0; i < len; i++) {
2181 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2182 if (fae->fae_action != FAE_OPEN)
2183 continue;
2184 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2185 }
2186 if (fa->len > 0)
2187 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2188 kmem_free(fa, sizeof(*fa));
2189 }
2190
2191 static int
2192 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2193 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2194 {
2195 struct posix_spawn_file_actions *fa;
2196 struct posix_spawn_file_actions_entry *fae;
2197 char *pbuf = NULL;
2198 int error;
2199 size_t i = 0;
2200
2201 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2202 error = copyin(ufa, fa, sizeof(*fa));
2203 if (error || fa->len == 0) {
2204 kmem_free(fa, sizeof(*fa));
2205 return error; /* 0 if not an error, and len == 0 */
2206 }
2207
2208 if (fa->len > lim) {
2209 kmem_free(fa, sizeof(*fa));
2210 return EINVAL;
2211 }
2212
2213 fa->size = fa->len;
2214 size_t fal = fa->len * sizeof(*fae);
2215 fae = fa->fae;
2216 fa->fae = kmem_alloc(fal, KM_SLEEP);
2217 error = copyin(fae, fa->fae, fal);
2218 if (error)
2219 goto out;
2220
2221 pbuf = PNBUF_GET();
2222 for (; i < fa->len; i++) {
2223 fae = &fa->fae[i];
2224 if (fae->fae_action != FAE_OPEN)
2225 continue;
2226 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2227 if (error)
2228 goto out;
2229 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2230 memcpy(fae->fae_path, pbuf, fal);
2231 }
2232 PNBUF_PUT(pbuf);
2233
2234 *fap = fa;
2235 return 0;
2236 out:
2237 if (pbuf)
2238 PNBUF_PUT(pbuf);
2239 posix_spawn_fa_free(fa, i);
2240 return error;
2241 }
2242
2243 int
2244 check_posix_spawn(struct lwp *l1)
2245 {
2246 int error, tnprocs, count;
2247 uid_t uid;
2248 struct proc *p1;
2249
2250 p1 = l1->l_proc;
2251 uid = kauth_cred_getuid(l1->l_cred);
2252 tnprocs = atomic_inc_uint_nv(&nprocs);
2253
2254 /*
2255 * Although process entries are dynamically created, we still keep
2256 * a global limit on the maximum number we will create.
2257 */
2258 if (__predict_false(tnprocs >= maxproc))
2259 error = -1;
2260 else
2261 error = kauth_authorize_process(l1->l_cred,
2262 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2263
2264 if (error) {
2265 atomic_dec_uint(&nprocs);
2266 return EAGAIN;
2267 }
2268
2269 /*
2270 * Enforce limits.
2271 */
2272 count = chgproccnt(uid, 1);
2273 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2274 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2275 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2276 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2277 (void)chgproccnt(uid, -1);
2278 atomic_dec_uint(&nprocs);
2279 return EAGAIN;
2280 }
2281
2282 return 0;
2283 }
2284
2285 int
2286 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2287 struct posix_spawn_file_actions *fa,
2288 struct posix_spawnattr *sa,
2289 char *const *argv, char *const *envp,
2290 execve_fetch_element_t fetch)
2291 {
2292
2293 struct proc *p1, *p2;
2294 struct lwp *l2;
2295 int error;
2296 struct spawn_exec_data *spawn_data;
2297 vaddr_t uaddr;
2298 pid_t pid;
2299 bool have_exec_lock = false;
2300
2301 p1 = l1->l_proc;
2302
2303 /* Allocate and init spawn_data */
2304 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2305 spawn_data->sed_refcnt = 1; /* only parent so far */
2306 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2307 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2308 mutex_enter(&spawn_data->sed_mtx_child);
2309
2310 /*
2311 * Do the first part of the exec now, collect state
2312 * in spawn_data.
2313 */
2314 error = execve_loadvm(l1, path, argv,
2315 envp, fetch, &spawn_data->sed_exec);
2316 if (error == EJUSTRETURN)
2317 error = 0;
2318 else if (error)
2319 goto error_exit;
2320
2321 have_exec_lock = true;
2322
2323 /*
2324 * Allocate virtual address space for the U-area now, while it
2325 * is still easy to abort the fork operation if we're out of
2326 * kernel virtual address space.
2327 */
2328 uaddr = uvm_uarea_alloc();
2329 if (__predict_false(uaddr == 0)) {
2330 error = ENOMEM;
2331 goto error_exit;
2332 }
2333
2334 /*
2335 * Allocate new proc. Borrow proc0 vmspace for it, we will
2336 * replace it with its own before returning to userland
2337 * in the child.
2338 * This is a point of no return, we will have to go through
2339 * the child proc to properly clean it up past this point.
2340 */
2341 p2 = proc_alloc();
2342 pid = p2->p_pid;
2343
2344 /*
2345 * Make a proc table entry for the new process.
2346 * Start by zeroing the section of proc that is zero-initialized,
2347 * then copy the section that is copied directly from the parent.
2348 */
2349 memset(&p2->p_startzero, 0,
2350 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2351 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2352 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2353 p2->p_vmspace = proc0.p_vmspace;
2354
2355 TAILQ_INIT(&p2->p_sigpend.sp_info);
2356
2357 LIST_INIT(&p2->p_lwps);
2358 LIST_INIT(&p2->p_sigwaiters);
2359
2360 /*
2361 * Duplicate sub-structures as needed.
2362 * Increase reference counts on shared objects.
2363 * Inherit flags we want to keep. The flags related to SIGCHLD
2364 * handling are important in order to keep a consistent behaviour
2365 * for the child after the fork. If we are a 32-bit process, the
2366 * child will be too.
2367 */
2368 p2->p_flag =
2369 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2370 p2->p_emul = p1->p_emul;
2371 p2->p_execsw = p1->p_execsw;
2372
2373 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2374 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2375 rw_init(&p2->p_reflock);
2376 cv_init(&p2->p_waitcv, "wait");
2377 cv_init(&p2->p_lwpcv, "lwpwait");
2378
2379 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2380
2381 kauth_proc_fork(p1, p2);
2382
2383 p2->p_raslist = NULL;
2384 p2->p_fd = fd_copy();
2385
2386 /* XXX racy */
2387 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2388
2389 p2->p_cwdi = cwdinit();
2390
2391 /*
2392 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2393 * we just need increase pl_refcnt.
2394 */
2395 if (!p1->p_limit->pl_writeable) {
2396 lim_addref(p1->p_limit);
2397 p2->p_limit = p1->p_limit;
2398 } else {
2399 p2->p_limit = lim_copy(p1->p_limit);
2400 }
2401
2402 p2->p_lflag = 0;
2403 p2->p_sflag = 0;
2404 p2->p_slflag = 0;
2405 p2->p_pptr = p1;
2406 p2->p_ppid = p1->p_pid;
2407 LIST_INIT(&p2->p_children);
2408
2409 p2->p_aio = NULL;
2410
2411 #ifdef KTRACE
2412 /*
2413 * Copy traceflag and tracefile if enabled.
2414 * If not inherited, these were zeroed above.
2415 */
2416 if (p1->p_traceflag & KTRFAC_INHERIT) {
2417 mutex_enter(&ktrace_lock);
2418 p2->p_traceflag = p1->p_traceflag;
2419 if ((p2->p_tracep = p1->p_tracep) != NULL)
2420 ktradref(p2);
2421 mutex_exit(&ktrace_lock);
2422 }
2423 #endif
2424
2425 /*
2426 * Create signal actions for the child process.
2427 */
2428 p2->p_sigacts = sigactsinit(p1, 0);
2429 mutex_enter(p1->p_lock);
2430 p2->p_sflag |=
2431 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2432 sched_proc_fork(p1, p2);
2433 mutex_exit(p1->p_lock);
2434
2435 p2->p_stflag = p1->p_stflag;
2436
2437 /*
2438 * p_stats.
2439 * Copy parts of p_stats, and zero out the rest.
2440 */
2441 p2->p_stats = pstatscopy(p1->p_stats);
2442
2443 /* copy over machdep flags to the new proc */
2444 cpu_proc_fork(p1, p2);
2445
2446 /*
2447 * Prepare remaining parts of spawn data
2448 */
2449 spawn_data->sed_actions = fa;
2450 spawn_data->sed_attrs = sa;
2451
2452 spawn_data->sed_parent = p1;
2453
2454 /* create LWP */
2455 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2456 &l2, l1->l_class);
2457 l2->l_ctxlink = NULL; /* reset ucontext link */
2458
2459 /*
2460 * Copy the credential so other references don't see our changes.
2461 * Test to see if this is necessary first, since in the common case
2462 * we won't need a private reference.
2463 */
2464 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2465 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2466 l2->l_cred = kauth_cred_copy(l2->l_cred);
2467 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2468 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2469 }
2470
2471 /* Update the master credentials. */
2472 if (l2->l_cred != p2->p_cred) {
2473 kauth_cred_t ocred;
2474
2475 kauth_cred_hold(l2->l_cred);
2476 mutex_enter(p2->p_lock);
2477 ocred = p2->p_cred;
2478 p2->p_cred = l2->l_cred;
2479 mutex_exit(p2->p_lock);
2480 kauth_cred_free(ocred);
2481 }
2482
2483 *child_ok = true;
2484 spawn_data->sed_refcnt = 2; /* child gets it as well */
2485 #if 0
2486 l2->l_nopreempt = 1; /* start it non-preemptable */
2487 #endif
2488
2489 /*
2490 * It's now safe for the scheduler and other processes to see the
2491 * child process.
2492 */
2493 mutex_enter(proc_lock);
2494
2495 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2496 p2->p_lflag |= PL_CONTROLT;
2497
2498 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2499 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2500
2501 LIST_INSERT_AFTER(p1, p2, p_pglist);
2502 LIST_INSERT_HEAD(&allproc, p2, p_list);
2503
2504 p2->p_trace_enabled = trace_is_enabled(p2);
2505 #ifdef __HAVE_SYSCALL_INTERN
2506 (*p2->p_emul->e_syscall_intern)(p2);
2507 #endif
2508
2509 /*
2510 * Make child runnable, set start time, and add to run queue except
2511 * if the parent requested the child to start in SSTOP state.
2512 */
2513 mutex_enter(p2->p_lock);
2514
2515 getmicrotime(&p2->p_stats->p_start);
2516
2517 lwp_lock(l2);
2518 KASSERT(p2->p_nrlwps == 1);
2519 p2->p_nrlwps = 1;
2520 p2->p_stat = SACTIVE;
2521 l2->l_stat = LSRUN;
2522 sched_enqueue(l2, false);
2523 lwp_unlock(l2);
2524
2525 mutex_exit(p2->p_lock);
2526 mutex_exit(proc_lock);
2527
2528 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2529 error = spawn_data->sed_error;
2530 mutex_exit(&spawn_data->sed_mtx_child);
2531 spawn_exec_data_release(spawn_data);
2532
2533 rw_exit(&p1->p_reflock);
2534 rw_exit(&exec_lock);
2535 have_exec_lock = false;
2536
2537 *pid_res = pid;
2538 return error;
2539
2540 error_exit:
2541 if (have_exec_lock) {
2542 execve_free_data(&spawn_data->sed_exec);
2543 rw_exit(&p1->p_reflock);
2544 rw_exit(&exec_lock);
2545 }
2546 mutex_exit(&spawn_data->sed_mtx_child);
2547 spawn_exec_data_release(spawn_data);
2548
2549 return error;
2550 }
2551
2552 int
2553 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2554 register_t *retval)
2555 {
2556 /* {
2557 syscallarg(pid_t *) pid;
2558 syscallarg(const char *) path;
2559 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2560 syscallarg(const struct posix_spawnattr *) attrp;
2561 syscallarg(char *const *) argv;
2562 syscallarg(char *const *) envp;
2563 } */
2564
2565 int error;
2566 struct posix_spawn_file_actions *fa = NULL;
2567 struct posix_spawnattr *sa = NULL;
2568 pid_t pid;
2569 bool child_ok = false;
2570 rlim_t max_fileactions;
2571 proc_t *p = l1->l_proc;
2572
2573 error = check_posix_spawn(l1);
2574 if (error) {
2575 *retval = error;
2576 return 0;
2577 }
2578
2579 /* copy in file_actions struct */
2580 if (SCARG(uap, file_actions) != NULL) {
2581 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2582 maxfiles);
2583 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2584 max_fileactions);
2585 if (error)
2586 goto error_exit;
2587 }
2588
2589 /* copyin posix_spawnattr struct */
2590 if (SCARG(uap, attrp) != NULL) {
2591 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2592 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2593 if (error)
2594 goto error_exit;
2595 }
2596
2597 /*
2598 * Do the spawn
2599 */
2600 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2601 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2602 if (error)
2603 goto error_exit;
2604
2605 if (error == 0 && SCARG(uap, pid) != NULL)
2606 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2607
2608 *retval = error;
2609 return 0;
2610
2611 error_exit:
2612 if (!child_ok) {
2613 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2614 atomic_dec_uint(&nprocs);
2615
2616 if (sa)
2617 kmem_free(sa, sizeof(*sa));
2618 if (fa)
2619 posix_spawn_fa_free(fa, fa->len);
2620 }
2621
2622 *retval = error;
2623 return 0;
2624 }
2625
2626 void
2627 exec_free_emul_arg(struct exec_package *epp)
2628 {
2629 if (epp->ep_emul_arg_free != NULL) {
2630 KASSERT(epp->ep_emul_arg != NULL);
2631 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2632 epp->ep_emul_arg_free = NULL;
2633 epp->ep_emul_arg = NULL;
2634 } else {
2635 KASSERT(epp->ep_emul_arg == NULL);
2636 }
2637 }
2638
2639 #ifdef DEBUG_EXEC
2640 static void
2641 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2642 {
2643 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2644 size_t j;
2645
2646 if (error == 0)
2647 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2648 else
2649 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2650 epp->ep_vmcmds.evs_used, error));
2651
2652 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2653 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2654 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2655 PRIxVSIZE" prot=0%o flags=%d\n", j,
2656 vp[j].ev_proc == vmcmd_map_pagedvn ?
2657 "pagedvn" :
2658 vp[j].ev_proc == vmcmd_map_readvn ?
2659 "readvn" :
2660 vp[j].ev_proc == vmcmd_map_zero ?
2661 "zero" : "*unknown*",
2662 vp[j].ev_addr, vp[j].ev_len,
2663 vp[j].ev_offset, vp[j].ev_prot,
2664 vp[j].ev_flags));
2665 if (error != 0 && j == x)
2666 DPRINTF((" ^--- failed\n"));
2667 }
2668 }
2669 #endif
2670