Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.409
      1 /*	$NetBSD: kern_exec.c,v 1.409 2014/10/24 21:13:30 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     31  * Copyright (C) 1992 Wolfgang Solfrank.
     32  * Copyright (C) 1992 TooLs GmbH.
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by TooLs GmbH.
     46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.409 2014/10/24 21:13:30 christos Exp $");
     63 
     64 #include "opt_exec.h"
     65 #include "opt_execfmt.h"
     66 #include "opt_ktrace.h"
     67 #include "opt_modular.h"
     68 #include "opt_syscall_debug.h"
     69 #include "veriexec.h"
     70 #include "opt_pax.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/filedesc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/mount.h>
     78 #include <sys/malloc.h>
     79 #include <sys/kmem.h>
     80 #include <sys/namei.h>
     81 #include <sys/vnode.h>
     82 #include <sys/file.h>
     83 #include <sys/acct.h>
     84 #include <sys/atomic.h>
     85 #include <sys/exec.h>
     86 #include <sys/ktrace.h>
     87 #include <sys/uidinfo.h>
     88 #include <sys/wait.h>
     89 #include <sys/mman.h>
     90 #include <sys/ras.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/stat.h>
     93 #include <sys/syscall.h>
     94 #include <sys/kauth.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/pax.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 #include <sys/syscallvar.h>
    100 #include <sys/syscallargs.h>
    101 #if NVERIEXEC > 0
    102 #include <sys/verified_exec.h>
    103 #endif /* NVERIEXEC > 0 */
    104 #include <sys/sdt.h>
    105 #include <sys/spawn.h>
    106 #include <sys/prot.h>
    107 #include <sys/cprng.h>
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #include <machine/reg.h>
    112 
    113 #include <compat/common/compat_util.h>
    114 
    115 #ifndef MD_TOPDOWN_INIT
    116 #ifdef __USE_TOPDOWN_VM
    117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    118 #else
    119 #define	MD_TOPDOWN_INIT(epp)
    120 #endif
    121 #endif
    122 
    123 struct execve_data;
    124 
    125 static size_t calcargs(struct execve_data * restrict, const size_t);
    126 static size_t calcstack(struct execve_data * restrict, const size_t);
    127 static int copyoutargs(struct execve_data * restrict, struct lwp *,
    128     char * const);
    129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
    130 static int copyinargs(struct execve_data * restrict, char * const *,
    131     char * const *, execve_fetch_element_t, char **);
    132 static int copyinargstrs(struct execve_data * restrict, char * const *,
    133     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    134 static int exec_sigcode_map(struct proc *, const struct emul *);
    135 
    136 #ifdef DEBUG_EXEC
    137 #define DPRINTF(a) printf a
    138 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    139     __LINE__, (s), (a), (b))
    140 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    141 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    142 #else
    143 #define DPRINTF(a)
    144 #define COPYPRINTF(s, a, b)
    145 #define DUMPVMCMDS(p, x, e) do {} while (0)
    146 #endif /* DEBUG_EXEC */
    147 
    148 /*
    149  * DTrace SDT provider definitions
    150  */
    151 SDT_PROBE_DEFINE(proc,,,exec,exec,
    152 	    "char *", NULL,
    153 	    NULL, NULL, NULL, NULL,
    154 	    NULL, NULL, NULL, NULL);
    155 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
    156 	    "char *", NULL,
    157 	    NULL, NULL, NULL, NULL,
    158 	    NULL, NULL, NULL, NULL);
    159 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
    160 	    "int", NULL,
    161 	    NULL, NULL, NULL, NULL,
    162 	    NULL, NULL, NULL, NULL);
    163 
    164 /*
    165  * Exec function switch:
    166  *
    167  * Note that each makecmds function is responsible for loading the
    168  * exec package with the necessary functions for any exec-type-specific
    169  * handling.
    170  *
    171  * Functions for specific exec types should be defined in their own
    172  * header file.
    173  */
    174 static const struct execsw	**execsw = NULL;
    175 static int			nexecs;
    176 
    177 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    178 
    179 /* list of dynamically loaded execsw entries */
    180 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    181     LIST_HEAD_INITIALIZER(ex_head);
    182 struct exec_entry {
    183 	LIST_ENTRY(exec_entry)	ex_list;
    184 	SLIST_ENTRY(exec_entry)	ex_slist;
    185 	const struct execsw	*ex_sw;
    186 };
    187 
    188 #ifndef __HAVE_SYSCALL_INTERN
    189 void	syscall(void);
    190 #endif
    191 
    192 /* NetBSD emul struct */
    193 struct emul emul_netbsd = {
    194 	.e_name =		"netbsd",
    195 #ifdef EMUL_NATIVEROOT
    196 	.e_path =		EMUL_NATIVEROOT,
    197 #else
    198 	.e_path =		NULL,
    199 #endif
    200 #ifndef __HAVE_MINIMAL_EMUL
    201 	.e_flags =		EMUL_HAS_SYS___syscall,
    202 	.e_errno =		NULL,
    203 	.e_nosys =		SYS_syscall,
    204 	.e_nsysent =		SYS_NSYSENT,
    205 #endif
    206 	.e_sysent =		sysent,
    207 #ifdef SYSCALL_DEBUG
    208 	.e_syscallnames =	syscallnames,
    209 #else
    210 	.e_syscallnames =	NULL,
    211 #endif
    212 	.e_sendsig =		sendsig,
    213 	.e_trapsignal =		trapsignal,
    214 	.e_tracesig =		NULL,
    215 	.e_sigcode =		NULL,
    216 	.e_esigcode =		NULL,
    217 	.e_sigobject =		NULL,
    218 	.e_setregs =		setregs,
    219 	.e_proc_exec =		NULL,
    220 	.e_proc_fork =		NULL,
    221 	.e_proc_exit =		NULL,
    222 	.e_lwp_fork =		NULL,
    223 	.e_lwp_exit =		NULL,
    224 #ifdef __HAVE_SYSCALL_INTERN
    225 	.e_syscall_intern =	syscall_intern,
    226 #else
    227 	.e_syscall =		syscall,
    228 #endif
    229 	.e_sysctlovly =		NULL,
    230 	.e_fault =		NULL,
    231 	.e_vm_default_addr =	uvm_default_mapaddr,
    232 	.e_usertrap =		NULL,
    233 	.e_ucsize =		sizeof(ucontext_t),
    234 	.e_startlwp =		startlwp
    235 };
    236 
    237 /*
    238  * Exec lock. Used to control access to execsw[] structures.
    239  * This must not be static so that netbsd32 can access it, too.
    240  */
    241 krwlock_t exec_lock;
    242 
    243 static kmutex_t sigobject_lock;
    244 
    245 /*
    246  * Data used between a loadvm and execve part of an "exec" operation
    247  */
    248 struct execve_data {
    249 	struct exec_package	ed_pack;
    250 	struct pathbuf		*ed_pathbuf;
    251 	struct vattr		ed_attr;
    252 	struct ps_strings	ed_arginfo;
    253 	char			*ed_argp;
    254 	const char		*ed_pathstring;
    255 	char			*ed_resolvedpathbuf;
    256 	size_t			ed_ps_strings_sz;
    257 	int			ed_szsigcode;
    258 	size_t			ed_argslen;
    259 	long			ed_argc;
    260 	long			ed_envc;
    261 };
    262 
    263 /*
    264  * data passed from parent lwp to child during a posix_spawn()
    265  */
    266 struct spawn_exec_data {
    267 	struct execve_data	sed_exec;
    268 	struct posix_spawn_file_actions
    269 				*sed_actions;
    270 	struct posix_spawnattr	*sed_attrs;
    271 	struct proc		*sed_parent;
    272 	kcondvar_t		sed_cv_child_ready;
    273 	kmutex_t		sed_mtx_child;
    274 	int			sed_error;
    275 	volatile uint32_t	sed_refcnt;
    276 };
    277 
    278 static void *
    279 exec_pool_alloc(struct pool *pp, int flags)
    280 {
    281 
    282 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
    283 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    284 }
    285 
    286 static void
    287 exec_pool_free(struct pool *pp, void *addr)
    288 {
    289 
    290 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    291 }
    292 
    293 static struct pool exec_pool;
    294 
    295 static struct pool_allocator exec_palloc = {
    296 	.pa_alloc = exec_pool_alloc,
    297 	.pa_free = exec_pool_free,
    298 	.pa_pagesz = NCARGS
    299 };
    300 
    301 /*
    302  * check exec:
    303  * given an "executable" described in the exec package's namei info,
    304  * see what we can do with it.
    305  *
    306  * ON ENTRY:
    307  *	exec package with appropriate namei info
    308  *	lwp pointer of exec'ing lwp
    309  *	NO SELF-LOCKED VNODES
    310  *
    311  * ON EXIT:
    312  *	error:	nothing held, etc.  exec header still allocated.
    313  *	ok:	filled exec package, executable's vnode (unlocked).
    314  *
    315  * EXEC SWITCH ENTRY:
    316  * 	Locked vnode to check, exec package, proc.
    317  *
    318  * EXEC SWITCH EXIT:
    319  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    320  *	error:	destructive:
    321  *			everything deallocated execept exec header.
    322  *		non-destructive:
    323  *			error code, executable's vnode (unlocked),
    324  *			exec header unmodified.
    325  */
    326 int
    327 /*ARGSUSED*/
    328 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
    329 {
    330 	int		error, i;
    331 	struct vnode	*vp;
    332 	struct nameidata nd;
    333 	size_t		resid;
    334 
    335 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    336 
    337 	/* first get the vnode */
    338 	if ((error = namei(&nd)) != 0)
    339 		return error;
    340 	epp->ep_vp = vp = nd.ni_vp;
    341 	/* normally this can't fail */
    342 	error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
    343 	KASSERT(error == 0);
    344 
    345 #ifdef DIAGNOSTIC
    346 	/* paranoia (take this out once namei stuff stabilizes) */
    347 	memset(nd.ni_pnbuf, '~', PATH_MAX);
    348 #endif
    349 
    350 	/* check access and type */
    351 	if (vp->v_type != VREG) {
    352 		error = EACCES;
    353 		goto bad1;
    354 	}
    355 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    356 		goto bad1;
    357 
    358 	/* get attributes */
    359 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    360 		goto bad1;
    361 
    362 	/* Check mount point */
    363 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    364 		error = EACCES;
    365 		goto bad1;
    366 	}
    367 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    368 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    369 
    370 	/* try to open it */
    371 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    372 		goto bad1;
    373 
    374 	/* unlock vp, since we need it unlocked from here on out. */
    375 	VOP_UNLOCK(vp);
    376 
    377 #if NVERIEXEC > 0
    378 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
    379 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    380 	    NULL);
    381 	if (error)
    382 		goto bad2;
    383 #endif /* NVERIEXEC > 0 */
    384 
    385 #ifdef PAX_SEGVGUARD
    386 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    387 	if (error)
    388 		goto bad2;
    389 #endif /* PAX_SEGVGUARD */
    390 
    391 	/* now we have the file, get the exec header */
    392 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    393 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
    394 	if (error)
    395 		goto bad2;
    396 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    397 
    398 	/*
    399 	 * Set up default address space limits.  Can be overridden
    400 	 * by individual exec packages.
    401 	 *
    402 	 * XXX probably should be all done in the exec packages.
    403 	 */
    404 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
    405 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    406 	/*
    407 	 * set up the vmcmds for creation of the process
    408 	 * address space
    409 	 */
    410 	error = ENOEXEC;
    411 	for (i = 0; i < nexecs; i++) {
    412 		int newerror;
    413 
    414 		epp->ep_esch = execsw[i];
    415 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    416 
    417 		if (!newerror) {
    418 			/* Seems ok: check that entry point is not too high */
    419 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
    420 #ifdef DIAGNOSTIC
    421 				printf("%s: rejecting %p due to "
    422 				    "too high entry address (> %p)\n",
    423 					 __func__, (void *)epp->ep_entry,
    424 					 (void *)epp->ep_vm_maxaddr);
    425 #endif
    426 				error = ENOEXEC;
    427 				break;
    428 			}
    429 			/* Seems ok: check that entry point is not too low */
    430 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    431 #ifdef DIAGNOSTIC
    432 				printf("%s: rejecting %p due to "
    433 				    "too low entry address (< %p)\n",
    434 				     __func__, (void *)epp->ep_entry,
    435 				     (void *)epp->ep_vm_minaddr);
    436 #endif
    437 				error = ENOEXEC;
    438 				break;
    439 			}
    440 
    441 			/* check limits */
    442 			if ((epp->ep_tsize > MAXTSIZ) ||
    443 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    444 						    [RLIMIT_DATA].rlim_cur)) {
    445 #ifdef DIAGNOSTIC
    446 				printf("%s: rejecting due to "
    447 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    448 				    __func__,
    449 				    (unsigned long long)epp->ep_tsize,
    450 				    (unsigned long long)MAXTSIZ,
    451 				    (unsigned long long)epp->ep_dsize,
    452 				    (unsigned long long)
    453 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    454 #endif
    455 				error = ENOMEM;
    456 				break;
    457 			}
    458 			return 0;
    459 		}
    460 
    461 		if (epp->ep_emul_root != NULL) {
    462 			vrele(epp->ep_emul_root);
    463 			epp->ep_emul_root = NULL;
    464 		}
    465 		if (epp->ep_interp != NULL) {
    466 			vrele(epp->ep_interp);
    467 			epp->ep_interp = NULL;
    468 		}
    469 
    470 		/* make sure the first "interesting" error code is saved. */
    471 		if (error == ENOEXEC)
    472 			error = newerror;
    473 
    474 		if (epp->ep_flags & EXEC_DESTR)
    475 			/* Error from "#!" code, tidied up by recursive call */
    476 			return error;
    477 	}
    478 
    479 	/* not found, error */
    480 
    481 	/*
    482 	 * free any vmspace-creation commands,
    483 	 * and release their references
    484 	 */
    485 	kill_vmcmds(&epp->ep_vmcmds);
    486 
    487 bad2:
    488 	/*
    489 	 * close and release the vnode, restore the old one, free the
    490 	 * pathname buf, and punt.
    491 	 */
    492 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    493 	VOP_CLOSE(vp, FREAD, l->l_cred);
    494 	vput(vp);
    495 	return error;
    496 
    497 bad1:
    498 	/*
    499 	 * free the namei pathname buffer, and put the vnode
    500 	 * (which we don't yet have open).
    501 	 */
    502 	vput(vp);				/* was still locked */
    503 	return error;
    504 }
    505 
    506 #ifdef __MACHINE_STACK_GROWS_UP
    507 #define STACK_PTHREADSPACE NBPG
    508 #else
    509 #define STACK_PTHREADSPACE 0
    510 #endif
    511 
    512 static int
    513 execve_fetch_element(char * const *array, size_t index, char **value)
    514 {
    515 	return copyin(array + index, value, sizeof(*value));
    516 }
    517 
    518 /*
    519  * exec system call
    520  */
    521 int
    522 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    523 {
    524 	/* {
    525 		syscallarg(const char *)	path;
    526 		syscallarg(char * const *)	argp;
    527 		syscallarg(char * const *)	envp;
    528 	} */
    529 
    530 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
    531 	    SCARG(uap, envp), execve_fetch_element);
    532 }
    533 
    534 int
    535 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    536     register_t *retval)
    537 {
    538 	/* {
    539 		syscallarg(int)			fd;
    540 		syscallarg(char * const *)	argp;
    541 		syscallarg(char * const *)	envp;
    542 	} */
    543 
    544 	return ENOSYS;
    545 }
    546 
    547 /*
    548  * Load modules to try and execute an image that we do not understand.
    549  * If no execsw entries are present, we load those likely to be needed
    550  * in order to run native images only.  Otherwise, we autoload all
    551  * possible modules that could let us run the binary.  XXX lame
    552  */
    553 static void
    554 exec_autoload(void)
    555 {
    556 #ifdef MODULAR
    557 	static const char * const native[] = {
    558 		"exec_elf32",
    559 		"exec_elf64",
    560 		"exec_script",
    561 		NULL
    562 	};
    563 	static const char * const compat[] = {
    564 		"exec_elf32",
    565 		"exec_elf64",
    566 		"exec_script",
    567 		"exec_aout",
    568 		"exec_coff",
    569 		"exec_ecoff",
    570 		"compat_aoutm68k",
    571 		"compat_freebsd",
    572 		"compat_ibcs2",
    573 		"compat_linux",
    574 		"compat_linux32",
    575 		"compat_netbsd32",
    576 		"compat_sunos",
    577 		"compat_sunos32",
    578 		"compat_svr4",
    579 		"compat_svr4_32",
    580 		"compat_ultrix",
    581 		NULL
    582 	};
    583 	char const * const *list;
    584 	int i;
    585 
    586 	list = (nexecs == 0 ? native : compat);
    587 	for (i = 0; list[i] != NULL; i++) {
    588 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    589 			continue;
    590 		}
    591 		yield();
    592 	}
    593 #endif
    594 }
    595 
    596 static int
    597 execve_loadvm(struct lwp *l, const char *path, char * const *args,
    598 	char * const *envs, execve_fetch_element_t fetch_element,
    599 	struct execve_data * restrict data)
    600 {
    601 	struct exec_package	* const epp = &data->ed_pack;
    602 	int			error;
    603 	struct proc		*p;
    604 	char			*dp;
    605 	u_int			modgen;
    606 
    607 	KASSERT(data != NULL);
    608 
    609 	p = l->l_proc;
    610 	modgen = 0;
    611 
    612 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
    613 
    614 	/*
    615 	 * Check if we have exceeded our number of processes limit.
    616 	 * This is so that we handle the case where a root daemon
    617 	 * forked, ran setuid to become the desired user and is trying
    618 	 * to exec. The obvious place to do the reference counting check
    619 	 * is setuid(), but we don't do the reference counting check there
    620 	 * like other OS's do because then all the programs that use setuid()
    621 	 * must be modified to check the return code of setuid() and exit().
    622 	 * It is dangerous to make setuid() fail, because it fails open and
    623 	 * the program will continue to run as root. If we make it succeed
    624 	 * and return an error code, again we are not enforcing the limit.
    625 	 * The best place to enforce the limit is here, when the process tries
    626 	 * to execute a new image, because eventually the process will need
    627 	 * to call exec in order to do something useful.
    628 	 */
    629  retry:
    630 	if (p->p_flag & PK_SUGID) {
    631 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    632 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    633 		     &p->p_rlimit[RLIMIT_NPROC],
    634 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    635 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    636 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    637 		return EAGAIN;
    638 	}
    639 
    640 	/*
    641 	 * Drain existing references and forbid new ones.  The process
    642 	 * should be left alone until we're done here.  This is necessary
    643 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    644 	 * a local user to illicitly obtain elevated privileges.
    645 	 */
    646 	rw_enter(&p->p_reflock, RW_WRITER);
    647 
    648 	/*
    649 	 * Init the namei data to point the file user's program name.
    650 	 * This is done here rather than in check_exec(), so that it's
    651 	 * possible to override this settings if any of makecmd/probe
    652 	 * functions call check_exec() recursively - for example,
    653 	 * see exec_script_makecmds().
    654 	 */
    655 	error = pathbuf_copyin(path, &data->ed_pathbuf);
    656 	if (error) {
    657 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
    658 		    path, error));
    659 		goto clrflg;
    660 	}
    661 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    662 	data->ed_resolvedpathbuf = PNBUF_GET();
    663 
    664 	/*
    665 	 * initialize the fields of the exec package.
    666 	 */
    667 	epp->ep_name = path;
    668 	epp->ep_kname = data->ed_pathstring;
    669 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
    670 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    671 	epp->ep_hdrlen = exec_maxhdrsz;
    672 	epp->ep_hdrvalid = 0;
    673 	epp->ep_emul_arg = NULL;
    674 	epp->ep_emul_arg_free = NULL;
    675 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    676 	epp->ep_vap = &data->ed_attr;
    677 	epp->ep_flags = 0;
    678 	MD_TOPDOWN_INIT(epp);
    679 	epp->ep_emul_root = NULL;
    680 	epp->ep_interp = NULL;
    681 	epp->ep_esch = NULL;
    682 	epp->ep_pax_flags = 0;
    683 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    684 
    685 	rw_enter(&exec_lock, RW_READER);
    686 
    687 	/* see if we can run it. */
    688 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
    689 		if (error != ENOENT) {
    690 			DPRINTF(("%s: check exec failed %d\n",
    691 			    __func__, error));
    692 		}
    693 		goto freehdr;
    694 	}
    695 
    696 	/* allocate an argument buffer */
    697 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    698 	KASSERT(data->ed_argp != NULL);
    699 	dp = data->ed_argp;
    700 
    701 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    702 		goto bad;
    703 	}
    704 
    705 	/*
    706 	 * Calculate the new stack size.
    707 	 */
    708 
    709 #ifdef PAX_ASLR
    710 #define	ASLR_GAP(l)	(pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0)
    711 #else
    712 #define	ASLR_GAP(l)	0
    713 #endif
    714 
    715 #ifdef __MACHINE_STACK_GROWS_UP
    716 /*
    717  * copyargs() fills argc/argv/envp from the lower address even on
    718  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    719  * so that _rtld() use it.
    720  */
    721 #define	RTLD_GAP	32
    722 #else
    723 #define	RTLD_GAP	0
    724 #endif
    725 
    726 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    727 
    728 	data->ed_argslen = calcargs(data, argenvstrlen);
    729 
    730 	const size_t len = calcstack(data, ASLR_GAP(l) + RTLD_GAP);
    731 
    732 	if (len > epp->ep_ssize) {
    733 		/* in effect, compare to initial limit */
    734 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    735 		error = ENOMEM;
    736 		goto bad;
    737 	}
    738 	/* adjust "active stack depth" for process VSZ */
    739 	epp->ep_ssize = len;
    740 
    741 	return 0;
    742 
    743  bad:
    744 	/* free the vmspace-creation commands, and release their references */
    745 	kill_vmcmds(&epp->ep_vmcmds);
    746 	/* kill any opened file descriptor, if necessary */
    747 	if (epp->ep_flags & EXEC_HASFD) {
    748 		epp->ep_flags &= ~EXEC_HASFD;
    749 		fd_close(epp->ep_fd);
    750 	}
    751 	/* close and put the exec'd file */
    752 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    753 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    754 	vput(epp->ep_vp);
    755 	pool_put(&exec_pool, data->ed_argp);
    756 
    757  freehdr:
    758 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    759 	if (epp->ep_emul_root != NULL)
    760 		vrele(epp->ep_emul_root);
    761 	if (epp->ep_interp != NULL)
    762 		vrele(epp->ep_interp);
    763 
    764 	rw_exit(&exec_lock);
    765 
    766 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    767 	pathbuf_destroy(data->ed_pathbuf);
    768 	PNBUF_PUT(data->ed_resolvedpathbuf);
    769 
    770  clrflg:
    771 	rw_exit(&p->p_reflock);
    772 
    773 	if (modgen != module_gen && error == ENOEXEC) {
    774 		modgen = module_gen;
    775 		exec_autoload();
    776 		goto retry;
    777 	}
    778 
    779 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
    780 	return error;
    781 }
    782 
    783 static int
    784 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
    785 {
    786 	struct exec_package	* const epp = &data->ed_pack;
    787 	struct proc		*p = l->l_proc;
    788 	struct exec_vmcmd	*base_vcp;
    789 	int			error = 0;
    790 	size_t			i;
    791 
    792 	/* record proc's vnode, for use by procfs and others */
    793 	if (p->p_textvp)
    794 		vrele(p->p_textvp);
    795 	vref(epp->ep_vp);
    796 	p->p_textvp = epp->ep_vp;
    797 
    798 	/* create the new process's VM space by running the vmcmds */
    799 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    800 
    801 	DUMPVMCMDS(epp, 0, 0);
    802 
    803 	base_vcp = NULL;
    804 
    805 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
    806 		struct exec_vmcmd *vcp;
    807 
    808 		vcp = &epp->ep_vmcmds.evs_cmds[i];
    809 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    810 			KASSERTMSG(base_vcp != NULL,
    811 			    "%s: relative vmcmd with no base", __func__);
    812 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
    813 			    "%s: illegal base & relative vmcmd", __func__);
    814 			vcp->ev_addr += base_vcp->ev_addr;
    815 		}
    816 		error = (*vcp->ev_proc)(l, vcp);
    817 		if (error)
    818 			DUMPVMCMDS(epp, i, error);
    819 		if (vcp->ev_flags & VMCMD_BASE)
    820 			base_vcp = vcp;
    821 	}
    822 
    823 	/* free the vmspace-creation commands, and release their references */
    824 	kill_vmcmds(&epp->ep_vmcmds);
    825 
    826 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    827 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    828 	vput(epp->ep_vp);
    829 
    830 	/* if an error happened, deallocate and punt */
    831 	if (error != 0) {
    832 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
    833 	}
    834 	return error;
    835 }
    836 
    837 static void
    838 execve_free_data(struct execve_data *data)
    839 {
    840 	struct exec_package	* const epp = &data->ed_pack;
    841 
    842 	/* free the vmspace-creation commands, and release their references */
    843 	kill_vmcmds(&epp->ep_vmcmds);
    844 	/* kill any opened file descriptor, if necessary */
    845 	if (epp->ep_flags & EXEC_HASFD) {
    846 		epp->ep_flags &= ~EXEC_HASFD;
    847 		fd_close(epp->ep_fd);
    848 	}
    849 
    850 	/* close and put the exec'd file */
    851 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    852 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
    853 	vput(epp->ep_vp);
    854 	pool_put(&exec_pool, data->ed_argp);
    855 
    856 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    857 	if (epp->ep_emul_root != NULL)
    858 		vrele(epp->ep_emul_root);
    859 	if (epp->ep_interp != NULL)
    860 		vrele(epp->ep_interp);
    861 
    862 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    863 	pathbuf_destroy(data->ed_pathbuf);
    864 	PNBUF_PUT(data->ed_resolvedpathbuf);
    865 }
    866 
    867 static void
    868 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring)
    869 {
    870 	const char		*commandname;
    871 	size_t			commandlen;
    872 	char			*path;
    873 
    874 	/* set command name & other accounting info */
    875 	commandname = strrchr(epp->ep_resolvedname, '/');
    876 	if (commandname != NULL) {
    877 		commandname++;
    878 	} else {
    879 		commandname = epp->ep_resolvedname;
    880 	}
    881 	commandlen = min(strlen(commandname), MAXCOMLEN);
    882 	(void)memcpy(p->p_comm, commandname, commandlen);
    883 	p->p_comm[commandlen] = '\0';
    884 
    885 	path = PNBUF_GET();
    886 
    887 	/*
    888 	 * If the path starts with /, we don't need to do any work.
    889 	 * This handles the majority of the cases.
    890 	 * In the future perhaps we could canonicalize it?
    891 	 */
    892 	if (pathstring[0] == '/') {
    893 		(void)strlcpy(path, pathstring,
    894 		    MAXPATHLEN);
    895 		epp->ep_path = path;
    896 	}
    897 #ifdef notyet
    898 	/*
    899 	 * Although this works most of the time [since the entry was just
    900 	 * entered in the cache] we don't use it because it will fail for
    901 	 * entries that are not placed in the cache because their name is
    902 	 * longer than NCHNAMLEN and it is not the cleanest interface,
    903 	 * because there could be races. When the namei cache is re-written,
    904 	 * this can be changed to use the appropriate function.
    905 	 */
    906 	else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
    907 		epp->ep_path = path;
    908 #endif
    909 	else {
    910 #ifdef notyet
    911 		printf("Cannot get path for pid %d [%s] (error %d)\n",
    912 		    (int)p->p_pid, p->p_comm, error);
    913 #endif
    914 		epp->ep_path = NULL;
    915 		PNBUF_PUT(path);
    916 	}
    917 }
    918 
    919 /* XXX elsewhere */
    920 static int
    921 credexec(struct lwp *l, struct vattr *attr)
    922 {
    923 	struct proc *p = l->l_proc;
    924 	int error;
    925 
    926 	/*
    927 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
    928 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
    929 	 * out additional references on the process for the moment.
    930 	 */
    931 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    932 
    933 	    (((attr->va_mode & S_ISUID) != 0 &&
    934 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
    935 
    936 	     ((attr->va_mode & S_ISGID) != 0 &&
    937 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
    938 		/*
    939 		 * Mark the process as SUGID before we do
    940 		 * anything that might block.
    941 		 */
    942 		proc_crmod_enter();
    943 		proc_crmod_leave(NULL, NULL, true);
    944 
    945 		/* Make sure file descriptors 0..2 are in use. */
    946 		if ((error = fd_checkstd()) != 0) {
    947 			DPRINTF(("%s: fdcheckstd failed %d\n",
    948 			    __func__, error));
    949 			return error;
    950 		}
    951 
    952 		/*
    953 		 * Copy the credential so other references don't see our
    954 		 * changes.
    955 		 */
    956 		l->l_cred = kauth_cred_copy(l->l_cred);
    957 #ifdef KTRACE
    958 		/*
    959 		 * If the persistent trace flag isn't set, turn off.
    960 		 */
    961 		if (p->p_tracep) {
    962 			mutex_enter(&ktrace_lock);
    963 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
    964 				ktrderef(p);
    965 			mutex_exit(&ktrace_lock);
    966 		}
    967 #endif
    968 		if (attr->va_mode & S_ISUID)
    969 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
    970 		if (attr->va_mode & S_ISGID)
    971 			kauth_cred_setegid(l->l_cred, attr->va_gid);
    972 	} else {
    973 		if (kauth_cred_geteuid(l->l_cred) ==
    974 		    kauth_cred_getuid(l->l_cred) &&
    975 		    kauth_cred_getegid(l->l_cred) ==
    976 		    kauth_cred_getgid(l->l_cred))
    977 			p->p_flag &= ~PK_SUGID;
    978 	}
    979 
    980 	/*
    981 	 * Copy the credential so other references don't see our changes.
    982 	 * Test to see if this is necessary first, since in the common case
    983 	 * we won't need a private reference.
    984 	 */
    985 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
    986 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
    987 		l->l_cred = kauth_cred_copy(l->l_cred);
    988 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
    989 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
    990 	}
    991 
    992 	/* Update the master credentials. */
    993 	if (l->l_cred != p->p_cred) {
    994 		kauth_cred_t ocred;
    995 
    996 		kauth_cred_hold(l->l_cred);
    997 		mutex_enter(p->p_lock);
    998 		ocred = p->p_cred;
    999 		p->p_cred = l->l_cred;
   1000 		mutex_exit(p->p_lock);
   1001 		kauth_cred_free(ocred);
   1002 	}
   1003 
   1004 	return 0;
   1005 }
   1006 
   1007 static void
   1008 emulexec(struct lwp *l, struct exec_package *epp)
   1009 {
   1010 	struct proc		*p = l->l_proc;
   1011 
   1012 	/* The emulation root will usually have been found when we looked
   1013 	 * for the elf interpreter (or similar), if not look now. */
   1014 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1015 	    epp->ep_emul_root == NULL)
   1016 		emul_find_root(l, epp);
   1017 
   1018 	/* Any old emulation root got removed by fdcloseexec */
   1019 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1020 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1021 	rw_exit(&p->p_cwdi->cwdi_lock);
   1022 	epp->ep_emul_root = NULL;
   1023 	if (epp->ep_interp != NULL)
   1024 		vrele(epp->ep_interp);
   1025 
   1026 	/*
   1027 	 * Call emulation specific exec hook. This can setup per-process
   1028 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1029 	 *
   1030 	 * If we are executing process of different emulation than the
   1031 	 * original forked process, call e_proc_exit() of the old emulation
   1032 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1033 	 * same, the exec hook code should deallocate any old emulation
   1034 	 * resources held previously by this process.
   1035 	 */
   1036 	if (p->p_emul && p->p_emul->e_proc_exit
   1037 	    && p->p_emul != epp->ep_esch->es_emul)
   1038 		(*p->p_emul->e_proc_exit)(p);
   1039 
   1040 	/*
   1041 	 * This is now LWP 1.
   1042 	 */
   1043 	/* XXX elsewhere */
   1044 	mutex_enter(p->p_lock);
   1045 	p->p_nlwpid = 1;
   1046 	l->l_lid = 1;
   1047 	mutex_exit(p->p_lock);
   1048 
   1049 	/*
   1050 	 * Call exec hook. Emulation code may NOT store reference to anything
   1051 	 * from &pack.
   1052 	 */
   1053 	if (epp->ep_esch->es_emul->e_proc_exec)
   1054 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1055 
   1056 	/* update p_emul, the old value is no longer needed */
   1057 	p->p_emul = epp->ep_esch->es_emul;
   1058 
   1059 	/* ...and the same for p_execsw */
   1060 	p->p_execsw = epp->ep_esch;
   1061 
   1062 #ifdef __HAVE_SYSCALL_INTERN
   1063 	(*p->p_emul->e_syscall_intern)(p);
   1064 #endif
   1065 	ktremul();
   1066 }
   1067 
   1068 static int
   1069 execve_runproc(struct lwp *l, struct execve_data * restrict data,
   1070 	bool no_local_exec_lock, bool is_spawn)
   1071 {
   1072 	struct exec_package	* const epp = &data->ed_pack;
   1073 	int error = 0;
   1074 	struct proc		*p;
   1075 
   1076 	/*
   1077 	 * In case of a posix_spawn operation, the child doing the exec
   1078 	 * might not hold the reader lock on exec_lock, but the parent
   1079 	 * will do this instead.
   1080 	 */
   1081 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
   1082 	KASSERT(!no_local_exec_lock || is_spawn);
   1083 	KASSERT(data != NULL);
   1084 
   1085 	p = l->l_proc;
   1086 
   1087 	/* Get rid of other LWPs. */
   1088 	if (p->p_nlwps > 1) {
   1089 		mutex_enter(p->p_lock);
   1090 		exit_lwps(l);
   1091 		mutex_exit(p->p_lock);
   1092 	}
   1093 	KDASSERT(p->p_nlwps == 1);
   1094 
   1095 	/* Destroy any lwpctl info. */
   1096 	if (p->p_lwpctl != NULL)
   1097 		lwp_ctl_exit();
   1098 
   1099 	/* Remove POSIX timers */
   1100 	timers_free(p, TIMERS_POSIX);
   1101 
   1102 	/*
   1103 	 * Do whatever is necessary to prepare the address space
   1104 	 * for remapping.  Note that this might replace the current
   1105 	 * vmspace with another!
   1106 	 */
   1107 	if (is_spawn)
   1108 		uvmspace_spawn(l, epp->ep_vm_minaddr,
   1109 		    epp->ep_vm_maxaddr,
   1110 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1111 	else
   1112 		uvmspace_exec(l, epp->ep_vm_minaddr,
   1113 		    epp->ep_vm_maxaddr,
   1114 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1115 
   1116 	struct vmspace		*vm;
   1117 	vm = p->p_vmspace;
   1118 	vm->vm_taddr = (void *)epp->ep_taddr;
   1119 	vm->vm_tsize = btoc(epp->ep_tsize);
   1120 	vm->vm_daddr = (void*)epp->ep_daddr;
   1121 	vm->vm_dsize = btoc(epp->ep_dsize);
   1122 	vm->vm_ssize = btoc(epp->ep_ssize);
   1123 	vm->vm_issize = 0;
   1124 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
   1125 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
   1126 
   1127 #ifdef PAX_ASLR
   1128 	pax_aslr_init(l, vm);
   1129 #endif /* PAX_ASLR */
   1130 
   1131 	/* Now map address space. */
   1132 	error = execve_dovmcmds(l, data);
   1133 	if (error != 0)
   1134 		goto exec_abort;
   1135 
   1136 	pathexec(epp, p, data->ed_pathstring);
   1137 
   1138 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1139 
   1140 	error = copyoutargs(data, l, newstack);
   1141 	if (error != 0)
   1142 		goto exec_abort;
   1143 
   1144 	cwdexec(p);
   1145 	fd_closeexec();		/* handle close on exec */
   1146 
   1147 	if (__predict_false(ktrace_on))
   1148 		fd_ktrexecfd();
   1149 
   1150 	execsigs(p);		/* reset catched signals */
   1151 
   1152 	mutex_enter(p->p_lock);
   1153 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1154 	p->p_acflag &= ~AFORK;
   1155 	p->p_flag |= PK_EXEC;
   1156 	mutex_exit(p->p_lock);
   1157 
   1158 	/*
   1159 	 * Stop profiling.
   1160 	 */
   1161 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1162 		mutex_spin_enter(&p->p_stmutex);
   1163 		stopprofclock(p);
   1164 		mutex_spin_exit(&p->p_stmutex);
   1165 	}
   1166 
   1167 	/*
   1168 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1169 	 * exited and exec()/exit() are the only places it will be cleared.
   1170 	 */
   1171 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1172 #if 0
   1173 		lwp_t *lp;
   1174 
   1175 		mutex_enter(proc_lock);
   1176 		lp = p->p_vforklwp;
   1177 		p->p_vforklwp = NULL;
   1178 
   1179 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1180 		p->p_lflag &= ~PL_PPWAIT;
   1181 
   1182 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
   1183 		cv_broadcast(&lp->l_waitcv);
   1184 		mutex_exit(proc_lock);
   1185 #else
   1186 		mutex_enter(proc_lock);
   1187 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1188 		p->p_lflag &= ~PL_PPWAIT;
   1189 		cv_broadcast(&p->p_pptr->p_waitcv);
   1190 		mutex_exit(proc_lock);
   1191 #endif
   1192 	}
   1193 
   1194 	error = credexec(l, &data->ed_attr);
   1195 	if (error)
   1196 		goto exec_abort;
   1197 
   1198 #if defined(__HAVE_RAS)
   1199 	/*
   1200 	 * Remove all RASs from the address space.
   1201 	 */
   1202 	ras_purgeall();
   1203 #endif
   1204 
   1205 	doexechooks(p);
   1206 
   1207 	/*
   1208 	 * Set initial SP at the top of the stack.
   1209 	 *
   1210 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1211 	 * the end of arg/env strings.  Userland guesses the address of argc
   1212 	 * via ps_strings::ps_argvstr.
   1213 	 */
   1214 
   1215 	/* Setup new registers and do misc. setup. */
   1216 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
   1217 	if (epp->ep_esch->es_setregs)
   1218 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
   1219 
   1220 	/* Provide a consistent LWP private setting */
   1221 	(void)lwp_setprivate(l, NULL);
   1222 
   1223 	/* Discard all PCU state; need to start fresh */
   1224 	pcu_discard_all(l);
   1225 
   1226 	/* map the process's signal trampoline code */
   1227 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1228 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1229 		goto exec_abort;
   1230 	}
   1231 
   1232 	pool_put(&exec_pool, data->ed_argp);
   1233 
   1234 	/* notify others that we exec'd */
   1235 	KNOTE(&p->p_klist, NOTE_EXEC);
   1236 
   1237 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1238 
   1239 	SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0);
   1240 
   1241 	emulexec(l, epp);
   1242 
   1243 	/* Allow new references from the debugger/procfs. */
   1244 	rw_exit(&p->p_reflock);
   1245 	if (!no_local_exec_lock)
   1246 		rw_exit(&exec_lock);
   1247 
   1248 	mutex_enter(proc_lock);
   1249 
   1250 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
   1251 		ksiginfo_t ksi;
   1252 
   1253 		KSI_INIT_EMPTY(&ksi);
   1254 		ksi.ksi_signo = SIGTRAP;
   1255 		ksi.ksi_lid = l->l_lid;
   1256 		kpsignal(p, &ksi, NULL);
   1257 	}
   1258 
   1259 	if (p->p_sflag & PS_STOPEXEC) {
   1260 		ksiginfoq_t kq;
   1261 
   1262 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1263 		p->p_pptr->p_nstopchild++;
   1264 		p->p_pptr->p_waited = 0;
   1265 		mutex_enter(p->p_lock);
   1266 		ksiginfo_queue_init(&kq);
   1267 		sigclearall(p, &contsigmask, &kq);
   1268 		lwp_lock(l);
   1269 		l->l_stat = LSSTOP;
   1270 		p->p_stat = SSTOP;
   1271 		p->p_nrlwps--;
   1272 		lwp_unlock(l);
   1273 		mutex_exit(p->p_lock);
   1274 		mutex_exit(proc_lock);
   1275 		lwp_lock(l);
   1276 		mi_switch(l);
   1277 		ksiginfo_queue_drain(&kq);
   1278 		KERNEL_LOCK(l->l_biglocks, l);
   1279 	} else {
   1280 		mutex_exit(proc_lock);
   1281 	}
   1282 
   1283 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1284 	pathbuf_destroy(data->ed_pathbuf);
   1285 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1286 	DPRINTF(("%s finished\n", __func__));
   1287 	return EJUSTRETURN;
   1288 
   1289  exec_abort:
   1290 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
   1291 	rw_exit(&p->p_reflock);
   1292 	if (!no_local_exec_lock)
   1293 		rw_exit(&exec_lock);
   1294 
   1295 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1296 	pathbuf_destroy(data->ed_pathbuf);
   1297 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1298 
   1299 	/*
   1300 	 * the old process doesn't exist anymore.  exit gracefully.
   1301 	 * get rid of the (new) address space we have created, if any, get rid
   1302 	 * of our namei data and vnode, and exit noting failure
   1303 	 */
   1304 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1305 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1306 
   1307 	exec_free_emul_arg(epp);
   1308 	pool_put(&exec_pool, data->ed_argp);
   1309 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1310 	if (epp->ep_emul_root != NULL)
   1311 		vrele(epp->ep_emul_root);
   1312 	if (epp->ep_interp != NULL)
   1313 		vrele(epp->ep_interp);
   1314 
   1315 	/* Acquire the sched-state mutex (exit1() will release it). */
   1316 	if (!is_spawn) {
   1317 		mutex_enter(p->p_lock);
   1318 		exit1(l, W_EXITCODE(error, SIGABRT));
   1319 	}
   1320 
   1321 	return error;
   1322 }
   1323 
   1324 int
   1325 execve1(struct lwp *l, const char *path, char * const *args,
   1326     char * const *envs, execve_fetch_element_t fetch_element)
   1327 {
   1328 	struct execve_data data;
   1329 	int error;
   1330 
   1331 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
   1332 	if (error)
   1333 		return error;
   1334 	error = execve_runproc(l, &data, false, false);
   1335 	return error;
   1336 }
   1337 
   1338 static size_t
   1339 ptrsz(const struct exec_package *epp)
   1340 {
   1341 	return (epp->ep_flags & EXEC_32) ?  sizeof(int) : sizeof(char *);
   1342 }
   1343 
   1344 static size_t
   1345 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
   1346 {
   1347 	struct exec_package	* const epp = &data->ed_pack;
   1348 
   1349 	const size_t nargenvptrs =
   1350 	    1 +				/* long argc */
   1351 	    data->ed_argc +		/* char *argv[] */
   1352 	    1 +				/* \0 */
   1353 	    data->ed_envc +		/* char *env[] */
   1354 	    1 +				/* \0 */
   1355 	    epp->ep_esch->es_arglen;	/* auxinfo */
   1356 
   1357 	return (nargenvptrs * ptrsz(epp)) + argenvstrlen;
   1358 }
   1359 
   1360 static size_t
   1361 calcstack(struct execve_data * restrict data, const size_t gaplen)
   1362 {
   1363 	struct exec_package	* const epp = &data->ed_pack;
   1364 
   1365 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
   1366 	    epp->ep_esch->es_emul->e_sigcode;
   1367 
   1368 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
   1369 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
   1370 
   1371 	const size_t sigcode_psstr_sz =
   1372 	    data->ed_szsigcode +	/* sigcode */
   1373 	    data->ed_ps_strings_sz +	/* ps_strings */
   1374 	    STACK_PTHREADSPACE;		/* pthread space */
   1375 
   1376 	const size_t stacklen =
   1377 	    data->ed_argslen +
   1378 	    gaplen +
   1379 	    sigcode_psstr_sz;
   1380 
   1381 	/* make the stack "safely" aligned */
   1382 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
   1383 }
   1384 
   1385 static int
   1386 copyoutargs(struct execve_data * restrict data, struct lwp *l,
   1387     char * const newstack)
   1388 {
   1389 	struct exec_package	* const epp = &data->ed_pack;
   1390 	struct proc		*p = l->l_proc;
   1391 	int			error;
   1392 
   1393 	/* remember information about the process */
   1394 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1395 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1396 
   1397 	/*
   1398 	 * Allocate the stack address passed to the newly execve()'ed process.
   1399 	 *
   1400 	 * The new stack address will be set to the SP (stack pointer) register
   1401 	 * in setregs().
   1402 	 */
   1403 
   1404 	char *newargs = STACK_ALLOC(
   1405 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
   1406 
   1407 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1408 	    &data->ed_arginfo, &newargs, data->ed_argp);
   1409 
   1410 	if (epp->ep_path) {
   1411 		PNBUF_PUT(epp->ep_path);
   1412 		epp->ep_path = NULL;
   1413 	}
   1414 	if (error) {
   1415 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1416 		return error;
   1417 	}
   1418 
   1419 	error = copyoutpsstrs(data, p);
   1420 	if (error != 0)
   1421 		return error;
   1422 
   1423 	return 0;
   1424 }
   1425 
   1426 static int
   1427 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
   1428 {
   1429 	struct exec_package	* const epp = &data->ed_pack;
   1430 	struct ps_strings32	arginfo32;
   1431 	void			*aip;
   1432 	int			error;
   1433 
   1434 	/* fill process ps_strings info */
   1435 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
   1436 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1437 
   1438 	if (epp->ep_flags & EXEC_32) {
   1439 		aip = &arginfo32;
   1440 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1441 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1442 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1443 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1444 	} else
   1445 		aip = &data->ed_arginfo;
   1446 
   1447 	/* copy out the process's ps_strings structure */
   1448 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1449 	    != 0) {
   1450 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1451 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1452 		return error;
   1453 	}
   1454 
   1455 	return 0;
   1456 }
   1457 
   1458 static int
   1459 copyinargs(struct execve_data * restrict data, char * const *args,
   1460     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1461 {
   1462 	struct exec_package	* const epp = &data->ed_pack;
   1463 	char			*dp;
   1464 	size_t			i;
   1465 	int			error;
   1466 
   1467 	dp = *dpp;
   1468 
   1469 	data->ed_argc = 0;
   1470 
   1471 	/* copy the fake args list, if there's one, freeing it as we go */
   1472 	if (epp->ep_flags & EXEC_HASARGL) {
   1473 		struct exec_fakearg	*fa = epp->ep_fa;
   1474 
   1475 		while (fa->fa_arg != NULL) {
   1476 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1477 			size_t len;
   1478 
   1479 			len = strlcpy(dp, fa->fa_arg, maxlen);
   1480 			/* Count NUL into len. */
   1481 			if (len < maxlen)
   1482 				len++;
   1483 			else {
   1484 				while (fa->fa_arg != NULL) {
   1485 					kmem_free(fa->fa_arg, fa->fa_len);
   1486 					fa++;
   1487 				}
   1488 				kmem_free(epp->ep_fa, epp->ep_fa_len);
   1489 				epp->ep_flags &= ~EXEC_HASARGL;
   1490 				return E2BIG;
   1491 			}
   1492 			ktrexecarg(fa->fa_arg, len - 1);
   1493 			dp += len;
   1494 
   1495 			kmem_free(fa->fa_arg, fa->fa_len);
   1496 			fa++;
   1497 			data->ed_argc++;
   1498 		}
   1499 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1500 		epp->ep_flags &= ~EXEC_HASARGL;
   1501 	}
   1502 
   1503 	/*
   1504 	 * Read and count argument strings from user.
   1505 	 */
   1506 
   1507 	if (args == NULL) {
   1508 		DPRINTF(("%s: null args\n", __func__));
   1509 		return EINVAL;
   1510 	}
   1511 	if (epp->ep_flags & EXEC_SKIPARG)
   1512 		args = (const void *)((const char *)args + ptrsz(epp));
   1513 	i = 0;
   1514 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1515 	if (error != 0) {
   1516 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1517 		return error;
   1518 	}
   1519 	data->ed_argc += i;
   1520 
   1521 	/*
   1522 	 * Read and count environment strings from user.
   1523 	 */
   1524 
   1525 	data->ed_envc = 0;
   1526 	/* environment need not be there */
   1527 	if (envs == NULL)
   1528 		goto done;
   1529 	i = 0;
   1530 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1531 	if (error != 0) {
   1532 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1533 		return error;
   1534 	}
   1535 	data->ed_envc += i;
   1536 
   1537 done:
   1538 	*dpp = dp;
   1539 
   1540 	return 0;
   1541 }
   1542 
   1543 static int
   1544 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1545     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1546     void (*ktr)(const void *, size_t))
   1547 {
   1548 	char			*dp, *sp;
   1549 	size_t			i;
   1550 	int			error;
   1551 
   1552 	dp = *dpp;
   1553 
   1554 	i = 0;
   1555 	while (1) {
   1556 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1557 		size_t len;
   1558 
   1559 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1560 			return error;
   1561 		}
   1562 		if (!sp)
   1563 			break;
   1564 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1565 			if (error == ENAMETOOLONG)
   1566 				error = E2BIG;
   1567 			return error;
   1568 		}
   1569 		if (__predict_false(ktrace_on))
   1570 			(*ktr)(dp, len - 1);
   1571 		dp += len;
   1572 		i++;
   1573 	}
   1574 
   1575 	*dpp = dp;
   1576 	*ip = i;
   1577 
   1578 	return 0;
   1579 }
   1580 
   1581 /*
   1582  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1583  * Those strings are located just after auxinfo.
   1584  */
   1585 int
   1586 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1587     char **stackp, void *argp)
   1588 {
   1589 	char	**cpp, *dp, *sp;
   1590 	size_t	len;
   1591 	void	*nullp;
   1592 	long	argc, envc;
   1593 	int	error;
   1594 
   1595 	cpp = (char **)*stackp;
   1596 	nullp = NULL;
   1597 	argc = arginfo->ps_nargvstr;
   1598 	envc = arginfo->ps_nenvstr;
   1599 
   1600 	/* argc on stack is long */
   1601 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1602 
   1603 	dp = (char *)(cpp +
   1604 	    1 +				/* long argc */
   1605 	    argc +			/* char *argv[] */
   1606 	    1 +				/* \0 */
   1607 	    envc +			/* char *env[] */
   1608 	    1 +				/* \0 */
   1609 	    /* XXX auxinfo multiplied by ptr size? */
   1610 	    pack->ep_esch->es_arglen);	/* auxinfo */
   1611 	sp = argp;
   1612 
   1613 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1614 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1615 		return error;
   1616 	}
   1617 
   1618 	/* XXX don't copy them out, remap them! */
   1619 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1620 
   1621 	for (; --argc >= 0; sp += len, dp += len) {
   1622 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1623 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1624 			return error;
   1625 		}
   1626 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1627 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1628 			return error;
   1629 		}
   1630 	}
   1631 
   1632 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1633 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1634 		return error;
   1635 	}
   1636 
   1637 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1638 
   1639 	for (; --envc >= 0; sp += len, dp += len) {
   1640 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1641 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1642 			return error;
   1643 		}
   1644 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1645 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1646 			return error;
   1647 		}
   1648 
   1649 	}
   1650 
   1651 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1652 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1653 		return error;
   1654 	}
   1655 
   1656 	*stackp = (char *)cpp;
   1657 	return 0;
   1658 }
   1659 
   1660 
   1661 /*
   1662  * Add execsw[] entries.
   1663  */
   1664 int
   1665 exec_add(struct execsw *esp, int count)
   1666 {
   1667 	struct exec_entry	*it;
   1668 	int			i;
   1669 
   1670 	if (count == 0) {
   1671 		return 0;
   1672 	}
   1673 
   1674 	/* Check for duplicates. */
   1675 	rw_enter(&exec_lock, RW_WRITER);
   1676 	for (i = 0; i < count; i++) {
   1677 		LIST_FOREACH(it, &ex_head, ex_list) {
   1678 			/* assume unique (makecmds, probe_func, emulation) */
   1679 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1680 			    it->ex_sw->u.elf_probe_func ==
   1681 			    esp[i].u.elf_probe_func &&
   1682 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1683 				rw_exit(&exec_lock);
   1684 				return EEXIST;
   1685 			}
   1686 		}
   1687 	}
   1688 
   1689 	/* Allocate new entries. */
   1690 	for (i = 0; i < count; i++) {
   1691 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1692 		it->ex_sw = &esp[i];
   1693 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1694 	}
   1695 
   1696 	/* update execsw[] */
   1697 	exec_init(0);
   1698 	rw_exit(&exec_lock);
   1699 	return 0;
   1700 }
   1701 
   1702 /*
   1703  * Remove execsw[] entry.
   1704  */
   1705 int
   1706 exec_remove(struct execsw *esp, int count)
   1707 {
   1708 	struct exec_entry	*it, *next;
   1709 	int			i;
   1710 	const struct proclist_desc *pd;
   1711 	proc_t			*p;
   1712 
   1713 	if (count == 0) {
   1714 		return 0;
   1715 	}
   1716 
   1717 	/* Abort if any are busy. */
   1718 	rw_enter(&exec_lock, RW_WRITER);
   1719 	for (i = 0; i < count; i++) {
   1720 		mutex_enter(proc_lock);
   1721 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1722 			PROCLIST_FOREACH(p, pd->pd_list) {
   1723 				if (p->p_execsw == &esp[i]) {
   1724 					mutex_exit(proc_lock);
   1725 					rw_exit(&exec_lock);
   1726 					return EBUSY;
   1727 				}
   1728 			}
   1729 		}
   1730 		mutex_exit(proc_lock);
   1731 	}
   1732 
   1733 	/* None are busy, so remove them all. */
   1734 	for (i = 0; i < count; i++) {
   1735 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1736 			next = LIST_NEXT(it, ex_list);
   1737 			if (it->ex_sw == &esp[i]) {
   1738 				LIST_REMOVE(it, ex_list);
   1739 				kmem_free(it, sizeof(*it));
   1740 				break;
   1741 			}
   1742 		}
   1743 	}
   1744 
   1745 	/* update execsw[] */
   1746 	exec_init(0);
   1747 	rw_exit(&exec_lock);
   1748 	return 0;
   1749 }
   1750 
   1751 /*
   1752  * Initialize exec structures. If init_boot is true, also does necessary
   1753  * one-time initialization (it's called from main() that way).
   1754  * Once system is multiuser, this should be called with exec_lock held,
   1755  * i.e. via exec_{add|remove}().
   1756  */
   1757 int
   1758 exec_init(int init_boot)
   1759 {
   1760 	const struct execsw 	**sw;
   1761 	struct exec_entry	*ex;
   1762 	SLIST_HEAD(,exec_entry)	first;
   1763 	SLIST_HEAD(,exec_entry)	any;
   1764 	SLIST_HEAD(,exec_entry)	last;
   1765 	int			i, sz;
   1766 
   1767 	if (init_boot) {
   1768 		/* do one-time initializations */
   1769 		rw_init(&exec_lock);
   1770 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1771 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1772 		    "execargs", &exec_palloc, IPL_NONE);
   1773 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1774 	} else {
   1775 		KASSERT(rw_write_held(&exec_lock));
   1776 	}
   1777 
   1778 	/* Sort each entry onto the appropriate queue. */
   1779 	SLIST_INIT(&first);
   1780 	SLIST_INIT(&any);
   1781 	SLIST_INIT(&last);
   1782 	sz = 0;
   1783 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1784 		switch(ex->ex_sw->es_prio) {
   1785 		case EXECSW_PRIO_FIRST:
   1786 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1787 			break;
   1788 		case EXECSW_PRIO_ANY:
   1789 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1790 			break;
   1791 		case EXECSW_PRIO_LAST:
   1792 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1793 			break;
   1794 		default:
   1795 			panic("%s", __func__);
   1796 			break;
   1797 		}
   1798 		sz++;
   1799 	}
   1800 
   1801 	/*
   1802 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1803 	 * allocation.
   1804 	 */
   1805 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1806 	i = 0;
   1807 	SLIST_FOREACH(ex, &first, ex_slist) {
   1808 		sw[i++] = ex->ex_sw;
   1809 	}
   1810 	SLIST_FOREACH(ex, &any, ex_slist) {
   1811 		sw[i++] = ex->ex_sw;
   1812 	}
   1813 	SLIST_FOREACH(ex, &last, ex_slist) {
   1814 		sw[i++] = ex->ex_sw;
   1815 	}
   1816 
   1817 	/* Replace old execsw[] and free used memory. */
   1818 	if (execsw != NULL) {
   1819 		kmem_free(__UNCONST(execsw),
   1820 		    nexecs * sizeof(struct execsw *) + 1);
   1821 	}
   1822 	execsw = sw;
   1823 	nexecs = sz;
   1824 
   1825 	/* Figure out the maximum size of an exec header. */
   1826 	exec_maxhdrsz = sizeof(int);
   1827 	for (i = 0; i < nexecs; i++) {
   1828 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1829 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1830 	}
   1831 
   1832 	return 0;
   1833 }
   1834 
   1835 static int
   1836 exec_sigcode_map(struct proc *p, const struct emul *e)
   1837 {
   1838 	vaddr_t va;
   1839 	vsize_t sz;
   1840 	int error;
   1841 	struct uvm_object *uobj;
   1842 
   1843 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1844 
   1845 	if (e->e_sigobject == NULL || sz == 0) {
   1846 		return 0;
   1847 	}
   1848 
   1849 	/*
   1850 	 * If we don't have a sigobject for this emulation, create one.
   1851 	 *
   1852 	 * sigobject is an anonymous memory object (just like SYSV shared
   1853 	 * memory) that we keep a permanent reference to and that we map
   1854 	 * in all processes that need this sigcode. The creation is simple,
   1855 	 * we create an object, add a permanent reference to it, map it in
   1856 	 * kernel space, copy out the sigcode to it and unmap it.
   1857 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1858 	 * the way sys_mmap() would map it.
   1859 	 */
   1860 
   1861 	uobj = *e->e_sigobject;
   1862 	if (uobj == NULL) {
   1863 		mutex_enter(&sigobject_lock);
   1864 		if ((uobj = *e->e_sigobject) == NULL) {
   1865 			uobj = uao_create(sz, 0);
   1866 			(*uobj->pgops->pgo_reference)(uobj);
   1867 			va = vm_map_min(kernel_map);
   1868 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1869 			    uobj, 0, 0,
   1870 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1871 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1872 				printf("kernel mapping failed %d\n", error);
   1873 				(*uobj->pgops->pgo_detach)(uobj);
   1874 				mutex_exit(&sigobject_lock);
   1875 				return error;
   1876 			}
   1877 			memcpy((void *)va, e->e_sigcode, sz);
   1878 #ifdef PMAP_NEED_PROCWR
   1879 			pmap_procwr(&proc0, va, sz);
   1880 #endif
   1881 			uvm_unmap(kernel_map, va, va + round_page(sz));
   1882 			*e->e_sigobject = uobj;
   1883 		}
   1884 		mutex_exit(&sigobject_lock);
   1885 	}
   1886 
   1887 	/* Just a hint to uvm_map where to put it. */
   1888 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   1889 	    round_page(sz));
   1890 
   1891 #ifdef __alpha__
   1892 	/*
   1893 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   1894 	 * which causes the above calculation to put the sigcode at
   1895 	 * an invalid address.  Put it just below the text instead.
   1896 	 */
   1897 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   1898 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   1899 	}
   1900 #endif
   1901 
   1902 	(*uobj->pgops->pgo_reference)(uobj);
   1903 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   1904 			uobj, 0, 0,
   1905 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   1906 				    UVM_ADV_RANDOM, 0));
   1907 	if (error) {
   1908 		DPRINTF(("%s, %d: map %p "
   1909 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   1910 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   1911 		    va, error));
   1912 		(*uobj->pgops->pgo_detach)(uobj);
   1913 		return error;
   1914 	}
   1915 	p->p_sigctx.ps_sigcode = (void *)va;
   1916 	return 0;
   1917 }
   1918 
   1919 /*
   1920  * Release a refcount on spawn_exec_data and destroy memory, if this
   1921  * was the last one.
   1922  */
   1923 static void
   1924 spawn_exec_data_release(struct spawn_exec_data *data)
   1925 {
   1926 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   1927 		return;
   1928 
   1929 	cv_destroy(&data->sed_cv_child_ready);
   1930 	mutex_destroy(&data->sed_mtx_child);
   1931 
   1932 	if (data->sed_actions)
   1933 		posix_spawn_fa_free(data->sed_actions,
   1934 		    data->sed_actions->len);
   1935 	if (data->sed_attrs)
   1936 		kmem_free(data->sed_attrs,
   1937 		    sizeof(*data->sed_attrs));
   1938 	kmem_free(data, sizeof(*data));
   1939 }
   1940 
   1941 /*
   1942  * A child lwp of a posix_spawn operation starts here and ends up in
   1943  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   1944  * manipulations in between.
   1945  * The parent waits for the child, as it is not clear whether the child
   1946  * will be able to acquire its own exec_lock. If it can, the parent can
   1947  * be released early and continue running in parallel. If not (or if the
   1948  * magic debug flag is passed in the scheduler attribute struct), the
   1949  * child rides on the parent's exec lock until it is ready to return to
   1950  * to userland - and only then releases the parent. This method loses
   1951  * concurrency, but improves error reporting.
   1952  */
   1953 static void
   1954 spawn_return(void *arg)
   1955 {
   1956 	struct spawn_exec_data *spawn_data = arg;
   1957 	struct lwp *l = curlwp;
   1958 	int error, newfd;
   1959 	size_t i;
   1960 	const struct posix_spawn_file_actions_entry *fae;
   1961 	pid_t ppid;
   1962 	register_t retval;
   1963 	bool have_reflock;
   1964 	bool parent_is_waiting = true;
   1965 
   1966 	/*
   1967 	 * Check if we can release parent early.
   1968 	 * We either need to have no sed_attrs, or sed_attrs does not
   1969 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   1970 	 * safe access to the parent proc (passed in sed_parent).
   1971 	 * We then try to get the exec_lock, and only if that works, we can
   1972 	 * release the parent here already.
   1973 	 */
   1974 	ppid = spawn_data->sed_parent->p_pid;
   1975 	if ((!spawn_data->sed_attrs
   1976 	    || (spawn_data->sed_attrs->sa_flags
   1977 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   1978 	    && rw_tryenter(&exec_lock, RW_READER)) {
   1979 		parent_is_waiting = false;
   1980 		mutex_enter(&spawn_data->sed_mtx_child);
   1981 		cv_signal(&spawn_data->sed_cv_child_ready);
   1982 		mutex_exit(&spawn_data->sed_mtx_child);
   1983 	}
   1984 
   1985 	/* don't allow debugger access yet */
   1986 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
   1987 	have_reflock = true;
   1988 
   1989 	error = 0;
   1990 	/* handle posix_spawn_file_actions */
   1991 	if (spawn_data->sed_actions != NULL) {
   1992 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   1993 			fae = &spawn_data->sed_actions->fae[i];
   1994 			switch (fae->fae_action) {
   1995 			case FAE_OPEN:
   1996 				if (fd_getfile(fae->fae_fildes) != NULL) {
   1997 					error = fd_close(fae->fae_fildes);
   1998 					if (error)
   1999 						break;
   2000 				}
   2001 				error = fd_open(fae->fae_path, fae->fae_oflag,
   2002 				    fae->fae_mode, &newfd);
   2003 				if (error)
   2004 					break;
   2005 				if (newfd != fae->fae_fildes) {
   2006 					error = dodup(l, newfd,
   2007 					    fae->fae_fildes, 0, &retval);
   2008 					if (fd_getfile(newfd) != NULL)
   2009 						fd_close(newfd);
   2010 				}
   2011 				break;
   2012 			case FAE_DUP2:
   2013 				error = dodup(l, fae->fae_fildes,
   2014 				    fae->fae_newfildes, 0, &retval);
   2015 				break;
   2016 			case FAE_CLOSE:
   2017 				if (fd_getfile(fae->fae_fildes) == NULL) {
   2018 					error = EBADF;
   2019 					break;
   2020 				}
   2021 				error = fd_close(fae->fae_fildes);
   2022 				break;
   2023 			}
   2024 			if (error)
   2025 				goto report_error;
   2026 		}
   2027 	}
   2028 
   2029 	/* handle posix_spawnattr */
   2030 	if (spawn_data->sed_attrs != NULL) {
   2031 		int ostat;
   2032 		struct sigaction sigact;
   2033 		sigact._sa_u._sa_handler = SIG_DFL;
   2034 		sigact.sa_flags = 0;
   2035 
   2036 		/*
   2037 		 * set state to SSTOP so that this proc can be found by pid.
   2038 		 * see proc_enterprp, do_sched_setparam below
   2039 		 */
   2040 		ostat = l->l_proc->p_stat;
   2041 		l->l_proc->p_stat = SSTOP;
   2042 
   2043 		/* Set process group */
   2044 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   2045 			pid_t mypid = l->l_proc->p_pid,
   2046 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   2047 
   2048 			if (pgrp == 0)
   2049 				pgrp = mypid;
   2050 
   2051 			error = proc_enterpgrp(spawn_data->sed_parent,
   2052 			    mypid, pgrp, false);
   2053 			if (error)
   2054 				goto report_error;
   2055 		}
   2056 
   2057 		/* Set scheduler policy */
   2058 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2059 			error = do_sched_setparam(l->l_proc->p_pid, 0,
   2060 			    spawn_data->sed_attrs->sa_schedpolicy,
   2061 			    &spawn_data->sed_attrs->sa_schedparam);
   2062 		else if (spawn_data->sed_attrs->sa_flags
   2063 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   2064 			error = do_sched_setparam(ppid, 0,
   2065 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   2066 		}
   2067 		if (error)
   2068 			goto report_error;
   2069 
   2070 		/* Reset user ID's */
   2071 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2072 			error = do_setresuid(l, -1,
   2073 			     kauth_cred_getgid(l->l_cred), -1,
   2074 			     ID_E_EQ_R | ID_E_EQ_S);
   2075 			if (error)
   2076 				goto report_error;
   2077 			error = do_setresuid(l, -1,
   2078 			    kauth_cred_getuid(l->l_cred), -1,
   2079 			    ID_E_EQ_R | ID_E_EQ_S);
   2080 			if (error)
   2081 				goto report_error;
   2082 		}
   2083 
   2084 		/* Set signal masks/defaults */
   2085 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2086 			mutex_enter(l->l_proc->p_lock);
   2087 			error = sigprocmask1(l, SIG_SETMASK,
   2088 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   2089 			mutex_exit(l->l_proc->p_lock);
   2090 			if (error)
   2091 				goto report_error;
   2092 		}
   2093 
   2094 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2095 			/*
   2096 			 * The following sigaction call is using a sigaction
   2097 			 * version 0 trampoline which is in the compatibility
   2098 			 * code only. This is not a problem because for SIG_DFL
   2099 			 * and SIG_IGN, the trampolines are now ignored. If they
   2100 			 * were not, this would be a problem because we are
   2101 			 * holding the exec_lock, and the compat code needs
   2102 			 * to do the same in order to replace the trampoline
   2103 			 * code of the process.
   2104 			 */
   2105 			for (i = 1; i <= NSIG; i++) {
   2106 				if (sigismember(
   2107 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   2108 					sigaction1(l, i, &sigact, NULL, NULL,
   2109 					    0);
   2110 			}
   2111 		}
   2112 		l->l_proc->p_stat = ostat;
   2113 	}
   2114 
   2115 	/* now do the real exec */
   2116 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2117 	    true);
   2118 	have_reflock = false;
   2119 	if (error == EJUSTRETURN)
   2120 		error = 0;
   2121 	else if (error)
   2122 		goto report_error;
   2123 
   2124 	if (parent_is_waiting) {
   2125 		mutex_enter(&spawn_data->sed_mtx_child);
   2126 		cv_signal(&spawn_data->sed_cv_child_ready);
   2127 		mutex_exit(&spawn_data->sed_mtx_child);
   2128 	}
   2129 
   2130 	/* release our refcount on the data */
   2131 	spawn_exec_data_release(spawn_data);
   2132 
   2133 	/* and finally: leave to userland for the first time */
   2134 	cpu_spawn_return(l);
   2135 
   2136 	/* NOTREACHED */
   2137 	return;
   2138 
   2139  report_error:
   2140 	if (have_reflock) {
   2141 		/*
   2142 		 * We have not passed through execve_runproc(),
   2143 		 * which would have released the p_reflock and also
   2144 		 * taken ownership of the sed_exec part of spawn_data,
   2145 		 * so release/free both here.
   2146 		 */
   2147 		rw_exit(&l->l_proc->p_reflock);
   2148 		execve_free_data(&spawn_data->sed_exec);
   2149 	}
   2150 
   2151 	if (parent_is_waiting) {
   2152 		/* pass error to parent */
   2153 		mutex_enter(&spawn_data->sed_mtx_child);
   2154 		spawn_data->sed_error = error;
   2155 		cv_signal(&spawn_data->sed_cv_child_ready);
   2156 		mutex_exit(&spawn_data->sed_mtx_child);
   2157 	} else {
   2158 		rw_exit(&exec_lock);
   2159 	}
   2160 
   2161 	/* release our refcount on the data */
   2162 	spawn_exec_data_release(spawn_data);
   2163 
   2164 	/* done, exit */
   2165 	mutex_enter(l->l_proc->p_lock);
   2166 	/*
   2167 	 * Posix explicitly asks for an exit code of 127 if we report
   2168 	 * errors from the child process - so, unfortunately, there
   2169 	 * is no way to report a more exact error code.
   2170 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2171 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2172 	 */
   2173 	exit1(l, W_EXITCODE(127, 0));
   2174 }
   2175 
   2176 void
   2177 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2178 {
   2179 
   2180 	for (size_t i = 0; i < len; i++) {
   2181 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2182 		if (fae->fae_action != FAE_OPEN)
   2183 			continue;
   2184 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
   2185 	}
   2186 	if (fa->len > 0)
   2187 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2188 	kmem_free(fa, sizeof(*fa));
   2189 }
   2190 
   2191 static int
   2192 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2193     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2194 {
   2195 	struct posix_spawn_file_actions *fa;
   2196 	struct posix_spawn_file_actions_entry *fae;
   2197 	char *pbuf = NULL;
   2198 	int error;
   2199 	size_t i = 0;
   2200 
   2201 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2202 	error = copyin(ufa, fa, sizeof(*fa));
   2203 	if (error || fa->len == 0) {
   2204 		kmem_free(fa, sizeof(*fa));
   2205 		return error;	/* 0 if not an error, and len == 0 */
   2206 	}
   2207 
   2208 	if (fa->len > lim) {
   2209 		kmem_free(fa, sizeof(*fa));
   2210 		return EINVAL;
   2211 	}
   2212 
   2213 	fa->size = fa->len;
   2214 	size_t fal = fa->len * sizeof(*fae);
   2215 	fae = fa->fae;
   2216 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2217 	error = copyin(fae, fa->fae, fal);
   2218 	if (error)
   2219 		goto out;
   2220 
   2221 	pbuf = PNBUF_GET();
   2222 	for (; i < fa->len; i++) {
   2223 		fae = &fa->fae[i];
   2224 		if (fae->fae_action != FAE_OPEN)
   2225 			continue;
   2226 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2227 		if (error)
   2228 			goto out;
   2229 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2230 		memcpy(fae->fae_path, pbuf, fal);
   2231 	}
   2232 	PNBUF_PUT(pbuf);
   2233 
   2234 	*fap = fa;
   2235 	return 0;
   2236 out:
   2237 	if (pbuf)
   2238 		PNBUF_PUT(pbuf);
   2239 	posix_spawn_fa_free(fa, i);
   2240 	return error;
   2241 }
   2242 
   2243 int
   2244 check_posix_spawn(struct lwp *l1)
   2245 {
   2246 	int error, tnprocs, count;
   2247 	uid_t uid;
   2248 	struct proc *p1;
   2249 
   2250 	p1 = l1->l_proc;
   2251 	uid = kauth_cred_getuid(l1->l_cred);
   2252 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2253 
   2254 	/*
   2255 	 * Although process entries are dynamically created, we still keep
   2256 	 * a global limit on the maximum number we will create.
   2257 	 */
   2258 	if (__predict_false(tnprocs >= maxproc))
   2259 		error = -1;
   2260 	else
   2261 		error = kauth_authorize_process(l1->l_cred,
   2262 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2263 
   2264 	if (error) {
   2265 		atomic_dec_uint(&nprocs);
   2266 		return EAGAIN;
   2267 	}
   2268 
   2269 	/*
   2270 	 * Enforce limits.
   2271 	 */
   2272 	count = chgproccnt(uid, 1);
   2273 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2274 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2275 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2276 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2277 		(void)chgproccnt(uid, -1);
   2278 		atomic_dec_uint(&nprocs);
   2279 		return EAGAIN;
   2280 	}
   2281 
   2282 	return 0;
   2283 }
   2284 
   2285 int
   2286 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2287 	struct posix_spawn_file_actions *fa,
   2288 	struct posix_spawnattr *sa,
   2289 	char *const *argv, char *const *envp,
   2290 	execve_fetch_element_t fetch)
   2291 {
   2292 
   2293 	struct proc *p1, *p2;
   2294 	struct lwp *l2;
   2295 	int error;
   2296 	struct spawn_exec_data *spawn_data;
   2297 	vaddr_t uaddr;
   2298 	pid_t pid;
   2299 	bool have_exec_lock = false;
   2300 
   2301 	p1 = l1->l_proc;
   2302 
   2303 	/* Allocate and init spawn_data */
   2304 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2305 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2306 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2307 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2308 	mutex_enter(&spawn_data->sed_mtx_child);
   2309 
   2310 	/*
   2311 	 * Do the first part of the exec now, collect state
   2312 	 * in spawn_data.
   2313 	 */
   2314 	error = execve_loadvm(l1, path, argv,
   2315 	    envp, fetch, &spawn_data->sed_exec);
   2316 	if (error == EJUSTRETURN)
   2317 		error = 0;
   2318 	else if (error)
   2319 		goto error_exit;
   2320 
   2321 	have_exec_lock = true;
   2322 
   2323 	/*
   2324 	 * Allocate virtual address space for the U-area now, while it
   2325 	 * is still easy to abort the fork operation if we're out of
   2326 	 * kernel virtual address space.
   2327 	 */
   2328 	uaddr = uvm_uarea_alloc();
   2329 	if (__predict_false(uaddr == 0)) {
   2330 		error = ENOMEM;
   2331 		goto error_exit;
   2332 	}
   2333 
   2334 	/*
   2335 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2336 	 * replace it with its own before returning to userland
   2337 	 * in the child.
   2338 	 * This is a point of no return, we will have to go through
   2339 	 * the child proc to properly clean it up past this point.
   2340 	 */
   2341 	p2 = proc_alloc();
   2342 	pid = p2->p_pid;
   2343 
   2344 	/*
   2345 	 * Make a proc table entry for the new process.
   2346 	 * Start by zeroing the section of proc that is zero-initialized,
   2347 	 * then copy the section that is copied directly from the parent.
   2348 	 */
   2349 	memset(&p2->p_startzero, 0,
   2350 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2351 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2352 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2353 	p2->p_vmspace = proc0.p_vmspace;
   2354 
   2355 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2356 
   2357 	LIST_INIT(&p2->p_lwps);
   2358 	LIST_INIT(&p2->p_sigwaiters);
   2359 
   2360 	/*
   2361 	 * Duplicate sub-structures as needed.
   2362 	 * Increase reference counts on shared objects.
   2363 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2364 	 * handling are important in order to keep a consistent behaviour
   2365 	 * for the child after the fork.  If we are a 32-bit process, the
   2366 	 * child will be too.
   2367 	 */
   2368 	p2->p_flag =
   2369 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2370 	p2->p_emul = p1->p_emul;
   2371 	p2->p_execsw = p1->p_execsw;
   2372 
   2373 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2374 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2375 	rw_init(&p2->p_reflock);
   2376 	cv_init(&p2->p_waitcv, "wait");
   2377 	cv_init(&p2->p_lwpcv, "lwpwait");
   2378 
   2379 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2380 
   2381 	kauth_proc_fork(p1, p2);
   2382 
   2383 	p2->p_raslist = NULL;
   2384 	p2->p_fd = fd_copy();
   2385 
   2386 	/* XXX racy */
   2387 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2388 
   2389 	p2->p_cwdi = cwdinit();
   2390 
   2391 	/*
   2392 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2393 	 * we just need increase pl_refcnt.
   2394 	 */
   2395 	if (!p1->p_limit->pl_writeable) {
   2396 		lim_addref(p1->p_limit);
   2397 		p2->p_limit = p1->p_limit;
   2398 	} else {
   2399 		p2->p_limit = lim_copy(p1->p_limit);
   2400 	}
   2401 
   2402 	p2->p_lflag = 0;
   2403 	p2->p_sflag = 0;
   2404 	p2->p_slflag = 0;
   2405 	p2->p_pptr = p1;
   2406 	p2->p_ppid = p1->p_pid;
   2407 	LIST_INIT(&p2->p_children);
   2408 
   2409 	p2->p_aio = NULL;
   2410 
   2411 #ifdef KTRACE
   2412 	/*
   2413 	 * Copy traceflag and tracefile if enabled.
   2414 	 * If not inherited, these were zeroed above.
   2415 	 */
   2416 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2417 		mutex_enter(&ktrace_lock);
   2418 		p2->p_traceflag = p1->p_traceflag;
   2419 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2420 			ktradref(p2);
   2421 		mutex_exit(&ktrace_lock);
   2422 	}
   2423 #endif
   2424 
   2425 	/*
   2426 	 * Create signal actions for the child process.
   2427 	 */
   2428 	p2->p_sigacts = sigactsinit(p1, 0);
   2429 	mutex_enter(p1->p_lock);
   2430 	p2->p_sflag |=
   2431 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2432 	sched_proc_fork(p1, p2);
   2433 	mutex_exit(p1->p_lock);
   2434 
   2435 	p2->p_stflag = p1->p_stflag;
   2436 
   2437 	/*
   2438 	 * p_stats.
   2439 	 * Copy parts of p_stats, and zero out the rest.
   2440 	 */
   2441 	p2->p_stats = pstatscopy(p1->p_stats);
   2442 
   2443 	/* copy over machdep flags to the new proc */
   2444 	cpu_proc_fork(p1, p2);
   2445 
   2446 	/*
   2447 	 * Prepare remaining parts of spawn data
   2448 	 */
   2449 	spawn_data->sed_actions = fa;
   2450 	spawn_data->sed_attrs = sa;
   2451 
   2452 	spawn_data->sed_parent = p1;
   2453 
   2454 	/* create LWP */
   2455 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2456 	    &l2, l1->l_class);
   2457 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2458 
   2459 	/*
   2460 	 * Copy the credential so other references don't see our changes.
   2461 	 * Test to see if this is necessary first, since in the common case
   2462 	 * we won't need a private reference.
   2463 	 */
   2464 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2465 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2466 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2467 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2468 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2469 	}
   2470 
   2471 	/* Update the master credentials. */
   2472 	if (l2->l_cred != p2->p_cred) {
   2473 		kauth_cred_t ocred;
   2474 
   2475 		kauth_cred_hold(l2->l_cred);
   2476 		mutex_enter(p2->p_lock);
   2477 		ocred = p2->p_cred;
   2478 		p2->p_cred = l2->l_cred;
   2479 		mutex_exit(p2->p_lock);
   2480 		kauth_cred_free(ocred);
   2481 	}
   2482 
   2483 	*child_ok = true;
   2484 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2485 #if 0
   2486 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2487 #endif
   2488 
   2489 	/*
   2490 	 * It's now safe for the scheduler and other processes to see the
   2491 	 * child process.
   2492 	 */
   2493 	mutex_enter(proc_lock);
   2494 
   2495 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2496 		p2->p_lflag |= PL_CONTROLT;
   2497 
   2498 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2499 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2500 
   2501 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2502 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2503 
   2504 	p2->p_trace_enabled = trace_is_enabled(p2);
   2505 #ifdef __HAVE_SYSCALL_INTERN
   2506 	(*p2->p_emul->e_syscall_intern)(p2);
   2507 #endif
   2508 
   2509 	/*
   2510 	 * Make child runnable, set start time, and add to run queue except
   2511 	 * if the parent requested the child to start in SSTOP state.
   2512 	 */
   2513 	mutex_enter(p2->p_lock);
   2514 
   2515 	getmicrotime(&p2->p_stats->p_start);
   2516 
   2517 	lwp_lock(l2);
   2518 	KASSERT(p2->p_nrlwps == 1);
   2519 	p2->p_nrlwps = 1;
   2520 	p2->p_stat = SACTIVE;
   2521 	l2->l_stat = LSRUN;
   2522 	sched_enqueue(l2, false);
   2523 	lwp_unlock(l2);
   2524 
   2525 	mutex_exit(p2->p_lock);
   2526 	mutex_exit(proc_lock);
   2527 
   2528 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2529 	error = spawn_data->sed_error;
   2530 	mutex_exit(&spawn_data->sed_mtx_child);
   2531 	spawn_exec_data_release(spawn_data);
   2532 
   2533 	rw_exit(&p1->p_reflock);
   2534 	rw_exit(&exec_lock);
   2535 	have_exec_lock = false;
   2536 
   2537 	*pid_res = pid;
   2538 	return error;
   2539 
   2540  error_exit:
   2541 	if (have_exec_lock) {
   2542 		execve_free_data(&spawn_data->sed_exec);
   2543 		rw_exit(&p1->p_reflock);
   2544 		rw_exit(&exec_lock);
   2545 	}
   2546 	mutex_exit(&spawn_data->sed_mtx_child);
   2547 	spawn_exec_data_release(spawn_data);
   2548 
   2549 	return error;
   2550 }
   2551 
   2552 int
   2553 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2554     register_t *retval)
   2555 {
   2556 	/* {
   2557 		syscallarg(pid_t *) pid;
   2558 		syscallarg(const char *) path;
   2559 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2560 		syscallarg(const struct posix_spawnattr *) attrp;
   2561 		syscallarg(char *const *) argv;
   2562 		syscallarg(char *const *) envp;
   2563 	} */
   2564 
   2565 	int error;
   2566 	struct posix_spawn_file_actions *fa = NULL;
   2567 	struct posix_spawnattr *sa = NULL;
   2568 	pid_t pid;
   2569 	bool child_ok = false;
   2570 	rlim_t max_fileactions;
   2571 	proc_t *p = l1->l_proc;
   2572 
   2573 	error = check_posix_spawn(l1);
   2574 	if (error) {
   2575 		*retval = error;
   2576 		return 0;
   2577 	}
   2578 
   2579 	/* copy in file_actions struct */
   2580 	if (SCARG(uap, file_actions) != NULL) {
   2581 		max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2582 		    maxfiles);
   2583 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2584 		    max_fileactions);
   2585 		if (error)
   2586 			goto error_exit;
   2587 	}
   2588 
   2589 	/* copyin posix_spawnattr struct */
   2590 	if (SCARG(uap, attrp) != NULL) {
   2591 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2592 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2593 		if (error)
   2594 			goto error_exit;
   2595 	}
   2596 
   2597 	/*
   2598 	 * Do the spawn
   2599 	 */
   2600 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2601 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2602 	if (error)
   2603 		goto error_exit;
   2604 
   2605 	if (error == 0 && SCARG(uap, pid) != NULL)
   2606 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2607 
   2608 	*retval = error;
   2609 	return 0;
   2610 
   2611  error_exit:
   2612 	if (!child_ok) {
   2613 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2614 		atomic_dec_uint(&nprocs);
   2615 
   2616 		if (sa)
   2617 			kmem_free(sa, sizeof(*sa));
   2618 		if (fa)
   2619 			posix_spawn_fa_free(fa, fa->len);
   2620 	}
   2621 
   2622 	*retval = error;
   2623 	return 0;
   2624 }
   2625 
   2626 void
   2627 exec_free_emul_arg(struct exec_package *epp)
   2628 {
   2629 	if (epp->ep_emul_arg_free != NULL) {
   2630 		KASSERT(epp->ep_emul_arg != NULL);
   2631 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2632 		epp->ep_emul_arg_free = NULL;
   2633 		epp->ep_emul_arg = NULL;
   2634 	} else {
   2635 		KASSERT(epp->ep_emul_arg == NULL);
   2636 	}
   2637 }
   2638 
   2639 #ifdef DEBUG_EXEC
   2640 static void
   2641 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2642 {
   2643 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2644 	size_t j;
   2645 
   2646 	if (error == 0)
   2647 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2648 	else
   2649 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2650 		    epp->ep_vmcmds.evs_used, error));
   2651 
   2652 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2653 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2654 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2655 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2656 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2657 		    "pagedvn" :
   2658 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2659 		    "readvn" :
   2660 		    vp[j].ev_proc == vmcmd_map_zero ?
   2661 		    "zero" : "*unknown*",
   2662 		    vp[j].ev_addr, vp[j].ev_len,
   2663 		    vp[j].ev_offset, vp[j].ev_prot,
   2664 		    vp[j].ev_flags));
   2665 		if (error != 0 && j == x)
   2666 			DPRINTF(("     ^--- failed\n"));
   2667 	}
   2668 }
   2669 #endif
   2670