kern_exec.c revision 1.417 1 /* $NetBSD: kern_exec.c,v 1.417 2015/09/26 16:12:24 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.417 2015/09/26 16:12:24 maxv Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108
109 #include <uvm/uvm_extern.h>
110
111 #include <machine/reg.h>
112
113 #include <compat/common/compat_util.h>
114
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USE_TOPDOWN_VM
117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122
123 struct execve_data;
124
125 static size_t calcargs(struct execve_data * restrict, const size_t);
126 static size_t calcstack(struct execve_data * restrict, const size_t);
127 static int copyoutargs(struct execve_data * restrict, struct lwp *,
128 char * const);
129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
130 static int copyinargs(struct execve_data * restrict, char * const *,
131 char * const *, execve_fetch_element_t, char **);
132 static int copyinargstrs(struct execve_data * restrict, char * const *,
133 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
134 static int exec_sigcode_map(struct proc *, const struct emul *);
135
136 #ifdef DEBUG_EXEC
137 #define DPRINTF(a) printf a
138 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
139 __LINE__, (s), (a), (b))
140 static void dump_vmcmds(const struct exec_package * const, size_t, int);
141 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
142 #else
143 #define DPRINTF(a)
144 #define COPYPRINTF(s, a, b)
145 #define DUMPVMCMDS(p, x, e) do {} while (0)
146 #endif /* DEBUG_EXEC */
147
148 /*
149 * DTrace SDT provider definitions
150 */
151 SDT_PROBE_DEFINE(proc,,,exec,exec,
152 "char *", NULL,
153 NULL, NULL, NULL, NULL,
154 NULL, NULL, NULL, NULL);
155 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
156 "char *", NULL,
157 NULL, NULL, NULL, NULL,
158 NULL, NULL, NULL, NULL);
159 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
160 "int", NULL,
161 NULL, NULL, NULL, NULL,
162 NULL, NULL, NULL, NULL);
163
164 /*
165 * Exec function switch:
166 *
167 * Note that each makecmds function is responsible for loading the
168 * exec package with the necessary functions for any exec-type-specific
169 * handling.
170 *
171 * Functions for specific exec types should be defined in their own
172 * header file.
173 */
174 static const struct execsw **execsw = NULL;
175 static int nexecs;
176
177 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
178
179 /* list of dynamically loaded execsw entries */
180 static LIST_HEAD(execlist_head, exec_entry) ex_head =
181 LIST_HEAD_INITIALIZER(ex_head);
182 struct exec_entry {
183 LIST_ENTRY(exec_entry) ex_list;
184 SLIST_ENTRY(exec_entry) ex_slist;
185 const struct execsw *ex_sw;
186 };
187
188 #ifndef __HAVE_SYSCALL_INTERN
189 void syscall(void);
190 #endif
191
192 /* NetBSD emul struct */
193 struct emul emul_netbsd = {
194 .e_name = "netbsd",
195 #ifdef EMUL_NATIVEROOT
196 .e_path = EMUL_NATIVEROOT,
197 #else
198 .e_path = NULL,
199 #endif
200 #ifndef __HAVE_MINIMAL_EMUL
201 .e_flags = EMUL_HAS_SYS___syscall,
202 .e_errno = NULL,
203 .e_nosys = SYS_syscall,
204 .e_nsysent = SYS_NSYSENT,
205 #endif
206 .e_sysent = sysent,
207 #ifdef SYSCALL_DEBUG
208 .e_syscallnames = syscallnames,
209 #else
210 .e_syscallnames = NULL,
211 #endif
212 .e_sendsig = sendsig,
213 .e_trapsignal = trapsignal,
214 .e_tracesig = NULL,
215 .e_sigcode = NULL,
216 .e_esigcode = NULL,
217 .e_sigobject = NULL,
218 .e_setregs = setregs,
219 .e_proc_exec = NULL,
220 .e_proc_fork = NULL,
221 .e_proc_exit = NULL,
222 .e_lwp_fork = NULL,
223 .e_lwp_exit = NULL,
224 #ifdef __HAVE_SYSCALL_INTERN
225 .e_syscall_intern = syscall_intern,
226 #else
227 .e_syscall = syscall,
228 #endif
229 .e_sysctlovly = NULL,
230 .e_fault = NULL,
231 .e_vm_default_addr = uvm_default_mapaddr,
232 .e_usertrap = NULL,
233 .e_ucsize = sizeof(ucontext_t),
234 .e_startlwp = startlwp
235 };
236
237 /*
238 * Exec lock. Used to control access to execsw[] structures.
239 * This must not be static so that netbsd32 can access it, too.
240 */
241 krwlock_t exec_lock;
242
243 static kmutex_t sigobject_lock;
244
245 /*
246 * Data used between a loadvm and execve part of an "exec" operation
247 */
248 struct execve_data {
249 struct exec_package ed_pack;
250 struct pathbuf *ed_pathbuf;
251 struct vattr ed_attr;
252 struct ps_strings ed_arginfo;
253 char *ed_argp;
254 const char *ed_pathstring;
255 char *ed_resolvedpathbuf;
256 size_t ed_ps_strings_sz;
257 int ed_szsigcode;
258 size_t ed_argslen;
259 long ed_argc;
260 long ed_envc;
261 };
262
263 /*
264 * data passed from parent lwp to child during a posix_spawn()
265 */
266 struct spawn_exec_data {
267 struct execve_data sed_exec;
268 struct posix_spawn_file_actions
269 *sed_actions;
270 struct posix_spawnattr *sed_attrs;
271 struct proc *sed_parent;
272 kcondvar_t sed_cv_child_ready;
273 kmutex_t sed_mtx_child;
274 int sed_error;
275 volatile uint32_t sed_refcnt;
276 };
277
278 static void *
279 exec_pool_alloc(struct pool *pp, int flags)
280 {
281
282 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
283 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
284 }
285
286 static void
287 exec_pool_free(struct pool *pp, void *addr)
288 {
289
290 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
291 }
292
293 static struct pool exec_pool;
294
295 static struct pool_allocator exec_palloc = {
296 .pa_alloc = exec_pool_alloc,
297 .pa_free = exec_pool_free,
298 .pa_pagesz = NCARGS
299 };
300
301 /*
302 * check exec:
303 * given an "executable" described in the exec package's namei info,
304 * see what we can do with it.
305 *
306 * ON ENTRY:
307 * exec package with appropriate namei info
308 * lwp pointer of exec'ing lwp
309 * NO SELF-LOCKED VNODES
310 *
311 * ON EXIT:
312 * error: nothing held, etc. exec header still allocated.
313 * ok: filled exec package, executable's vnode (unlocked).
314 *
315 * EXEC SWITCH ENTRY:
316 * Locked vnode to check, exec package, proc.
317 *
318 * EXEC SWITCH EXIT:
319 * ok: return 0, filled exec package, executable's vnode (unlocked).
320 * error: destructive:
321 * everything deallocated execept exec header.
322 * non-destructive:
323 * error code, executable's vnode (unlocked),
324 * exec header unmodified.
325 */
326 int
327 /*ARGSUSED*/
328 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
329 {
330 int error, i;
331 struct vnode *vp;
332 struct nameidata nd;
333 size_t resid;
334
335 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
336
337 /* first get the vnode */
338 if ((error = namei(&nd)) != 0)
339 return error;
340 epp->ep_vp = vp = nd.ni_vp;
341 /* normally this can't fail */
342 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
343 KASSERT(error == 0);
344
345 #ifdef DIAGNOSTIC
346 /* paranoia (take this out once namei stuff stabilizes) */
347 memset(nd.ni_pnbuf, '~', PATH_MAX);
348 #endif
349
350 /* check access and type */
351 if (vp->v_type != VREG) {
352 error = EACCES;
353 goto bad1;
354 }
355 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
356 goto bad1;
357
358 /* get attributes */
359 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
360 goto bad1;
361
362 /* Check mount point */
363 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
364 error = EACCES;
365 goto bad1;
366 }
367 if (vp->v_mount->mnt_flag & MNT_NOSUID)
368 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
369
370 /* try to open it */
371 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
372 goto bad1;
373
374 /* unlock vp, since we need it unlocked from here on out. */
375 VOP_UNLOCK(vp);
376
377 #if NVERIEXEC > 0
378 error = veriexec_verify(l, vp, epp->ep_resolvedname,
379 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
380 NULL);
381 if (error)
382 goto bad2;
383 #endif /* NVERIEXEC > 0 */
384
385 #ifdef PAX_SEGVGUARD
386 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
387 if (error)
388 goto bad2;
389 #endif /* PAX_SEGVGUARD */
390
391 /* now we have the file, get the exec header */
392 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
393 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
394 if (error)
395 goto bad2;
396 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
397
398 /*
399 * Set up default address space limits. Can be overridden
400 * by individual exec packages.
401 *
402 * XXX probably should be all done in the exec packages.
403 */
404 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
405 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
406 /*
407 * set up the vmcmds for creation of the process
408 * address space
409 */
410 error = ENOEXEC;
411 for (i = 0; i < nexecs; i++) {
412 int newerror;
413
414 epp->ep_esch = execsw[i];
415 newerror = (*execsw[i]->es_makecmds)(l, epp);
416
417 if (!newerror) {
418 /* Seems ok: check that entry point is not too high */
419 if (epp->ep_entry > epp->ep_vm_maxaddr) {
420 #ifdef DIAGNOSTIC
421 printf("%s: rejecting %p due to "
422 "too high entry address (> %p)\n",
423 __func__, (void *)epp->ep_entry,
424 (void *)epp->ep_vm_maxaddr);
425 #endif
426 error = ENOEXEC;
427 break;
428 }
429 /* Seems ok: check that entry point is not too low */
430 if (epp->ep_entry < epp->ep_vm_minaddr) {
431 #ifdef DIAGNOSTIC
432 printf("%s: rejecting %p due to "
433 "too low entry address (< %p)\n",
434 __func__, (void *)epp->ep_entry,
435 (void *)epp->ep_vm_minaddr);
436 #endif
437 error = ENOEXEC;
438 break;
439 }
440
441 /* check limits */
442 if ((epp->ep_tsize > MAXTSIZ) ||
443 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
444 [RLIMIT_DATA].rlim_cur)) {
445 #ifdef DIAGNOSTIC
446 printf("%s: rejecting due to "
447 "limits (t=%llu > %llu || d=%llu > %llu)\n",
448 __func__,
449 (unsigned long long)epp->ep_tsize,
450 (unsigned long long)MAXTSIZ,
451 (unsigned long long)epp->ep_dsize,
452 (unsigned long long)
453 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
454 #endif
455 error = ENOMEM;
456 break;
457 }
458 return 0;
459 }
460
461 if (epp->ep_emul_root != NULL) {
462 vrele(epp->ep_emul_root);
463 epp->ep_emul_root = NULL;
464 }
465 if (epp->ep_interp != NULL) {
466 vrele(epp->ep_interp);
467 epp->ep_interp = NULL;
468 }
469
470 /* make sure the first "interesting" error code is saved. */
471 if (error == ENOEXEC)
472 error = newerror;
473
474 if (epp->ep_flags & EXEC_DESTR)
475 /* Error from "#!" code, tidied up by recursive call */
476 return error;
477 }
478
479 /* not found, error */
480
481 /*
482 * free any vmspace-creation commands,
483 * and release their references
484 */
485 kill_vmcmds(&epp->ep_vmcmds);
486
487 bad2:
488 /*
489 * close and release the vnode, restore the old one, free the
490 * pathname buf, and punt.
491 */
492 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
493 VOP_CLOSE(vp, FREAD, l->l_cred);
494 vput(vp);
495 return error;
496
497 bad1:
498 /*
499 * free the namei pathname buffer, and put the vnode
500 * (which we don't yet have open).
501 */
502 vput(vp); /* was still locked */
503 return error;
504 }
505
506 #ifdef __MACHINE_STACK_GROWS_UP
507 #define STACK_PTHREADSPACE NBPG
508 #else
509 #define STACK_PTHREADSPACE 0
510 #endif
511
512 static int
513 execve_fetch_element(char * const *array, size_t index, char **value)
514 {
515 return copyin(array + index, value, sizeof(*value));
516 }
517
518 /*
519 * exec system call
520 */
521 int
522 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
523 {
524 /* {
525 syscallarg(const char *) path;
526 syscallarg(char * const *) argp;
527 syscallarg(char * const *) envp;
528 } */
529
530 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
531 SCARG(uap, envp), execve_fetch_element);
532 }
533
534 int
535 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
536 register_t *retval)
537 {
538 /* {
539 syscallarg(int) fd;
540 syscallarg(char * const *) argp;
541 syscallarg(char * const *) envp;
542 } */
543
544 return ENOSYS;
545 }
546
547 /*
548 * Load modules to try and execute an image that we do not understand.
549 * If no execsw entries are present, we load those likely to be needed
550 * in order to run native images only. Otherwise, we autoload all
551 * possible modules that could let us run the binary. XXX lame
552 */
553 static void
554 exec_autoload(void)
555 {
556 #ifdef MODULAR
557 static const char * const native[] = {
558 "exec_elf32",
559 "exec_elf64",
560 "exec_script",
561 NULL
562 };
563 static const char * const compat[] = {
564 "exec_elf32",
565 "exec_elf64",
566 "exec_script",
567 "exec_aout",
568 "exec_coff",
569 "exec_ecoff",
570 "compat_aoutm68k",
571 "compat_freebsd",
572 "compat_ibcs2",
573 "compat_linux",
574 "compat_linux32",
575 "compat_netbsd32",
576 "compat_sunos",
577 "compat_sunos32",
578 "compat_svr4",
579 "compat_svr4_32",
580 "compat_ultrix",
581 NULL
582 };
583 char const * const *list;
584 int i;
585
586 list = (nexecs == 0 ? native : compat);
587 for (i = 0; list[i] != NULL; i++) {
588 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
589 continue;
590 }
591 yield();
592 }
593 #endif
594 }
595
596 static int
597 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp,
598 size_t *offs)
599 {
600 char *path, *bp;
601 size_t len, tlen;
602 int error;
603 struct cwdinfo *cwdi;
604
605 path = PNBUF_GET();
606 error = copyinstr(upath, path, MAXPATHLEN, &len);
607 if (error) {
608 PNBUF_PUT(path);
609 DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
610 return error;
611 }
612
613 if (path[0] == '/') {
614 *offs = 0;
615 goto out;
616 }
617
618 len++;
619 if (len + 1 >= MAXPATHLEN)
620 goto out;
621 bp = path + MAXPATHLEN - len;
622 memmove(bp, path, len);
623 *(--bp) = '/';
624
625 cwdi = l->l_proc->p_cwdi;
626 rw_enter(&cwdi->cwdi_lock, RW_READER);
627 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
628 GETCWD_CHECK_ACCESS, l);
629 rw_exit(&cwdi->cwdi_lock);
630
631 if (error) {
632 DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
633 error));
634 goto out;
635 }
636 tlen = path + MAXPATHLEN - bp;
637
638 memmove(path, bp, tlen);
639 path[tlen] = '\0';
640 *offs = tlen - len;
641 out:
642 *pbp = pathbuf_assimilate(path);
643 return 0;
644 }
645
646 static int
647 execve_loadvm(struct lwp *l, const char *path, char * const *args,
648 char * const *envs, execve_fetch_element_t fetch_element,
649 struct execve_data * restrict data)
650 {
651 struct exec_package * const epp = &data->ed_pack;
652 int error;
653 struct proc *p;
654 char *dp;
655 u_int modgen;
656 size_t offs = 0; // XXX: GCC
657
658 KASSERT(data != NULL);
659
660 p = l->l_proc;
661 modgen = 0;
662
663 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
664
665 /*
666 * Check if we have exceeded our number of processes limit.
667 * This is so that we handle the case where a root daemon
668 * forked, ran setuid to become the desired user and is trying
669 * to exec. The obvious place to do the reference counting check
670 * is setuid(), but we don't do the reference counting check there
671 * like other OS's do because then all the programs that use setuid()
672 * must be modified to check the return code of setuid() and exit().
673 * It is dangerous to make setuid() fail, because it fails open and
674 * the program will continue to run as root. If we make it succeed
675 * and return an error code, again we are not enforcing the limit.
676 * The best place to enforce the limit is here, when the process tries
677 * to execute a new image, because eventually the process will need
678 * to call exec in order to do something useful.
679 */
680 retry:
681 if (p->p_flag & PK_SUGID) {
682 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
683 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
684 &p->p_rlimit[RLIMIT_NPROC],
685 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
686 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
687 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
688 return EAGAIN;
689 }
690
691 /*
692 * Drain existing references and forbid new ones. The process
693 * should be left alone until we're done here. This is necessary
694 * to avoid race conditions - e.g. in ptrace() - that might allow
695 * a local user to illicitly obtain elevated privileges.
696 */
697 rw_enter(&p->p_reflock, RW_WRITER);
698
699 /*
700 * Init the namei data to point the file user's program name.
701 * This is done here rather than in check_exec(), so that it's
702 * possible to override this settings if any of makecmd/probe
703 * functions call check_exec() recursively - for example,
704 * see exec_script_makecmds().
705 */
706 if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0)
707 goto clrflg;
708 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
709 data->ed_resolvedpathbuf = PNBUF_GET();
710
711 /*
712 * initialize the fields of the exec package.
713 */
714 epp->ep_kname = data->ed_pathstring + offs;
715 epp->ep_resolvedname = data->ed_resolvedpathbuf;
716 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
717 epp->ep_hdrlen = exec_maxhdrsz;
718 epp->ep_hdrvalid = 0;
719 epp->ep_emul_arg = NULL;
720 epp->ep_emul_arg_free = NULL;
721 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
722 epp->ep_vap = &data->ed_attr;
723 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
724 MD_TOPDOWN_INIT(epp);
725 epp->ep_emul_root = NULL;
726 epp->ep_interp = NULL;
727 epp->ep_esch = NULL;
728 epp->ep_pax_flags = 0;
729 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
730
731 rw_enter(&exec_lock, RW_READER);
732
733 /* see if we can run it. */
734 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
735 if (error != ENOENT) {
736 DPRINTF(("%s: check exec failed %d\n",
737 __func__, error));
738 }
739 goto freehdr;
740 }
741
742 /* allocate an argument buffer */
743 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
744 KASSERT(data->ed_argp != NULL);
745 dp = data->ed_argp;
746
747 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
748 goto bad;
749 }
750
751 /*
752 * Calculate the new stack size.
753 */
754
755 #ifdef PAX_ASLR
756 #define ASLR_GAP(epp) (pax_aslr_epp_active(epp) ? (cprng_fast32() % PAGE_SIZE) : 0)
757 #else
758 #define ASLR_GAP(epp) 0
759 #endif
760
761 #ifdef __MACHINE_STACK_GROWS_UP
762 /*
763 * copyargs() fills argc/argv/envp from the lower address even on
764 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
765 * so that _rtld() use it.
766 */
767 #define RTLD_GAP 32
768 #else
769 #define RTLD_GAP 0
770 #endif
771
772 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
773
774 data->ed_argslen = calcargs(data, argenvstrlen);
775
776 const size_t len = calcstack(data, ASLR_GAP(epp) + RTLD_GAP);
777
778 if (len > epp->ep_ssize) {
779 /* in effect, compare to initial limit */
780 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
781 error = ENOMEM;
782 goto bad;
783 }
784 /* adjust "active stack depth" for process VSZ */
785 epp->ep_ssize = len;
786
787 return 0;
788
789 bad:
790 /* free the vmspace-creation commands, and release their references */
791 kill_vmcmds(&epp->ep_vmcmds);
792 /* kill any opened file descriptor, if necessary */
793 if (epp->ep_flags & EXEC_HASFD) {
794 epp->ep_flags &= ~EXEC_HASFD;
795 fd_close(epp->ep_fd);
796 }
797 /* close and put the exec'd file */
798 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
799 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
800 vput(epp->ep_vp);
801 pool_put(&exec_pool, data->ed_argp);
802
803 freehdr:
804 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
805 if (epp->ep_emul_root != NULL)
806 vrele(epp->ep_emul_root);
807 if (epp->ep_interp != NULL)
808 vrele(epp->ep_interp);
809
810 rw_exit(&exec_lock);
811
812 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
813 pathbuf_destroy(data->ed_pathbuf);
814 PNBUF_PUT(data->ed_resolvedpathbuf);
815
816 clrflg:
817 rw_exit(&p->p_reflock);
818
819 if (modgen != module_gen && error == ENOEXEC) {
820 modgen = module_gen;
821 exec_autoload();
822 goto retry;
823 }
824
825 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
826 return error;
827 }
828
829 static int
830 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
831 {
832 struct exec_package * const epp = &data->ed_pack;
833 struct proc *p = l->l_proc;
834 struct exec_vmcmd *base_vcp;
835 int error = 0;
836 size_t i;
837
838 /* record proc's vnode, for use by procfs and others */
839 if (p->p_textvp)
840 vrele(p->p_textvp);
841 vref(epp->ep_vp);
842 p->p_textvp = epp->ep_vp;
843
844 /* create the new process's VM space by running the vmcmds */
845 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
846
847 DUMPVMCMDS(epp, 0, 0);
848
849 base_vcp = NULL;
850
851 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
852 struct exec_vmcmd *vcp;
853
854 vcp = &epp->ep_vmcmds.evs_cmds[i];
855 if (vcp->ev_flags & VMCMD_RELATIVE) {
856 KASSERTMSG(base_vcp != NULL,
857 "%s: relative vmcmd with no base", __func__);
858 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
859 "%s: illegal base & relative vmcmd", __func__);
860 vcp->ev_addr += base_vcp->ev_addr;
861 }
862 error = (*vcp->ev_proc)(l, vcp);
863 if (error)
864 DUMPVMCMDS(epp, i, error);
865 if (vcp->ev_flags & VMCMD_BASE)
866 base_vcp = vcp;
867 }
868
869 /* free the vmspace-creation commands, and release their references */
870 kill_vmcmds(&epp->ep_vmcmds);
871
872 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
873 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
874 vput(epp->ep_vp);
875
876 /* if an error happened, deallocate and punt */
877 if (error != 0) {
878 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
879 }
880 return error;
881 }
882
883 static void
884 execve_free_data(struct execve_data *data)
885 {
886 struct exec_package * const epp = &data->ed_pack;
887
888 /* free the vmspace-creation commands, and release their references */
889 kill_vmcmds(&epp->ep_vmcmds);
890 /* kill any opened file descriptor, if necessary */
891 if (epp->ep_flags & EXEC_HASFD) {
892 epp->ep_flags &= ~EXEC_HASFD;
893 fd_close(epp->ep_fd);
894 }
895
896 /* close and put the exec'd file */
897 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
898 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
899 vput(epp->ep_vp);
900 pool_put(&exec_pool, data->ed_argp);
901
902 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
903 if (epp->ep_emul_root != NULL)
904 vrele(epp->ep_emul_root);
905 if (epp->ep_interp != NULL)
906 vrele(epp->ep_interp);
907
908 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
909 pathbuf_destroy(data->ed_pathbuf);
910 PNBUF_PUT(data->ed_resolvedpathbuf);
911 }
912
913 static void
914 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring)
915 {
916 const char *commandname;
917 size_t commandlen;
918 char *path;
919
920 /* set command name & other accounting info */
921 commandname = strrchr(epp->ep_resolvedname, '/');
922 if (commandname != NULL) {
923 commandname++;
924 } else {
925 commandname = epp->ep_resolvedname;
926 }
927 commandlen = min(strlen(commandname), MAXCOMLEN);
928 (void)memcpy(p->p_comm, commandname, commandlen);
929 p->p_comm[commandlen] = '\0';
930
931
932 /*
933 * If the path starts with /, we don't need to do any work.
934 * This handles the majority of the cases.
935 * In the future perhaps we could canonicalize it?
936 */
937 if (pathstring[0] == '/') {
938 path = PNBUF_GET();
939 (void)strlcpy(path, pathstring, MAXPATHLEN);
940 epp->ep_path = path;
941 } else
942 epp->ep_path = NULL;
943 }
944
945 /* XXX elsewhere */
946 static int
947 credexec(struct lwp *l, struct vattr *attr)
948 {
949 struct proc *p = l->l_proc;
950 int error;
951
952 /*
953 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
954 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
955 * out additional references on the process for the moment.
956 */
957 if ((p->p_slflag & PSL_TRACED) == 0 &&
958
959 (((attr->va_mode & S_ISUID) != 0 &&
960 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
961
962 ((attr->va_mode & S_ISGID) != 0 &&
963 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
964 /*
965 * Mark the process as SUGID before we do
966 * anything that might block.
967 */
968 proc_crmod_enter();
969 proc_crmod_leave(NULL, NULL, true);
970
971 /* Make sure file descriptors 0..2 are in use. */
972 if ((error = fd_checkstd()) != 0) {
973 DPRINTF(("%s: fdcheckstd failed %d\n",
974 __func__, error));
975 return error;
976 }
977
978 /*
979 * Copy the credential so other references don't see our
980 * changes.
981 */
982 l->l_cred = kauth_cred_copy(l->l_cred);
983 #ifdef KTRACE
984 /*
985 * If the persistent trace flag isn't set, turn off.
986 */
987 if (p->p_tracep) {
988 mutex_enter(&ktrace_lock);
989 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
990 ktrderef(p);
991 mutex_exit(&ktrace_lock);
992 }
993 #endif
994 if (attr->va_mode & S_ISUID)
995 kauth_cred_seteuid(l->l_cred, attr->va_uid);
996 if (attr->va_mode & S_ISGID)
997 kauth_cred_setegid(l->l_cred, attr->va_gid);
998 } else {
999 if (kauth_cred_geteuid(l->l_cred) ==
1000 kauth_cred_getuid(l->l_cred) &&
1001 kauth_cred_getegid(l->l_cred) ==
1002 kauth_cred_getgid(l->l_cred))
1003 p->p_flag &= ~PK_SUGID;
1004 }
1005
1006 /*
1007 * Copy the credential so other references don't see our changes.
1008 * Test to see if this is necessary first, since in the common case
1009 * we won't need a private reference.
1010 */
1011 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1012 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1013 l->l_cred = kauth_cred_copy(l->l_cred);
1014 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1015 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1016 }
1017
1018 /* Update the master credentials. */
1019 if (l->l_cred != p->p_cred) {
1020 kauth_cred_t ocred;
1021
1022 kauth_cred_hold(l->l_cred);
1023 mutex_enter(p->p_lock);
1024 ocred = p->p_cred;
1025 p->p_cred = l->l_cred;
1026 mutex_exit(p->p_lock);
1027 kauth_cred_free(ocred);
1028 }
1029
1030 return 0;
1031 }
1032
1033 static void
1034 emulexec(struct lwp *l, struct exec_package *epp)
1035 {
1036 struct proc *p = l->l_proc;
1037
1038 /* The emulation root will usually have been found when we looked
1039 * for the elf interpreter (or similar), if not look now. */
1040 if (epp->ep_esch->es_emul->e_path != NULL &&
1041 epp->ep_emul_root == NULL)
1042 emul_find_root(l, epp);
1043
1044 /* Any old emulation root got removed by fdcloseexec */
1045 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1046 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1047 rw_exit(&p->p_cwdi->cwdi_lock);
1048 epp->ep_emul_root = NULL;
1049 if (epp->ep_interp != NULL)
1050 vrele(epp->ep_interp);
1051
1052 /*
1053 * Call emulation specific exec hook. This can setup per-process
1054 * p->p_emuldata or do any other per-process stuff an emulation needs.
1055 *
1056 * If we are executing process of different emulation than the
1057 * original forked process, call e_proc_exit() of the old emulation
1058 * first, then e_proc_exec() of new emulation. If the emulation is
1059 * same, the exec hook code should deallocate any old emulation
1060 * resources held previously by this process.
1061 */
1062 if (p->p_emul && p->p_emul->e_proc_exit
1063 && p->p_emul != epp->ep_esch->es_emul)
1064 (*p->p_emul->e_proc_exit)(p);
1065
1066 /*
1067 * This is now LWP 1.
1068 */
1069 /* XXX elsewhere */
1070 mutex_enter(p->p_lock);
1071 p->p_nlwpid = 1;
1072 l->l_lid = 1;
1073 mutex_exit(p->p_lock);
1074
1075 /*
1076 * Call exec hook. Emulation code may NOT store reference to anything
1077 * from &pack.
1078 */
1079 if (epp->ep_esch->es_emul->e_proc_exec)
1080 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1081
1082 /* update p_emul, the old value is no longer needed */
1083 p->p_emul = epp->ep_esch->es_emul;
1084
1085 /* ...and the same for p_execsw */
1086 p->p_execsw = epp->ep_esch;
1087
1088 #ifdef __HAVE_SYSCALL_INTERN
1089 (*p->p_emul->e_syscall_intern)(p);
1090 #endif
1091 ktremul();
1092 }
1093
1094 static int
1095 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1096 bool no_local_exec_lock, bool is_spawn)
1097 {
1098 struct exec_package * const epp = &data->ed_pack;
1099 int error = 0;
1100 struct proc *p;
1101
1102 /*
1103 * In case of a posix_spawn operation, the child doing the exec
1104 * might not hold the reader lock on exec_lock, but the parent
1105 * will do this instead.
1106 */
1107 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1108 KASSERT(!no_local_exec_lock || is_spawn);
1109 KASSERT(data != NULL);
1110
1111 p = l->l_proc;
1112
1113 /* Get rid of other LWPs. */
1114 if (p->p_nlwps > 1) {
1115 mutex_enter(p->p_lock);
1116 exit_lwps(l);
1117 mutex_exit(p->p_lock);
1118 }
1119 KDASSERT(p->p_nlwps == 1);
1120
1121 /* Destroy any lwpctl info. */
1122 if (p->p_lwpctl != NULL)
1123 lwp_ctl_exit();
1124
1125 /* Remove POSIX timers */
1126 timers_free(p, TIMERS_POSIX);
1127
1128 /* Set the PaX flags. */
1129 p->p_pax = epp->ep_pax_flags;
1130
1131 /*
1132 * Do whatever is necessary to prepare the address space
1133 * for remapping. Note that this might replace the current
1134 * vmspace with another!
1135 */
1136 if (is_spawn)
1137 uvmspace_spawn(l, epp->ep_vm_minaddr,
1138 epp->ep_vm_maxaddr,
1139 epp->ep_flags & EXEC_TOPDOWN_VM);
1140 else
1141 uvmspace_exec(l, epp->ep_vm_minaddr,
1142 epp->ep_vm_maxaddr,
1143 epp->ep_flags & EXEC_TOPDOWN_VM);
1144
1145 struct vmspace *vm;
1146 vm = p->p_vmspace;
1147 vm->vm_taddr = (void *)epp->ep_taddr;
1148 vm->vm_tsize = btoc(epp->ep_tsize);
1149 vm->vm_daddr = (void*)epp->ep_daddr;
1150 vm->vm_dsize = btoc(epp->ep_dsize);
1151 vm->vm_ssize = btoc(epp->ep_ssize);
1152 vm->vm_issize = 0;
1153 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1154 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1155
1156 #ifdef PAX_ASLR
1157 pax_aslr_init_vm(l, vm);
1158 #endif /* PAX_ASLR */
1159
1160 /* Now map address space. */
1161 error = execve_dovmcmds(l, data);
1162 if (error != 0)
1163 goto exec_abort;
1164
1165 pathexec(epp, p, data->ed_pathstring);
1166
1167 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1168
1169 error = copyoutargs(data, l, newstack);
1170 if (error != 0)
1171 goto exec_abort;
1172
1173 cwdexec(p);
1174 fd_closeexec(); /* handle close on exec */
1175
1176 if (__predict_false(ktrace_on))
1177 fd_ktrexecfd();
1178
1179 execsigs(p); /* reset catched signals */
1180
1181 mutex_enter(p->p_lock);
1182 l->l_ctxlink = NULL; /* reset ucontext link */
1183 p->p_acflag &= ~AFORK;
1184 p->p_flag |= PK_EXEC;
1185 mutex_exit(p->p_lock);
1186
1187 /*
1188 * Stop profiling.
1189 */
1190 if ((p->p_stflag & PST_PROFIL) != 0) {
1191 mutex_spin_enter(&p->p_stmutex);
1192 stopprofclock(p);
1193 mutex_spin_exit(&p->p_stmutex);
1194 }
1195
1196 /*
1197 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1198 * exited and exec()/exit() are the only places it will be cleared.
1199 */
1200 if ((p->p_lflag & PL_PPWAIT) != 0) {
1201 #if 0
1202 lwp_t *lp;
1203
1204 mutex_enter(proc_lock);
1205 lp = p->p_vforklwp;
1206 p->p_vforklwp = NULL;
1207
1208 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1209 p->p_lflag &= ~PL_PPWAIT;
1210
1211 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1212 cv_broadcast(&lp->l_waitcv);
1213 mutex_exit(proc_lock);
1214 #else
1215 mutex_enter(proc_lock);
1216 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1217 p->p_lflag &= ~PL_PPWAIT;
1218 cv_broadcast(&p->p_pptr->p_waitcv);
1219 mutex_exit(proc_lock);
1220 #endif
1221 }
1222
1223 error = credexec(l, &data->ed_attr);
1224 if (error)
1225 goto exec_abort;
1226
1227 #if defined(__HAVE_RAS)
1228 /*
1229 * Remove all RASs from the address space.
1230 */
1231 ras_purgeall();
1232 #endif
1233
1234 doexechooks(p);
1235
1236 /*
1237 * Set initial SP at the top of the stack.
1238 *
1239 * Note that on machines where stack grows up (e.g. hppa), SP points to
1240 * the end of arg/env strings. Userland guesses the address of argc
1241 * via ps_strings::ps_argvstr.
1242 */
1243
1244 /* Setup new registers and do misc. setup. */
1245 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1246 if (epp->ep_esch->es_setregs)
1247 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1248
1249 /* Provide a consistent LWP private setting */
1250 (void)lwp_setprivate(l, NULL);
1251
1252 /* Discard all PCU state; need to start fresh */
1253 pcu_discard_all(l);
1254
1255 /* map the process's signal trampoline code */
1256 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1257 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1258 goto exec_abort;
1259 }
1260
1261 pool_put(&exec_pool, data->ed_argp);
1262
1263 /* notify others that we exec'd */
1264 KNOTE(&p->p_klist, NOTE_EXEC);
1265
1266 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1267
1268 SDT_PROBE(proc,,,exec_success, epp->ep_kname, 0, 0, 0, 0);
1269
1270 emulexec(l, epp);
1271
1272 /* Allow new references from the debugger/procfs. */
1273 rw_exit(&p->p_reflock);
1274 if (!no_local_exec_lock)
1275 rw_exit(&exec_lock);
1276
1277 mutex_enter(proc_lock);
1278
1279 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1280 ksiginfo_t ksi;
1281
1282 KSI_INIT_EMPTY(&ksi);
1283 ksi.ksi_signo = SIGTRAP;
1284 ksi.ksi_lid = l->l_lid;
1285 kpsignal(p, &ksi, NULL);
1286 }
1287
1288 if (p->p_sflag & PS_STOPEXEC) {
1289 ksiginfoq_t kq;
1290
1291 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1292 p->p_pptr->p_nstopchild++;
1293 p->p_pptr->p_waited = 0;
1294 mutex_enter(p->p_lock);
1295 ksiginfo_queue_init(&kq);
1296 sigclearall(p, &contsigmask, &kq);
1297 lwp_lock(l);
1298 l->l_stat = LSSTOP;
1299 p->p_stat = SSTOP;
1300 p->p_nrlwps--;
1301 lwp_unlock(l);
1302 mutex_exit(p->p_lock);
1303 mutex_exit(proc_lock);
1304 lwp_lock(l);
1305 mi_switch(l);
1306 ksiginfo_queue_drain(&kq);
1307 KERNEL_LOCK(l->l_biglocks, l);
1308 } else {
1309 mutex_exit(proc_lock);
1310 }
1311
1312 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1313 pathbuf_destroy(data->ed_pathbuf);
1314 PNBUF_PUT(data->ed_resolvedpathbuf);
1315 DPRINTF(("%s finished\n", __func__));
1316 return EJUSTRETURN;
1317
1318 exec_abort:
1319 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1320 rw_exit(&p->p_reflock);
1321 if (!no_local_exec_lock)
1322 rw_exit(&exec_lock);
1323
1324 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1325 pathbuf_destroy(data->ed_pathbuf);
1326 PNBUF_PUT(data->ed_resolvedpathbuf);
1327
1328 /*
1329 * the old process doesn't exist anymore. exit gracefully.
1330 * get rid of the (new) address space we have created, if any, get rid
1331 * of our namei data and vnode, and exit noting failure
1332 */
1333 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1334 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1335
1336 exec_free_emul_arg(epp);
1337 pool_put(&exec_pool, data->ed_argp);
1338 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1339 if (epp->ep_emul_root != NULL)
1340 vrele(epp->ep_emul_root);
1341 if (epp->ep_interp != NULL)
1342 vrele(epp->ep_interp);
1343
1344 /* Acquire the sched-state mutex (exit1() will release it). */
1345 if (!is_spawn) {
1346 mutex_enter(p->p_lock);
1347 exit1(l, W_EXITCODE(error, SIGABRT));
1348 }
1349
1350 return error;
1351 }
1352
1353 int
1354 execve1(struct lwp *l, const char *path, char * const *args,
1355 char * const *envs, execve_fetch_element_t fetch_element)
1356 {
1357 struct execve_data data;
1358 int error;
1359
1360 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1361 if (error)
1362 return error;
1363 error = execve_runproc(l, &data, false, false);
1364 return error;
1365 }
1366
1367 static size_t
1368 fromptrsz(const struct exec_package *epp)
1369 {
1370 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1371 }
1372
1373 static size_t
1374 ptrsz(const struct exec_package *epp)
1375 {
1376 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1377 }
1378
1379 static size_t
1380 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1381 {
1382 struct exec_package * const epp = &data->ed_pack;
1383
1384 const size_t nargenvptrs =
1385 1 + /* long argc */
1386 data->ed_argc + /* char *argv[] */
1387 1 + /* \0 */
1388 data->ed_envc + /* char *env[] */
1389 1 + /* \0 */
1390 epp->ep_esch->es_arglen; /* auxinfo */
1391
1392 return (nargenvptrs * ptrsz(epp)) + argenvstrlen;
1393 }
1394
1395 static size_t
1396 calcstack(struct execve_data * restrict data, const size_t gaplen)
1397 {
1398 struct exec_package * const epp = &data->ed_pack;
1399
1400 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1401 epp->ep_esch->es_emul->e_sigcode;
1402
1403 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1404 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1405
1406 const size_t sigcode_psstr_sz =
1407 data->ed_szsigcode + /* sigcode */
1408 data->ed_ps_strings_sz + /* ps_strings */
1409 STACK_PTHREADSPACE; /* pthread space */
1410
1411 const size_t stacklen =
1412 data->ed_argslen +
1413 gaplen +
1414 sigcode_psstr_sz;
1415
1416 /* make the stack "safely" aligned */
1417 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1418 }
1419
1420 static int
1421 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1422 char * const newstack)
1423 {
1424 struct exec_package * const epp = &data->ed_pack;
1425 struct proc *p = l->l_proc;
1426 int error;
1427
1428 /* remember information about the process */
1429 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1430 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1431
1432 /*
1433 * Allocate the stack address passed to the newly execve()'ed process.
1434 *
1435 * The new stack address will be set to the SP (stack pointer) register
1436 * in setregs().
1437 */
1438
1439 char *newargs = STACK_ALLOC(
1440 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1441
1442 error = (*epp->ep_esch->es_copyargs)(l, epp,
1443 &data->ed_arginfo, &newargs, data->ed_argp);
1444
1445 if (epp->ep_path) {
1446 PNBUF_PUT(epp->ep_path);
1447 epp->ep_path = NULL;
1448 }
1449 if (error) {
1450 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1451 return error;
1452 }
1453
1454 error = copyoutpsstrs(data, p);
1455 if (error != 0)
1456 return error;
1457
1458 return 0;
1459 }
1460
1461 static int
1462 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1463 {
1464 struct exec_package * const epp = &data->ed_pack;
1465 struct ps_strings32 arginfo32;
1466 void *aip;
1467 int error;
1468
1469 /* fill process ps_strings info */
1470 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1471 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1472
1473 if (epp->ep_flags & EXEC_32) {
1474 aip = &arginfo32;
1475 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1476 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1477 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1478 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1479 } else
1480 aip = &data->ed_arginfo;
1481
1482 /* copy out the process's ps_strings structure */
1483 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1484 != 0) {
1485 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1486 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1487 return error;
1488 }
1489
1490 return 0;
1491 }
1492
1493 static int
1494 copyinargs(struct execve_data * restrict data, char * const *args,
1495 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1496 {
1497 struct exec_package * const epp = &data->ed_pack;
1498 char *dp;
1499 size_t i;
1500 int error;
1501
1502 dp = *dpp;
1503
1504 data->ed_argc = 0;
1505
1506 /* copy the fake args list, if there's one, freeing it as we go */
1507 if (epp->ep_flags & EXEC_HASARGL) {
1508 struct exec_fakearg *fa = epp->ep_fa;
1509
1510 while (fa->fa_arg != NULL) {
1511 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1512 size_t len;
1513
1514 len = strlcpy(dp, fa->fa_arg, maxlen);
1515 /* Count NUL into len. */
1516 if (len < maxlen)
1517 len++;
1518 else {
1519 while (fa->fa_arg != NULL) {
1520 kmem_free(fa->fa_arg, fa->fa_len);
1521 fa++;
1522 }
1523 kmem_free(epp->ep_fa, epp->ep_fa_len);
1524 epp->ep_flags &= ~EXEC_HASARGL;
1525 return E2BIG;
1526 }
1527 ktrexecarg(fa->fa_arg, len - 1);
1528 dp += len;
1529
1530 kmem_free(fa->fa_arg, fa->fa_len);
1531 fa++;
1532 data->ed_argc++;
1533 }
1534 kmem_free(epp->ep_fa, epp->ep_fa_len);
1535 epp->ep_flags &= ~EXEC_HASARGL;
1536 }
1537
1538 /*
1539 * Read and count argument strings from user.
1540 */
1541
1542 if (args == NULL) {
1543 DPRINTF(("%s: null args\n", __func__));
1544 return EINVAL;
1545 }
1546 if (epp->ep_flags & EXEC_SKIPARG)
1547 args = (const void *)((const char *)args + fromptrsz(epp));
1548 i = 0;
1549 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1550 if (error != 0) {
1551 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1552 return error;
1553 }
1554 data->ed_argc += i;
1555
1556 /*
1557 * Read and count environment strings from user.
1558 */
1559
1560 data->ed_envc = 0;
1561 /* environment need not be there */
1562 if (envs == NULL)
1563 goto done;
1564 i = 0;
1565 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1566 if (error != 0) {
1567 DPRINTF(("%s: copyin env %d\n", __func__, error));
1568 return error;
1569 }
1570 data->ed_envc += i;
1571
1572 done:
1573 *dpp = dp;
1574
1575 return 0;
1576 }
1577
1578 static int
1579 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1580 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1581 void (*ktr)(const void *, size_t))
1582 {
1583 char *dp, *sp;
1584 size_t i;
1585 int error;
1586
1587 dp = *dpp;
1588
1589 i = 0;
1590 while (1) {
1591 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1592 size_t len;
1593
1594 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1595 return error;
1596 }
1597 if (!sp)
1598 break;
1599 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1600 if (error == ENAMETOOLONG)
1601 error = E2BIG;
1602 return error;
1603 }
1604 if (__predict_false(ktrace_on))
1605 (*ktr)(dp, len - 1);
1606 dp += len;
1607 i++;
1608 }
1609
1610 *dpp = dp;
1611 *ip = i;
1612
1613 return 0;
1614 }
1615
1616 /*
1617 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1618 * Those strings are located just after auxinfo.
1619 */
1620 int
1621 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1622 char **stackp, void *argp)
1623 {
1624 char **cpp, *dp, *sp;
1625 size_t len;
1626 void *nullp;
1627 long argc, envc;
1628 int error;
1629
1630 cpp = (char **)*stackp;
1631 nullp = NULL;
1632 argc = arginfo->ps_nargvstr;
1633 envc = arginfo->ps_nenvstr;
1634
1635 /* argc on stack is long */
1636 CTASSERT(sizeof(*cpp) == sizeof(argc));
1637
1638 dp = (char *)(cpp +
1639 1 + /* long argc */
1640 argc + /* char *argv[] */
1641 1 + /* \0 */
1642 envc + /* char *env[] */
1643 1 + /* \0 */
1644 /* XXX auxinfo multiplied by ptr size? */
1645 pack->ep_esch->es_arglen); /* auxinfo */
1646 sp = argp;
1647
1648 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1649 COPYPRINTF("", cpp - 1, sizeof(argc));
1650 return error;
1651 }
1652
1653 /* XXX don't copy them out, remap them! */
1654 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1655
1656 for (; --argc >= 0; sp += len, dp += len) {
1657 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1658 COPYPRINTF("", cpp - 1, sizeof(dp));
1659 return error;
1660 }
1661 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1662 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1663 return error;
1664 }
1665 }
1666
1667 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1668 COPYPRINTF("", cpp - 1, sizeof(nullp));
1669 return error;
1670 }
1671
1672 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1673
1674 for (; --envc >= 0; sp += len, dp += len) {
1675 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1676 COPYPRINTF("", cpp - 1, sizeof(dp));
1677 return error;
1678 }
1679 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1680 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1681 return error;
1682 }
1683
1684 }
1685
1686 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1687 COPYPRINTF("", cpp - 1, sizeof(nullp));
1688 return error;
1689 }
1690
1691 *stackp = (char *)cpp;
1692 return 0;
1693 }
1694
1695
1696 /*
1697 * Add execsw[] entries.
1698 */
1699 int
1700 exec_add(struct execsw *esp, int count)
1701 {
1702 struct exec_entry *it;
1703 int i;
1704
1705 if (count == 0) {
1706 return 0;
1707 }
1708
1709 /* Check for duplicates. */
1710 rw_enter(&exec_lock, RW_WRITER);
1711 for (i = 0; i < count; i++) {
1712 LIST_FOREACH(it, &ex_head, ex_list) {
1713 /* assume unique (makecmds, probe_func, emulation) */
1714 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1715 it->ex_sw->u.elf_probe_func ==
1716 esp[i].u.elf_probe_func &&
1717 it->ex_sw->es_emul == esp[i].es_emul) {
1718 rw_exit(&exec_lock);
1719 return EEXIST;
1720 }
1721 }
1722 }
1723
1724 /* Allocate new entries. */
1725 for (i = 0; i < count; i++) {
1726 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1727 it->ex_sw = &esp[i];
1728 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1729 }
1730
1731 /* update execsw[] */
1732 exec_init(0);
1733 rw_exit(&exec_lock);
1734 return 0;
1735 }
1736
1737 /*
1738 * Remove execsw[] entry.
1739 */
1740 int
1741 exec_remove(struct execsw *esp, int count)
1742 {
1743 struct exec_entry *it, *next;
1744 int i;
1745 const struct proclist_desc *pd;
1746 proc_t *p;
1747
1748 if (count == 0) {
1749 return 0;
1750 }
1751
1752 /* Abort if any are busy. */
1753 rw_enter(&exec_lock, RW_WRITER);
1754 for (i = 0; i < count; i++) {
1755 mutex_enter(proc_lock);
1756 for (pd = proclists; pd->pd_list != NULL; pd++) {
1757 PROCLIST_FOREACH(p, pd->pd_list) {
1758 if (p->p_execsw == &esp[i]) {
1759 mutex_exit(proc_lock);
1760 rw_exit(&exec_lock);
1761 return EBUSY;
1762 }
1763 }
1764 }
1765 mutex_exit(proc_lock);
1766 }
1767
1768 /* None are busy, so remove them all. */
1769 for (i = 0; i < count; i++) {
1770 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1771 next = LIST_NEXT(it, ex_list);
1772 if (it->ex_sw == &esp[i]) {
1773 LIST_REMOVE(it, ex_list);
1774 kmem_free(it, sizeof(*it));
1775 break;
1776 }
1777 }
1778 }
1779
1780 /* update execsw[] */
1781 exec_init(0);
1782 rw_exit(&exec_lock);
1783 return 0;
1784 }
1785
1786 /*
1787 * Initialize exec structures. If init_boot is true, also does necessary
1788 * one-time initialization (it's called from main() that way).
1789 * Once system is multiuser, this should be called with exec_lock held,
1790 * i.e. via exec_{add|remove}().
1791 */
1792 int
1793 exec_init(int init_boot)
1794 {
1795 const struct execsw **sw;
1796 struct exec_entry *ex;
1797 SLIST_HEAD(,exec_entry) first;
1798 SLIST_HEAD(,exec_entry) any;
1799 SLIST_HEAD(,exec_entry) last;
1800 int i, sz;
1801
1802 if (init_boot) {
1803 /* do one-time initializations */
1804 rw_init(&exec_lock);
1805 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1806 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1807 "execargs", &exec_palloc, IPL_NONE);
1808 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1809 } else {
1810 KASSERT(rw_write_held(&exec_lock));
1811 }
1812
1813 /* Sort each entry onto the appropriate queue. */
1814 SLIST_INIT(&first);
1815 SLIST_INIT(&any);
1816 SLIST_INIT(&last);
1817 sz = 0;
1818 LIST_FOREACH(ex, &ex_head, ex_list) {
1819 switch(ex->ex_sw->es_prio) {
1820 case EXECSW_PRIO_FIRST:
1821 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1822 break;
1823 case EXECSW_PRIO_ANY:
1824 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1825 break;
1826 case EXECSW_PRIO_LAST:
1827 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1828 break;
1829 default:
1830 panic("%s", __func__);
1831 break;
1832 }
1833 sz++;
1834 }
1835
1836 /*
1837 * Create new execsw[]. Ensure we do not try a zero-sized
1838 * allocation.
1839 */
1840 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1841 i = 0;
1842 SLIST_FOREACH(ex, &first, ex_slist) {
1843 sw[i++] = ex->ex_sw;
1844 }
1845 SLIST_FOREACH(ex, &any, ex_slist) {
1846 sw[i++] = ex->ex_sw;
1847 }
1848 SLIST_FOREACH(ex, &last, ex_slist) {
1849 sw[i++] = ex->ex_sw;
1850 }
1851
1852 /* Replace old execsw[] and free used memory. */
1853 if (execsw != NULL) {
1854 kmem_free(__UNCONST(execsw),
1855 nexecs * sizeof(struct execsw *) + 1);
1856 }
1857 execsw = sw;
1858 nexecs = sz;
1859
1860 /* Figure out the maximum size of an exec header. */
1861 exec_maxhdrsz = sizeof(int);
1862 for (i = 0; i < nexecs; i++) {
1863 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1864 exec_maxhdrsz = execsw[i]->es_hdrsz;
1865 }
1866
1867 return 0;
1868 }
1869
1870 static int
1871 exec_sigcode_map(struct proc *p, const struct emul *e)
1872 {
1873 vaddr_t va;
1874 vsize_t sz;
1875 int error;
1876 struct uvm_object *uobj;
1877
1878 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1879
1880 if (e->e_sigobject == NULL || sz == 0) {
1881 return 0;
1882 }
1883
1884 /*
1885 * If we don't have a sigobject for this emulation, create one.
1886 *
1887 * sigobject is an anonymous memory object (just like SYSV shared
1888 * memory) that we keep a permanent reference to and that we map
1889 * in all processes that need this sigcode. The creation is simple,
1890 * we create an object, add a permanent reference to it, map it in
1891 * kernel space, copy out the sigcode to it and unmap it.
1892 * We map it with PROT_READ|PROT_EXEC into the process just
1893 * the way sys_mmap() would map it.
1894 */
1895
1896 uobj = *e->e_sigobject;
1897 if (uobj == NULL) {
1898 mutex_enter(&sigobject_lock);
1899 if ((uobj = *e->e_sigobject) == NULL) {
1900 uobj = uao_create(sz, 0);
1901 (*uobj->pgops->pgo_reference)(uobj);
1902 va = vm_map_min(kernel_map);
1903 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1904 uobj, 0, 0,
1905 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1906 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1907 printf("kernel mapping failed %d\n", error);
1908 (*uobj->pgops->pgo_detach)(uobj);
1909 mutex_exit(&sigobject_lock);
1910 return error;
1911 }
1912 memcpy((void *)va, e->e_sigcode, sz);
1913 #ifdef PMAP_NEED_PROCWR
1914 pmap_procwr(&proc0, va, sz);
1915 #endif
1916 uvm_unmap(kernel_map, va, va + round_page(sz));
1917 *e->e_sigobject = uobj;
1918 }
1919 mutex_exit(&sigobject_lock);
1920 }
1921
1922 /* Just a hint to uvm_map where to put it. */
1923 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1924 round_page(sz));
1925
1926 #ifdef __alpha__
1927 /*
1928 * Tru64 puts /sbin/loader at the end of user virtual memory,
1929 * which causes the above calculation to put the sigcode at
1930 * an invalid address. Put it just below the text instead.
1931 */
1932 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1933 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1934 }
1935 #endif
1936
1937 (*uobj->pgops->pgo_reference)(uobj);
1938 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1939 uobj, 0, 0,
1940 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1941 UVM_ADV_RANDOM, 0));
1942 if (error) {
1943 DPRINTF(("%s, %d: map %p "
1944 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1945 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1946 va, error));
1947 (*uobj->pgops->pgo_detach)(uobj);
1948 return error;
1949 }
1950 p->p_sigctx.ps_sigcode = (void *)va;
1951 return 0;
1952 }
1953
1954 /*
1955 * Release a refcount on spawn_exec_data and destroy memory, if this
1956 * was the last one.
1957 */
1958 static void
1959 spawn_exec_data_release(struct spawn_exec_data *data)
1960 {
1961 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1962 return;
1963
1964 cv_destroy(&data->sed_cv_child_ready);
1965 mutex_destroy(&data->sed_mtx_child);
1966
1967 if (data->sed_actions)
1968 posix_spawn_fa_free(data->sed_actions,
1969 data->sed_actions->len);
1970 if (data->sed_attrs)
1971 kmem_free(data->sed_attrs,
1972 sizeof(*data->sed_attrs));
1973 kmem_free(data, sizeof(*data));
1974 }
1975
1976 /*
1977 * A child lwp of a posix_spawn operation starts here and ends up in
1978 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1979 * manipulations in between.
1980 * The parent waits for the child, as it is not clear whether the child
1981 * will be able to acquire its own exec_lock. If it can, the parent can
1982 * be released early and continue running in parallel. If not (or if the
1983 * magic debug flag is passed in the scheduler attribute struct), the
1984 * child rides on the parent's exec lock until it is ready to return to
1985 * to userland - and only then releases the parent. This method loses
1986 * concurrency, but improves error reporting.
1987 */
1988 static void
1989 spawn_return(void *arg)
1990 {
1991 struct spawn_exec_data *spawn_data = arg;
1992 struct lwp *l = curlwp;
1993 int error, newfd;
1994 size_t i;
1995 const struct posix_spawn_file_actions_entry *fae;
1996 pid_t ppid;
1997 register_t retval;
1998 bool have_reflock;
1999 bool parent_is_waiting = true;
2000
2001 /*
2002 * Check if we can release parent early.
2003 * We either need to have no sed_attrs, or sed_attrs does not
2004 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2005 * safe access to the parent proc (passed in sed_parent).
2006 * We then try to get the exec_lock, and only if that works, we can
2007 * release the parent here already.
2008 */
2009 ppid = spawn_data->sed_parent->p_pid;
2010 if ((!spawn_data->sed_attrs
2011 || (spawn_data->sed_attrs->sa_flags
2012 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2013 && rw_tryenter(&exec_lock, RW_READER)) {
2014 parent_is_waiting = false;
2015 mutex_enter(&spawn_data->sed_mtx_child);
2016 cv_signal(&spawn_data->sed_cv_child_ready);
2017 mutex_exit(&spawn_data->sed_mtx_child);
2018 }
2019
2020 /* don't allow debugger access yet */
2021 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
2022 have_reflock = true;
2023
2024 error = 0;
2025 /* handle posix_spawn_file_actions */
2026 if (spawn_data->sed_actions != NULL) {
2027 for (i = 0; i < spawn_data->sed_actions->len; i++) {
2028 fae = &spawn_data->sed_actions->fae[i];
2029 switch (fae->fae_action) {
2030 case FAE_OPEN:
2031 if (fd_getfile(fae->fae_fildes) != NULL) {
2032 error = fd_close(fae->fae_fildes);
2033 if (error)
2034 break;
2035 }
2036 error = fd_open(fae->fae_path, fae->fae_oflag,
2037 fae->fae_mode, &newfd);
2038 if (error)
2039 break;
2040 if (newfd != fae->fae_fildes) {
2041 error = dodup(l, newfd,
2042 fae->fae_fildes, 0, &retval);
2043 if (fd_getfile(newfd) != NULL)
2044 fd_close(newfd);
2045 }
2046 break;
2047 case FAE_DUP2:
2048 error = dodup(l, fae->fae_fildes,
2049 fae->fae_newfildes, 0, &retval);
2050 break;
2051 case FAE_CLOSE:
2052 if (fd_getfile(fae->fae_fildes) == NULL) {
2053 error = EBADF;
2054 break;
2055 }
2056 error = fd_close(fae->fae_fildes);
2057 break;
2058 }
2059 if (error)
2060 goto report_error;
2061 }
2062 }
2063
2064 /* handle posix_spawnattr */
2065 if (spawn_data->sed_attrs != NULL) {
2066 int ostat;
2067 struct sigaction sigact;
2068 sigact._sa_u._sa_handler = SIG_DFL;
2069 sigact.sa_flags = 0;
2070
2071 /*
2072 * set state to SSTOP so that this proc can be found by pid.
2073 * see proc_enterprp, do_sched_setparam below
2074 */
2075 ostat = l->l_proc->p_stat;
2076 l->l_proc->p_stat = SSTOP;
2077
2078 /* Set process group */
2079 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2080 pid_t mypid = l->l_proc->p_pid,
2081 pgrp = spawn_data->sed_attrs->sa_pgroup;
2082
2083 if (pgrp == 0)
2084 pgrp = mypid;
2085
2086 error = proc_enterpgrp(spawn_data->sed_parent,
2087 mypid, pgrp, false);
2088 if (error)
2089 goto report_error;
2090 }
2091
2092 /* Set scheduler policy */
2093 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2094 error = do_sched_setparam(l->l_proc->p_pid, 0,
2095 spawn_data->sed_attrs->sa_schedpolicy,
2096 &spawn_data->sed_attrs->sa_schedparam);
2097 else if (spawn_data->sed_attrs->sa_flags
2098 & POSIX_SPAWN_SETSCHEDPARAM) {
2099 error = do_sched_setparam(ppid, 0,
2100 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2101 }
2102 if (error)
2103 goto report_error;
2104
2105 /* Reset user ID's */
2106 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2107 error = do_setresuid(l, -1,
2108 kauth_cred_getgid(l->l_cred), -1,
2109 ID_E_EQ_R | ID_E_EQ_S);
2110 if (error)
2111 goto report_error;
2112 error = do_setresuid(l, -1,
2113 kauth_cred_getuid(l->l_cred), -1,
2114 ID_E_EQ_R | ID_E_EQ_S);
2115 if (error)
2116 goto report_error;
2117 }
2118
2119 /* Set signal masks/defaults */
2120 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2121 mutex_enter(l->l_proc->p_lock);
2122 error = sigprocmask1(l, SIG_SETMASK,
2123 &spawn_data->sed_attrs->sa_sigmask, NULL);
2124 mutex_exit(l->l_proc->p_lock);
2125 if (error)
2126 goto report_error;
2127 }
2128
2129 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2130 /*
2131 * The following sigaction call is using a sigaction
2132 * version 0 trampoline which is in the compatibility
2133 * code only. This is not a problem because for SIG_DFL
2134 * and SIG_IGN, the trampolines are now ignored. If they
2135 * were not, this would be a problem because we are
2136 * holding the exec_lock, and the compat code needs
2137 * to do the same in order to replace the trampoline
2138 * code of the process.
2139 */
2140 for (i = 1; i <= NSIG; i++) {
2141 if (sigismember(
2142 &spawn_data->sed_attrs->sa_sigdefault, i))
2143 sigaction1(l, i, &sigact, NULL, NULL,
2144 0);
2145 }
2146 }
2147 l->l_proc->p_stat = ostat;
2148 }
2149
2150 /* now do the real exec */
2151 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2152 true);
2153 have_reflock = false;
2154 if (error == EJUSTRETURN)
2155 error = 0;
2156 else if (error)
2157 goto report_error;
2158
2159 if (parent_is_waiting) {
2160 mutex_enter(&spawn_data->sed_mtx_child);
2161 cv_signal(&spawn_data->sed_cv_child_ready);
2162 mutex_exit(&spawn_data->sed_mtx_child);
2163 }
2164
2165 /* release our refcount on the data */
2166 spawn_exec_data_release(spawn_data);
2167
2168 /* and finally: leave to userland for the first time */
2169 cpu_spawn_return(l);
2170
2171 /* NOTREACHED */
2172 return;
2173
2174 report_error:
2175 if (have_reflock) {
2176 /*
2177 * We have not passed through execve_runproc(),
2178 * which would have released the p_reflock and also
2179 * taken ownership of the sed_exec part of spawn_data,
2180 * so release/free both here.
2181 */
2182 rw_exit(&l->l_proc->p_reflock);
2183 execve_free_data(&spawn_data->sed_exec);
2184 }
2185
2186 if (parent_is_waiting) {
2187 /* pass error to parent */
2188 mutex_enter(&spawn_data->sed_mtx_child);
2189 spawn_data->sed_error = error;
2190 cv_signal(&spawn_data->sed_cv_child_ready);
2191 mutex_exit(&spawn_data->sed_mtx_child);
2192 } else {
2193 rw_exit(&exec_lock);
2194 }
2195
2196 /* release our refcount on the data */
2197 spawn_exec_data_release(spawn_data);
2198
2199 /* done, exit */
2200 mutex_enter(l->l_proc->p_lock);
2201 /*
2202 * Posix explicitly asks for an exit code of 127 if we report
2203 * errors from the child process - so, unfortunately, there
2204 * is no way to report a more exact error code.
2205 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2206 * flag bit in the attrp argument to posix_spawn(2), see above.
2207 */
2208 exit1(l, W_EXITCODE(127, 0));
2209 }
2210
2211 void
2212 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2213 {
2214
2215 for (size_t i = 0; i < len; i++) {
2216 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2217 if (fae->fae_action != FAE_OPEN)
2218 continue;
2219 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2220 }
2221 if (fa->len > 0)
2222 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2223 kmem_free(fa, sizeof(*fa));
2224 }
2225
2226 static int
2227 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2228 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2229 {
2230 struct posix_spawn_file_actions *fa;
2231 struct posix_spawn_file_actions_entry *fae;
2232 char *pbuf = NULL;
2233 int error;
2234 size_t i = 0;
2235
2236 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2237 error = copyin(ufa, fa, sizeof(*fa));
2238 if (error || fa->len == 0) {
2239 kmem_free(fa, sizeof(*fa));
2240 return error; /* 0 if not an error, and len == 0 */
2241 }
2242
2243 if (fa->len > lim) {
2244 kmem_free(fa, sizeof(*fa));
2245 return EINVAL;
2246 }
2247
2248 fa->size = fa->len;
2249 size_t fal = fa->len * sizeof(*fae);
2250 fae = fa->fae;
2251 fa->fae = kmem_alloc(fal, KM_SLEEP);
2252 error = copyin(fae, fa->fae, fal);
2253 if (error)
2254 goto out;
2255
2256 pbuf = PNBUF_GET();
2257 for (; i < fa->len; i++) {
2258 fae = &fa->fae[i];
2259 if (fae->fae_action != FAE_OPEN)
2260 continue;
2261 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2262 if (error)
2263 goto out;
2264 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2265 memcpy(fae->fae_path, pbuf, fal);
2266 }
2267 PNBUF_PUT(pbuf);
2268
2269 *fap = fa;
2270 return 0;
2271 out:
2272 if (pbuf)
2273 PNBUF_PUT(pbuf);
2274 posix_spawn_fa_free(fa, i);
2275 return error;
2276 }
2277
2278 int
2279 check_posix_spawn(struct lwp *l1)
2280 {
2281 int error, tnprocs, count;
2282 uid_t uid;
2283 struct proc *p1;
2284
2285 p1 = l1->l_proc;
2286 uid = kauth_cred_getuid(l1->l_cred);
2287 tnprocs = atomic_inc_uint_nv(&nprocs);
2288
2289 /*
2290 * Although process entries are dynamically created, we still keep
2291 * a global limit on the maximum number we will create.
2292 */
2293 if (__predict_false(tnprocs >= maxproc))
2294 error = -1;
2295 else
2296 error = kauth_authorize_process(l1->l_cred,
2297 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2298
2299 if (error) {
2300 atomic_dec_uint(&nprocs);
2301 return EAGAIN;
2302 }
2303
2304 /*
2305 * Enforce limits.
2306 */
2307 count = chgproccnt(uid, 1);
2308 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2309 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2310 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2311 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2312 (void)chgproccnt(uid, -1);
2313 atomic_dec_uint(&nprocs);
2314 return EAGAIN;
2315 }
2316
2317 return 0;
2318 }
2319
2320 int
2321 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2322 struct posix_spawn_file_actions *fa,
2323 struct posix_spawnattr *sa,
2324 char *const *argv, char *const *envp,
2325 execve_fetch_element_t fetch)
2326 {
2327
2328 struct proc *p1, *p2;
2329 struct lwp *l2;
2330 int error;
2331 struct spawn_exec_data *spawn_data;
2332 vaddr_t uaddr;
2333 pid_t pid;
2334 bool have_exec_lock = false;
2335
2336 p1 = l1->l_proc;
2337
2338 /* Allocate and init spawn_data */
2339 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2340 spawn_data->sed_refcnt = 1; /* only parent so far */
2341 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2342 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2343 mutex_enter(&spawn_data->sed_mtx_child);
2344
2345 /*
2346 * Do the first part of the exec now, collect state
2347 * in spawn_data.
2348 */
2349 error = execve_loadvm(l1, path, argv,
2350 envp, fetch, &spawn_data->sed_exec);
2351 if (error == EJUSTRETURN)
2352 error = 0;
2353 else if (error)
2354 goto error_exit;
2355
2356 have_exec_lock = true;
2357
2358 /*
2359 * Allocate virtual address space for the U-area now, while it
2360 * is still easy to abort the fork operation if we're out of
2361 * kernel virtual address space.
2362 */
2363 uaddr = uvm_uarea_alloc();
2364 if (__predict_false(uaddr == 0)) {
2365 error = ENOMEM;
2366 goto error_exit;
2367 }
2368
2369 /*
2370 * Allocate new proc. Borrow proc0 vmspace for it, we will
2371 * replace it with its own before returning to userland
2372 * in the child.
2373 * This is a point of no return, we will have to go through
2374 * the child proc to properly clean it up past this point.
2375 */
2376 p2 = proc_alloc();
2377 pid = p2->p_pid;
2378
2379 /*
2380 * Make a proc table entry for the new process.
2381 * Start by zeroing the section of proc that is zero-initialized,
2382 * then copy the section that is copied directly from the parent.
2383 */
2384 memset(&p2->p_startzero, 0,
2385 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2386 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2387 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2388 p2->p_vmspace = proc0.p_vmspace;
2389
2390 TAILQ_INIT(&p2->p_sigpend.sp_info);
2391
2392 LIST_INIT(&p2->p_lwps);
2393 LIST_INIT(&p2->p_sigwaiters);
2394
2395 /*
2396 * Duplicate sub-structures as needed.
2397 * Increase reference counts on shared objects.
2398 * Inherit flags we want to keep. The flags related to SIGCHLD
2399 * handling are important in order to keep a consistent behaviour
2400 * for the child after the fork. If we are a 32-bit process, the
2401 * child will be too.
2402 */
2403 p2->p_flag =
2404 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2405 p2->p_emul = p1->p_emul;
2406 p2->p_execsw = p1->p_execsw;
2407
2408 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2409 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2410 rw_init(&p2->p_reflock);
2411 cv_init(&p2->p_waitcv, "wait");
2412 cv_init(&p2->p_lwpcv, "lwpwait");
2413
2414 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2415
2416 kauth_proc_fork(p1, p2);
2417
2418 p2->p_raslist = NULL;
2419 p2->p_fd = fd_copy();
2420
2421 /* XXX racy */
2422 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2423
2424 p2->p_cwdi = cwdinit();
2425
2426 /*
2427 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2428 * we just need increase pl_refcnt.
2429 */
2430 if (!p1->p_limit->pl_writeable) {
2431 lim_addref(p1->p_limit);
2432 p2->p_limit = p1->p_limit;
2433 } else {
2434 p2->p_limit = lim_copy(p1->p_limit);
2435 }
2436
2437 p2->p_lflag = 0;
2438 p2->p_sflag = 0;
2439 p2->p_slflag = 0;
2440 p2->p_pptr = p1;
2441 p2->p_ppid = p1->p_pid;
2442 LIST_INIT(&p2->p_children);
2443
2444 p2->p_aio = NULL;
2445
2446 #ifdef KTRACE
2447 /*
2448 * Copy traceflag and tracefile if enabled.
2449 * If not inherited, these were zeroed above.
2450 */
2451 if (p1->p_traceflag & KTRFAC_INHERIT) {
2452 mutex_enter(&ktrace_lock);
2453 p2->p_traceflag = p1->p_traceflag;
2454 if ((p2->p_tracep = p1->p_tracep) != NULL)
2455 ktradref(p2);
2456 mutex_exit(&ktrace_lock);
2457 }
2458 #endif
2459
2460 /*
2461 * Create signal actions for the child process.
2462 */
2463 p2->p_sigacts = sigactsinit(p1, 0);
2464 mutex_enter(p1->p_lock);
2465 p2->p_sflag |=
2466 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2467 sched_proc_fork(p1, p2);
2468 mutex_exit(p1->p_lock);
2469
2470 p2->p_stflag = p1->p_stflag;
2471
2472 /*
2473 * p_stats.
2474 * Copy parts of p_stats, and zero out the rest.
2475 */
2476 p2->p_stats = pstatscopy(p1->p_stats);
2477
2478 /* copy over machdep flags to the new proc */
2479 cpu_proc_fork(p1, p2);
2480
2481 /*
2482 * Prepare remaining parts of spawn data
2483 */
2484 spawn_data->sed_actions = fa;
2485 spawn_data->sed_attrs = sa;
2486
2487 spawn_data->sed_parent = p1;
2488
2489 /* create LWP */
2490 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2491 &l2, l1->l_class);
2492 l2->l_ctxlink = NULL; /* reset ucontext link */
2493
2494 /*
2495 * Copy the credential so other references don't see our changes.
2496 * Test to see if this is necessary first, since in the common case
2497 * we won't need a private reference.
2498 */
2499 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2500 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2501 l2->l_cred = kauth_cred_copy(l2->l_cred);
2502 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2503 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2504 }
2505
2506 /* Update the master credentials. */
2507 if (l2->l_cred != p2->p_cred) {
2508 kauth_cred_t ocred;
2509
2510 kauth_cred_hold(l2->l_cred);
2511 mutex_enter(p2->p_lock);
2512 ocred = p2->p_cred;
2513 p2->p_cred = l2->l_cred;
2514 mutex_exit(p2->p_lock);
2515 kauth_cred_free(ocred);
2516 }
2517
2518 *child_ok = true;
2519 spawn_data->sed_refcnt = 2; /* child gets it as well */
2520 #if 0
2521 l2->l_nopreempt = 1; /* start it non-preemptable */
2522 #endif
2523
2524 /*
2525 * It's now safe for the scheduler and other processes to see the
2526 * child process.
2527 */
2528 mutex_enter(proc_lock);
2529
2530 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2531 p2->p_lflag |= PL_CONTROLT;
2532
2533 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2534 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2535
2536 LIST_INSERT_AFTER(p1, p2, p_pglist);
2537 LIST_INSERT_HEAD(&allproc, p2, p_list);
2538
2539 p2->p_trace_enabled = trace_is_enabled(p2);
2540 #ifdef __HAVE_SYSCALL_INTERN
2541 (*p2->p_emul->e_syscall_intern)(p2);
2542 #endif
2543
2544 /*
2545 * Make child runnable, set start time, and add to run queue except
2546 * if the parent requested the child to start in SSTOP state.
2547 */
2548 mutex_enter(p2->p_lock);
2549
2550 getmicrotime(&p2->p_stats->p_start);
2551
2552 lwp_lock(l2);
2553 KASSERT(p2->p_nrlwps == 1);
2554 p2->p_nrlwps = 1;
2555 p2->p_stat = SACTIVE;
2556 l2->l_stat = LSRUN;
2557 sched_enqueue(l2, false);
2558 lwp_unlock(l2);
2559
2560 mutex_exit(p2->p_lock);
2561 mutex_exit(proc_lock);
2562
2563 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2564 error = spawn_data->sed_error;
2565 mutex_exit(&spawn_data->sed_mtx_child);
2566 spawn_exec_data_release(spawn_data);
2567
2568 rw_exit(&p1->p_reflock);
2569 rw_exit(&exec_lock);
2570 have_exec_lock = false;
2571
2572 *pid_res = pid;
2573 return error;
2574
2575 error_exit:
2576 if (have_exec_lock) {
2577 execve_free_data(&spawn_data->sed_exec);
2578 rw_exit(&p1->p_reflock);
2579 rw_exit(&exec_lock);
2580 }
2581 mutex_exit(&spawn_data->sed_mtx_child);
2582 spawn_exec_data_release(spawn_data);
2583
2584 return error;
2585 }
2586
2587 int
2588 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2589 register_t *retval)
2590 {
2591 /* {
2592 syscallarg(pid_t *) pid;
2593 syscallarg(const char *) path;
2594 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2595 syscallarg(const struct posix_spawnattr *) attrp;
2596 syscallarg(char *const *) argv;
2597 syscallarg(char *const *) envp;
2598 } */
2599
2600 int error;
2601 struct posix_spawn_file_actions *fa = NULL;
2602 struct posix_spawnattr *sa = NULL;
2603 pid_t pid;
2604 bool child_ok = false;
2605 rlim_t max_fileactions;
2606 proc_t *p = l1->l_proc;
2607
2608 error = check_posix_spawn(l1);
2609 if (error) {
2610 *retval = error;
2611 return 0;
2612 }
2613
2614 /* copy in file_actions struct */
2615 if (SCARG(uap, file_actions) != NULL) {
2616 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2617 maxfiles);
2618 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2619 max_fileactions);
2620 if (error)
2621 goto error_exit;
2622 }
2623
2624 /* copyin posix_spawnattr struct */
2625 if (SCARG(uap, attrp) != NULL) {
2626 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2627 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2628 if (error)
2629 goto error_exit;
2630 }
2631
2632 /*
2633 * Do the spawn
2634 */
2635 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2636 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2637 if (error)
2638 goto error_exit;
2639
2640 if (error == 0 && SCARG(uap, pid) != NULL)
2641 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2642
2643 *retval = error;
2644 return 0;
2645
2646 error_exit:
2647 if (!child_ok) {
2648 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2649 atomic_dec_uint(&nprocs);
2650
2651 if (sa)
2652 kmem_free(sa, sizeof(*sa));
2653 if (fa)
2654 posix_spawn_fa_free(fa, fa->len);
2655 }
2656
2657 *retval = error;
2658 return 0;
2659 }
2660
2661 void
2662 exec_free_emul_arg(struct exec_package *epp)
2663 {
2664 if (epp->ep_emul_arg_free != NULL) {
2665 KASSERT(epp->ep_emul_arg != NULL);
2666 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2667 epp->ep_emul_arg_free = NULL;
2668 epp->ep_emul_arg = NULL;
2669 } else {
2670 KASSERT(epp->ep_emul_arg == NULL);
2671 }
2672 }
2673
2674 #ifdef DEBUG_EXEC
2675 static void
2676 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2677 {
2678 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2679 size_t j;
2680
2681 if (error == 0)
2682 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2683 else
2684 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2685 epp->ep_vmcmds.evs_used, error));
2686
2687 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2688 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2689 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2690 PRIxVSIZE" prot=0%o flags=%d\n", j,
2691 vp[j].ev_proc == vmcmd_map_pagedvn ?
2692 "pagedvn" :
2693 vp[j].ev_proc == vmcmd_map_readvn ?
2694 "readvn" :
2695 vp[j].ev_proc == vmcmd_map_zero ?
2696 "zero" : "*unknown*",
2697 vp[j].ev_addr, vp[j].ev_len,
2698 vp[j].ev_offset, vp[j].ev_prot,
2699 vp[j].ev_flags));
2700 if (error != 0 && j == x)
2701 DPRINTF((" ^--- failed\n"));
2702 }
2703 }
2704 #endif
2705