kern_exec.c revision 1.426 1 /* $NetBSD: kern_exec.c,v 1.426 2016/04/04 23:07:06 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.426 2016/04/04 23:07:06 christos Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108
109 #include <uvm/uvm_extern.h>
110
111 #include <machine/reg.h>
112
113 #include <compat/common/compat_util.h>
114
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USE_TOPDOWN_VM
117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122
123 struct execve_data;
124
125 static size_t calcargs(struct execve_data * restrict, const size_t);
126 static size_t calcstack(struct execve_data * restrict, const size_t);
127 static int copyoutargs(struct execve_data * restrict, struct lwp *,
128 char * const);
129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
130 static int copyinargs(struct execve_data * restrict, char * const *,
131 char * const *, execve_fetch_element_t, char **);
132 static int copyinargstrs(struct execve_data * restrict, char * const *,
133 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
134 static int exec_sigcode_map(struct proc *, const struct emul *);
135
136 #ifdef DEBUG_EXEC
137 #define DPRINTF(a) printf a
138 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
139 __LINE__, (s), (a), (b))
140 static void dump_vmcmds(const struct exec_package * const, size_t, int);
141 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
142 #else
143 #define DPRINTF(a)
144 #define COPYPRINTF(s, a, b)
145 #define DUMPVMCMDS(p, x, e) do {} while (0)
146 #endif /* DEBUG_EXEC */
147
148 /*
149 * DTrace SDT provider definitions
150 */
151 SDT_PROVIDER_DECLARE(proc);
152 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
153 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
154 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
155
156 /*
157 * Exec function switch:
158 *
159 * Note that each makecmds function is responsible for loading the
160 * exec package with the necessary functions for any exec-type-specific
161 * handling.
162 *
163 * Functions for specific exec types should be defined in their own
164 * header file.
165 */
166 static const struct execsw **execsw = NULL;
167 static int nexecs;
168
169 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
170
171 /* list of dynamically loaded execsw entries */
172 static LIST_HEAD(execlist_head, exec_entry) ex_head =
173 LIST_HEAD_INITIALIZER(ex_head);
174 struct exec_entry {
175 LIST_ENTRY(exec_entry) ex_list;
176 SLIST_ENTRY(exec_entry) ex_slist;
177 const struct execsw *ex_sw;
178 };
179
180 #ifndef __HAVE_SYSCALL_INTERN
181 void syscall(void);
182 #endif
183
184 /* NetBSD autoloadable syscalls */
185 #ifdef MODULAR
186 #include <kern/syscalls_autoload.c>
187 #endif
188
189 /* NetBSD emul struct */
190 struct emul emul_netbsd = {
191 .e_name = "netbsd",
192 #ifdef EMUL_NATIVEROOT
193 .e_path = EMUL_NATIVEROOT,
194 #else
195 .e_path = NULL,
196 #endif
197 #ifndef __HAVE_MINIMAL_EMUL
198 .e_flags = EMUL_HAS_SYS___syscall,
199 .e_errno = NULL,
200 .e_nosys = SYS_syscall,
201 .e_nsysent = SYS_NSYSENT,
202 #endif
203 #ifdef MODULAR
204 .e_sc_autoload = netbsd_syscalls_autoload,
205 #endif
206 .e_sysent = sysent,
207 #ifdef SYSCALL_DEBUG
208 .e_syscallnames = syscallnames,
209 #else
210 .e_syscallnames = NULL,
211 #endif
212 .e_sendsig = sendsig,
213 .e_trapsignal = trapsignal,
214 .e_tracesig = NULL,
215 .e_sigcode = NULL,
216 .e_esigcode = NULL,
217 .e_sigobject = NULL,
218 .e_setregs = setregs,
219 .e_proc_exec = NULL,
220 .e_proc_fork = NULL,
221 .e_proc_exit = NULL,
222 .e_lwp_fork = NULL,
223 .e_lwp_exit = NULL,
224 #ifdef __HAVE_SYSCALL_INTERN
225 .e_syscall_intern = syscall_intern,
226 #else
227 .e_syscall = syscall,
228 #endif
229 .e_sysctlovly = NULL,
230 .e_fault = NULL,
231 .e_vm_default_addr = uvm_default_mapaddr,
232 .e_usertrap = NULL,
233 .e_ucsize = sizeof(ucontext_t),
234 .e_startlwp = startlwp
235 };
236
237 /*
238 * Exec lock. Used to control access to execsw[] structures.
239 * This must not be static so that netbsd32 can access it, too.
240 */
241 krwlock_t exec_lock;
242
243 static kmutex_t sigobject_lock;
244
245 /*
246 * Data used between a loadvm and execve part of an "exec" operation
247 */
248 struct execve_data {
249 struct exec_package ed_pack;
250 struct pathbuf *ed_pathbuf;
251 struct vattr ed_attr;
252 struct ps_strings ed_arginfo;
253 char *ed_argp;
254 const char *ed_pathstring;
255 char *ed_resolvedpathbuf;
256 size_t ed_ps_strings_sz;
257 int ed_szsigcode;
258 size_t ed_argslen;
259 long ed_argc;
260 long ed_envc;
261 };
262
263 /*
264 * data passed from parent lwp to child during a posix_spawn()
265 */
266 struct spawn_exec_data {
267 struct execve_data sed_exec;
268 struct posix_spawn_file_actions
269 *sed_actions;
270 struct posix_spawnattr *sed_attrs;
271 struct proc *sed_parent;
272 kcondvar_t sed_cv_child_ready;
273 kmutex_t sed_mtx_child;
274 int sed_error;
275 volatile uint32_t sed_refcnt;
276 };
277
278 static void *
279 exec_pool_alloc(struct pool *pp, int flags)
280 {
281
282 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
283 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
284 }
285
286 static void
287 exec_pool_free(struct pool *pp, void *addr)
288 {
289
290 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
291 }
292
293 static struct pool exec_pool;
294
295 static struct pool_allocator exec_palloc = {
296 .pa_alloc = exec_pool_alloc,
297 .pa_free = exec_pool_free,
298 .pa_pagesz = NCARGS
299 };
300
301 /*
302 * check exec:
303 * given an "executable" described in the exec package's namei info,
304 * see what we can do with it.
305 *
306 * ON ENTRY:
307 * exec package with appropriate namei info
308 * lwp pointer of exec'ing lwp
309 * NO SELF-LOCKED VNODES
310 *
311 * ON EXIT:
312 * error: nothing held, etc. exec header still allocated.
313 * ok: filled exec package, executable's vnode (unlocked).
314 *
315 * EXEC SWITCH ENTRY:
316 * Locked vnode to check, exec package, proc.
317 *
318 * EXEC SWITCH EXIT:
319 * ok: return 0, filled exec package, executable's vnode (unlocked).
320 * error: destructive:
321 * everything deallocated execept exec header.
322 * non-destructive:
323 * error code, executable's vnode (unlocked),
324 * exec header unmodified.
325 */
326 int
327 /*ARGSUSED*/
328 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
329 {
330 int error, i;
331 struct vnode *vp;
332 struct nameidata nd;
333 size_t resid;
334
335 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
336
337 /* first get the vnode */
338 if ((error = namei(&nd)) != 0)
339 return error;
340 epp->ep_vp = vp = nd.ni_vp;
341 /* normally this can't fail */
342 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
343 KASSERT(error == 0);
344
345 #ifdef DIAGNOSTIC
346 /* paranoia (take this out once namei stuff stabilizes) */
347 memset(nd.ni_pnbuf, '~', PATH_MAX);
348 #endif
349
350 /* check access and type */
351 if (vp->v_type != VREG) {
352 error = EACCES;
353 goto bad1;
354 }
355 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
356 goto bad1;
357
358 /* get attributes */
359 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
360 goto bad1;
361
362 /* Check mount point */
363 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
364 error = EACCES;
365 goto bad1;
366 }
367 if (vp->v_mount->mnt_flag & MNT_NOSUID)
368 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
369
370 /* try to open it */
371 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
372 goto bad1;
373
374 /* unlock vp, since we need it unlocked from here on out. */
375 VOP_UNLOCK(vp);
376
377 #if NVERIEXEC > 0
378 error = veriexec_verify(l, vp, epp->ep_resolvedname,
379 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
380 NULL);
381 if (error)
382 goto bad2;
383 #endif /* NVERIEXEC > 0 */
384
385 #ifdef PAX_SEGVGUARD
386 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
387 if (error)
388 goto bad2;
389 #endif /* PAX_SEGVGUARD */
390
391 /* now we have the file, get the exec header */
392 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
393 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
394 if (error)
395 goto bad2;
396 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
397
398 /*
399 * Set up default address space limits. Can be overridden
400 * by individual exec packages.
401 *
402 * XXX probably should be all done in the exec packages.
403 */
404 epp->ep_vm_minaddr = VM_MIN_ADDRESS;
405 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
406 /*
407 * set up the vmcmds for creation of the process
408 * address space
409 */
410 error = ENOEXEC;
411 for (i = 0; i < nexecs; i++) {
412 int newerror;
413
414 epp->ep_esch = execsw[i];
415 newerror = (*execsw[i]->es_makecmds)(l, epp);
416
417 if (!newerror) {
418 /* Seems ok: check that entry point is not too high */
419 if (epp->ep_entry > epp->ep_vm_maxaddr) {
420 #ifdef DIAGNOSTIC
421 printf("%s: rejecting %p due to "
422 "too high entry address (> %p)\n",
423 __func__, (void *)epp->ep_entry,
424 (void *)epp->ep_vm_maxaddr);
425 #endif
426 error = ENOEXEC;
427 break;
428 }
429 /* Seems ok: check that entry point is not too low */
430 if (epp->ep_entry < epp->ep_vm_minaddr) {
431 #ifdef DIAGNOSTIC
432 printf("%s: rejecting %p due to "
433 "too low entry address (< %p)\n",
434 __func__, (void *)epp->ep_entry,
435 (void *)epp->ep_vm_minaddr);
436 #endif
437 error = ENOEXEC;
438 break;
439 }
440
441 /* check limits */
442 if ((epp->ep_tsize > MAXTSIZ) ||
443 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
444 [RLIMIT_DATA].rlim_cur)) {
445 #ifdef DIAGNOSTIC
446 printf("%s: rejecting due to "
447 "limits (t=%llu > %llu || d=%llu > %llu)\n",
448 __func__,
449 (unsigned long long)epp->ep_tsize,
450 (unsigned long long)MAXTSIZ,
451 (unsigned long long)epp->ep_dsize,
452 (unsigned long long)
453 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
454 #endif
455 error = ENOMEM;
456 break;
457 }
458 return 0;
459 }
460
461 /*
462 * Reset all the fields that may have been modified by the
463 * loader.
464 */
465 KASSERT(epp->ep_emul_arg == NULL);
466 if (epp->ep_emul_root != NULL) {
467 vrele(epp->ep_emul_root);
468 epp->ep_emul_root = NULL;
469 }
470 if (epp->ep_interp != NULL) {
471 vrele(epp->ep_interp);
472 epp->ep_interp = NULL;
473 }
474 epp->ep_pax_flags = 0;
475
476 /* make sure the first "interesting" error code is saved. */
477 if (error == ENOEXEC)
478 error = newerror;
479
480 if (epp->ep_flags & EXEC_DESTR)
481 /* Error from "#!" code, tidied up by recursive call */
482 return error;
483 }
484
485 /* not found, error */
486
487 /*
488 * free any vmspace-creation commands,
489 * and release their references
490 */
491 kill_vmcmds(&epp->ep_vmcmds);
492
493 bad2:
494 /*
495 * close and release the vnode, restore the old one, free the
496 * pathname buf, and punt.
497 */
498 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
499 VOP_CLOSE(vp, FREAD, l->l_cred);
500 vput(vp);
501 return error;
502
503 bad1:
504 /*
505 * free the namei pathname buffer, and put the vnode
506 * (which we don't yet have open).
507 */
508 vput(vp); /* was still locked */
509 return error;
510 }
511
512 #ifdef __MACHINE_STACK_GROWS_UP
513 #define STACK_PTHREADSPACE NBPG
514 #else
515 #define STACK_PTHREADSPACE 0
516 #endif
517
518 static int
519 execve_fetch_element(char * const *array, size_t index, char **value)
520 {
521 return copyin(array + index, value, sizeof(*value));
522 }
523
524 /*
525 * exec system call
526 */
527 int
528 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
529 {
530 /* {
531 syscallarg(const char *) path;
532 syscallarg(char * const *) argp;
533 syscallarg(char * const *) envp;
534 } */
535
536 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
537 SCARG(uap, envp), execve_fetch_element);
538 }
539
540 int
541 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
542 register_t *retval)
543 {
544 /* {
545 syscallarg(int) fd;
546 syscallarg(char * const *) argp;
547 syscallarg(char * const *) envp;
548 } */
549
550 return ENOSYS;
551 }
552
553 /*
554 * Load modules to try and execute an image that we do not understand.
555 * If no execsw entries are present, we load those likely to be needed
556 * in order to run native images only. Otherwise, we autoload all
557 * possible modules that could let us run the binary. XXX lame
558 */
559 static void
560 exec_autoload(void)
561 {
562 #ifdef MODULAR
563 static const char * const native[] = {
564 "exec_elf32",
565 "exec_elf64",
566 "exec_script",
567 NULL
568 };
569 static const char * const compat[] = {
570 "exec_elf32",
571 "exec_elf64",
572 "exec_script",
573 "exec_aout",
574 "exec_coff",
575 "exec_ecoff",
576 "compat_aoutm68k",
577 "compat_freebsd",
578 "compat_ibcs2",
579 "compat_linux",
580 "compat_linux32",
581 "compat_netbsd32",
582 "compat_sunos",
583 "compat_sunos32",
584 "compat_svr4",
585 "compat_svr4_32",
586 "compat_ultrix",
587 NULL
588 };
589 char const * const *list;
590 int i;
591
592 list = (nexecs == 0 ? native : compat);
593 for (i = 0; list[i] != NULL; i++) {
594 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
595 continue;
596 }
597 yield();
598 }
599 #endif
600 }
601
602 static int
603 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp,
604 size_t *offs)
605 {
606 char *path, *bp;
607 size_t len, tlen;
608 int error;
609 struct cwdinfo *cwdi;
610
611 path = PNBUF_GET();
612 error = copyinstr(upath, path, MAXPATHLEN, &len);
613 if (error) {
614 PNBUF_PUT(path);
615 DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
616 return error;
617 }
618
619 if (path[0] == '/') {
620 *offs = 0;
621 goto out;
622 }
623
624 len++;
625 if (len + 1 >= MAXPATHLEN)
626 goto out;
627 bp = path + MAXPATHLEN - len;
628 memmove(bp, path, len);
629 *(--bp) = '/';
630
631 cwdi = l->l_proc->p_cwdi;
632 rw_enter(&cwdi->cwdi_lock, RW_READER);
633 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
634 GETCWD_CHECK_ACCESS, l);
635 rw_exit(&cwdi->cwdi_lock);
636
637 if (error) {
638 DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
639 error));
640 goto out;
641 }
642 tlen = path + MAXPATHLEN - bp;
643
644 memmove(path, bp, tlen);
645 path[tlen] = '\0';
646 *offs = tlen - len;
647 out:
648 *pbp = pathbuf_assimilate(path);
649 return 0;
650 }
651
652 static int
653 execve_loadvm(struct lwp *l, const char *path, char * const *args,
654 char * const *envs, execve_fetch_element_t fetch_element,
655 struct execve_data * restrict data)
656 {
657 struct exec_package * const epp = &data->ed_pack;
658 int error;
659 struct proc *p;
660 char *dp;
661 u_int modgen;
662 size_t offs = 0; // XXX: GCC
663
664 KASSERT(data != NULL);
665
666 p = l->l_proc;
667 modgen = 0;
668
669 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
670
671 /*
672 * Check if we have exceeded our number of processes limit.
673 * This is so that we handle the case where a root daemon
674 * forked, ran setuid to become the desired user and is trying
675 * to exec. The obvious place to do the reference counting check
676 * is setuid(), but we don't do the reference counting check there
677 * like other OS's do because then all the programs that use setuid()
678 * must be modified to check the return code of setuid() and exit().
679 * It is dangerous to make setuid() fail, because it fails open and
680 * the program will continue to run as root. If we make it succeed
681 * and return an error code, again we are not enforcing the limit.
682 * The best place to enforce the limit is here, when the process tries
683 * to execute a new image, because eventually the process will need
684 * to call exec in order to do something useful.
685 */
686 retry:
687 if (p->p_flag & PK_SUGID) {
688 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
689 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
690 &p->p_rlimit[RLIMIT_NPROC],
691 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
692 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
693 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
694 return EAGAIN;
695 }
696
697 /*
698 * Drain existing references and forbid new ones. The process
699 * should be left alone until we're done here. This is necessary
700 * to avoid race conditions - e.g. in ptrace() - that might allow
701 * a local user to illicitly obtain elevated privileges.
702 */
703 rw_enter(&p->p_reflock, RW_WRITER);
704
705 /*
706 * Init the namei data to point the file user's program name.
707 * This is done here rather than in check_exec(), so that it's
708 * possible to override this settings if any of makecmd/probe
709 * functions call check_exec() recursively - for example,
710 * see exec_script_makecmds().
711 */
712 if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0)
713 goto clrflg;
714 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
715 data->ed_resolvedpathbuf = PNBUF_GET();
716
717 /*
718 * initialize the fields of the exec package.
719 */
720 epp->ep_kname = data->ed_pathstring + offs;
721 epp->ep_resolvedname = data->ed_resolvedpathbuf;
722 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
723 epp->ep_hdrlen = exec_maxhdrsz;
724 epp->ep_hdrvalid = 0;
725 epp->ep_emul_arg = NULL;
726 epp->ep_emul_arg_free = NULL;
727 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
728 epp->ep_vap = &data->ed_attr;
729 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
730 MD_TOPDOWN_INIT(epp);
731 epp->ep_emul_root = NULL;
732 epp->ep_interp = NULL;
733 epp->ep_esch = NULL;
734 epp->ep_pax_flags = 0;
735 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
736
737 rw_enter(&exec_lock, RW_READER);
738
739 /* see if we can run it. */
740 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
741 if (error != ENOENT) {
742 DPRINTF(("%s: check exec failed %d\n",
743 __func__, error));
744 }
745 goto freehdr;
746 }
747
748 /* allocate an argument buffer */
749 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
750 KASSERT(data->ed_argp != NULL);
751 dp = data->ed_argp;
752
753 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
754 goto bad;
755 }
756
757 /*
758 * Calculate the new stack size.
759 */
760
761 #ifdef PAX_ASLR
762 #define ASLR_GAP(epp) (pax_aslr_epp_active(epp) ? (cprng_fast32() % PAGE_SIZE) : 0)
763 #else
764 #define ASLR_GAP(epp) 0
765 #endif
766
767 #ifdef __MACHINE_STACK_GROWS_UP
768 /*
769 * copyargs() fills argc/argv/envp from the lower address even on
770 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
771 * so that _rtld() use it.
772 */
773 #define RTLD_GAP 32
774 #else
775 #define RTLD_GAP 0
776 #endif
777
778 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
779
780 data->ed_argslen = calcargs(data, argenvstrlen);
781
782 const size_t len = calcstack(data, ASLR_GAP(epp) + RTLD_GAP);
783
784 if (len > epp->ep_ssize) {
785 /* in effect, compare to initial limit */
786 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
787 error = ENOMEM;
788 goto bad;
789 }
790 /* adjust "active stack depth" for process VSZ */
791 epp->ep_ssize = len;
792
793 return 0;
794
795 bad:
796 /* free the vmspace-creation commands, and release their references */
797 kill_vmcmds(&epp->ep_vmcmds);
798 /* kill any opened file descriptor, if necessary */
799 if (epp->ep_flags & EXEC_HASFD) {
800 epp->ep_flags &= ~EXEC_HASFD;
801 fd_close(epp->ep_fd);
802 }
803 /* close and put the exec'd file */
804 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
805 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
806 vput(epp->ep_vp);
807 pool_put(&exec_pool, data->ed_argp);
808
809 freehdr:
810 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
811 if (epp->ep_emul_root != NULL)
812 vrele(epp->ep_emul_root);
813 if (epp->ep_interp != NULL)
814 vrele(epp->ep_interp);
815
816 rw_exit(&exec_lock);
817
818 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
819 pathbuf_destroy(data->ed_pathbuf);
820 PNBUF_PUT(data->ed_resolvedpathbuf);
821
822 clrflg:
823 rw_exit(&p->p_reflock);
824
825 if (modgen != module_gen && error == ENOEXEC) {
826 modgen = module_gen;
827 exec_autoload();
828 goto retry;
829 }
830
831 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
832 return error;
833 }
834
835 static int
836 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
837 {
838 struct exec_package * const epp = &data->ed_pack;
839 struct proc *p = l->l_proc;
840 struct exec_vmcmd *base_vcp;
841 int error = 0;
842 size_t i;
843
844 /* record proc's vnode, for use by procfs and others */
845 if (p->p_textvp)
846 vrele(p->p_textvp);
847 vref(epp->ep_vp);
848 p->p_textvp = epp->ep_vp;
849
850 /* create the new process's VM space by running the vmcmds */
851 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
852
853 DUMPVMCMDS(epp, 0, 0);
854
855 base_vcp = NULL;
856
857 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
858 struct exec_vmcmd *vcp;
859
860 vcp = &epp->ep_vmcmds.evs_cmds[i];
861 if (vcp->ev_flags & VMCMD_RELATIVE) {
862 KASSERTMSG(base_vcp != NULL,
863 "%s: relative vmcmd with no base", __func__);
864 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
865 "%s: illegal base & relative vmcmd", __func__);
866 vcp->ev_addr += base_vcp->ev_addr;
867 }
868 error = (*vcp->ev_proc)(l, vcp);
869 if (error)
870 DUMPVMCMDS(epp, i, error);
871 if (vcp->ev_flags & VMCMD_BASE)
872 base_vcp = vcp;
873 }
874
875 /* free the vmspace-creation commands, and release their references */
876 kill_vmcmds(&epp->ep_vmcmds);
877
878 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
879 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
880 vput(epp->ep_vp);
881
882 /* if an error happened, deallocate and punt */
883 if (error != 0) {
884 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
885 }
886 return error;
887 }
888
889 static void
890 execve_free_data(struct execve_data *data)
891 {
892 struct exec_package * const epp = &data->ed_pack;
893
894 /* free the vmspace-creation commands, and release their references */
895 kill_vmcmds(&epp->ep_vmcmds);
896 /* kill any opened file descriptor, if necessary */
897 if (epp->ep_flags & EXEC_HASFD) {
898 epp->ep_flags &= ~EXEC_HASFD;
899 fd_close(epp->ep_fd);
900 }
901
902 /* close and put the exec'd file */
903 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
904 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
905 vput(epp->ep_vp);
906 pool_put(&exec_pool, data->ed_argp);
907
908 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
909 if (epp->ep_emul_root != NULL)
910 vrele(epp->ep_emul_root);
911 if (epp->ep_interp != NULL)
912 vrele(epp->ep_interp);
913
914 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
915 pathbuf_destroy(data->ed_pathbuf);
916 PNBUF_PUT(data->ed_resolvedpathbuf);
917 }
918
919 static void
920 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring)
921 {
922 const char *commandname;
923 size_t commandlen;
924 char *path;
925
926 /* set command name & other accounting info */
927 commandname = strrchr(epp->ep_resolvedname, '/');
928 if (commandname != NULL) {
929 commandname++;
930 } else {
931 commandname = epp->ep_resolvedname;
932 }
933 commandlen = min(strlen(commandname), MAXCOMLEN);
934 (void)memcpy(p->p_comm, commandname, commandlen);
935 p->p_comm[commandlen] = '\0';
936
937
938 /*
939 * If the path starts with /, we don't need to do any work.
940 * This handles the majority of the cases.
941 * In the future perhaps we could canonicalize it?
942 */
943 if (pathstring[0] == '/') {
944 path = PNBUF_GET();
945 (void)strlcpy(path, pathstring, MAXPATHLEN);
946 epp->ep_path = path;
947 } else
948 epp->ep_path = NULL;
949 }
950
951 /* XXX elsewhere */
952 static int
953 credexec(struct lwp *l, struct vattr *attr)
954 {
955 struct proc *p = l->l_proc;
956 int error;
957
958 /*
959 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
960 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
961 * out additional references on the process for the moment.
962 */
963 if ((p->p_slflag & PSL_TRACED) == 0 &&
964
965 (((attr->va_mode & S_ISUID) != 0 &&
966 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
967
968 ((attr->va_mode & S_ISGID) != 0 &&
969 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
970 /*
971 * Mark the process as SUGID before we do
972 * anything that might block.
973 */
974 proc_crmod_enter();
975 proc_crmod_leave(NULL, NULL, true);
976
977 /* Make sure file descriptors 0..2 are in use. */
978 if ((error = fd_checkstd()) != 0) {
979 DPRINTF(("%s: fdcheckstd failed %d\n",
980 __func__, error));
981 return error;
982 }
983
984 /*
985 * Copy the credential so other references don't see our
986 * changes.
987 */
988 l->l_cred = kauth_cred_copy(l->l_cred);
989 #ifdef KTRACE
990 /*
991 * If the persistent trace flag isn't set, turn off.
992 */
993 if (p->p_tracep) {
994 mutex_enter(&ktrace_lock);
995 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
996 ktrderef(p);
997 mutex_exit(&ktrace_lock);
998 }
999 #endif
1000 if (attr->va_mode & S_ISUID)
1001 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1002 if (attr->va_mode & S_ISGID)
1003 kauth_cred_setegid(l->l_cred, attr->va_gid);
1004 } else {
1005 if (kauth_cred_geteuid(l->l_cred) ==
1006 kauth_cred_getuid(l->l_cred) &&
1007 kauth_cred_getegid(l->l_cred) ==
1008 kauth_cred_getgid(l->l_cred))
1009 p->p_flag &= ~PK_SUGID;
1010 }
1011
1012 /*
1013 * Copy the credential so other references don't see our changes.
1014 * Test to see if this is necessary first, since in the common case
1015 * we won't need a private reference.
1016 */
1017 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1018 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1019 l->l_cred = kauth_cred_copy(l->l_cred);
1020 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1021 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1022 }
1023
1024 /* Update the master credentials. */
1025 if (l->l_cred != p->p_cred) {
1026 kauth_cred_t ocred;
1027
1028 kauth_cred_hold(l->l_cred);
1029 mutex_enter(p->p_lock);
1030 ocred = p->p_cred;
1031 p->p_cred = l->l_cred;
1032 mutex_exit(p->p_lock);
1033 kauth_cred_free(ocred);
1034 }
1035
1036 return 0;
1037 }
1038
1039 static void
1040 emulexec(struct lwp *l, struct exec_package *epp)
1041 {
1042 struct proc *p = l->l_proc;
1043
1044 /* The emulation root will usually have been found when we looked
1045 * for the elf interpreter (or similar), if not look now. */
1046 if (epp->ep_esch->es_emul->e_path != NULL &&
1047 epp->ep_emul_root == NULL)
1048 emul_find_root(l, epp);
1049
1050 /* Any old emulation root got removed by fdcloseexec */
1051 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1052 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1053 rw_exit(&p->p_cwdi->cwdi_lock);
1054 epp->ep_emul_root = NULL;
1055 if (epp->ep_interp != NULL)
1056 vrele(epp->ep_interp);
1057
1058 /*
1059 * Call emulation specific exec hook. This can setup per-process
1060 * p->p_emuldata or do any other per-process stuff an emulation needs.
1061 *
1062 * If we are executing process of different emulation than the
1063 * original forked process, call e_proc_exit() of the old emulation
1064 * first, then e_proc_exec() of new emulation. If the emulation is
1065 * same, the exec hook code should deallocate any old emulation
1066 * resources held previously by this process.
1067 */
1068 if (p->p_emul && p->p_emul->e_proc_exit
1069 && p->p_emul != epp->ep_esch->es_emul)
1070 (*p->p_emul->e_proc_exit)(p);
1071
1072 /*
1073 * This is now LWP 1.
1074 */
1075 /* XXX elsewhere */
1076 mutex_enter(p->p_lock);
1077 p->p_nlwpid = 1;
1078 l->l_lid = 1;
1079 mutex_exit(p->p_lock);
1080
1081 /*
1082 * Call exec hook. Emulation code may NOT store reference to anything
1083 * from &pack.
1084 */
1085 if (epp->ep_esch->es_emul->e_proc_exec)
1086 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1087
1088 /* update p_emul, the old value is no longer needed */
1089 p->p_emul = epp->ep_esch->es_emul;
1090
1091 /* ...and the same for p_execsw */
1092 p->p_execsw = epp->ep_esch;
1093
1094 #ifdef __HAVE_SYSCALL_INTERN
1095 (*p->p_emul->e_syscall_intern)(p);
1096 #endif
1097 ktremul();
1098 }
1099
1100 static int
1101 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1102 bool no_local_exec_lock, bool is_spawn)
1103 {
1104 struct exec_package * const epp = &data->ed_pack;
1105 int error = 0;
1106 struct proc *p;
1107
1108 /*
1109 * In case of a posix_spawn operation, the child doing the exec
1110 * might not hold the reader lock on exec_lock, but the parent
1111 * will do this instead.
1112 */
1113 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1114 KASSERT(!no_local_exec_lock || is_spawn);
1115 KASSERT(data != NULL);
1116
1117 p = l->l_proc;
1118
1119 /* Get rid of other LWPs. */
1120 if (p->p_nlwps > 1) {
1121 mutex_enter(p->p_lock);
1122 exit_lwps(l);
1123 mutex_exit(p->p_lock);
1124 }
1125 KDASSERT(p->p_nlwps == 1);
1126
1127 /* Destroy any lwpctl info. */
1128 if (p->p_lwpctl != NULL)
1129 lwp_ctl_exit();
1130
1131 /* Remove POSIX timers */
1132 timers_free(p, TIMERS_POSIX);
1133
1134 /* Set the PaX flags. */
1135 p->p_pax = epp->ep_pax_flags;
1136
1137 /*
1138 * Do whatever is necessary to prepare the address space
1139 * for remapping. Note that this might replace the current
1140 * vmspace with another!
1141 */
1142 if (is_spawn)
1143 uvmspace_spawn(l, epp->ep_vm_minaddr,
1144 epp->ep_vm_maxaddr,
1145 epp->ep_flags & EXEC_TOPDOWN_VM);
1146 else
1147 uvmspace_exec(l, epp->ep_vm_minaddr,
1148 epp->ep_vm_maxaddr,
1149 epp->ep_flags & EXEC_TOPDOWN_VM);
1150
1151 struct vmspace *vm;
1152 vm = p->p_vmspace;
1153 vm->vm_taddr = (void *)epp->ep_taddr;
1154 vm->vm_tsize = btoc(epp->ep_tsize);
1155 vm->vm_daddr = (void*)epp->ep_daddr;
1156 vm->vm_dsize = btoc(epp->ep_dsize);
1157 vm->vm_ssize = btoc(epp->ep_ssize);
1158 vm->vm_issize = 0;
1159 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1160 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1161
1162 #ifdef PAX_ASLR
1163 pax_aslr_init_vm(l, vm, epp);
1164 #endif /* PAX_ASLR */
1165
1166 /* Now map address space. */
1167 error = execve_dovmcmds(l, data);
1168 if (error != 0)
1169 goto exec_abort;
1170
1171 pathexec(epp, p, data->ed_pathstring);
1172
1173 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1174
1175 error = copyoutargs(data, l, newstack);
1176 if (error != 0)
1177 goto exec_abort;
1178
1179 cwdexec(p);
1180 fd_closeexec(); /* handle close on exec */
1181
1182 if (__predict_false(ktrace_on))
1183 fd_ktrexecfd();
1184
1185 execsigs(p); /* reset catched signals */
1186
1187 mutex_enter(p->p_lock);
1188 l->l_ctxlink = NULL; /* reset ucontext link */
1189 p->p_acflag &= ~AFORK;
1190 p->p_flag |= PK_EXEC;
1191 mutex_exit(p->p_lock);
1192
1193 /*
1194 * Stop profiling.
1195 */
1196 if ((p->p_stflag & PST_PROFIL) != 0) {
1197 mutex_spin_enter(&p->p_stmutex);
1198 stopprofclock(p);
1199 mutex_spin_exit(&p->p_stmutex);
1200 }
1201
1202 /*
1203 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1204 * exited and exec()/exit() are the only places it will be cleared.
1205 */
1206 if ((p->p_lflag & PL_PPWAIT) != 0) {
1207 #if 0
1208 lwp_t *lp;
1209
1210 mutex_enter(proc_lock);
1211 lp = p->p_vforklwp;
1212 p->p_vforklwp = NULL;
1213
1214 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1215 p->p_lflag &= ~PL_PPWAIT;
1216
1217 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1218 cv_broadcast(&lp->l_waitcv);
1219 mutex_exit(proc_lock);
1220 #else
1221 mutex_enter(proc_lock);
1222 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1223 p->p_lflag &= ~PL_PPWAIT;
1224 cv_broadcast(&p->p_pptr->p_waitcv);
1225 mutex_exit(proc_lock);
1226 #endif
1227 }
1228
1229 error = credexec(l, &data->ed_attr);
1230 if (error)
1231 goto exec_abort;
1232
1233 #if defined(__HAVE_RAS)
1234 /*
1235 * Remove all RASs from the address space.
1236 */
1237 ras_purgeall();
1238 #endif
1239
1240 doexechooks(p);
1241
1242 /*
1243 * Set initial SP at the top of the stack.
1244 *
1245 * Note that on machines where stack grows up (e.g. hppa), SP points to
1246 * the end of arg/env strings. Userland guesses the address of argc
1247 * via ps_strings::ps_argvstr.
1248 */
1249
1250 /* Setup new registers and do misc. setup. */
1251 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1252 if (epp->ep_esch->es_setregs)
1253 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1254
1255 /* Provide a consistent LWP private setting */
1256 (void)lwp_setprivate(l, NULL);
1257
1258 /* Discard all PCU state; need to start fresh */
1259 pcu_discard_all(l);
1260
1261 /* map the process's signal trampoline code */
1262 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1263 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1264 goto exec_abort;
1265 }
1266
1267 pool_put(&exec_pool, data->ed_argp);
1268
1269 /* notify others that we exec'd */
1270 KNOTE(&p->p_klist, NOTE_EXEC);
1271
1272 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1273
1274 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1275
1276 emulexec(l, epp);
1277
1278 /* Allow new references from the debugger/procfs. */
1279 rw_exit(&p->p_reflock);
1280 if (!no_local_exec_lock)
1281 rw_exit(&exec_lock);
1282
1283 mutex_enter(proc_lock);
1284
1285 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1286 ksiginfo_t ksi;
1287
1288 KSI_INIT_EMPTY(&ksi);
1289 ksi.ksi_signo = SIGTRAP;
1290 ksi.ksi_lid = l->l_lid;
1291 kpsignal(p, &ksi, NULL);
1292 }
1293
1294 if (p->p_sflag & PS_STOPEXEC) {
1295 ksiginfoq_t kq;
1296
1297 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1298 p->p_pptr->p_nstopchild++;
1299 p->p_waited = 0;
1300 mutex_enter(p->p_lock);
1301 ksiginfo_queue_init(&kq);
1302 sigclearall(p, &contsigmask, &kq);
1303 lwp_lock(l);
1304 l->l_stat = LSSTOP;
1305 p->p_stat = SSTOP;
1306 p->p_nrlwps--;
1307 lwp_unlock(l);
1308 mutex_exit(p->p_lock);
1309 mutex_exit(proc_lock);
1310 lwp_lock(l);
1311 mi_switch(l);
1312 ksiginfo_queue_drain(&kq);
1313 KERNEL_LOCK(l->l_biglocks, l);
1314 } else {
1315 mutex_exit(proc_lock);
1316 }
1317
1318 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1319 pathbuf_destroy(data->ed_pathbuf);
1320 PNBUF_PUT(data->ed_resolvedpathbuf);
1321 DPRINTF(("%s finished\n", __func__));
1322 return EJUSTRETURN;
1323
1324 exec_abort:
1325 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1326 rw_exit(&p->p_reflock);
1327 if (!no_local_exec_lock)
1328 rw_exit(&exec_lock);
1329
1330 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1331 pathbuf_destroy(data->ed_pathbuf);
1332 PNBUF_PUT(data->ed_resolvedpathbuf);
1333
1334 /*
1335 * the old process doesn't exist anymore. exit gracefully.
1336 * get rid of the (new) address space we have created, if any, get rid
1337 * of our namei data and vnode, and exit noting failure
1338 */
1339 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1340 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1341
1342 exec_free_emul_arg(epp);
1343 pool_put(&exec_pool, data->ed_argp);
1344 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1345 if (epp->ep_emul_root != NULL)
1346 vrele(epp->ep_emul_root);
1347 if (epp->ep_interp != NULL)
1348 vrele(epp->ep_interp);
1349
1350 /* Acquire the sched-state mutex (exit1() will release it). */
1351 if (!is_spawn) {
1352 mutex_enter(p->p_lock);
1353 exit1(l, error, SIGABRT);
1354 }
1355
1356 return error;
1357 }
1358
1359 int
1360 execve1(struct lwp *l, const char *path, char * const *args,
1361 char * const *envs, execve_fetch_element_t fetch_element)
1362 {
1363 struct execve_data data;
1364 int error;
1365
1366 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1367 if (error)
1368 return error;
1369 error = execve_runproc(l, &data, false, false);
1370 return error;
1371 }
1372
1373 static size_t
1374 fromptrsz(const struct exec_package *epp)
1375 {
1376 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1377 }
1378
1379 static size_t
1380 ptrsz(const struct exec_package *epp)
1381 {
1382 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1383 }
1384
1385 static size_t
1386 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1387 {
1388 struct exec_package * const epp = &data->ed_pack;
1389
1390 const size_t nargenvptrs =
1391 1 + /* long argc */
1392 data->ed_argc + /* char *argv[] */
1393 1 + /* \0 */
1394 data->ed_envc + /* char *env[] */
1395 1 + /* \0 */
1396 epp->ep_esch->es_arglen; /* auxinfo */
1397
1398 return (nargenvptrs * ptrsz(epp)) + argenvstrlen;
1399 }
1400
1401 static size_t
1402 calcstack(struct execve_data * restrict data, const size_t gaplen)
1403 {
1404 struct exec_package * const epp = &data->ed_pack;
1405
1406 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1407 epp->ep_esch->es_emul->e_sigcode;
1408
1409 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1410 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1411
1412 const size_t sigcode_psstr_sz =
1413 data->ed_szsigcode + /* sigcode */
1414 data->ed_ps_strings_sz + /* ps_strings */
1415 STACK_PTHREADSPACE; /* pthread space */
1416
1417 const size_t stacklen =
1418 data->ed_argslen +
1419 gaplen +
1420 sigcode_psstr_sz;
1421
1422 /* make the stack "safely" aligned */
1423 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1424 }
1425
1426 static int
1427 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1428 char * const newstack)
1429 {
1430 struct exec_package * const epp = &data->ed_pack;
1431 struct proc *p = l->l_proc;
1432 int error;
1433
1434 /* remember information about the process */
1435 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1436 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1437
1438 /*
1439 * Allocate the stack address passed to the newly execve()'ed process.
1440 *
1441 * The new stack address will be set to the SP (stack pointer) register
1442 * in setregs().
1443 */
1444
1445 char *newargs = STACK_ALLOC(
1446 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1447
1448 error = (*epp->ep_esch->es_copyargs)(l, epp,
1449 &data->ed_arginfo, &newargs, data->ed_argp);
1450
1451 if (epp->ep_path) {
1452 PNBUF_PUT(epp->ep_path);
1453 epp->ep_path = NULL;
1454 }
1455 if (error) {
1456 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1457 return error;
1458 }
1459
1460 error = copyoutpsstrs(data, p);
1461 if (error != 0)
1462 return error;
1463
1464 return 0;
1465 }
1466
1467 static int
1468 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1469 {
1470 struct exec_package * const epp = &data->ed_pack;
1471 struct ps_strings32 arginfo32;
1472 void *aip;
1473 int error;
1474
1475 /* fill process ps_strings info */
1476 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1477 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1478
1479 if (epp->ep_flags & EXEC_32) {
1480 aip = &arginfo32;
1481 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1482 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1483 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1484 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1485 } else
1486 aip = &data->ed_arginfo;
1487
1488 /* copy out the process's ps_strings structure */
1489 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1490 != 0) {
1491 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1492 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1493 return error;
1494 }
1495
1496 return 0;
1497 }
1498
1499 static int
1500 copyinargs(struct execve_data * restrict data, char * const *args,
1501 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1502 {
1503 struct exec_package * const epp = &data->ed_pack;
1504 char *dp;
1505 size_t i;
1506 int error;
1507
1508 dp = *dpp;
1509
1510 data->ed_argc = 0;
1511
1512 /* copy the fake args list, if there's one, freeing it as we go */
1513 if (epp->ep_flags & EXEC_HASARGL) {
1514 struct exec_fakearg *fa = epp->ep_fa;
1515
1516 while (fa->fa_arg != NULL) {
1517 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1518 size_t len;
1519
1520 len = strlcpy(dp, fa->fa_arg, maxlen);
1521 /* Count NUL into len. */
1522 if (len < maxlen)
1523 len++;
1524 else {
1525 while (fa->fa_arg != NULL) {
1526 kmem_free(fa->fa_arg, fa->fa_len);
1527 fa++;
1528 }
1529 kmem_free(epp->ep_fa, epp->ep_fa_len);
1530 epp->ep_flags &= ~EXEC_HASARGL;
1531 return E2BIG;
1532 }
1533 ktrexecarg(fa->fa_arg, len - 1);
1534 dp += len;
1535
1536 kmem_free(fa->fa_arg, fa->fa_len);
1537 fa++;
1538 data->ed_argc++;
1539 }
1540 kmem_free(epp->ep_fa, epp->ep_fa_len);
1541 epp->ep_flags &= ~EXEC_HASARGL;
1542 }
1543
1544 /*
1545 * Read and count argument strings from user.
1546 */
1547
1548 if (args == NULL) {
1549 DPRINTF(("%s: null args\n", __func__));
1550 return EINVAL;
1551 }
1552 if (epp->ep_flags & EXEC_SKIPARG)
1553 args = (const void *)((const char *)args + fromptrsz(epp));
1554 i = 0;
1555 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1556 if (error != 0) {
1557 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1558 return error;
1559 }
1560 data->ed_argc += i;
1561
1562 /*
1563 * Read and count environment strings from user.
1564 */
1565
1566 data->ed_envc = 0;
1567 /* environment need not be there */
1568 if (envs == NULL)
1569 goto done;
1570 i = 0;
1571 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1572 if (error != 0) {
1573 DPRINTF(("%s: copyin env %d\n", __func__, error));
1574 return error;
1575 }
1576 data->ed_envc += i;
1577
1578 done:
1579 *dpp = dp;
1580
1581 return 0;
1582 }
1583
1584 static int
1585 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1586 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1587 void (*ktr)(const void *, size_t))
1588 {
1589 char *dp, *sp;
1590 size_t i;
1591 int error;
1592
1593 dp = *dpp;
1594
1595 i = 0;
1596 while (1) {
1597 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1598 size_t len;
1599
1600 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1601 return error;
1602 }
1603 if (!sp)
1604 break;
1605 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1606 if (error == ENAMETOOLONG)
1607 error = E2BIG;
1608 return error;
1609 }
1610 if (__predict_false(ktrace_on))
1611 (*ktr)(dp, len - 1);
1612 dp += len;
1613 i++;
1614 }
1615
1616 *dpp = dp;
1617 *ip = i;
1618
1619 return 0;
1620 }
1621
1622 /*
1623 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1624 * Those strings are located just after auxinfo.
1625 */
1626 int
1627 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1628 char **stackp, void *argp)
1629 {
1630 char **cpp, *dp, *sp;
1631 size_t len;
1632 void *nullp;
1633 long argc, envc;
1634 int error;
1635
1636 cpp = (char **)*stackp;
1637 nullp = NULL;
1638 argc = arginfo->ps_nargvstr;
1639 envc = arginfo->ps_nenvstr;
1640
1641 /* argc on stack is long */
1642 CTASSERT(sizeof(*cpp) == sizeof(argc));
1643
1644 dp = (char *)(cpp +
1645 1 + /* long argc */
1646 argc + /* char *argv[] */
1647 1 + /* \0 */
1648 envc + /* char *env[] */
1649 1 + /* \0 */
1650 /* XXX auxinfo multiplied by ptr size? */
1651 pack->ep_esch->es_arglen); /* auxinfo */
1652 sp = argp;
1653
1654 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1655 COPYPRINTF("", cpp - 1, sizeof(argc));
1656 return error;
1657 }
1658
1659 /* XXX don't copy them out, remap them! */
1660 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1661
1662 for (; --argc >= 0; sp += len, dp += len) {
1663 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1664 COPYPRINTF("", cpp - 1, sizeof(dp));
1665 return error;
1666 }
1667 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1668 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1669 return error;
1670 }
1671 }
1672
1673 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1674 COPYPRINTF("", cpp - 1, sizeof(nullp));
1675 return error;
1676 }
1677
1678 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1679
1680 for (; --envc >= 0; sp += len, dp += len) {
1681 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1682 COPYPRINTF("", cpp - 1, sizeof(dp));
1683 return error;
1684 }
1685 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1686 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1687 return error;
1688 }
1689
1690 }
1691
1692 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1693 COPYPRINTF("", cpp - 1, sizeof(nullp));
1694 return error;
1695 }
1696
1697 *stackp = (char *)cpp;
1698 return 0;
1699 }
1700
1701
1702 /*
1703 * Add execsw[] entries.
1704 */
1705 int
1706 exec_add(struct execsw *esp, int count)
1707 {
1708 struct exec_entry *it;
1709 int i;
1710
1711 if (count == 0) {
1712 return 0;
1713 }
1714
1715 /* Check for duplicates. */
1716 rw_enter(&exec_lock, RW_WRITER);
1717 for (i = 0; i < count; i++) {
1718 LIST_FOREACH(it, &ex_head, ex_list) {
1719 /* assume unique (makecmds, probe_func, emulation) */
1720 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1721 it->ex_sw->u.elf_probe_func ==
1722 esp[i].u.elf_probe_func &&
1723 it->ex_sw->es_emul == esp[i].es_emul) {
1724 rw_exit(&exec_lock);
1725 return EEXIST;
1726 }
1727 }
1728 }
1729
1730 /* Allocate new entries. */
1731 for (i = 0; i < count; i++) {
1732 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1733 it->ex_sw = &esp[i];
1734 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1735 }
1736
1737 /* update execsw[] */
1738 exec_init(0);
1739 rw_exit(&exec_lock);
1740 return 0;
1741 }
1742
1743 /*
1744 * Remove execsw[] entry.
1745 */
1746 int
1747 exec_remove(struct execsw *esp, int count)
1748 {
1749 struct exec_entry *it, *next;
1750 int i;
1751 const struct proclist_desc *pd;
1752 proc_t *p;
1753
1754 if (count == 0) {
1755 return 0;
1756 }
1757
1758 /* Abort if any are busy. */
1759 rw_enter(&exec_lock, RW_WRITER);
1760 for (i = 0; i < count; i++) {
1761 mutex_enter(proc_lock);
1762 for (pd = proclists; pd->pd_list != NULL; pd++) {
1763 PROCLIST_FOREACH(p, pd->pd_list) {
1764 if (p->p_execsw == &esp[i]) {
1765 mutex_exit(proc_lock);
1766 rw_exit(&exec_lock);
1767 return EBUSY;
1768 }
1769 }
1770 }
1771 mutex_exit(proc_lock);
1772 }
1773
1774 /* None are busy, so remove them all. */
1775 for (i = 0; i < count; i++) {
1776 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1777 next = LIST_NEXT(it, ex_list);
1778 if (it->ex_sw == &esp[i]) {
1779 LIST_REMOVE(it, ex_list);
1780 kmem_free(it, sizeof(*it));
1781 break;
1782 }
1783 }
1784 }
1785
1786 /* update execsw[] */
1787 exec_init(0);
1788 rw_exit(&exec_lock);
1789 return 0;
1790 }
1791
1792 /*
1793 * Initialize exec structures. If init_boot is true, also does necessary
1794 * one-time initialization (it's called from main() that way).
1795 * Once system is multiuser, this should be called with exec_lock held,
1796 * i.e. via exec_{add|remove}().
1797 */
1798 int
1799 exec_init(int init_boot)
1800 {
1801 const struct execsw **sw;
1802 struct exec_entry *ex;
1803 SLIST_HEAD(,exec_entry) first;
1804 SLIST_HEAD(,exec_entry) any;
1805 SLIST_HEAD(,exec_entry) last;
1806 int i, sz;
1807
1808 if (init_boot) {
1809 /* do one-time initializations */
1810 rw_init(&exec_lock);
1811 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1812 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1813 "execargs", &exec_palloc, IPL_NONE);
1814 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1815 } else {
1816 KASSERT(rw_write_held(&exec_lock));
1817 }
1818
1819 /* Sort each entry onto the appropriate queue. */
1820 SLIST_INIT(&first);
1821 SLIST_INIT(&any);
1822 SLIST_INIT(&last);
1823 sz = 0;
1824 LIST_FOREACH(ex, &ex_head, ex_list) {
1825 switch(ex->ex_sw->es_prio) {
1826 case EXECSW_PRIO_FIRST:
1827 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1828 break;
1829 case EXECSW_PRIO_ANY:
1830 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1831 break;
1832 case EXECSW_PRIO_LAST:
1833 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1834 break;
1835 default:
1836 panic("%s", __func__);
1837 break;
1838 }
1839 sz++;
1840 }
1841
1842 /*
1843 * Create new execsw[]. Ensure we do not try a zero-sized
1844 * allocation.
1845 */
1846 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1847 i = 0;
1848 SLIST_FOREACH(ex, &first, ex_slist) {
1849 sw[i++] = ex->ex_sw;
1850 }
1851 SLIST_FOREACH(ex, &any, ex_slist) {
1852 sw[i++] = ex->ex_sw;
1853 }
1854 SLIST_FOREACH(ex, &last, ex_slist) {
1855 sw[i++] = ex->ex_sw;
1856 }
1857
1858 /* Replace old execsw[] and free used memory. */
1859 if (execsw != NULL) {
1860 kmem_free(__UNCONST(execsw),
1861 nexecs * sizeof(struct execsw *) + 1);
1862 }
1863 execsw = sw;
1864 nexecs = sz;
1865
1866 /* Figure out the maximum size of an exec header. */
1867 exec_maxhdrsz = sizeof(int);
1868 for (i = 0; i < nexecs; i++) {
1869 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1870 exec_maxhdrsz = execsw[i]->es_hdrsz;
1871 }
1872
1873 return 0;
1874 }
1875
1876 static int
1877 exec_sigcode_map(struct proc *p, const struct emul *e)
1878 {
1879 vaddr_t va;
1880 vsize_t sz;
1881 int error;
1882 struct uvm_object *uobj;
1883
1884 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1885
1886 if (e->e_sigobject == NULL || sz == 0) {
1887 return 0;
1888 }
1889
1890 /*
1891 * If we don't have a sigobject for this emulation, create one.
1892 *
1893 * sigobject is an anonymous memory object (just like SYSV shared
1894 * memory) that we keep a permanent reference to and that we map
1895 * in all processes that need this sigcode. The creation is simple,
1896 * we create an object, add a permanent reference to it, map it in
1897 * kernel space, copy out the sigcode to it and unmap it.
1898 * We map it with PROT_READ|PROT_EXEC into the process just
1899 * the way sys_mmap() would map it.
1900 */
1901
1902 uobj = *e->e_sigobject;
1903 if (uobj == NULL) {
1904 mutex_enter(&sigobject_lock);
1905 if ((uobj = *e->e_sigobject) == NULL) {
1906 uobj = uao_create(sz, 0);
1907 (*uobj->pgops->pgo_reference)(uobj);
1908 va = vm_map_min(kernel_map);
1909 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1910 uobj, 0, 0,
1911 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1912 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1913 printf("kernel mapping failed %d\n", error);
1914 (*uobj->pgops->pgo_detach)(uobj);
1915 mutex_exit(&sigobject_lock);
1916 return error;
1917 }
1918 memcpy((void *)va, e->e_sigcode, sz);
1919 #ifdef PMAP_NEED_PROCWR
1920 pmap_procwr(&proc0, va, sz);
1921 #endif
1922 uvm_unmap(kernel_map, va, va + round_page(sz));
1923 *e->e_sigobject = uobj;
1924 }
1925 mutex_exit(&sigobject_lock);
1926 }
1927
1928 /* Just a hint to uvm_map where to put it. */
1929 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1930 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1931
1932 #ifdef __alpha__
1933 /*
1934 * Tru64 puts /sbin/loader at the end of user virtual memory,
1935 * which causes the above calculation to put the sigcode at
1936 * an invalid address. Put it just below the text instead.
1937 */
1938 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1939 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1940 }
1941 #endif
1942
1943 (*uobj->pgops->pgo_reference)(uobj);
1944 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1945 uobj, 0, 0,
1946 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1947 UVM_ADV_RANDOM, 0));
1948 if (error) {
1949 DPRINTF(("%s, %d: map %p "
1950 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1951 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1952 va, error));
1953 (*uobj->pgops->pgo_detach)(uobj);
1954 return error;
1955 }
1956 p->p_sigctx.ps_sigcode = (void *)va;
1957 return 0;
1958 }
1959
1960 /*
1961 * Release a refcount on spawn_exec_data and destroy memory, if this
1962 * was the last one.
1963 */
1964 static void
1965 spawn_exec_data_release(struct spawn_exec_data *data)
1966 {
1967 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1968 return;
1969
1970 cv_destroy(&data->sed_cv_child_ready);
1971 mutex_destroy(&data->sed_mtx_child);
1972
1973 if (data->sed_actions)
1974 posix_spawn_fa_free(data->sed_actions,
1975 data->sed_actions->len);
1976 if (data->sed_attrs)
1977 kmem_free(data->sed_attrs,
1978 sizeof(*data->sed_attrs));
1979 kmem_free(data, sizeof(*data));
1980 }
1981
1982 /*
1983 * A child lwp of a posix_spawn operation starts here and ends up in
1984 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1985 * manipulations in between.
1986 * The parent waits for the child, as it is not clear whether the child
1987 * will be able to acquire its own exec_lock. If it can, the parent can
1988 * be released early and continue running in parallel. If not (or if the
1989 * magic debug flag is passed in the scheduler attribute struct), the
1990 * child rides on the parent's exec lock until it is ready to return to
1991 * to userland - and only then releases the parent. This method loses
1992 * concurrency, but improves error reporting.
1993 */
1994 static void
1995 spawn_return(void *arg)
1996 {
1997 struct spawn_exec_data *spawn_data = arg;
1998 struct lwp *l = curlwp;
1999 int error, newfd;
2000 int ostat;
2001 size_t i;
2002 const struct posix_spawn_file_actions_entry *fae;
2003 pid_t ppid;
2004 register_t retval;
2005 bool have_reflock;
2006 bool parent_is_waiting = true;
2007
2008 /*
2009 * Check if we can release parent early.
2010 * We either need to have no sed_attrs, or sed_attrs does not
2011 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2012 * safe access to the parent proc (passed in sed_parent).
2013 * We then try to get the exec_lock, and only if that works, we can
2014 * release the parent here already.
2015 */
2016 ppid = spawn_data->sed_parent->p_pid;
2017 if ((!spawn_data->sed_attrs
2018 || (spawn_data->sed_attrs->sa_flags
2019 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2020 && rw_tryenter(&exec_lock, RW_READER)) {
2021 parent_is_waiting = false;
2022 mutex_enter(&spawn_data->sed_mtx_child);
2023 cv_signal(&spawn_data->sed_cv_child_ready);
2024 mutex_exit(&spawn_data->sed_mtx_child);
2025 }
2026
2027 /* don't allow debugger access yet */
2028 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
2029 have_reflock = true;
2030
2031 error = 0;
2032 /* handle posix_spawn_file_actions */
2033 if (spawn_data->sed_actions != NULL) {
2034 for (i = 0; i < spawn_data->sed_actions->len; i++) {
2035 fae = &spawn_data->sed_actions->fae[i];
2036 switch (fae->fae_action) {
2037 case FAE_OPEN:
2038 if (fd_getfile(fae->fae_fildes) != NULL) {
2039 error = fd_close(fae->fae_fildes);
2040 if (error)
2041 break;
2042 }
2043 error = fd_open(fae->fae_path, fae->fae_oflag,
2044 fae->fae_mode, &newfd);
2045 if (error)
2046 break;
2047 if (newfd != fae->fae_fildes) {
2048 error = dodup(l, newfd,
2049 fae->fae_fildes, 0, &retval);
2050 if (fd_getfile(newfd) != NULL)
2051 fd_close(newfd);
2052 }
2053 break;
2054 case FAE_DUP2:
2055 error = dodup(l, fae->fae_fildes,
2056 fae->fae_newfildes, 0, &retval);
2057 break;
2058 case FAE_CLOSE:
2059 if (fd_getfile(fae->fae_fildes) == NULL) {
2060 error = EBADF;
2061 break;
2062 }
2063 error = fd_close(fae->fae_fildes);
2064 break;
2065 }
2066 if (error)
2067 goto report_error;
2068 }
2069 }
2070
2071 /* handle posix_spawnattr */
2072 if (spawn_data->sed_attrs != NULL) {
2073 struct sigaction sigact;
2074 sigact._sa_u._sa_handler = SIG_DFL;
2075 sigact.sa_flags = 0;
2076
2077 /*
2078 * set state to SSTOP so that this proc can be found by pid.
2079 * see proc_enterprp, do_sched_setparam below
2080 */
2081 mutex_enter(proc_lock);
2082 /*
2083 * p_stat should be SACTIVE, so we need to adjust the
2084 * parent's p_nstopchild here. For safety, just make
2085 * we're on the good side of SDEAD before we adjust.
2086 */
2087 ostat = l->l_proc->p_stat;
2088 KASSERT(ostat < SSTOP);
2089 l->l_proc->p_stat = SSTOP;
2090 l->l_proc->p_waited = 0;
2091 l->l_proc->p_pptr->p_nstopchild++;
2092 mutex_exit(proc_lock);
2093
2094 /* Set process group */
2095 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2096 pid_t mypid = l->l_proc->p_pid,
2097 pgrp = spawn_data->sed_attrs->sa_pgroup;
2098
2099 if (pgrp == 0)
2100 pgrp = mypid;
2101
2102 error = proc_enterpgrp(spawn_data->sed_parent,
2103 mypid, pgrp, false);
2104 if (error)
2105 goto report_error_stopped;
2106 }
2107
2108 /* Set scheduler policy */
2109 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2110 error = do_sched_setparam(l->l_proc->p_pid, 0,
2111 spawn_data->sed_attrs->sa_schedpolicy,
2112 &spawn_data->sed_attrs->sa_schedparam);
2113 else if (spawn_data->sed_attrs->sa_flags
2114 & POSIX_SPAWN_SETSCHEDPARAM) {
2115 error = do_sched_setparam(ppid, 0,
2116 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2117 }
2118 if (error)
2119 goto report_error_stopped;
2120
2121 /* Reset user ID's */
2122 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2123 error = do_setresuid(l, -1,
2124 kauth_cred_getgid(l->l_cred), -1,
2125 ID_E_EQ_R | ID_E_EQ_S);
2126 if (error)
2127 goto report_error_stopped;
2128 error = do_setresuid(l, -1,
2129 kauth_cred_getuid(l->l_cred), -1,
2130 ID_E_EQ_R | ID_E_EQ_S);
2131 if (error)
2132 goto report_error_stopped;
2133 }
2134
2135 /* Set signal masks/defaults */
2136 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2137 mutex_enter(l->l_proc->p_lock);
2138 error = sigprocmask1(l, SIG_SETMASK,
2139 &spawn_data->sed_attrs->sa_sigmask, NULL);
2140 mutex_exit(l->l_proc->p_lock);
2141 if (error)
2142 goto report_error_stopped;
2143 }
2144
2145 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2146 /*
2147 * The following sigaction call is using a sigaction
2148 * version 0 trampoline which is in the compatibility
2149 * code only. This is not a problem because for SIG_DFL
2150 * and SIG_IGN, the trampolines are now ignored. If they
2151 * were not, this would be a problem because we are
2152 * holding the exec_lock, and the compat code needs
2153 * to do the same in order to replace the trampoline
2154 * code of the process.
2155 */
2156 for (i = 1; i <= NSIG; i++) {
2157 if (sigismember(
2158 &spawn_data->sed_attrs->sa_sigdefault, i))
2159 sigaction1(l, i, &sigact, NULL, NULL,
2160 0);
2161 }
2162 }
2163 mutex_enter(proc_lock);
2164 l->l_proc->p_stat = ostat;
2165 l->l_proc->p_pptr->p_nstopchild--;
2166 mutex_exit(proc_lock);
2167 }
2168
2169 /* now do the real exec */
2170 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2171 true);
2172 have_reflock = false;
2173 if (error == EJUSTRETURN)
2174 error = 0;
2175 else if (error)
2176 goto report_error;
2177
2178 if (parent_is_waiting) {
2179 mutex_enter(&spawn_data->sed_mtx_child);
2180 cv_signal(&spawn_data->sed_cv_child_ready);
2181 mutex_exit(&spawn_data->sed_mtx_child);
2182 }
2183
2184 /* release our refcount on the data */
2185 spawn_exec_data_release(spawn_data);
2186
2187 /* and finally: leave to userland for the first time */
2188 cpu_spawn_return(l);
2189
2190 /* NOTREACHED */
2191 return;
2192
2193 report_error_stopped:
2194 mutex_enter(proc_lock);
2195 l->l_proc->p_stat = ostat;
2196 l->l_proc->p_pptr->p_nstopchild--;
2197 mutex_exit(proc_lock);
2198 report_error:
2199 if (have_reflock) {
2200 /*
2201 * We have not passed through execve_runproc(),
2202 * which would have released the p_reflock and also
2203 * taken ownership of the sed_exec part of spawn_data,
2204 * so release/free both here.
2205 */
2206 rw_exit(&l->l_proc->p_reflock);
2207 execve_free_data(&spawn_data->sed_exec);
2208 }
2209
2210 if (parent_is_waiting) {
2211 /* pass error to parent */
2212 mutex_enter(&spawn_data->sed_mtx_child);
2213 spawn_data->sed_error = error;
2214 cv_signal(&spawn_data->sed_cv_child_ready);
2215 mutex_exit(&spawn_data->sed_mtx_child);
2216 } else {
2217 rw_exit(&exec_lock);
2218 }
2219
2220 /* release our refcount on the data */
2221 spawn_exec_data_release(spawn_data);
2222
2223 /* done, exit */
2224 mutex_enter(l->l_proc->p_lock);
2225 /*
2226 * Posix explicitly asks for an exit code of 127 if we report
2227 * errors from the child process - so, unfortunately, there
2228 * is no way to report a more exact error code.
2229 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2230 * flag bit in the attrp argument to posix_spawn(2), see above.
2231 */
2232 exit1(l, 127, 0);
2233 }
2234
2235 void
2236 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2237 {
2238
2239 for (size_t i = 0; i < len; i++) {
2240 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2241 if (fae->fae_action != FAE_OPEN)
2242 continue;
2243 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2244 }
2245 if (fa->len > 0)
2246 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2247 kmem_free(fa, sizeof(*fa));
2248 }
2249
2250 static int
2251 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2252 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2253 {
2254 struct posix_spawn_file_actions *fa;
2255 struct posix_spawn_file_actions_entry *fae;
2256 char *pbuf = NULL;
2257 int error;
2258 size_t i = 0;
2259
2260 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2261 error = copyin(ufa, fa, sizeof(*fa));
2262 if (error || fa->len == 0) {
2263 kmem_free(fa, sizeof(*fa));
2264 return error; /* 0 if not an error, and len == 0 */
2265 }
2266
2267 if (fa->len > lim) {
2268 kmem_free(fa, sizeof(*fa));
2269 return EINVAL;
2270 }
2271
2272 fa->size = fa->len;
2273 size_t fal = fa->len * sizeof(*fae);
2274 fae = fa->fae;
2275 fa->fae = kmem_alloc(fal, KM_SLEEP);
2276 error = copyin(fae, fa->fae, fal);
2277 if (error)
2278 goto out;
2279
2280 pbuf = PNBUF_GET();
2281 for (; i < fa->len; i++) {
2282 fae = &fa->fae[i];
2283 if (fae->fae_action != FAE_OPEN)
2284 continue;
2285 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2286 if (error)
2287 goto out;
2288 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2289 memcpy(fae->fae_path, pbuf, fal);
2290 }
2291 PNBUF_PUT(pbuf);
2292
2293 *fap = fa;
2294 return 0;
2295 out:
2296 if (pbuf)
2297 PNBUF_PUT(pbuf);
2298 posix_spawn_fa_free(fa, i);
2299 return error;
2300 }
2301
2302 int
2303 check_posix_spawn(struct lwp *l1)
2304 {
2305 int error, tnprocs, count;
2306 uid_t uid;
2307 struct proc *p1;
2308
2309 p1 = l1->l_proc;
2310 uid = kauth_cred_getuid(l1->l_cred);
2311 tnprocs = atomic_inc_uint_nv(&nprocs);
2312
2313 /*
2314 * Although process entries are dynamically created, we still keep
2315 * a global limit on the maximum number we will create.
2316 */
2317 if (__predict_false(tnprocs >= maxproc))
2318 error = -1;
2319 else
2320 error = kauth_authorize_process(l1->l_cred,
2321 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2322
2323 if (error) {
2324 atomic_dec_uint(&nprocs);
2325 return EAGAIN;
2326 }
2327
2328 /*
2329 * Enforce limits.
2330 */
2331 count = chgproccnt(uid, 1);
2332 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2333 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2334 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2335 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2336 (void)chgproccnt(uid, -1);
2337 atomic_dec_uint(&nprocs);
2338 return EAGAIN;
2339 }
2340
2341 return 0;
2342 }
2343
2344 int
2345 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2346 struct posix_spawn_file_actions *fa,
2347 struct posix_spawnattr *sa,
2348 char *const *argv, char *const *envp,
2349 execve_fetch_element_t fetch)
2350 {
2351
2352 struct proc *p1, *p2;
2353 struct lwp *l2;
2354 int error;
2355 struct spawn_exec_data *spawn_data;
2356 vaddr_t uaddr;
2357 pid_t pid;
2358 bool have_exec_lock = false;
2359
2360 p1 = l1->l_proc;
2361
2362 /* Allocate and init spawn_data */
2363 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2364 spawn_data->sed_refcnt = 1; /* only parent so far */
2365 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2366 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2367 mutex_enter(&spawn_data->sed_mtx_child);
2368
2369 /*
2370 * Do the first part of the exec now, collect state
2371 * in spawn_data.
2372 */
2373 error = execve_loadvm(l1, path, argv,
2374 envp, fetch, &spawn_data->sed_exec);
2375 if (error == EJUSTRETURN)
2376 error = 0;
2377 else if (error)
2378 goto error_exit;
2379
2380 have_exec_lock = true;
2381
2382 /*
2383 * Allocate virtual address space for the U-area now, while it
2384 * is still easy to abort the fork operation if we're out of
2385 * kernel virtual address space.
2386 */
2387 uaddr = uvm_uarea_alloc();
2388 if (__predict_false(uaddr == 0)) {
2389 error = ENOMEM;
2390 goto error_exit;
2391 }
2392
2393 /*
2394 * Allocate new proc. Borrow proc0 vmspace for it, we will
2395 * replace it with its own before returning to userland
2396 * in the child.
2397 * This is a point of no return, we will have to go through
2398 * the child proc to properly clean it up past this point.
2399 */
2400 p2 = proc_alloc();
2401 pid = p2->p_pid;
2402
2403 /*
2404 * Make a proc table entry for the new process.
2405 * Start by zeroing the section of proc that is zero-initialized,
2406 * then copy the section that is copied directly from the parent.
2407 */
2408 memset(&p2->p_startzero, 0,
2409 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2410 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2411 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2412 p2->p_vmspace = proc0.p_vmspace;
2413
2414 TAILQ_INIT(&p2->p_sigpend.sp_info);
2415
2416 LIST_INIT(&p2->p_lwps);
2417 LIST_INIT(&p2->p_sigwaiters);
2418
2419 /*
2420 * Duplicate sub-structures as needed.
2421 * Increase reference counts on shared objects.
2422 * Inherit flags we want to keep. The flags related to SIGCHLD
2423 * handling are important in order to keep a consistent behaviour
2424 * for the child after the fork. If we are a 32-bit process, the
2425 * child will be too.
2426 */
2427 p2->p_flag =
2428 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2429 p2->p_emul = p1->p_emul;
2430 p2->p_execsw = p1->p_execsw;
2431
2432 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2433 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2434 rw_init(&p2->p_reflock);
2435 cv_init(&p2->p_waitcv, "wait");
2436 cv_init(&p2->p_lwpcv, "lwpwait");
2437
2438 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2439
2440 kauth_proc_fork(p1, p2);
2441
2442 p2->p_raslist = NULL;
2443 p2->p_fd = fd_copy();
2444
2445 /* XXX racy */
2446 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2447
2448 p2->p_cwdi = cwdinit();
2449
2450 /*
2451 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2452 * we just need increase pl_refcnt.
2453 */
2454 if (!p1->p_limit->pl_writeable) {
2455 lim_addref(p1->p_limit);
2456 p2->p_limit = p1->p_limit;
2457 } else {
2458 p2->p_limit = lim_copy(p1->p_limit);
2459 }
2460
2461 p2->p_lflag = 0;
2462 p2->p_sflag = 0;
2463 p2->p_slflag = 0;
2464 p2->p_pptr = p1;
2465 p2->p_ppid = p1->p_pid;
2466 LIST_INIT(&p2->p_children);
2467
2468 p2->p_aio = NULL;
2469
2470 #ifdef KTRACE
2471 /*
2472 * Copy traceflag and tracefile if enabled.
2473 * If not inherited, these were zeroed above.
2474 */
2475 if (p1->p_traceflag & KTRFAC_INHERIT) {
2476 mutex_enter(&ktrace_lock);
2477 p2->p_traceflag = p1->p_traceflag;
2478 if ((p2->p_tracep = p1->p_tracep) != NULL)
2479 ktradref(p2);
2480 mutex_exit(&ktrace_lock);
2481 }
2482 #endif
2483
2484 /*
2485 * Create signal actions for the child process.
2486 */
2487 p2->p_sigacts = sigactsinit(p1, 0);
2488 mutex_enter(p1->p_lock);
2489 p2->p_sflag |=
2490 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2491 sched_proc_fork(p1, p2);
2492 mutex_exit(p1->p_lock);
2493
2494 p2->p_stflag = p1->p_stflag;
2495
2496 /*
2497 * p_stats.
2498 * Copy parts of p_stats, and zero out the rest.
2499 */
2500 p2->p_stats = pstatscopy(p1->p_stats);
2501
2502 /* copy over machdep flags to the new proc */
2503 cpu_proc_fork(p1, p2);
2504
2505 /*
2506 * Prepare remaining parts of spawn data
2507 */
2508 spawn_data->sed_actions = fa;
2509 spawn_data->sed_attrs = sa;
2510
2511 spawn_data->sed_parent = p1;
2512
2513 /* create LWP */
2514 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2515 &l2, l1->l_class);
2516 l2->l_ctxlink = NULL; /* reset ucontext link */
2517
2518 /*
2519 * Copy the credential so other references don't see our changes.
2520 * Test to see if this is necessary first, since in the common case
2521 * we won't need a private reference.
2522 */
2523 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2524 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2525 l2->l_cred = kauth_cred_copy(l2->l_cred);
2526 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2527 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2528 }
2529
2530 /* Update the master credentials. */
2531 if (l2->l_cred != p2->p_cred) {
2532 kauth_cred_t ocred;
2533
2534 kauth_cred_hold(l2->l_cred);
2535 mutex_enter(p2->p_lock);
2536 ocred = p2->p_cred;
2537 p2->p_cred = l2->l_cred;
2538 mutex_exit(p2->p_lock);
2539 kauth_cred_free(ocred);
2540 }
2541
2542 *child_ok = true;
2543 spawn_data->sed_refcnt = 2; /* child gets it as well */
2544 #if 0
2545 l2->l_nopreempt = 1; /* start it non-preemptable */
2546 #endif
2547
2548 /*
2549 * It's now safe for the scheduler and other processes to see the
2550 * child process.
2551 */
2552 mutex_enter(proc_lock);
2553
2554 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2555 p2->p_lflag |= PL_CONTROLT;
2556
2557 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2558 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2559
2560 LIST_INSERT_AFTER(p1, p2, p_pglist);
2561 LIST_INSERT_HEAD(&allproc, p2, p_list);
2562
2563 p2->p_trace_enabled = trace_is_enabled(p2);
2564 #ifdef __HAVE_SYSCALL_INTERN
2565 (*p2->p_emul->e_syscall_intern)(p2);
2566 #endif
2567
2568 /*
2569 * Make child runnable, set start time, and add to run queue except
2570 * if the parent requested the child to start in SSTOP state.
2571 */
2572 mutex_enter(p2->p_lock);
2573
2574 getmicrotime(&p2->p_stats->p_start);
2575
2576 lwp_lock(l2);
2577 KASSERT(p2->p_nrlwps == 1);
2578 p2->p_nrlwps = 1;
2579 p2->p_stat = SACTIVE;
2580 l2->l_stat = LSRUN;
2581 sched_enqueue(l2, false);
2582 lwp_unlock(l2);
2583
2584 mutex_exit(p2->p_lock);
2585 mutex_exit(proc_lock);
2586
2587 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2588 error = spawn_data->sed_error;
2589 mutex_exit(&spawn_data->sed_mtx_child);
2590 spawn_exec_data_release(spawn_data);
2591
2592 rw_exit(&p1->p_reflock);
2593 rw_exit(&exec_lock);
2594 have_exec_lock = false;
2595
2596 *pid_res = pid;
2597 return error;
2598
2599 error_exit:
2600 if (have_exec_lock) {
2601 execve_free_data(&spawn_data->sed_exec);
2602 rw_exit(&p1->p_reflock);
2603 rw_exit(&exec_lock);
2604 }
2605 mutex_exit(&spawn_data->sed_mtx_child);
2606 spawn_exec_data_release(spawn_data);
2607
2608 return error;
2609 }
2610
2611 int
2612 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2613 register_t *retval)
2614 {
2615 /* {
2616 syscallarg(pid_t *) pid;
2617 syscallarg(const char *) path;
2618 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2619 syscallarg(const struct posix_spawnattr *) attrp;
2620 syscallarg(char *const *) argv;
2621 syscallarg(char *const *) envp;
2622 } */
2623
2624 int error;
2625 struct posix_spawn_file_actions *fa = NULL;
2626 struct posix_spawnattr *sa = NULL;
2627 pid_t pid;
2628 bool child_ok = false;
2629 rlim_t max_fileactions;
2630 proc_t *p = l1->l_proc;
2631
2632 error = check_posix_spawn(l1);
2633 if (error) {
2634 *retval = error;
2635 return 0;
2636 }
2637
2638 /* copy in file_actions struct */
2639 if (SCARG(uap, file_actions) != NULL) {
2640 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2641 maxfiles);
2642 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2643 max_fileactions);
2644 if (error)
2645 goto error_exit;
2646 }
2647
2648 /* copyin posix_spawnattr struct */
2649 if (SCARG(uap, attrp) != NULL) {
2650 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2651 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2652 if (error)
2653 goto error_exit;
2654 }
2655
2656 /*
2657 * Do the spawn
2658 */
2659 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2660 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2661 if (error)
2662 goto error_exit;
2663
2664 if (error == 0 && SCARG(uap, pid) != NULL)
2665 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2666
2667 *retval = error;
2668 return 0;
2669
2670 error_exit:
2671 if (!child_ok) {
2672 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2673 atomic_dec_uint(&nprocs);
2674
2675 if (sa)
2676 kmem_free(sa, sizeof(*sa));
2677 if (fa)
2678 posix_spawn_fa_free(fa, fa->len);
2679 }
2680
2681 *retval = error;
2682 return 0;
2683 }
2684
2685 void
2686 exec_free_emul_arg(struct exec_package *epp)
2687 {
2688 if (epp->ep_emul_arg_free != NULL) {
2689 KASSERT(epp->ep_emul_arg != NULL);
2690 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2691 epp->ep_emul_arg_free = NULL;
2692 epp->ep_emul_arg = NULL;
2693 } else {
2694 KASSERT(epp->ep_emul_arg == NULL);
2695 }
2696 }
2697
2698 #ifdef DEBUG_EXEC
2699 static void
2700 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2701 {
2702 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2703 size_t j;
2704
2705 if (error == 0)
2706 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2707 else
2708 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2709 epp->ep_vmcmds.evs_used, error));
2710
2711 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2712 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2713 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2714 PRIxVSIZE" prot=0%o flags=%d\n", j,
2715 vp[j].ev_proc == vmcmd_map_pagedvn ?
2716 "pagedvn" :
2717 vp[j].ev_proc == vmcmd_map_readvn ?
2718 "readvn" :
2719 vp[j].ev_proc == vmcmd_map_zero ?
2720 "zero" : "*unknown*",
2721 vp[j].ev_addr, vp[j].ev_len,
2722 vp[j].ev_offset, vp[j].ev_prot,
2723 vp[j].ev_flags));
2724 if (error != 0 && j == x)
2725 DPRINTF((" ^--- failed\n"));
2726 }
2727 }
2728 #endif
2729