Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.426
      1 /*	$NetBSD: kern_exec.c,v 1.426 2016/04/04 23:07:06 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     31  * Copyright (C) 1992 Wolfgang Solfrank.
     32  * Copyright (C) 1992 TooLs GmbH.
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by TooLs GmbH.
     46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.426 2016/04/04 23:07:06 christos Exp $");
     63 
     64 #include "opt_exec.h"
     65 #include "opt_execfmt.h"
     66 #include "opt_ktrace.h"
     67 #include "opt_modular.h"
     68 #include "opt_syscall_debug.h"
     69 #include "veriexec.h"
     70 #include "opt_pax.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/filedesc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/mount.h>
     78 #include <sys/kmem.h>
     79 #include <sys/namei.h>
     80 #include <sys/vnode.h>
     81 #include <sys/file.h>
     82 #include <sys/filedesc.h>
     83 #include <sys/acct.h>
     84 #include <sys/atomic.h>
     85 #include <sys/exec.h>
     86 #include <sys/ktrace.h>
     87 #include <sys/uidinfo.h>
     88 #include <sys/wait.h>
     89 #include <sys/mman.h>
     90 #include <sys/ras.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/stat.h>
     93 #include <sys/syscall.h>
     94 #include <sys/kauth.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/pax.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 #include <sys/syscallvar.h>
    100 #include <sys/syscallargs.h>
    101 #if NVERIEXEC > 0
    102 #include <sys/verified_exec.h>
    103 #endif /* NVERIEXEC > 0 */
    104 #include <sys/sdt.h>
    105 #include <sys/spawn.h>
    106 #include <sys/prot.h>
    107 #include <sys/cprng.h>
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #include <machine/reg.h>
    112 
    113 #include <compat/common/compat_util.h>
    114 
    115 #ifndef MD_TOPDOWN_INIT
    116 #ifdef __USE_TOPDOWN_VM
    117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    118 #else
    119 #define	MD_TOPDOWN_INIT(epp)
    120 #endif
    121 #endif
    122 
    123 struct execve_data;
    124 
    125 static size_t calcargs(struct execve_data * restrict, const size_t);
    126 static size_t calcstack(struct execve_data * restrict, const size_t);
    127 static int copyoutargs(struct execve_data * restrict, struct lwp *,
    128     char * const);
    129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
    130 static int copyinargs(struct execve_data * restrict, char * const *,
    131     char * const *, execve_fetch_element_t, char **);
    132 static int copyinargstrs(struct execve_data * restrict, char * const *,
    133     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    134 static int exec_sigcode_map(struct proc *, const struct emul *);
    135 
    136 #ifdef DEBUG_EXEC
    137 #define DPRINTF(a) printf a
    138 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    139     __LINE__, (s), (a), (b))
    140 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    141 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    142 #else
    143 #define DPRINTF(a)
    144 #define COPYPRINTF(s, a, b)
    145 #define DUMPVMCMDS(p, x, e) do {} while (0)
    146 #endif /* DEBUG_EXEC */
    147 
    148 /*
    149  * DTrace SDT provider definitions
    150  */
    151 SDT_PROVIDER_DECLARE(proc);
    152 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
    153 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
    154 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
    155 
    156 /*
    157  * Exec function switch:
    158  *
    159  * Note that each makecmds function is responsible for loading the
    160  * exec package with the necessary functions for any exec-type-specific
    161  * handling.
    162  *
    163  * Functions for specific exec types should be defined in their own
    164  * header file.
    165  */
    166 static const struct execsw	**execsw = NULL;
    167 static int			nexecs;
    168 
    169 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    170 
    171 /* list of dynamically loaded execsw entries */
    172 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    173     LIST_HEAD_INITIALIZER(ex_head);
    174 struct exec_entry {
    175 	LIST_ENTRY(exec_entry)	ex_list;
    176 	SLIST_ENTRY(exec_entry)	ex_slist;
    177 	const struct execsw	*ex_sw;
    178 };
    179 
    180 #ifndef __HAVE_SYSCALL_INTERN
    181 void	syscall(void);
    182 #endif
    183 
    184 /* NetBSD autoloadable syscalls */
    185 #ifdef MODULAR
    186 #include <kern/syscalls_autoload.c>
    187 #endif
    188 
    189 /* NetBSD emul struct */
    190 struct emul emul_netbsd = {
    191 	.e_name =		"netbsd",
    192 #ifdef EMUL_NATIVEROOT
    193 	.e_path =		EMUL_NATIVEROOT,
    194 #else
    195 	.e_path =		NULL,
    196 #endif
    197 #ifndef __HAVE_MINIMAL_EMUL
    198 	.e_flags =		EMUL_HAS_SYS___syscall,
    199 	.e_errno =		NULL,
    200 	.e_nosys =		SYS_syscall,
    201 	.e_nsysent =		SYS_NSYSENT,
    202 #endif
    203 #ifdef MODULAR
    204 	.e_sc_autoload =	netbsd_syscalls_autoload,
    205 #endif
    206 	.e_sysent =		sysent,
    207 #ifdef SYSCALL_DEBUG
    208 	.e_syscallnames =	syscallnames,
    209 #else
    210 	.e_syscallnames =	NULL,
    211 #endif
    212 	.e_sendsig =		sendsig,
    213 	.e_trapsignal =		trapsignal,
    214 	.e_tracesig =		NULL,
    215 	.e_sigcode =		NULL,
    216 	.e_esigcode =		NULL,
    217 	.e_sigobject =		NULL,
    218 	.e_setregs =		setregs,
    219 	.e_proc_exec =		NULL,
    220 	.e_proc_fork =		NULL,
    221 	.e_proc_exit =		NULL,
    222 	.e_lwp_fork =		NULL,
    223 	.e_lwp_exit =		NULL,
    224 #ifdef __HAVE_SYSCALL_INTERN
    225 	.e_syscall_intern =	syscall_intern,
    226 #else
    227 	.e_syscall =		syscall,
    228 #endif
    229 	.e_sysctlovly =		NULL,
    230 	.e_fault =		NULL,
    231 	.e_vm_default_addr =	uvm_default_mapaddr,
    232 	.e_usertrap =		NULL,
    233 	.e_ucsize =		sizeof(ucontext_t),
    234 	.e_startlwp =		startlwp
    235 };
    236 
    237 /*
    238  * Exec lock. Used to control access to execsw[] structures.
    239  * This must not be static so that netbsd32 can access it, too.
    240  */
    241 krwlock_t exec_lock;
    242 
    243 static kmutex_t sigobject_lock;
    244 
    245 /*
    246  * Data used between a loadvm and execve part of an "exec" operation
    247  */
    248 struct execve_data {
    249 	struct exec_package	ed_pack;
    250 	struct pathbuf		*ed_pathbuf;
    251 	struct vattr		ed_attr;
    252 	struct ps_strings	ed_arginfo;
    253 	char			*ed_argp;
    254 	const char		*ed_pathstring;
    255 	char			*ed_resolvedpathbuf;
    256 	size_t			ed_ps_strings_sz;
    257 	int			ed_szsigcode;
    258 	size_t			ed_argslen;
    259 	long			ed_argc;
    260 	long			ed_envc;
    261 };
    262 
    263 /*
    264  * data passed from parent lwp to child during a posix_spawn()
    265  */
    266 struct spawn_exec_data {
    267 	struct execve_data	sed_exec;
    268 	struct posix_spawn_file_actions
    269 				*sed_actions;
    270 	struct posix_spawnattr	*sed_attrs;
    271 	struct proc		*sed_parent;
    272 	kcondvar_t		sed_cv_child_ready;
    273 	kmutex_t		sed_mtx_child;
    274 	int			sed_error;
    275 	volatile uint32_t	sed_refcnt;
    276 };
    277 
    278 static void *
    279 exec_pool_alloc(struct pool *pp, int flags)
    280 {
    281 
    282 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
    283 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    284 }
    285 
    286 static void
    287 exec_pool_free(struct pool *pp, void *addr)
    288 {
    289 
    290 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    291 }
    292 
    293 static struct pool exec_pool;
    294 
    295 static struct pool_allocator exec_palloc = {
    296 	.pa_alloc = exec_pool_alloc,
    297 	.pa_free = exec_pool_free,
    298 	.pa_pagesz = NCARGS
    299 };
    300 
    301 /*
    302  * check exec:
    303  * given an "executable" described in the exec package's namei info,
    304  * see what we can do with it.
    305  *
    306  * ON ENTRY:
    307  *	exec package with appropriate namei info
    308  *	lwp pointer of exec'ing lwp
    309  *	NO SELF-LOCKED VNODES
    310  *
    311  * ON EXIT:
    312  *	error:	nothing held, etc.  exec header still allocated.
    313  *	ok:	filled exec package, executable's vnode (unlocked).
    314  *
    315  * EXEC SWITCH ENTRY:
    316  * 	Locked vnode to check, exec package, proc.
    317  *
    318  * EXEC SWITCH EXIT:
    319  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    320  *	error:	destructive:
    321  *			everything deallocated execept exec header.
    322  *		non-destructive:
    323  *			error code, executable's vnode (unlocked),
    324  *			exec header unmodified.
    325  */
    326 int
    327 /*ARGSUSED*/
    328 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
    329 {
    330 	int		error, i;
    331 	struct vnode	*vp;
    332 	struct nameidata nd;
    333 	size_t		resid;
    334 
    335 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    336 
    337 	/* first get the vnode */
    338 	if ((error = namei(&nd)) != 0)
    339 		return error;
    340 	epp->ep_vp = vp = nd.ni_vp;
    341 	/* normally this can't fail */
    342 	error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
    343 	KASSERT(error == 0);
    344 
    345 #ifdef DIAGNOSTIC
    346 	/* paranoia (take this out once namei stuff stabilizes) */
    347 	memset(nd.ni_pnbuf, '~', PATH_MAX);
    348 #endif
    349 
    350 	/* check access and type */
    351 	if (vp->v_type != VREG) {
    352 		error = EACCES;
    353 		goto bad1;
    354 	}
    355 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    356 		goto bad1;
    357 
    358 	/* get attributes */
    359 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    360 		goto bad1;
    361 
    362 	/* Check mount point */
    363 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    364 		error = EACCES;
    365 		goto bad1;
    366 	}
    367 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    368 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    369 
    370 	/* try to open it */
    371 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    372 		goto bad1;
    373 
    374 	/* unlock vp, since we need it unlocked from here on out. */
    375 	VOP_UNLOCK(vp);
    376 
    377 #if NVERIEXEC > 0
    378 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
    379 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    380 	    NULL);
    381 	if (error)
    382 		goto bad2;
    383 #endif /* NVERIEXEC > 0 */
    384 
    385 #ifdef PAX_SEGVGUARD
    386 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    387 	if (error)
    388 		goto bad2;
    389 #endif /* PAX_SEGVGUARD */
    390 
    391 	/* now we have the file, get the exec header */
    392 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    393 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
    394 	if (error)
    395 		goto bad2;
    396 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    397 
    398 	/*
    399 	 * Set up default address space limits.  Can be overridden
    400 	 * by individual exec packages.
    401 	 *
    402 	 * XXX probably should be all done in the exec packages.
    403 	 */
    404 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
    405 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    406 	/*
    407 	 * set up the vmcmds for creation of the process
    408 	 * address space
    409 	 */
    410 	error = ENOEXEC;
    411 	for (i = 0; i < nexecs; i++) {
    412 		int newerror;
    413 
    414 		epp->ep_esch = execsw[i];
    415 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    416 
    417 		if (!newerror) {
    418 			/* Seems ok: check that entry point is not too high */
    419 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
    420 #ifdef DIAGNOSTIC
    421 				printf("%s: rejecting %p due to "
    422 				    "too high entry address (> %p)\n",
    423 					 __func__, (void *)epp->ep_entry,
    424 					 (void *)epp->ep_vm_maxaddr);
    425 #endif
    426 				error = ENOEXEC;
    427 				break;
    428 			}
    429 			/* Seems ok: check that entry point is not too low */
    430 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    431 #ifdef DIAGNOSTIC
    432 				printf("%s: rejecting %p due to "
    433 				    "too low entry address (< %p)\n",
    434 				     __func__, (void *)epp->ep_entry,
    435 				     (void *)epp->ep_vm_minaddr);
    436 #endif
    437 				error = ENOEXEC;
    438 				break;
    439 			}
    440 
    441 			/* check limits */
    442 			if ((epp->ep_tsize > MAXTSIZ) ||
    443 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    444 						    [RLIMIT_DATA].rlim_cur)) {
    445 #ifdef DIAGNOSTIC
    446 				printf("%s: rejecting due to "
    447 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    448 				    __func__,
    449 				    (unsigned long long)epp->ep_tsize,
    450 				    (unsigned long long)MAXTSIZ,
    451 				    (unsigned long long)epp->ep_dsize,
    452 				    (unsigned long long)
    453 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    454 #endif
    455 				error = ENOMEM;
    456 				break;
    457 			}
    458 			return 0;
    459 		}
    460 
    461 		/*
    462 		 * Reset all the fields that may have been modified by the
    463 		 * loader.
    464 		 */
    465 		KASSERT(epp->ep_emul_arg == NULL);
    466 		if (epp->ep_emul_root != NULL) {
    467 			vrele(epp->ep_emul_root);
    468 			epp->ep_emul_root = NULL;
    469 		}
    470 		if (epp->ep_interp != NULL) {
    471 			vrele(epp->ep_interp);
    472 			epp->ep_interp = NULL;
    473 		}
    474 		epp->ep_pax_flags = 0;
    475 
    476 		/* make sure the first "interesting" error code is saved. */
    477 		if (error == ENOEXEC)
    478 			error = newerror;
    479 
    480 		if (epp->ep_flags & EXEC_DESTR)
    481 			/* Error from "#!" code, tidied up by recursive call */
    482 			return error;
    483 	}
    484 
    485 	/* not found, error */
    486 
    487 	/*
    488 	 * free any vmspace-creation commands,
    489 	 * and release their references
    490 	 */
    491 	kill_vmcmds(&epp->ep_vmcmds);
    492 
    493 bad2:
    494 	/*
    495 	 * close and release the vnode, restore the old one, free the
    496 	 * pathname buf, and punt.
    497 	 */
    498 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    499 	VOP_CLOSE(vp, FREAD, l->l_cred);
    500 	vput(vp);
    501 	return error;
    502 
    503 bad1:
    504 	/*
    505 	 * free the namei pathname buffer, and put the vnode
    506 	 * (which we don't yet have open).
    507 	 */
    508 	vput(vp);				/* was still locked */
    509 	return error;
    510 }
    511 
    512 #ifdef __MACHINE_STACK_GROWS_UP
    513 #define STACK_PTHREADSPACE NBPG
    514 #else
    515 #define STACK_PTHREADSPACE 0
    516 #endif
    517 
    518 static int
    519 execve_fetch_element(char * const *array, size_t index, char **value)
    520 {
    521 	return copyin(array + index, value, sizeof(*value));
    522 }
    523 
    524 /*
    525  * exec system call
    526  */
    527 int
    528 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    529 {
    530 	/* {
    531 		syscallarg(const char *)	path;
    532 		syscallarg(char * const *)	argp;
    533 		syscallarg(char * const *)	envp;
    534 	} */
    535 
    536 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
    537 	    SCARG(uap, envp), execve_fetch_element);
    538 }
    539 
    540 int
    541 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    542     register_t *retval)
    543 {
    544 	/* {
    545 		syscallarg(int)			fd;
    546 		syscallarg(char * const *)	argp;
    547 		syscallarg(char * const *)	envp;
    548 	} */
    549 
    550 	return ENOSYS;
    551 }
    552 
    553 /*
    554  * Load modules to try and execute an image that we do not understand.
    555  * If no execsw entries are present, we load those likely to be needed
    556  * in order to run native images only.  Otherwise, we autoload all
    557  * possible modules that could let us run the binary.  XXX lame
    558  */
    559 static void
    560 exec_autoload(void)
    561 {
    562 #ifdef MODULAR
    563 	static const char * const native[] = {
    564 		"exec_elf32",
    565 		"exec_elf64",
    566 		"exec_script",
    567 		NULL
    568 	};
    569 	static const char * const compat[] = {
    570 		"exec_elf32",
    571 		"exec_elf64",
    572 		"exec_script",
    573 		"exec_aout",
    574 		"exec_coff",
    575 		"exec_ecoff",
    576 		"compat_aoutm68k",
    577 		"compat_freebsd",
    578 		"compat_ibcs2",
    579 		"compat_linux",
    580 		"compat_linux32",
    581 		"compat_netbsd32",
    582 		"compat_sunos",
    583 		"compat_sunos32",
    584 		"compat_svr4",
    585 		"compat_svr4_32",
    586 		"compat_ultrix",
    587 		NULL
    588 	};
    589 	char const * const *list;
    590 	int i;
    591 
    592 	list = (nexecs == 0 ? native : compat);
    593 	for (i = 0; list[i] != NULL; i++) {
    594 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    595 			continue;
    596 		}
    597 		yield();
    598 	}
    599 #endif
    600 }
    601 
    602 static int
    603 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp,
    604     size_t *offs)
    605 {
    606 	char *path, *bp;
    607 	size_t len, tlen;
    608 	int error;
    609 	struct cwdinfo *cwdi;
    610 
    611 	path = PNBUF_GET();
    612 	error = copyinstr(upath, path, MAXPATHLEN, &len);
    613 	if (error) {
    614 		PNBUF_PUT(path);
    615 		DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
    616 		return error;
    617 	}
    618 
    619 	if (path[0] == '/') {
    620 		*offs = 0;
    621 		goto out;
    622 	}
    623 
    624 	len++;
    625 	if (len + 1 >= MAXPATHLEN)
    626 		goto out;
    627 	bp = path + MAXPATHLEN - len;
    628 	memmove(bp, path, len);
    629 	*(--bp) = '/';
    630 
    631 	cwdi = l->l_proc->p_cwdi;
    632 	rw_enter(&cwdi->cwdi_lock, RW_READER);
    633 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
    634 	    GETCWD_CHECK_ACCESS, l);
    635 	rw_exit(&cwdi->cwdi_lock);
    636 
    637 	if (error) {
    638 		DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
    639 		    error));
    640 		goto out;
    641 	}
    642 	tlen = path + MAXPATHLEN - bp;
    643 
    644 	memmove(path, bp, tlen);
    645 	path[tlen] = '\0';
    646 	*offs = tlen - len;
    647 out:
    648 	*pbp = pathbuf_assimilate(path);
    649 	return 0;
    650 }
    651 
    652 static int
    653 execve_loadvm(struct lwp *l, const char *path, char * const *args,
    654 	char * const *envs, execve_fetch_element_t fetch_element,
    655 	struct execve_data * restrict data)
    656 {
    657 	struct exec_package	* const epp = &data->ed_pack;
    658 	int			error;
    659 	struct proc		*p;
    660 	char			*dp;
    661 	u_int			modgen;
    662 	size_t			offs = 0;	// XXX: GCC
    663 
    664 	KASSERT(data != NULL);
    665 
    666 	p = l->l_proc;
    667 	modgen = 0;
    668 
    669 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
    670 
    671 	/*
    672 	 * Check if we have exceeded our number of processes limit.
    673 	 * This is so that we handle the case where a root daemon
    674 	 * forked, ran setuid to become the desired user and is trying
    675 	 * to exec. The obvious place to do the reference counting check
    676 	 * is setuid(), but we don't do the reference counting check there
    677 	 * like other OS's do because then all the programs that use setuid()
    678 	 * must be modified to check the return code of setuid() and exit().
    679 	 * It is dangerous to make setuid() fail, because it fails open and
    680 	 * the program will continue to run as root. If we make it succeed
    681 	 * and return an error code, again we are not enforcing the limit.
    682 	 * The best place to enforce the limit is here, when the process tries
    683 	 * to execute a new image, because eventually the process will need
    684 	 * to call exec in order to do something useful.
    685 	 */
    686  retry:
    687 	if (p->p_flag & PK_SUGID) {
    688 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    689 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    690 		     &p->p_rlimit[RLIMIT_NPROC],
    691 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    692 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    693 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    694 		return EAGAIN;
    695 	}
    696 
    697 	/*
    698 	 * Drain existing references and forbid new ones.  The process
    699 	 * should be left alone until we're done here.  This is necessary
    700 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    701 	 * a local user to illicitly obtain elevated privileges.
    702 	 */
    703 	rw_enter(&p->p_reflock, RW_WRITER);
    704 
    705 	/*
    706 	 * Init the namei data to point the file user's program name.
    707 	 * This is done here rather than in check_exec(), so that it's
    708 	 * possible to override this settings if any of makecmd/probe
    709 	 * functions call check_exec() recursively - for example,
    710 	 * see exec_script_makecmds().
    711 	 */
    712 	if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0)
    713 		goto clrflg;
    714 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    715 	data->ed_resolvedpathbuf = PNBUF_GET();
    716 
    717 	/*
    718 	 * initialize the fields of the exec package.
    719 	 */
    720 	epp->ep_kname = data->ed_pathstring + offs;
    721 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
    722 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    723 	epp->ep_hdrlen = exec_maxhdrsz;
    724 	epp->ep_hdrvalid = 0;
    725 	epp->ep_emul_arg = NULL;
    726 	epp->ep_emul_arg_free = NULL;
    727 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    728 	epp->ep_vap = &data->ed_attr;
    729 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
    730 	MD_TOPDOWN_INIT(epp);
    731 	epp->ep_emul_root = NULL;
    732 	epp->ep_interp = NULL;
    733 	epp->ep_esch = NULL;
    734 	epp->ep_pax_flags = 0;
    735 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    736 
    737 	rw_enter(&exec_lock, RW_READER);
    738 
    739 	/* see if we can run it. */
    740 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
    741 		if (error != ENOENT) {
    742 			DPRINTF(("%s: check exec failed %d\n",
    743 			    __func__, error));
    744 		}
    745 		goto freehdr;
    746 	}
    747 
    748 	/* allocate an argument buffer */
    749 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    750 	KASSERT(data->ed_argp != NULL);
    751 	dp = data->ed_argp;
    752 
    753 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    754 		goto bad;
    755 	}
    756 
    757 	/*
    758 	 * Calculate the new stack size.
    759 	 */
    760 
    761 #ifdef PAX_ASLR
    762 #define	ASLR_GAP(epp)	(pax_aslr_epp_active(epp) ? (cprng_fast32() % PAGE_SIZE) : 0)
    763 #else
    764 #define	ASLR_GAP(epp)	0
    765 #endif
    766 
    767 #ifdef __MACHINE_STACK_GROWS_UP
    768 /*
    769  * copyargs() fills argc/argv/envp from the lower address even on
    770  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    771  * so that _rtld() use it.
    772  */
    773 #define	RTLD_GAP	32
    774 #else
    775 #define	RTLD_GAP	0
    776 #endif
    777 
    778 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    779 
    780 	data->ed_argslen = calcargs(data, argenvstrlen);
    781 
    782 	const size_t len = calcstack(data, ASLR_GAP(epp) + RTLD_GAP);
    783 
    784 	if (len > epp->ep_ssize) {
    785 		/* in effect, compare to initial limit */
    786 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    787 		error = ENOMEM;
    788 		goto bad;
    789 	}
    790 	/* adjust "active stack depth" for process VSZ */
    791 	epp->ep_ssize = len;
    792 
    793 	return 0;
    794 
    795  bad:
    796 	/* free the vmspace-creation commands, and release their references */
    797 	kill_vmcmds(&epp->ep_vmcmds);
    798 	/* kill any opened file descriptor, if necessary */
    799 	if (epp->ep_flags & EXEC_HASFD) {
    800 		epp->ep_flags &= ~EXEC_HASFD;
    801 		fd_close(epp->ep_fd);
    802 	}
    803 	/* close and put the exec'd file */
    804 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    805 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    806 	vput(epp->ep_vp);
    807 	pool_put(&exec_pool, data->ed_argp);
    808 
    809  freehdr:
    810 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    811 	if (epp->ep_emul_root != NULL)
    812 		vrele(epp->ep_emul_root);
    813 	if (epp->ep_interp != NULL)
    814 		vrele(epp->ep_interp);
    815 
    816 	rw_exit(&exec_lock);
    817 
    818 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    819 	pathbuf_destroy(data->ed_pathbuf);
    820 	PNBUF_PUT(data->ed_resolvedpathbuf);
    821 
    822  clrflg:
    823 	rw_exit(&p->p_reflock);
    824 
    825 	if (modgen != module_gen && error == ENOEXEC) {
    826 		modgen = module_gen;
    827 		exec_autoload();
    828 		goto retry;
    829 	}
    830 
    831 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
    832 	return error;
    833 }
    834 
    835 static int
    836 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
    837 {
    838 	struct exec_package	* const epp = &data->ed_pack;
    839 	struct proc		*p = l->l_proc;
    840 	struct exec_vmcmd	*base_vcp;
    841 	int			error = 0;
    842 	size_t			i;
    843 
    844 	/* record proc's vnode, for use by procfs and others */
    845 	if (p->p_textvp)
    846 		vrele(p->p_textvp);
    847 	vref(epp->ep_vp);
    848 	p->p_textvp = epp->ep_vp;
    849 
    850 	/* create the new process's VM space by running the vmcmds */
    851 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    852 
    853 	DUMPVMCMDS(epp, 0, 0);
    854 
    855 	base_vcp = NULL;
    856 
    857 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
    858 		struct exec_vmcmd *vcp;
    859 
    860 		vcp = &epp->ep_vmcmds.evs_cmds[i];
    861 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    862 			KASSERTMSG(base_vcp != NULL,
    863 			    "%s: relative vmcmd with no base", __func__);
    864 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
    865 			    "%s: illegal base & relative vmcmd", __func__);
    866 			vcp->ev_addr += base_vcp->ev_addr;
    867 		}
    868 		error = (*vcp->ev_proc)(l, vcp);
    869 		if (error)
    870 			DUMPVMCMDS(epp, i, error);
    871 		if (vcp->ev_flags & VMCMD_BASE)
    872 			base_vcp = vcp;
    873 	}
    874 
    875 	/* free the vmspace-creation commands, and release their references */
    876 	kill_vmcmds(&epp->ep_vmcmds);
    877 
    878 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    879 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    880 	vput(epp->ep_vp);
    881 
    882 	/* if an error happened, deallocate and punt */
    883 	if (error != 0) {
    884 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
    885 	}
    886 	return error;
    887 }
    888 
    889 static void
    890 execve_free_data(struct execve_data *data)
    891 {
    892 	struct exec_package	* const epp = &data->ed_pack;
    893 
    894 	/* free the vmspace-creation commands, and release their references */
    895 	kill_vmcmds(&epp->ep_vmcmds);
    896 	/* kill any opened file descriptor, if necessary */
    897 	if (epp->ep_flags & EXEC_HASFD) {
    898 		epp->ep_flags &= ~EXEC_HASFD;
    899 		fd_close(epp->ep_fd);
    900 	}
    901 
    902 	/* close and put the exec'd file */
    903 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    904 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
    905 	vput(epp->ep_vp);
    906 	pool_put(&exec_pool, data->ed_argp);
    907 
    908 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    909 	if (epp->ep_emul_root != NULL)
    910 		vrele(epp->ep_emul_root);
    911 	if (epp->ep_interp != NULL)
    912 		vrele(epp->ep_interp);
    913 
    914 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    915 	pathbuf_destroy(data->ed_pathbuf);
    916 	PNBUF_PUT(data->ed_resolvedpathbuf);
    917 }
    918 
    919 static void
    920 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring)
    921 {
    922 	const char		*commandname;
    923 	size_t			commandlen;
    924 	char			*path;
    925 
    926 	/* set command name & other accounting info */
    927 	commandname = strrchr(epp->ep_resolvedname, '/');
    928 	if (commandname != NULL) {
    929 		commandname++;
    930 	} else {
    931 		commandname = epp->ep_resolvedname;
    932 	}
    933 	commandlen = min(strlen(commandname), MAXCOMLEN);
    934 	(void)memcpy(p->p_comm, commandname, commandlen);
    935 	p->p_comm[commandlen] = '\0';
    936 
    937 
    938 	/*
    939 	 * If the path starts with /, we don't need to do any work.
    940 	 * This handles the majority of the cases.
    941 	 * In the future perhaps we could canonicalize it?
    942 	 */
    943 	if (pathstring[0] == '/') {
    944 		path = PNBUF_GET();
    945 		(void)strlcpy(path, pathstring, MAXPATHLEN);
    946 		epp->ep_path = path;
    947 	} else
    948 		epp->ep_path = NULL;
    949 }
    950 
    951 /* XXX elsewhere */
    952 static int
    953 credexec(struct lwp *l, struct vattr *attr)
    954 {
    955 	struct proc *p = l->l_proc;
    956 	int error;
    957 
    958 	/*
    959 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
    960 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
    961 	 * out additional references on the process for the moment.
    962 	 */
    963 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    964 
    965 	    (((attr->va_mode & S_ISUID) != 0 &&
    966 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
    967 
    968 	     ((attr->va_mode & S_ISGID) != 0 &&
    969 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
    970 		/*
    971 		 * Mark the process as SUGID before we do
    972 		 * anything that might block.
    973 		 */
    974 		proc_crmod_enter();
    975 		proc_crmod_leave(NULL, NULL, true);
    976 
    977 		/* Make sure file descriptors 0..2 are in use. */
    978 		if ((error = fd_checkstd()) != 0) {
    979 			DPRINTF(("%s: fdcheckstd failed %d\n",
    980 			    __func__, error));
    981 			return error;
    982 		}
    983 
    984 		/*
    985 		 * Copy the credential so other references don't see our
    986 		 * changes.
    987 		 */
    988 		l->l_cred = kauth_cred_copy(l->l_cred);
    989 #ifdef KTRACE
    990 		/*
    991 		 * If the persistent trace flag isn't set, turn off.
    992 		 */
    993 		if (p->p_tracep) {
    994 			mutex_enter(&ktrace_lock);
    995 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
    996 				ktrderef(p);
    997 			mutex_exit(&ktrace_lock);
    998 		}
    999 #endif
   1000 		if (attr->va_mode & S_ISUID)
   1001 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
   1002 		if (attr->va_mode & S_ISGID)
   1003 			kauth_cred_setegid(l->l_cred, attr->va_gid);
   1004 	} else {
   1005 		if (kauth_cred_geteuid(l->l_cred) ==
   1006 		    kauth_cred_getuid(l->l_cred) &&
   1007 		    kauth_cred_getegid(l->l_cred) ==
   1008 		    kauth_cred_getgid(l->l_cred))
   1009 			p->p_flag &= ~PK_SUGID;
   1010 	}
   1011 
   1012 	/*
   1013 	 * Copy the credential so other references don't see our changes.
   1014 	 * Test to see if this is necessary first, since in the common case
   1015 	 * we won't need a private reference.
   1016 	 */
   1017 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1018 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1019 		l->l_cred = kauth_cred_copy(l->l_cred);
   1020 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1021 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1022 	}
   1023 
   1024 	/* Update the master credentials. */
   1025 	if (l->l_cred != p->p_cred) {
   1026 		kauth_cred_t ocred;
   1027 
   1028 		kauth_cred_hold(l->l_cred);
   1029 		mutex_enter(p->p_lock);
   1030 		ocred = p->p_cred;
   1031 		p->p_cred = l->l_cred;
   1032 		mutex_exit(p->p_lock);
   1033 		kauth_cred_free(ocred);
   1034 	}
   1035 
   1036 	return 0;
   1037 }
   1038 
   1039 static void
   1040 emulexec(struct lwp *l, struct exec_package *epp)
   1041 {
   1042 	struct proc		*p = l->l_proc;
   1043 
   1044 	/* The emulation root will usually have been found when we looked
   1045 	 * for the elf interpreter (or similar), if not look now. */
   1046 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1047 	    epp->ep_emul_root == NULL)
   1048 		emul_find_root(l, epp);
   1049 
   1050 	/* Any old emulation root got removed by fdcloseexec */
   1051 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1052 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1053 	rw_exit(&p->p_cwdi->cwdi_lock);
   1054 	epp->ep_emul_root = NULL;
   1055 	if (epp->ep_interp != NULL)
   1056 		vrele(epp->ep_interp);
   1057 
   1058 	/*
   1059 	 * Call emulation specific exec hook. This can setup per-process
   1060 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1061 	 *
   1062 	 * If we are executing process of different emulation than the
   1063 	 * original forked process, call e_proc_exit() of the old emulation
   1064 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1065 	 * same, the exec hook code should deallocate any old emulation
   1066 	 * resources held previously by this process.
   1067 	 */
   1068 	if (p->p_emul && p->p_emul->e_proc_exit
   1069 	    && p->p_emul != epp->ep_esch->es_emul)
   1070 		(*p->p_emul->e_proc_exit)(p);
   1071 
   1072 	/*
   1073 	 * This is now LWP 1.
   1074 	 */
   1075 	/* XXX elsewhere */
   1076 	mutex_enter(p->p_lock);
   1077 	p->p_nlwpid = 1;
   1078 	l->l_lid = 1;
   1079 	mutex_exit(p->p_lock);
   1080 
   1081 	/*
   1082 	 * Call exec hook. Emulation code may NOT store reference to anything
   1083 	 * from &pack.
   1084 	 */
   1085 	if (epp->ep_esch->es_emul->e_proc_exec)
   1086 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1087 
   1088 	/* update p_emul, the old value is no longer needed */
   1089 	p->p_emul = epp->ep_esch->es_emul;
   1090 
   1091 	/* ...and the same for p_execsw */
   1092 	p->p_execsw = epp->ep_esch;
   1093 
   1094 #ifdef __HAVE_SYSCALL_INTERN
   1095 	(*p->p_emul->e_syscall_intern)(p);
   1096 #endif
   1097 	ktremul();
   1098 }
   1099 
   1100 static int
   1101 execve_runproc(struct lwp *l, struct execve_data * restrict data,
   1102 	bool no_local_exec_lock, bool is_spawn)
   1103 {
   1104 	struct exec_package	* const epp = &data->ed_pack;
   1105 	int error = 0;
   1106 	struct proc		*p;
   1107 
   1108 	/*
   1109 	 * In case of a posix_spawn operation, the child doing the exec
   1110 	 * might not hold the reader lock on exec_lock, but the parent
   1111 	 * will do this instead.
   1112 	 */
   1113 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
   1114 	KASSERT(!no_local_exec_lock || is_spawn);
   1115 	KASSERT(data != NULL);
   1116 
   1117 	p = l->l_proc;
   1118 
   1119 	/* Get rid of other LWPs. */
   1120 	if (p->p_nlwps > 1) {
   1121 		mutex_enter(p->p_lock);
   1122 		exit_lwps(l);
   1123 		mutex_exit(p->p_lock);
   1124 	}
   1125 	KDASSERT(p->p_nlwps == 1);
   1126 
   1127 	/* Destroy any lwpctl info. */
   1128 	if (p->p_lwpctl != NULL)
   1129 		lwp_ctl_exit();
   1130 
   1131 	/* Remove POSIX timers */
   1132 	timers_free(p, TIMERS_POSIX);
   1133 
   1134 	/* Set the PaX flags. */
   1135 	p->p_pax = epp->ep_pax_flags;
   1136 
   1137 	/*
   1138 	 * Do whatever is necessary to prepare the address space
   1139 	 * for remapping.  Note that this might replace the current
   1140 	 * vmspace with another!
   1141 	 */
   1142 	if (is_spawn)
   1143 		uvmspace_spawn(l, epp->ep_vm_minaddr,
   1144 		    epp->ep_vm_maxaddr,
   1145 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1146 	else
   1147 		uvmspace_exec(l, epp->ep_vm_minaddr,
   1148 		    epp->ep_vm_maxaddr,
   1149 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1150 
   1151 	struct vmspace		*vm;
   1152 	vm = p->p_vmspace;
   1153 	vm->vm_taddr = (void *)epp->ep_taddr;
   1154 	vm->vm_tsize = btoc(epp->ep_tsize);
   1155 	vm->vm_daddr = (void*)epp->ep_daddr;
   1156 	vm->vm_dsize = btoc(epp->ep_dsize);
   1157 	vm->vm_ssize = btoc(epp->ep_ssize);
   1158 	vm->vm_issize = 0;
   1159 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
   1160 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
   1161 
   1162 #ifdef PAX_ASLR
   1163 	pax_aslr_init_vm(l, vm, epp);
   1164 #endif /* PAX_ASLR */
   1165 
   1166 	/* Now map address space. */
   1167 	error = execve_dovmcmds(l, data);
   1168 	if (error != 0)
   1169 		goto exec_abort;
   1170 
   1171 	pathexec(epp, p, data->ed_pathstring);
   1172 
   1173 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1174 
   1175 	error = copyoutargs(data, l, newstack);
   1176 	if (error != 0)
   1177 		goto exec_abort;
   1178 
   1179 	cwdexec(p);
   1180 	fd_closeexec();		/* handle close on exec */
   1181 
   1182 	if (__predict_false(ktrace_on))
   1183 		fd_ktrexecfd();
   1184 
   1185 	execsigs(p);		/* reset catched signals */
   1186 
   1187 	mutex_enter(p->p_lock);
   1188 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1189 	p->p_acflag &= ~AFORK;
   1190 	p->p_flag |= PK_EXEC;
   1191 	mutex_exit(p->p_lock);
   1192 
   1193 	/*
   1194 	 * Stop profiling.
   1195 	 */
   1196 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1197 		mutex_spin_enter(&p->p_stmutex);
   1198 		stopprofclock(p);
   1199 		mutex_spin_exit(&p->p_stmutex);
   1200 	}
   1201 
   1202 	/*
   1203 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1204 	 * exited and exec()/exit() are the only places it will be cleared.
   1205 	 */
   1206 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1207 #if 0
   1208 		lwp_t *lp;
   1209 
   1210 		mutex_enter(proc_lock);
   1211 		lp = p->p_vforklwp;
   1212 		p->p_vforklwp = NULL;
   1213 
   1214 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1215 		p->p_lflag &= ~PL_PPWAIT;
   1216 
   1217 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
   1218 		cv_broadcast(&lp->l_waitcv);
   1219 		mutex_exit(proc_lock);
   1220 #else
   1221 		mutex_enter(proc_lock);
   1222 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1223 		p->p_lflag &= ~PL_PPWAIT;
   1224 		cv_broadcast(&p->p_pptr->p_waitcv);
   1225 		mutex_exit(proc_lock);
   1226 #endif
   1227 	}
   1228 
   1229 	error = credexec(l, &data->ed_attr);
   1230 	if (error)
   1231 		goto exec_abort;
   1232 
   1233 #if defined(__HAVE_RAS)
   1234 	/*
   1235 	 * Remove all RASs from the address space.
   1236 	 */
   1237 	ras_purgeall();
   1238 #endif
   1239 
   1240 	doexechooks(p);
   1241 
   1242 	/*
   1243 	 * Set initial SP at the top of the stack.
   1244 	 *
   1245 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1246 	 * the end of arg/env strings.  Userland guesses the address of argc
   1247 	 * via ps_strings::ps_argvstr.
   1248 	 */
   1249 
   1250 	/* Setup new registers and do misc. setup. */
   1251 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
   1252 	if (epp->ep_esch->es_setregs)
   1253 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
   1254 
   1255 	/* Provide a consistent LWP private setting */
   1256 	(void)lwp_setprivate(l, NULL);
   1257 
   1258 	/* Discard all PCU state; need to start fresh */
   1259 	pcu_discard_all(l);
   1260 
   1261 	/* map the process's signal trampoline code */
   1262 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1263 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1264 		goto exec_abort;
   1265 	}
   1266 
   1267 	pool_put(&exec_pool, data->ed_argp);
   1268 
   1269 	/* notify others that we exec'd */
   1270 	KNOTE(&p->p_klist, NOTE_EXEC);
   1271 
   1272 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1273 
   1274 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
   1275 
   1276 	emulexec(l, epp);
   1277 
   1278 	/* Allow new references from the debugger/procfs. */
   1279 	rw_exit(&p->p_reflock);
   1280 	if (!no_local_exec_lock)
   1281 		rw_exit(&exec_lock);
   1282 
   1283 	mutex_enter(proc_lock);
   1284 
   1285 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
   1286 		ksiginfo_t ksi;
   1287 
   1288 		KSI_INIT_EMPTY(&ksi);
   1289 		ksi.ksi_signo = SIGTRAP;
   1290 		ksi.ksi_lid = l->l_lid;
   1291 		kpsignal(p, &ksi, NULL);
   1292 	}
   1293 
   1294 	if (p->p_sflag & PS_STOPEXEC) {
   1295 		ksiginfoq_t kq;
   1296 
   1297 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1298 		p->p_pptr->p_nstopchild++;
   1299 		p->p_waited = 0;
   1300 		mutex_enter(p->p_lock);
   1301 		ksiginfo_queue_init(&kq);
   1302 		sigclearall(p, &contsigmask, &kq);
   1303 		lwp_lock(l);
   1304 		l->l_stat = LSSTOP;
   1305 		p->p_stat = SSTOP;
   1306 		p->p_nrlwps--;
   1307 		lwp_unlock(l);
   1308 		mutex_exit(p->p_lock);
   1309 		mutex_exit(proc_lock);
   1310 		lwp_lock(l);
   1311 		mi_switch(l);
   1312 		ksiginfo_queue_drain(&kq);
   1313 		KERNEL_LOCK(l->l_biglocks, l);
   1314 	} else {
   1315 		mutex_exit(proc_lock);
   1316 	}
   1317 
   1318 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1319 	pathbuf_destroy(data->ed_pathbuf);
   1320 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1321 	DPRINTF(("%s finished\n", __func__));
   1322 	return EJUSTRETURN;
   1323 
   1324  exec_abort:
   1325 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
   1326 	rw_exit(&p->p_reflock);
   1327 	if (!no_local_exec_lock)
   1328 		rw_exit(&exec_lock);
   1329 
   1330 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1331 	pathbuf_destroy(data->ed_pathbuf);
   1332 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1333 
   1334 	/*
   1335 	 * the old process doesn't exist anymore.  exit gracefully.
   1336 	 * get rid of the (new) address space we have created, if any, get rid
   1337 	 * of our namei data and vnode, and exit noting failure
   1338 	 */
   1339 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1340 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1341 
   1342 	exec_free_emul_arg(epp);
   1343 	pool_put(&exec_pool, data->ed_argp);
   1344 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1345 	if (epp->ep_emul_root != NULL)
   1346 		vrele(epp->ep_emul_root);
   1347 	if (epp->ep_interp != NULL)
   1348 		vrele(epp->ep_interp);
   1349 
   1350 	/* Acquire the sched-state mutex (exit1() will release it). */
   1351 	if (!is_spawn) {
   1352 		mutex_enter(p->p_lock);
   1353 		exit1(l, error, SIGABRT);
   1354 	}
   1355 
   1356 	return error;
   1357 }
   1358 
   1359 int
   1360 execve1(struct lwp *l, const char *path, char * const *args,
   1361     char * const *envs, execve_fetch_element_t fetch_element)
   1362 {
   1363 	struct execve_data data;
   1364 	int error;
   1365 
   1366 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
   1367 	if (error)
   1368 		return error;
   1369 	error = execve_runproc(l, &data, false, false);
   1370 	return error;
   1371 }
   1372 
   1373 static size_t
   1374 fromptrsz(const struct exec_package *epp)
   1375 {
   1376 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
   1377 }
   1378 
   1379 static size_t
   1380 ptrsz(const struct exec_package *epp)
   1381 {
   1382 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
   1383 }
   1384 
   1385 static size_t
   1386 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
   1387 {
   1388 	struct exec_package	* const epp = &data->ed_pack;
   1389 
   1390 	const size_t nargenvptrs =
   1391 	    1 +				/* long argc */
   1392 	    data->ed_argc +		/* char *argv[] */
   1393 	    1 +				/* \0 */
   1394 	    data->ed_envc +		/* char *env[] */
   1395 	    1 +				/* \0 */
   1396 	    epp->ep_esch->es_arglen;	/* auxinfo */
   1397 
   1398 	return (nargenvptrs * ptrsz(epp)) + argenvstrlen;
   1399 }
   1400 
   1401 static size_t
   1402 calcstack(struct execve_data * restrict data, const size_t gaplen)
   1403 {
   1404 	struct exec_package	* const epp = &data->ed_pack;
   1405 
   1406 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
   1407 	    epp->ep_esch->es_emul->e_sigcode;
   1408 
   1409 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
   1410 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
   1411 
   1412 	const size_t sigcode_psstr_sz =
   1413 	    data->ed_szsigcode +	/* sigcode */
   1414 	    data->ed_ps_strings_sz +	/* ps_strings */
   1415 	    STACK_PTHREADSPACE;		/* pthread space */
   1416 
   1417 	const size_t stacklen =
   1418 	    data->ed_argslen +
   1419 	    gaplen +
   1420 	    sigcode_psstr_sz;
   1421 
   1422 	/* make the stack "safely" aligned */
   1423 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
   1424 }
   1425 
   1426 static int
   1427 copyoutargs(struct execve_data * restrict data, struct lwp *l,
   1428     char * const newstack)
   1429 {
   1430 	struct exec_package	* const epp = &data->ed_pack;
   1431 	struct proc		*p = l->l_proc;
   1432 	int			error;
   1433 
   1434 	/* remember information about the process */
   1435 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1436 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1437 
   1438 	/*
   1439 	 * Allocate the stack address passed to the newly execve()'ed process.
   1440 	 *
   1441 	 * The new stack address will be set to the SP (stack pointer) register
   1442 	 * in setregs().
   1443 	 */
   1444 
   1445 	char *newargs = STACK_ALLOC(
   1446 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
   1447 
   1448 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1449 	    &data->ed_arginfo, &newargs, data->ed_argp);
   1450 
   1451 	if (epp->ep_path) {
   1452 		PNBUF_PUT(epp->ep_path);
   1453 		epp->ep_path = NULL;
   1454 	}
   1455 	if (error) {
   1456 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1457 		return error;
   1458 	}
   1459 
   1460 	error = copyoutpsstrs(data, p);
   1461 	if (error != 0)
   1462 		return error;
   1463 
   1464 	return 0;
   1465 }
   1466 
   1467 static int
   1468 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
   1469 {
   1470 	struct exec_package	* const epp = &data->ed_pack;
   1471 	struct ps_strings32	arginfo32;
   1472 	void			*aip;
   1473 	int			error;
   1474 
   1475 	/* fill process ps_strings info */
   1476 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
   1477 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1478 
   1479 	if (epp->ep_flags & EXEC_32) {
   1480 		aip = &arginfo32;
   1481 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1482 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1483 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1484 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1485 	} else
   1486 		aip = &data->ed_arginfo;
   1487 
   1488 	/* copy out the process's ps_strings structure */
   1489 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1490 	    != 0) {
   1491 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1492 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1493 		return error;
   1494 	}
   1495 
   1496 	return 0;
   1497 }
   1498 
   1499 static int
   1500 copyinargs(struct execve_data * restrict data, char * const *args,
   1501     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1502 {
   1503 	struct exec_package	* const epp = &data->ed_pack;
   1504 	char			*dp;
   1505 	size_t			i;
   1506 	int			error;
   1507 
   1508 	dp = *dpp;
   1509 
   1510 	data->ed_argc = 0;
   1511 
   1512 	/* copy the fake args list, if there's one, freeing it as we go */
   1513 	if (epp->ep_flags & EXEC_HASARGL) {
   1514 		struct exec_fakearg	*fa = epp->ep_fa;
   1515 
   1516 		while (fa->fa_arg != NULL) {
   1517 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1518 			size_t len;
   1519 
   1520 			len = strlcpy(dp, fa->fa_arg, maxlen);
   1521 			/* Count NUL into len. */
   1522 			if (len < maxlen)
   1523 				len++;
   1524 			else {
   1525 				while (fa->fa_arg != NULL) {
   1526 					kmem_free(fa->fa_arg, fa->fa_len);
   1527 					fa++;
   1528 				}
   1529 				kmem_free(epp->ep_fa, epp->ep_fa_len);
   1530 				epp->ep_flags &= ~EXEC_HASARGL;
   1531 				return E2BIG;
   1532 			}
   1533 			ktrexecarg(fa->fa_arg, len - 1);
   1534 			dp += len;
   1535 
   1536 			kmem_free(fa->fa_arg, fa->fa_len);
   1537 			fa++;
   1538 			data->ed_argc++;
   1539 		}
   1540 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1541 		epp->ep_flags &= ~EXEC_HASARGL;
   1542 	}
   1543 
   1544 	/*
   1545 	 * Read and count argument strings from user.
   1546 	 */
   1547 
   1548 	if (args == NULL) {
   1549 		DPRINTF(("%s: null args\n", __func__));
   1550 		return EINVAL;
   1551 	}
   1552 	if (epp->ep_flags & EXEC_SKIPARG)
   1553 		args = (const void *)((const char *)args + fromptrsz(epp));
   1554 	i = 0;
   1555 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1556 	if (error != 0) {
   1557 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1558 		return error;
   1559 	}
   1560 	data->ed_argc += i;
   1561 
   1562 	/*
   1563 	 * Read and count environment strings from user.
   1564 	 */
   1565 
   1566 	data->ed_envc = 0;
   1567 	/* environment need not be there */
   1568 	if (envs == NULL)
   1569 		goto done;
   1570 	i = 0;
   1571 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1572 	if (error != 0) {
   1573 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1574 		return error;
   1575 	}
   1576 	data->ed_envc += i;
   1577 
   1578 done:
   1579 	*dpp = dp;
   1580 
   1581 	return 0;
   1582 }
   1583 
   1584 static int
   1585 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1586     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1587     void (*ktr)(const void *, size_t))
   1588 {
   1589 	char			*dp, *sp;
   1590 	size_t			i;
   1591 	int			error;
   1592 
   1593 	dp = *dpp;
   1594 
   1595 	i = 0;
   1596 	while (1) {
   1597 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1598 		size_t len;
   1599 
   1600 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1601 			return error;
   1602 		}
   1603 		if (!sp)
   1604 			break;
   1605 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1606 			if (error == ENAMETOOLONG)
   1607 				error = E2BIG;
   1608 			return error;
   1609 		}
   1610 		if (__predict_false(ktrace_on))
   1611 			(*ktr)(dp, len - 1);
   1612 		dp += len;
   1613 		i++;
   1614 	}
   1615 
   1616 	*dpp = dp;
   1617 	*ip = i;
   1618 
   1619 	return 0;
   1620 }
   1621 
   1622 /*
   1623  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1624  * Those strings are located just after auxinfo.
   1625  */
   1626 int
   1627 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1628     char **stackp, void *argp)
   1629 {
   1630 	char	**cpp, *dp, *sp;
   1631 	size_t	len;
   1632 	void	*nullp;
   1633 	long	argc, envc;
   1634 	int	error;
   1635 
   1636 	cpp = (char **)*stackp;
   1637 	nullp = NULL;
   1638 	argc = arginfo->ps_nargvstr;
   1639 	envc = arginfo->ps_nenvstr;
   1640 
   1641 	/* argc on stack is long */
   1642 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1643 
   1644 	dp = (char *)(cpp +
   1645 	    1 +				/* long argc */
   1646 	    argc +			/* char *argv[] */
   1647 	    1 +				/* \0 */
   1648 	    envc +			/* char *env[] */
   1649 	    1 +				/* \0 */
   1650 	    /* XXX auxinfo multiplied by ptr size? */
   1651 	    pack->ep_esch->es_arglen);	/* auxinfo */
   1652 	sp = argp;
   1653 
   1654 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1655 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1656 		return error;
   1657 	}
   1658 
   1659 	/* XXX don't copy them out, remap them! */
   1660 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1661 
   1662 	for (; --argc >= 0; sp += len, dp += len) {
   1663 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1664 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1665 			return error;
   1666 		}
   1667 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1668 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1669 			return error;
   1670 		}
   1671 	}
   1672 
   1673 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1674 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1675 		return error;
   1676 	}
   1677 
   1678 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1679 
   1680 	for (; --envc >= 0; sp += len, dp += len) {
   1681 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1682 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1683 			return error;
   1684 		}
   1685 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1686 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1687 			return error;
   1688 		}
   1689 
   1690 	}
   1691 
   1692 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1693 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1694 		return error;
   1695 	}
   1696 
   1697 	*stackp = (char *)cpp;
   1698 	return 0;
   1699 }
   1700 
   1701 
   1702 /*
   1703  * Add execsw[] entries.
   1704  */
   1705 int
   1706 exec_add(struct execsw *esp, int count)
   1707 {
   1708 	struct exec_entry	*it;
   1709 	int			i;
   1710 
   1711 	if (count == 0) {
   1712 		return 0;
   1713 	}
   1714 
   1715 	/* Check for duplicates. */
   1716 	rw_enter(&exec_lock, RW_WRITER);
   1717 	for (i = 0; i < count; i++) {
   1718 		LIST_FOREACH(it, &ex_head, ex_list) {
   1719 			/* assume unique (makecmds, probe_func, emulation) */
   1720 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1721 			    it->ex_sw->u.elf_probe_func ==
   1722 			    esp[i].u.elf_probe_func &&
   1723 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1724 				rw_exit(&exec_lock);
   1725 				return EEXIST;
   1726 			}
   1727 		}
   1728 	}
   1729 
   1730 	/* Allocate new entries. */
   1731 	for (i = 0; i < count; i++) {
   1732 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1733 		it->ex_sw = &esp[i];
   1734 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1735 	}
   1736 
   1737 	/* update execsw[] */
   1738 	exec_init(0);
   1739 	rw_exit(&exec_lock);
   1740 	return 0;
   1741 }
   1742 
   1743 /*
   1744  * Remove execsw[] entry.
   1745  */
   1746 int
   1747 exec_remove(struct execsw *esp, int count)
   1748 {
   1749 	struct exec_entry	*it, *next;
   1750 	int			i;
   1751 	const struct proclist_desc *pd;
   1752 	proc_t			*p;
   1753 
   1754 	if (count == 0) {
   1755 		return 0;
   1756 	}
   1757 
   1758 	/* Abort if any are busy. */
   1759 	rw_enter(&exec_lock, RW_WRITER);
   1760 	for (i = 0; i < count; i++) {
   1761 		mutex_enter(proc_lock);
   1762 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1763 			PROCLIST_FOREACH(p, pd->pd_list) {
   1764 				if (p->p_execsw == &esp[i]) {
   1765 					mutex_exit(proc_lock);
   1766 					rw_exit(&exec_lock);
   1767 					return EBUSY;
   1768 				}
   1769 			}
   1770 		}
   1771 		mutex_exit(proc_lock);
   1772 	}
   1773 
   1774 	/* None are busy, so remove them all. */
   1775 	for (i = 0; i < count; i++) {
   1776 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1777 			next = LIST_NEXT(it, ex_list);
   1778 			if (it->ex_sw == &esp[i]) {
   1779 				LIST_REMOVE(it, ex_list);
   1780 				kmem_free(it, sizeof(*it));
   1781 				break;
   1782 			}
   1783 		}
   1784 	}
   1785 
   1786 	/* update execsw[] */
   1787 	exec_init(0);
   1788 	rw_exit(&exec_lock);
   1789 	return 0;
   1790 }
   1791 
   1792 /*
   1793  * Initialize exec structures. If init_boot is true, also does necessary
   1794  * one-time initialization (it's called from main() that way).
   1795  * Once system is multiuser, this should be called with exec_lock held,
   1796  * i.e. via exec_{add|remove}().
   1797  */
   1798 int
   1799 exec_init(int init_boot)
   1800 {
   1801 	const struct execsw 	**sw;
   1802 	struct exec_entry	*ex;
   1803 	SLIST_HEAD(,exec_entry)	first;
   1804 	SLIST_HEAD(,exec_entry)	any;
   1805 	SLIST_HEAD(,exec_entry)	last;
   1806 	int			i, sz;
   1807 
   1808 	if (init_boot) {
   1809 		/* do one-time initializations */
   1810 		rw_init(&exec_lock);
   1811 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1812 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1813 		    "execargs", &exec_palloc, IPL_NONE);
   1814 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1815 	} else {
   1816 		KASSERT(rw_write_held(&exec_lock));
   1817 	}
   1818 
   1819 	/* Sort each entry onto the appropriate queue. */
   1820 	SLIST_INIT(&first);
   1821 	SLIST_INIT(&any);
   1822 	SLIST_INIT(&last);
   1823 	sz = 0;
   1824 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1825 		switch(ex->ex_sw->es_prio) {
   1826 		case EXECSW_PRIO_FIRST:
   1827 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1828 			break;
   1829 		case EXECSW_PRIO_ANY:
   1830 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1831 			break;
   1832 		case EXECSW_PRIO_LAST:
   1833 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1834 			break;
   1835 		default:
   1836 			panic("%s", __func__);
   1837 			break;
   1838 		}
   1839 		sz++;
   1840 	}
   1841 
   1842 	/*
   1843 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1844 	 * allocation.
   1845 	 */
   1846 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1847 	i = 0;
   1848 	SLIST_FOREACH(ex, &first, ex_slist) {
   1849 		sw[i++] = ex->ex_sw;
   1850 	}
   1851 	SLIST_FOREACH(ex, &any, ex_slist) {
   1852 		sw[i++] = ex->ex_sw;
   1853 	}
   1854 	SLIST_FOREACH(ex, &last, ex_slist) {
   1855 		sw[i++] = ex->ex_sw;
   1856 	}
   1857 
   1858 	/* Replace old execsw[] and free used memory. */
   1859 	if (execsw != NULL) {
   1860 		kmem_free(__UNCONST(execsw),
   1861 		    nexecs * sizeof(struct execsw *) + 1);
   1862 	}
   1863 	execsw = sw;
   1864 	nexecs = sz;
   1865 
   1866 	/* Figure out the maximum size of an exec header. */
   1867 	exec_maxhdrsz = sizeof(int);
   1868 	for (i = 0; i < nexecs; i++) {
   1869 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1870 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1871 	}
   1872 
   1873 	return 0;
   1874 }
   1875 
   1876 static int
   1877 exec_sigcode_map(struct proc *p, const struct emul *e)
   1878 {
   1879 	vaddr_t va;
   1880 	vsize_t sz;
   1881 	int error;
   1882 	struct uvm_object *uobj;
   1883 
   1884 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1885 
   1886 	if (e->e_sigobject == NULL || sz == 0) {
   1887 		return 0;
   1888 	}
   1889 
   1890 	/*
   1891 	 * If we don't have a sigobject for this emulation, create one.
   1892 	 *
   1893 	 * sigobject is an anonymous memory object (just like SYSV shared
   1894 	 * memory) that we keep a permanent reference to and that we map
   1895 	 * in all processes that need this sigcode. The creation is simple,
   1896 	 * we create an object, add a permanent reference to it, map it in
   1897 	 * kernel space, copy out the sigcode to it and unmap it.
   1898 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1899 	 * the way sys_mmap() would map it.
   1900 	 */
   1901 
   1902 	uobj = *e->e_sigobject;
   1903 	if (uobj == NULL) {
   1904 		mutex_enter(&sigobject_lock);
   1905 		if ((uobj = *e->e_sigobject) == NULL) {
   1906 			uobj = uao_create(sz, 0);
   1907 			(*uobj->pgops->pgo_reference)(uobj);
   1908 			va = vm_map_min(kernel_map);
   1909 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1910 			    uobj, 0, 0,
   1911 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1912 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1913 				printf("kernel mapping failed %d\n", error);
   1914 				(*uobj->pgops->pgo_detach)(uobj);
   1915 				mutex_exit(&sigobject_lock);
   1916 				return error;
   1917 			}
   1918 			memcpy((void *)va, e->e_sigcode, sz);
   1919 #ifdef PMAP_NEED_PROCWR
   1920 			pmap_procwr(&proc0, va, sz);
   1921 #endif
   1922 			uvm_unmap(kernel_map, va, va + round_page(sz));
   1923 			*e->e_sigobject = uobj;
   1924 		}
   1925 		mutex_exit(&sigobject_lock);
   1926 	}
   1927 
   1928 	/* Just a hint to uvm_map where to put it. */
   1929 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   1930 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1931 
   1932 #ifdef __alpha__
   1933 	/*
   1934 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   1935 	 * which causes the above calculation to put the sigcode at
   1936 	 * an invalid address.  Put it just below the text instead.
   1937 	 */
   1938 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   1939 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   1940 	}
   1941 #endif
   1942 
   1943 	(*uobj->pgops->pgo_reference)(uobj);
   1944 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   1945 			uobj, 0, 0,
   1946 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   1947 				    UVM_ADV_RANDOM, 0));
   1948 	if (error) {
   1949 		DPRINTF(("%s, %d: map %p "
   1950 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   1951 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   1952 		    va, error));
   1953 		(*uobj->pgops->pgo_detach)(uobj);
   1954 		return error;
   1955 	}
   1956 	p->p_sigctx.ps_sigcode = (void *)va;
   1957 	return 0;
   1958 }
   1959 
   1960 /*
   1961  * Release a refcount on spawn_exec_data and destroy memory, if this
   1962  * was the last one.
   1963  */
   1964 static void
   1965 spawn_exec_data_release(struct spawn_exec_data *data)
   1966 {
   1967 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   1968 		return;
   1969 
   1970 	cv_destroy(&data->sed_cv_child_ready);
   1971 	mutex_destroy(&data->sed_mtx_child);
   1972 
   1973 	if (data->sed_actions)
   1974 		posix_spawn_fa_free(data->sed_actions,
   1975 		    data->sed_actions->len);
   1976 	if (data->sed_attrs)
   1977 		kmem_free(data->sed_attrs,
   1978 		    sizeof(*data->sed_attrs));
   1979 	kmem_free(data, sizeof(*data));
   1980 }
   1981 
   1982 /*
   1983  * A child lwp of a posix_spawn operation starts here and ends up in
   1984  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   1985  * manipulations in between.
   1986  * The parent waits for the child, as it is not clear whether the child
   1987  * will be able to acquire its own exec_lock. If it can, the parent can
   1988  * be released early and continue running in parallel. If not (or if the
   1989  * magic debug flag is passed in the scheduler attribute struct), the
   1990  * child rides on the parent's exec lock until it is ready to return to
   1991  * to userland - and only then releases the parent. This method loses
   1992  * concurrency, but improves error reporting.
   1993  */
   1994 static void
   1995 spawn_return(void *arg)
   1996 {
   1997 	struct spawn_exec_data *spawn_data = arg;
   1998 	struct lwp *l = curlwp;
   1999 	int error, newfd;
   2000 	int ostat;
   2001 	size_t i;
   2002 	const struct posix_spawn_file_actions_entry *fae;
   2003 	pid_t ppid;
   2004 	register_t retval;
   2005 	bool have_reflock;
   2006 	bool parent_is_waiting = true;
   2007 
   2008 	/*
   2009 	 * Check if we can release parent early.
   2010 	 * We either need to have no sed_attrs, or sed_attrs does not
   2011 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   2012 	 * safe access to the parent proc (passed in sed_parent).
   2013 	 * We then try to get the exec_lock, and only if that works, we can
   2014 	 * release the parent here already.
   2015 	 */
   2016 	ppid = spawn_data->sed_parent->p_pid;
   2017 	if ((!spawn_data->sed_attrs
   2018 	    || (spawn_data->sed_attrs->sa_flags
   2019 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   2020 	    && rw_tryenter(&exec_lock, RW_READER)) {
   2021 		parent_is_waiting = false;
   2022 		mutex_enter(&spawn_data->sed_mtx_child);
   2023 		cv_signal(&spawn_data->sed_cv_child_ready);
   2024 		mutex_exit(&spawn_data->sed_mtx_child);
   2025 	}
   2026 
   2027 	/* don't allow debugger access yet */
   2028 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
   2029 	have_reflock = true;
   2030 
   2031 	error = 0;
   2032 	/* handle posix_spawn_file_actions */
   2033 	if (spawn_data->sed_actions != NULL) {
   2034 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   2035 			fae = &spawn_data->sed_actions->fae[i];
   2036 			switch (fae->fae_action) {
   2037 			case FAE_OPEN:
   2038 				if (fd_getfile(fae->fae_fildes) != NULL) {
   2039 					error = fd_close(fae->fae_fildes);
   2040 					if (error)
   2041 						break;
   2042 				}
   2043 				error = fd_open(fae->fae_path, fae->fae_oflag,
   2044 				    fae->fae_mode, &newfd);
   2045 				if (error)
   2046 					break;
   2047 				if (newfd != fae->fae_fildes) {
   2048 					error = dodup(l, newfd,
   2049 					    fae->fae_fildes, 0, &retval);
   2050 					if (fd_getfile(newfd) != NULL)
   2051 						fd_close(newfd);
   2052 				}
   2053 				break;
   2054 			case FAE_DUP2:
   2055 				error = dodup(l, fae->fae_fildes,
   2056 				    fae->fae_newfildes, 0, &retval);
   2057 				break;
   2058 			case FAE_CLOSE:
   2059 				if (fd_getfile(fae->fae_fildes) == NULL) {
   2060 					error = EBADF;
   2061 					break;
   2062 				}
   2063 				error = fd_close(fae->fae_fildes);
   2064 				break;
   2065 			}
   2066 			if (error)
   2067 				goto report_error;
   2068 		}
   2069 	}
   2070 
   2071 	/* handle posix_spawnattr */
   2072 	if (spawn_data->sed_attrs != NULL) {
   2073 		struct sigaction sigact;
   2074 		sigact._sa_u._sa_handler = SIG_DFL;
   2075 		sigact.sa_flags = 0;
   2076 
   2077 		/*
   2078 		 * set state to SSTOP so that this proc can be found by pid.
   2079 		 * see proc_enterprp, do_sched_setparam below
   2080 		 */
   2081 		mutex_enter(proc_lock);
   2082 		/*
   2083 		 * p_stat should be SACTIVE, so we need to adjust the
   2084 		 * parent's p_nstopchild here.  For safety, just make
   2085 		 * we're on the good side of SDEAD before we adjust.
   2086 		 */
   2087 		ostat = l->l_proc->p_stat;
   2088 		KASSERT(ostat < SSTOP);
   2089 		l->l_proc->p_stat = SSTOP;
   2090 		l->l_proc->p_waited = 0;
   2091 		l->l_proc->p_pptr->p_nstopchild++;
   2092 		mutex_exit(proc_lock);
   2093 
   2094 		/* Set process group */
   2095 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   2096 			pid_t mypid = l->l_proc->p_pid,
   2097 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   2098 
   2099 			if (pgrp == 0)
   2100 				pgrp = mypid;
   2101 
   2102 			error = proc_enterpgrp(spawn_data->sed_parent,
   2103 			    mypid, pgrp, false);
   2104 			if (error)
   2105 				goto report_error_stopped;
   2106 		}
   2107 
   2108 		/* Set scheduler policy */
   2109 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2110 			error = do_sched_setparam(l->l_proc->p_pid, 0,
   2111 			    spawn_data->sed_attrs->sa_schedpolicy,
   2112 			    &spawn_data->sed_attrs->sa_schedparam);
   2113 		else if (spawn_data->sed_attrs->sa_flags
   2114 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   2115 			error = do_sched_setparam(ppid, 0,
   2116 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   2117 		}
   2118 		if (error)
   2119 			goto report_error_stopped;
   2120 
   2121 		/* Reset user ID's */
   2122 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2123 			error = do_setresuid(l, -1,
   2124 			     kauth_cred_getgid(l->l_cred), -1,
   2125 			     ID_E_EQ_R | ID_E_EQ_S);
   2126 			if (error)
   2127 				goto report_error_stopped;
   2128 			error = do_setresuid(l, -1,
   2129 			    kauth_cred_getuid(l->l_cred), -1,
   2130 			    ID_E_EQ_R | ID_E_EQ_S);
   2131 			if (error)
   2132 				goto report_error_stopped;
   2133 		}
   2134 
   2135 		/* Set signal masks/defaults */
   2136 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2137 			mutex_enter(l->l_proc->p_lock);
   2138 			error = sigprocmask1(l, SIG_SETMASK,
   2139 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   2140 			mutex_exit(l->l_proc->p_lock);
   2141 			if (error)
   2142 				goto report_error_stopped;
   2143 		}
   2144 
   2145 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2146 			/*
   2147 			 * The following sigaction call is using a sigaction
   2148 			 * version 0 trampoline which is in the compatibility
   2149 			 * code only. This is not a problem because for SIG_DFL
   2150 			 * and SIG_IGN, the trampolines are now ignored. If they
   2151 			 * were not, this would be a problem because we are
   2152 			 * holding the exec_lock, and the compat code needs
   2153 			 * to do the same in order to replace the trampoline
   2154 			 * code of the process.
   2155 			 */
   2156 			for (i = 1; i <= NSIG; i++) {
   2157 				if (sigismember(
   2158 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   2159 					sigaction1(l, i, &sigact, NULL, NULL,
   2160 					    0);
   2161 			}
   2162 		}
   2163 		mutex_enter(proc_lock);
   2164 		l->l_proc->p_stat = ostat;
   2165 		l->l_proc->p_pptr->p_nstopchild--;
   2166 		mutex_exit(proc_lock);
   2167 	}
   2168 
   2169 	/* now do the real exec */
   2170 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2171 	    true);
   2172 	have_reflock = false;
   2173 	if (error == EJUSTRETURN)
   2174 		error = 0;
   2175 	else if (error)
   2176 		goto report_error;
   2177 
   2178 	if (parent_is_waiting) {
   2179 		mutex_enter(&spawn_data->sed_mtx_child);
   2180 		cv_signal(&spawn_data->sed_cv_child_ready);
   2181 		mutex_exit(&spawn_data->sed_mtx_child);
   2182 	}
   2183 
   2184 	/* release our refcount on the data */
   2185 	spawn_exec_data_release(spawn_data);
   2186 
   2187 	/* and finally: leave to userland for the first time */
   2188 	cpu_spawn_return(l);
   2189 
   2190 	/* NOTREACHED */
   2191 	return;
   2192 
   2193  report_error_stopped:
   2194 	mutex_enter(proc_lock);
   2195 	l->l_proc->p_stat = ostat;
   2196 	l->l_proc->p_pptr->p_nstopchild--;
   2197 	mutex_exit(proc_lock);
   2198  report_error:
   2199 	if (have_reflock) {
   2200 		/*
   2201 		 * We have not passed through execve_runproc(),
   2202 		 * which would have released the p_reflock and also
   2203 		 * taken ownership of the sed_exec part of spawn_data,
   2204 		 * so release/free both here.
   2205 		 */
   2206 		rw_exit(&l->l_proc->p_reflock);
   2207 		execve_free_data(&spawn_data->sed_exec);
   2208 	}
   2209 
   2210 	if (parent_is_waiting) {
   2211 		/* pass error to parent */
   2212 		mutex_enter(&spawn_data->sed_mtx_child);
   2213 		spawn_data->sed_error = error;
   2214 		cv_signal(&spawn_data->sed_cv_child_ready);
   2215 		mutex_exit(&spawn_data->sed_mtx_child);
   2216 	} else {
   2217 		rw_exit(&exec_lock);
   2218 	}
   2219 
   2220 	/* release our refcount on the data */
   2221 	spawn_exec_data_release(spawn_data);
   2222 
   2223 	/* done, exit */
   2224 	mutex_enter(l->l_proc->p_lock);
   2225 	/*
   2226 	 * Posix explicitly asks for an exit code of 127 if we report
   2227 	 * errors from the child process - so, unfortunately, there
   2228 	 * is no way to report a more exact error code.
   2229 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2230 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2231 	 */
   2232 	exit1(l, 127, 0);
   2233 }
   2234 
   2235 void
   2236 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2237 {
   2238 
   2239 	for (size_t i = 0; i < len; i++) {
   2240 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2241 		if (fae->fae_action != FAE_OPEN)
   2242 			continue;
   2243 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
   2244 	}
   2245 	if (fa->len > 0)
   2246 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2247 	kmem_free(fa, sizeof(*fa));
   2248 }
   2249 
   2250 static int
   2251 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2252     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2253 {
   2254 	struct posix_spawn_file_actions *fa;
   2255 	struct posix_spawn_file_actions_entry *fae;
   2256 	char *pbuf = NULL;
   2257 	int error;
   2258 	size_t i = 0;
   2259 
   2260 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2261 	error = copyin(ufa, fa, sizeof(*fa));
   2262 	if (error || fa->len == 0) {
   2263 		kmem_free(fa, sizeof(*fa));
   2264 		return error;	/* 0 if not an error, and len == 0 */
   2265 	}
   2266 
   2267 	if (fa->len > lim) {
   2268 		kmem_free(fa, sizeof(*fa));
   2269 		return EINVAL;
   2270 	}
   2271 
   2272 	fa->size = fa->len;
   2273 	size_t fal = fa->len * sizeof(*fae);
   2274 	fae = fa->fae;
   2275 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2276 	error = copyin(fae, fa->fae, fal);
   2277 	if (error)
   2278 		goto out;
   2279 
   2280 	pbuf = PNBUF_GET();
   2281 	for (; i < fa->len; i++) {
   2282 		fae = &fa->fae[i];
   2283 		if (fae->fae_action != FAE_OPEN)
   2284 			continue;
   2285 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2286 		if (error)
   2287 			goto out;
   2288 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2289 		memcpy(fae->fae_path, pbuf, fal);
   2290 	}
   2291 	PNBUF_PUT(pbuf);
   2292 
   2293 	*fap = fa;
   2294 	return 0;
   2295 out:
   2296 	if (pbuf)
   2297 		PNBUF_PUT(pbuf);
   2298 	posix_spawn_fa_free(fa, i);
   2299 	return error;
   2300 }
   2301 
   2302 int
   2303 check_posix_spawn(struct lwp *l1)
   2304 {
   2305 	int error, tnprocs, count;
   2306 	uid_t uid;
   2307 	struct proc *p1;
   2308 
   2309 	p1 = l1->l_proc;
   2310 	uid = kauth_cred_getuid(l1->l_cred);
   2311 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2312 
   2313 	/*
   2314 	 * Although process entries are dynamically created, we still keep
   2315 	 * a global limit on the maximum number we will create.
   2316 	 */
   2317 	if (__predict_false(tnprocs >= maxproc))
   2318 		error = -1;
   2319 	else
   2320 		error = kauth_authorize_process(l1->l_cred,
   2321 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2322 
   2323 	if (error) {
   2324 		atomic_dec_uint(&nprocs);
   2325 		return EAGAIN;
   2326 	}
   2327 
   2328 	/*
   2329 	 * Enforce limits.
   2330 	 */
   2331 	count = chgproccnt(uid, 1);
   2332 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2333 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2334 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2335 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2336 		(void)chgproccnt(uid, -1);
   2337 		atomic_dec_uint(&nprocs);
   2338 		return EAGAIN;
   2339 	}
   2340 
   2341 	return 0;
   2342 }
   2343 
   2344 int
   2345 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2346 	struct posix_spawn_file_actions *fa,
   2347 	struct posix_spawnattr *sa,
   2348 	char *const *argv, char *const *envp,
   2349 	execve_fetch_element_t fetch)
   2350 {
   2351 
   2352 	struct proc *p1, *p2;
   2353 	struct lwp *l2;
   2354 	int error;
   2355 	struct spawn_exec_data *spawn_data;
   2356 	vaddr_t uaddr;
   2357 	pid_t pid;
   2358 	bool have_exec_lock = false;
   2359 
   2360 	p1 = l1->l_proc;
   2361 
   2362 	/* Allocate and init spawn_data */
   2363 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2364 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2365 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2366 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2367 	mutex_enter(&spawn_data->sed_mtx_child);
   2368 
   2369 	/*
   2370 	 * Do the first part of the exec now, collect state
   2371 	 * in spawn_data.
   2372 	 */
   2373 	error = execve_loadvm(l1, path, argv,
   2374 	    envp, fetch, &spawn_data->sed_exec);
   2375 	if (error == EJUSTRETURN)
   2376 		error = 0;
   2377 	else if (error)
   2378 		goto error_exit;
   2379 
   2380 	have_exec_lock = true;
   2381 
   2382 	/*
   2383 	 * Allocate virtual address space for the U-area now, while it
   2384 	 * is still easy to abort the fork operation if we're out of
   2385 	 * kernel virtual address space.
   2386 	 */
   2387 	uaddr = uvm_uarea_alloc();
   2388 	if (__predict_false(uaddr == 0)) {
   2389 		error = ENOMEM;
   2390 		goto error_exit;
   2391 	}
   2392 
   2393 	/*
   2394 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2395 	 * replace it with its own before returning to userland
   2396 	 * in the child.
   2397 	 * This is a point of no return, we will have to go through
   2398 	 * the child proc to properly clean it up past this point.
   2399 	 */
   2400 	p2 = proc_alloc();
   2401 	pid = p2->p_pid;
   2402 
   2403 	/*
   2404 	 * Make a proc table entry for the new process.
   2405 	 * Start by zeroing the section of proc that is zero-initialized,
   2406 	 * then copy the section that is copied directly from the parent.
   2407 	 */
   2408 	memset(&p2->p_startzero, 0,
   2409 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2410 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2411 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2412 	p2->p_vmspace = proc0.p_vmspace;
   2413 
   2414 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2415 
   2416 	LIST_INIT(&p2->p_lwps);
   2417 	LIST_INIT(&p2->p_sigwaiters);
   2418 
   2419 	/*
   2420 	 * Duplicate sub-structures as needed.
   2421 	 * Increase reference counts on shared objects.
   2422 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2423 	 * handling are important in order to keep a consistent behaviour
   2424 	 * for the child after the fork.  If we are a 32-bit process, the
   2425 	 * child will be too.
   2426 	 */
   2427 	p2->p_flag =
   2428 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2429 	p2->p_emul = p1->p_emul;
   2430 	p2->p_execsw = p1->p_execsw;
   2431 
   2432 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2433 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2434 	rw_init(&p2->p_reflock);
   2435 	cv_init(&p2->p_waitcv, "wait");
   2436 	cv_init(&p2->p_lwpcv, "lwpwait");
   2437 
   2438 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2439 
   2440 	kauth_proc_fork(p1, p2);
   2441 
   2442 	p2->p_raslist = NULL;
   2443 	p2->p_fd = fd_copy();
   2444 
   2445 	/* XXX racy */
   2446 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2447 
   2448 	p2->p_cwdi = cwdinit();
   2449 
   2450 	/*
   2451 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2452 	 * we just need increase pl_refcnt.
   2453 	 */
   2454 	if (!p1->p_limit->pl_writeable) {
   2455 		lim_addref(p1->p_limit);
   2456 		p2->p_limit = p1->p_limit;
   2457 	} else {
   2458 		p2->p_limit = lim_copy(p1->p_limit);
   2459 	}
   2460 
   2461 	p2->p_lflag = 0;
   2462 	p2->p_sflag = 0;
   2463 	p2->p_slflag = 0;
   2464 	p2->p_pptr = p1;
   2465 	p2->p_ppid = p1->p_pid;
   2466 	LIST_INIT(&p2->p_children);
   2467 
   2468 	p2->p_aio = NULL;
   2469 
   2470 #ifdef KTRACE
   2471 	/*
   2472 	 * Copy traceflag and tracefile if enabled.
   2473 	 * If not inherited, these were zeroed above.
   2474 	 */
   2475 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2476 		mutex_enter(&ktrace_lock);
   2477 		p2->p_traceflag = p1->p_traceflag;
   2478 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2479 			ktradref(p2);
   2480 		mutex_exit(&ktrace_lock);
   2481 	}
   2482 #endif
   2483 
   2484 	/*
   2485 	 * Create signal actions for the child process.
   2486 	 */
   2487 	p2->p_sigacts = sigactsinit(p1, 0);
   2488 	mutex_enter(p1->p_lock);
   2489 	p2->p_sflag |=
   2490 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2491 	sched_proc_fork(p1, p2);
   2492 	mutex_exit(p1->p_lock);
   2493 
   2494 	p2->p_stflag = p1->p_stflag;
   2495 
   2496 	/*
   2497 	 * p_stats.
   2498 	 * Copy parts of p_stats, and zero out the rest.
   2499 	 */
   2500 	p2->p_stats = pstatscopy(p1->p_stats);
   2501 
   2502 	/* copy over machdep flags to the new proc */
   2503 	cpu_proc_fork(p1, p2);
   2504 
   2505 	/*
   2506 	 * Prepare remaining parts of spawn data
   2507 	 */
   2508 	spawn_data->sed_actions = fa;
   2509 	spawn_data->sed_attrs = sa;
   2510 
   2511 	spawn_data->sed_parent = p1;
   2512 
   2513 	/* create LWP */
   2514 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2515 	    &l2, l1->l_class);
   2516 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2517 
   2518 	/*
   2519 	 * Copy the credential so other references don't see our changes.
   2520 	 * Test to see if this is necessary first, since in the common case
   2521 	 * we won't need a private reference.
   2522 	 */
   2523 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2524 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2525 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2526 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2527 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2528 	}
   2529 
   2530 	/* Update the master credentials. */
   2531 	if (l2->l_cred != p2->p_cred) {
   2532 		kauth_cred_t ocred;
   2533 
   2534 		kauth_cred_hold(l2->l_cred);
   2535 		mutex_enter(p2->p_lock);
   2536 		ocred = p2->p_cred;
   2537 		p2->p_cred = l2->l_cred;
   2538 		mutex_exit(p2->p_lock);
   2539 		kauth_cred_free(ocred);
   2540 	}
   2541 
   2542 	*child_ok = true;
   2543 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2544 #if 0
   2545 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2546 #endif
   2547 
   2548 	/*
   2549 	 * It's now safe for the scheduler and other processes to see the
   2550 	 * child process.
   2551 	 */
   2552 	mutex_enter(proc_lock);
   2553 
   2554 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2555 		p2->p_lflag |= PL_CONTROLT;
   2556 
   2557 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2558 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2559 
   2560 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2561 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2562 
   2563 	p2->p_trace_enabled = trace_is_enabled(p2);
   2564 #ifdef __HAVE_SYSCALL_INTERN
   2565 	(*p2->p_emul->e_syscall_intern)(p2);
   2566 #endif
   2567 
   2568 	/*
   2569 	 * Make child runnable, set start time, and add to run queue except
   2570 	 * if the parent requested the child to start in SSTOP state.
   2571 	 */
   2572 	mutex_enter(p2->p_lock);
   2573 
   2574 	getmicrotime(&p2->p_stats->p_start);
   2575 
   2576 	lwp_lock(l2);
   2577 	KASSERT(p2->p_nrlwps == 1);
   2578 	p2->p_nrlwps = 1;
   2579 	p2->p_stat = SACTIVE;
   2580 	l2->l_stat = LSRUN;
   2581 	sched_enqueue(l2, false);
   2582 	lwp_unlock(l2);
   2583 
   2584 	mutex_exit(p2->p_lock);
   2585 	mutex_exit(proc_lock);
   2586 
   2587 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2588 	error = spawn_data->sed_error;
   2589 	mutex_exit(&spawn_data->sed_mtx_child);
   2590 	spawn_exec_data_release(spawn_data);
   2591 
   2592 	rw_exit(&p1->p_reflock);
   2593 	rw_exit(&exec_lock);
   2594 	have_exec_lock = false;
   2595 
   2596 	*pid_res = pid;
   2597 	return error;
   2598 
   2599  error_exit:
   2600 	if (have_exec_lock) {
   2601 		execve_free_data(&spawn_data->sed_exec);
   2602 		rw_exit(&p1->p_reflock);
   2603 		rw_exit(&exec_lock);
   2604 	}
   2605 	mutex_exit(&spawn_data->sed_mtx_child);
   2606 	spawn_exec_data_release(spawn_data);
   2607 
   2608 	return error;
   2609 }
   2610 
   2611 int
   2612 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2613     register_t *retval)
   2614 {
   2615 	/* {
   2616 		syscallarg(pid_t *) pid;
   2617 		syscallarg(const char *) path;
   2618 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2619 		syscallarg(const struct posix_spawnattr *) attrp;
   2620 		syscallarg(char *const *) argv;
   2621 		syscallarg(char *const *) envp;
   2622 	} */
   2623 
   2624 	int error;
   2625 	struct posix_spawn_file_actions *fa = NULL;
   2626 	struct posix_spawnattr *sa = NULL;
   2627 	pid_t pid;
   2628 	bool child_ok = false;
   2629 	rlim_t max_fileactions;
   2630 	proc_t *p = l1->l_proc;
   2631 
   2632 	error = check_posix_spawn(l1);
   2633 	if (error) {
   2634 		*retval = error;
   2635 		return 0;
   2636 	}
   2637 
   2638 	/* copy in file_actions struct */
   2639 	if (SCARG(uap, file_actions) != NULL) {
   2640 		max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2641 		    maxfiles);
   2642 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2643 		    max_fileactions);
   2644 		if (error)
   2645 			goto error_exit;
   2646 	}
   2647 
   2648 	/* copyin posix_spawnattr struct */
   2649 	if (SCARG(uap, attrp) != NULL) {
   2650 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2651 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2652 		if (error)
   2653 			goto error_exit;
   2654 	}
   2655 
   2656 	/*
   2657 	 * Do the spawn
   2658 	 */
   2659 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2660 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2661 	if (error)
   2662 		goto error_exit;
   2663 
   2664 	if (error == 0 && SCARG(uap, pid) != NULL)
   2665 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2666 
   2667 	*retval = error;
   2668 	return 0;
   2669 
   2670  error_exit:
   2671 	if (!child_ok) {
   2672 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2673 		atomic_dec_uint(&nprocs);
   2674 
   2675 		if (sa)
   2676 			kmem_free(sa, sizeof(*sa));
   2677 		if (fa)
   2678 			posix_spawn_fa_free(fa, fa->len);
   2679 	}
   2680 
   2681 	*retval = error;
   2682 	return 0;
   2683 }
   2684 
   2685 void
   2686 exec_free_emul_arg(struct exec_package *epp)
   2687 {
   2688 	if (epp->ep_emul_arg_free != NULL) {
   2689 		KASSERT(epp->ep_emul_arg != NULL);
   2690 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2691 		epp->ep_emul_arg_free = NULL;
   2692 		epp->ep_emul_arg = NULL;
   2693 	} else {
   2694 		KASSERT(epp->ep_emul_arg == NULL);
   2695 	}
   2696 }
   2697 
   2698 #ifdef DEBUG_EXEC
   2699 static void
   2700 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2701 {
   2702 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2703 	size_t j;
   2704 
   2705 	if (error == 0)
   2706 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2707 	else
   2708 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2709 		    epp->ep_vmcmds.evs_used, error));
   2710 
   2711 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2712 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2713 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2714 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2715 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2716 		    "pagedvn" :
   2717 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2718 		    "readvn" :
   2719 		    vp[j].ev_proc == vmcmd_map_zero ?
   2720 		    "zero" : "*unknown*",
   2721 		    vp[j].ev_addr, vp[j].ev_len,
   2722 		    vp[j].ev_offset, vp[j].ev_prot,
   2723 		    vp[j].ev_flags));
   2724 		if (error != 0 && j == x)
   2725 			DPRINTF(("     ^--- failed\n"));
   2726 	}
   2727 }
   2728 #endif
   2729