Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.431
      1 /*	$NetBSD: kern_exec.c,v 1.431 2016/05/25 20:07:54 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     31  * Copyright (C) 1992 Wolfgang Solfrank.
     32  * Copyright (C) 1992 TooLs GmbH.
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by TooLs GmbH.
     46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.431 2016/05/25 20:07:54 christos Exp $");
     63 
     64 #include "opt_exec.h"
     65 #include "opt_execfmt.h"
     66 #include "opt_ktrace.h"
     67 #include "opt_modular.h"
     68 #include "opt_syscall_debug.h"
     69 #include "veriexec.h"
     70 #include "opt_pax.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/filedesc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/mount.h>
     78 #include <sys/kmem.h>
     79 #include <sys/namei.h>
     80 #include <sys/vnode.h>
     81 #include <sys/file.h>
     82 #include <sys/filedesc.h>
     83 #include <sys/acct.h>
     84 #include <sys/atomic.h>
     85 #include <sys/exec.h>
     86 #include <sys/ktrace.h>
     87 #include <sys/uidinfo.h>
     88 #include <sys/wait.h>
     89 #include <sys/mman.h>
     90 #include <sys/ras.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/stat.h>
     93 #include <sys/syscall.h>
     94 #include <sys/kauth.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/pax.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 #include <sys/syscallvar.h>
    100 #include <sys/syscallargs.h>
    101 #if NVERIEXEC > 0
    102 #include <sys/verified_exec.h>
    103 #endif /* NVERIEXEC > 0 */
    104 #include <sys/sdt.h>
    105 #include <sys/spawn.h>
    106 #include <sys/prot.h>
    107 #include <sys/cprng.h>
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #include <machine/reg.h>
    112 
    113 #include <compat/common/compat_util.h>
    114 
    115 #ifndef MD_TOPDOWN_INIT
    116 #ifdef __USE_TOPDOWN_VM
    117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    118 #else
    119 #define	MD_TOPDOWN_INIT(epp)
    120 #endif
    121 #endif
    122 
    123 struct execve_data;
    124 
    125 static size_t calcargs(struct execve_data * restrict, const size_t);
    126 static size_t calcstack(struct execve_data * restrict, const size_t);
    127 static int copyoutargs(struct execve_data * restrict, struct lwp *,
    128     char * const);
    129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
    130 static int copyinargs(struct execve_data * restrict, char * const *,
    131     char * const *, execve_fetch_element_t, char **);
    132 static int copyinargstrs(struct execve_data * restrict, char * const *,
    133     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    134 static int exec_sigcode_map(struct proc *, const struct emul *);
    135 
    136 #if defined(DEBUG) && !defined(DEBUG_EXEC)
    137 #define DEBUG_EXEC
    138 #endif
    139 #ifdef DEBUG_EXEC
    140 #define DPRINTF(a) printf a
    141 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    142     __LINE__, (s), (a), (b))
    143 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    144 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    145 #else
    146 #define DPRINTF(a)
    147 #define COPYPRINTF(s, a, b)
    148 #define DUMPVMCMDS(p, x, e) do {} while (0)
    149 #endif /* DEBUG_EXEC */
    150 
    151 /*
    152  * DTrace SDT provider definitions
    153  */
    154 SDT_PROVIDER_DECLARE(proc);
    155 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
    156 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
    157 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
    158 
    159 /*
    160  * Exec function switch:
    161  *
    162  * Note that each makecmds function is responsible for loading the
    163  * exec package with the necessary functions for any exec-type-specific
    164  * handling.
    165  *
    166  * Functions for specific exec types should be defined in their own
    167  * header file.
    168  */
    169 static const struct execsw	**execsw = NULL;
    170 static int			nexecs;
    171 
    172 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    173 
    174 /* list of dynamically loaded execsw entries */
    175 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    176     LIST_HEAD_INITIALIZER(ex_head);
    177 struct exec_entry {
    178 	LIST_ENTRY(exec_entry)	ex_list;
    179 	SLIST_ENTRY(exec_entry)	ex_slist;
    180 	const struct execsw	*ex_sw;
    181 };
    182 
    183 #ifndef __HAVE_SYSCALL_INTERN
    184 void	syscall(void);
    185 #endif
    186 
    187 /* NetBSD autoloadable syscalls */
    188 #ifdef MODULAR
    189 #include <kern/syscalls_autoload.c>
    190 #endif
    191 
    192 /* NetBSD emul struct */
    193 struct emul emul_netbsd = {
    194 	.e_name =		"netbsd",
    195 #ifdef EMUL_NATIVEROOT
    196 	.e_path =		EMUL_NATIVEROOT,
    197 #else
    198 	.e_path =		NULL,
    199 #endif
    200 #ifndef __HAVE_MINIMAL_EMUL
    201 	.e_flags =		EMUL_HAS_SYS___syscall,
    202 	.e_errno =		NULL,
    203 	.e_nosys =		SYS_syscall,
    204 	.e_nsysent =		SYS_NSYSENT,
    205 #endif
    206 #ifdef MODULAR
    207 	.e_sc_autoload =	netbsd_syscalls_autoload,
    208 #endif
    209 	.e_sysent =		sysent,
    210 #ifdef SYSCALL_DEBUG
    211 	.e_syscallnames =	syscallnames,
    212 #else
    213 	.e_syscallnames =	NULL,
    214 #endif
    215 	.e_sendsig =		sendsig,
    216 	.e_trapsignal =		trapsignal,
    217 	.e_tracesig =		NULL,
    218 	.e_sigcode =		NULL,
    219 	.e_esigcode =		NULL,
    220 	.e_sigobject =		NULL,
    221 	.e_setregs =		setregs,
    222 	.e_proc_exec =		NULL,
    223 	.e_proc_fork =		NULL,
    224 	.e_proc_exit =		NULL,
    225 	.e_lwp_fork =		NULL,
    226 	.e_lwp_exit =		NULL,
    227 #ifdef __HAVE_SYSCALL_INTERN
    228 	.e_syscall_intern =	syscall_intern,
    229 #else
    230 	.e_syscall =		syscall,
    231 #endif
    232 	.e_sysctlovly =		NULL,
    233 	.e_fault =		NULL,
    234 	.e_vm_default_addr =	uvm_default_mapaddr,
    235 	.e_usertrap =		NULL,
    236 	.e_ucsize =		sizeof(ucontext_t),
    237 	.e_startlwp =		startlwp
    238 };
    239 
    240 /*
    241  * Exec lock. Used to control access to execsw[] structures.
    242  * This must not be static so that netbsd32 can access it, too.
    243  */
    244 krwlock_t exec_lock;
    245 
    246 static kmutex_t sigobject_lock;
    247 
    248 /*
    249  * Data used between a loadvm and execve part of an "exec" operation
    250  */
    251 struct execve_data {
    252 	struct exec_package	ed_pack;
    253 	struct pathbuf		*ed_pathbuf;
    254 	struct vattr		ed_attr;
    255 	struct ps_strings	ed_arginfo;
    256 	char			*ed_argp;
    257 	const char		*ed_pathstring;
    258 	char			*ed_resolvedpathbuf;
    259 	size_t			ed_ps_strings_sz;
    260 	int			ed_szsigcode;
    261 	size_t			ed_argslen;
    262 	long			ed_argc;
    263 	long			ed_envc;
    264 };
    265 
    266 /*
    267  * data passed from parent lwp to child during a posix_spawn()
    268  */
    269 struct spawn_exec_data {
    270 	struct execve_data	sed_exec;
    271 	struct posix_spawn_file_actions
    272 				*sed_actions;
    273 	struct posix_spawnattr	*sed_attrs;
    274 	struct proc		*sed_parent;
    275 	kcondvar_t		sed_cv_child_ready;
    276 	kmutex_t		sed_mtx_child;
    277 	int			sed_error;
    278 	volatile uint32_t	sed_refcnt;
    279 };
    280 
    281 static void *
    282 exec_pool_alloc(struct pool *pp, int flags)
    283 {
    284 
    285 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
    286 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    287 }
    288 
    289 static void
    290 exec_pool_free(struct pool *pp, void *addr)
    291 {
    292 
    293 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    294 }
    295 
    296 static struct pool exec_pool;
    297 
    298 static struct pool_allocator exec_palloc = {
    299 	.pa_alloc = exec_pool_alloc,
    300 	.pa_free = exec_pool_free,
    301 	.pa_pagesz = NCARGS
    302 };
    303 
    304 /*
    305  * check exec:
    306  * given an "executable" described in the exec package's namei info,
    307  * see what we can do with it.
    308  *
    309  * ON ENTRY:
    310  *	exec package with appropriate namei info
    311  *	lwp pointer of exec'ing lwp
    312  *	NO SELF-LOCKED VNODES
    313  *
    314  * ON EXIT:
    315  *	error:	nothing held, etc.  exec header still allocated.
    316  *	ok:	filled exec package, executable's vnode (unlocked).
    317  *
    318  * EXEC SWITCH ENTRY:
    319  * 	Locked vnode to check, exec package, proc.
    320  *
    321  * EXEC SWITCH EXIT:
    322  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    323  *	error:	destructive:
    324  *			everything deallocated execept exec header.
    325  *		non-destructive:
    326  *			error code, executable's vnode (unlocked),
    327  *			exec header unmodified.
    328  */
    329 int
    330 /*ARGSUSED*/
    331 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
    332 {
    333 	int		error, i;
    334 	struct vnode	*vp;
    335 	struct nameidata nd;
    336 	size_t		resid;
    337 
    338 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    339 
    340 	/* first get the vnode */
    341 	if ((error = namei(&nd)) != 0)
    342 		return error;
    343 	epp->ep_vp = vp = nd.ni_vp;
    344 	/* normally this can't fail */
    345 	error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
    346 	KASSERT(error == 0);
    347 
    348 #ifdef DIAGNOSTIC
    349 	/* paranoia (take this out once namei stuff stabilizes) */
    350 	memset(nd.ni_pnbuf, '~', PATH_MAX);
    351 #endif
    352 
    353 	/* check access and type */
    354 	if (vp->v_type != VREG) {
    355 		error = EACCES;
    356 		goto bad1;
    357 	}
    358 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    359 		goto bad1;
    360 
    361 	/* get attributes */
    362 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    363 		goto bad1;
    364 
    365 	/* Check mount point */
    366 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    367 		error = EACCES;
    368 		goto bad1;
    369 	}
    370 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    371 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    372 
    373 	/* try to open it */
    374 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    375 		goto bad1;
    376 
    377 	/* unlock vp, since we need it unlocked from here on out. */
    378 	VOP_UNLOCK(vp);
    379 
    380 #if NVERIEXEC > 0
    381 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
    382 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    383 	    NULL);
    384 	if (error)
    385 		goto bad2;
    386 #endif /* NVERIEXEC > 0 */
    387 
    388 #ifdef PAX_SEGVGUARD
    389 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    390 	if (error)
    391 		goto bad2;
    392 #endif /* PAX_SEGVGUARD */
    393 
    394 	/* now we have the file, get the exec header */
    395 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    396 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
    397 	if (error)
    398 		goto bad2;
    399 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    400 
    401 	/*
    402 	 * Set up default address space limits.  Can be overridden
    403 	 * by individual exec packages.
    404 	 *
    405 	 * XXX probably should be all done in the exec packages.
    406 	 */
    407 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
    408 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    409 	/*
    410 	 * set up the vmcmds for creation of the process
    411 	 * address space
    412 	 */
    413 	error = ENOEXEC;
    414 	for (i = 0; i < nexecs; i++) {
    415 		int newerror;
    416 
    417 		epp->ep_esch = execsw[i];
    418 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    419 
    420 		if (!newerror) {
    421 			/* Seems ok: check that entry point is not too high */
    422 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
    423 #ifdef DIAGNOSTIC
    424 				printf("%s: rejecting %p due to "
    425 				    "too high entry address (> %p)\n",
    426 					 __func__, (void *)epp->ep_entry,
    427 					 (void *)epp->ep_vm_maxaddr);
    428 #endif
    429 				error = ENOEXEC;
    430 				break;
    431 			}
    432 			/* Seems ok: check that entry point is not too low */
    433 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    434 #ifdef DIAGNOSTIC
    435 				printf("%s: rejecting %p due to "
    436 				    "too low entry address (< %p)\n",
    437 				     __func__, (void *)epp->ep_entry,
    438 				     (void *)epp->ep_vm_minaddr);
    439 #endif
    440 				error = ENOEXEC;
    441 				break;
    442 			}
    443 
    444 			/* check limits */
    445 			if ((epp->ep_tsize > MAXTSIZ) ||
    446 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    447 						    [RLIMIT_DATA].rlim_cur)) {
    448 #ifdef DIAGNOSTIC
    449 				printf("%s: rejecting due to "
    450 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    451 				    __func__,
    452 				    (unsigned long long)epp->ep_tsize,
    453 				    (unsigned long long)MAXTSIZ,
    454 				    (unsigned long long)epp->ep_dsize,
    455 				    (unsigned long long)
    456 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    457 #endif
    458 				error = ENOMEM;
    459 				break;
    460 			}
    461 			return 0;
    462 		}
    463 
    464 		/*
    465 		 * Reset all the fields that may have been modified by the
    466 		 * loader.
    467 		 */
    468 		KASSERT(epp->ep_emul_arg == NULL);
    469 		if (epp->ep_emul_root != NULL) {
    470 			vrele(epp->ep_emul_root);
    471 			epp->ep_emul_root = NULL;
    472 		}
    473 		if (epp->ep_interp != NULL) {
    474 			vrele(epp->ep_interp);
    475 			epp->ep_interp = NULL;
    476 		}
    477 		epp->ep_pax_flags = 0;
    478 
    479 		/* make sure the first "interesting" error code is saved. */
    480 		if (error == ENOEXEC)
    481 			error = newerror;
    482 
    483 		if (epp->ep_flags & EXEC_DESTR)
    484 			/* Error from "#!" code, tidied up by recursive call */
    485 			return error;
    486 	}
    487 
    488 	/* not found, error */
    489 
    490 	/*
    491 	 * free any vmspace-creation commands,
    492 	 * and release their references
    493 	 */
    494 	kill_vmcmds(&epp->ep_vmcmds);
    495 
    496 bad2:
    497 	/*
    498 	 * close and release the vnode, restore the old one, free the
    499 	 * pathname buf, and punt.
    500 	 */
    501 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    502 	VOP_CLOSE(vp, FREAD, l->l_cred);
    503 	vput(vp);
    504 	return error;
    505 
    506 bad1:
    507 	/*
    508 	 * free the namei pathname buffer, and put the vnode
    509 	 * (which we don't yet have open).
    510 	 */
    511 	vput(vp);				/* was still locked */
    512 	return error;
    513 }
    514 
    515 #ifdef __MACHINE_STACK_GROWS_UP
    516 #define STACK_PTHREADSPACE NBPG
    517 #else
    518 #define STACK_PTHREADSPACE 0
    519 #endif
    520 
    521 static int
    522 execve_fetch_element(char * const *array, size_t index, char **value)
    523 {
    524 	return copyin(array + index, value, sizeof(*value));
    525 }
    526 
    527 /*
    528  * exec system call
    529  */
    530 int
    531 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    532 {
    533 	/* {
    534 		syscallarg(const char *)	path;
    535 		syscallarg(char * const *)	argp;
    536 		syscallarg(char * const *)	envp;
    537 	} */
    538 
    539 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
    540 	    SCARG(uap, envp), execve_fetch_element);
    541 }
    542 
    543 int
    544 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    545     register_t *retval)
    546 {
    547 	/* {
    548 		syscallarg(int)			fd;
    549 		syscallarg(char * const *)	argp;
    550 		syscallarg(char * const *)	envp;
    551 	} */
    552 
    553 	return ENOSYS;
    554 }
    555 
    556 /*
    557  * Load modules to try and execute an image that we do not understand.
    558  * If no execsw entries are present, we load those likely to be needed
    559  * in order to run native images only.  Otherwise, we autoload all
    560  * possible modules that could let us run the binary.  XXX lame
    561  */
    562 static void
    563 exec_autoload(void)
    564 {
    565 #ifdef MODULAR
    566 	static const char * const native[] = {
    567 		"exec_elf32",
    568 		"exec_elf64",
    569 		"exec_script",
    570 		NULL
    571 	};
    572 	static const char * const compat[] = {
    573 		"exec_elf32",
    574 		"exec_elf64",
    575 		"exec_script",
    576 		"exec_aout",
    577 		"exec_coff",
    578 		"exec_ecoff",
    579 		"compat_aoutm68k",
    580 		"compat_freebsd",
    581 		"compat_ibcs2",
    582 		"compat_linux",
    583 		"compat_linux32",
    584 		"compat_netbsd32",
    585 		"compat_sunos",
    586 		"compat_sunos32",
    587 		"compat_svr4",
    588 		"compat_svr4_32",
    589 		"compat_ultrix",
    590 		NULL
    591 	};
    592 	char const * const *list;
    593 	int i;
    594 
    595 	list = (nexecs == 0 ? native : compat);
    596 	for (i = 0; list[i] != NULL; i++) {
    597 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    598 			continue;
    599 		}
    600 		yield();
    601 	}
    602 #endif
    603 }
    604 
    605 static int
    606 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp,
    607     size_t *offs)
    608 {
    609 	char *path, *bp;
    610 	size_t len, tlen;
    611 	int error;
    612 	struct cwdinfo *cwdi;
    613 
    614 	path = PNBUF_GET();
    615 	error = copyinstr(upath, path, MAXPATHLEN, &len);
    616 	if (error) {
    617 		PNBUF_PUT(path);
    618 		DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
    619 		return error;
    620 	}
    621 
    622 	if (path[0] == '/') {
    623 		*offs = 0;
    624 		goto out;
    625 	}
    626 
    627 	len++;
    628 	if (len + 1 >= MAXPATHLEN)
    629 		goto out;
    630 	bp = path + MAXPATHLEN - len;
    631 	memmove(bp, path, len);
    632 	*(--bp) = '/';
    633 
    634 	cwdi = l->l_proc->p_cwdi;
    635 	rw_enter(&cwdi->cwdi_lock, RW_READER);
    636 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
    637 	    GETCWD_CHECK_ACCESS, l);
    638 	rw_exit(&cwdi->cwdi_lock);
    639 
    640 	if (error) {
    641 		DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
    642 		    error));
    643 		goto out;
    644 	}
    645 	tlen = path + MAXPATHLEN - bp;
    646 
    647 	memmove(path, bp, tlen);
    648 	path[tlen] = '\0';
    649 	*offs = tlen - len;
    650 out:
    651 	*pbp = pathbuf_assimilate(path);
    652 	return 0;
    653 }
    654 
    655 static int
    656 execve_loadvm(struct lwp *l, const char *path, char * const *args,
    657 	char * const *envs, execve_fetch_element_t fetch_element,
    658 	struct execve_data * restrict data)
    659 {
    660 	struct exec_package	* const epp = &data->ed_pack;
    661 	int			error;
    662 	struct proc		*p;
    663 	char			*dp;
    664 	u_int			modgen;
    665 	size_t			offs = 0;	// XXX: GCC
    666 
    667 	KASSERT(data != NULL);
    668 
    669 	p = l->l_proc;
    670 	modgen = 0;
    671 
    672 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
    673 
    674 	/*
    675 	 * Check if we have exceeded our number of processes limit.
    676 	 * This is so that we handle the case where a root daemon
    677 	 * forked, ran setuid to become the desired user and is trying
    678 	 * to exec. The obvious place to do the reference counting check
    679 	 * is setuid(), but we don't do the reference counting check there
    680 	 * like other OS's do because then all the programs that use setuid()
    681 	 * must be modified to check the return code of setuid() and exit().
    682 	 * It is dangerous to make setuid() fail, because it fails open and
    683 	 * the program will continue to run as root. If we make it succeed
    684 	 * and return an error code, again we are not enforcing the limit.
    685 	 * The best place to enforce the limit is here, when the process tries
    686 	 * to execute a new image, because eventually the process will need
    687 	 * to call exec in order to do something useful.
    688 	 */
    689  retry:
    690 	if (p->p_flag & PK_SUGID) {
    691 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    692 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    693 		     &p->p_rlimit[RLIMIT_NPROC],
    694 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    695 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    696 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    697 		return EAGAIN;
    698 	}
    699 
    700 	/*
    701 	 * Drain existing references and forbid new ones.  The process
    702 	 * should be left alone until we're done here.  This is necessary
    703 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    704 	 * a local user to illicitly obtain elevated privileges.
    705 	 */
    706 	rw_enter(&p->p_reflock, RW_WRITER);
    707 
    708 	/*
    709 	 * Init the namei data to point the file user's program name.
    710 	 * This is done here rather than in check_exec(), so that it's
    711 	 * possible to override this settings if any of makecmd/probe
    712 	 * functions call check_exec() recursively - for example,
    713 	 * see exec_script_makecmds().
    714 	 */
    715 	if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0)
    716 		goto clrflg;
    717 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    718 	data->ed_resolvedpathbuf = PNBUF_GET();
    719 
    720 	/*
    721 	 * initialize the fields of the exec package.
    722 	 */
    723 	epp->ep_kname = data->ed_pathstring + offs;
    724 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
    725 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    726 	epp->ep_hdrlen = exec_maxhdrsz;
    727 	epp->ep_hdrvalid = 0;
    728 	epp->ep_emul_arg = NULL;
    729 	epp->ep_emul_arg_free = NULL;
    730 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    731 	epp->ep_vap = &data->ed_attr;
    732 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
    733 	MD_TOPDOWN_INIT(epp);
    734 	epp->ep_emul_root = NULL;
    735 	epp->ep_interp = NULL;
    736 	epp->ep_esch = NULL;
    737 	epp->ep_pax_flags = 0;
    738 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    739 
    740 	rw_enter(&exec_lock, RW_READER);
    741 
    742 	/* see if we can run it. */
    743 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
    744 		if (error != ENOENT) {
    745 			DPRINTF(("%s: check exec failed %d\n",
    746 			    __func__, error));
    747 		}
    748 		goto freehdr;
    749 	}
    750 
    751 	/* allocate an argument buffer */
    752 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    753 	KASSERT(data->ed_argp != NULL);
    754 	dp = data->ed_argp;
    755 
    756 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    757 		goto bad;
    758 	}
    759 
    760 	/*
    761 	 * Calculate the new stack size.
    762 	 */
    763 
    764 #ifdef __MACHINE_STACK_GROWS_UP
    765 /*
    766  * copyargs() fills argc/argv/envp from the lower address even on
    767  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    768  * so that _rtld() use it.
    769  */
    770 #define	RTLD_GAP	32
    771 #else
    772 #define	RTLD_GAP	0
    773 #endif
    774 
    775 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    776 
    777 	data->ed_argslen = calcargs(data, argenvstrlen);
    778 
    779 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
    780 
    781 	if (len > epp->ep_ssize) {
    782 		/* in effect, compare to initial limit */
    783 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    784 		error = ENOMEM;
    785 		goto bad;
    786 	}
    787 	/* adjust "active stack depth" for process VSZ */
    788 	epp->ep_ssize = len;
    789 
    790 	return 0;
    791 
    792  bad:
    793 	/* free the vmspace-creation commands, and release their references */
    794 	kill_vmcmds(&epp->ep_vmcmds);
    795 	/* kill any opened file descriptor, if necessary */
    796 	if (epp->ep_flags & EXEC_HASFD) {
    797 		epp->ep_flags &= ~EXEC_HASFD;
    798 		fd_close(epp->ep_fd);
    799 	}
    800 	/* close and put the exec'd file */
    801 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    802 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    803 	vput(epp->ep_vp);
    804 	pool_put(&exec_pool, data->ed_argp);
    805 
    806  freehdr:
    807 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    808 	if (epp->ep_emul_root != NULL)
    809 		vrele(epp->ep_emul_root);
    810 	if (epp->ep_interp != NULL)
    811 		vrele(epp->ep_interp);
    812 
    813 	rw_exit(&exec_lock);
    814 
    815 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    816 	pathbuf_destroy(data->ed_pathbuf);
    817 	PNBUF_PUT(data->ed_resolvedpathbuf);
    818 
    819  clrflg:
    820 	rw_exit(&p->p_reflock);
    821 
    822 	if (modgen != module_gen && error == ENOEXEC) {
    823 		modgen = module_gen;
    824 		exec_autoload();
    825 		goto retry;
    826 	}
    827 
    828 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
    829 	return error;
    830 }
    831 
    832 static int
    833 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
    834 {
    835 	struct exec_package	* const epp = &data->ed_pack;
    836 	struct proc		*p = l->l_proc;
    837 	struct exec_vmcmd	*base_vcp;
    838 	int			error = 0;
    839 	size_t			i;
    840 
    841 	/* record proc's vnode, for use by procfs and others */
    842 	if (p->p_textvp)
    843 		vrele(p->p_textvp);
    844 	vref(epp->ep_vp);
    845 	p->p_textvp = epp->ep_vp;
    846 
    847 	/* create the new process's VM space by running the vmcmds */
    848 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    849 
    850 #ifdef TRACE_EXEC
    851 	DUMPVMCMDS(epp, 0, 0);
    852 #endif
    853 
    854 	base_vcp = NULL;
    855 
    856 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
    857 		struct exec_vmcmd *vcp;
    858 
    859 		vcp = &epp->ep_vmcmds.evs_cmds[i];
    860 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    861 			KASSERTMSG(base_vcp != NULL,
    862 			    "%s: relative vmcmd with no base", __func__);
    863 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
    864 			    "%s: illegal base & relative vmcmd", __func__);
    865 			vcp->ev_addr += base_vcp->ev_addr;
    866 		}
    867 		error = (*vcp->ev_proc)(l, vcp);
    868 		if (error)
    869 			DUMPVMCMDS(epp, i, error);
    870 		if (vcp->ev_flags & VMCMD_BASE)
    871 			base_vcp = vcp;
    872 	}
    873 
    874 	/* free the vmspace-creation commands, and release their references */
    875 	kill_vmcmds(&epp->ep_vmcmds);
    876 
    877 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    878 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    879 	vput(epp->ep_vp);
    880 
    881 	/* if an error happened, deallocate and punt */
    882 	if (error != 0) {
    883 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
    884 	}
    885 	return error;
    886 }
    887 
    888 static void
    889 execve_free_data(struct execve_data *data)
    890 {
    891 	struct exec_package	* const epp = &data->ed_pack;
    892 
    893 	/* free the vmspace-creation commands, and release their references */
    894 	kill_vmcmds(&epp->ep_vmcmds);
    895 	/* kill any opened file descriptor, if necessary */
    896 	if (epp->ep_flags & EXEC_HASFD) {
    897 		epp->ep_flags &= ~EXEC_HASFD;
    898 		fd_close(epp->ep_fd);
    899 	}
    900 
    901 	/* close and put the exec'd file */
    902 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    903 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
    904 	vput(epp->ep_vp);
    905 	pool_put(&exec_pool, data->ed_argp);
    906 
    907 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    908 	if (epp->ep_emul_root != NULL)
    909 		vrele(epp->ep_emul_root);
    910 	if (epp->ep_interp != NULL)
    911 		vrele(epp->ep_interp);
    912 
    913 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    914 	pathbuf_destroy(data->ed_pathbuf);
    915 	PNBUF_PUT(data->ed_resolvedpathbuf);
    916 }
    917 
    918 static void
    919 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring)
    920 {
    921 	const char		*commandname;
    922 	size_t			commandlen;
    923 	char			*path;
    924 
    925 	/* set command name & other accounting info */
    926 	commandname = strrchr(epp->ep_resolvedname, '/');
    927 	if (commandname != NULL) {
    928 		commandname++;
    929 	} else {
    930 		commandname = epp->ep_resolvedname;
    931 	}
    932 	commandlen = min(strlen(commandname), MAXCOMLEN);
    933 	(void)memcpy(p->p_comm, commandname, commandlen);
    934 	p->p_comm[commandlen] = '\0';
    935 
    936 
    937 	/*
    938 	 * If the path starts with /, we don't need to do any work.
    939 	 * This handles the majority of the cases.
    940 	 * In the future perhaps we could canonicalize it?
    941 	 */
    942 	if (pathstring[0] == '/') {
    943 		path = PNBUF_GET();
    944 		(void)strlcpy(path, pathstring, MAXPATHLEN);
    945 		epp->ep_path = path;
    946 	} else
    947 		epp->ep_path = NULL;
    948 }
    949 
    950 /* XXX elsewhere */
    951 static int
    952 credexec(struct lwp *l, struct vattr *attr)
    953 {
    954 	struct proc *p = l->l_proc;
    955 	int error;
    956 
    957 	/*
    958 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
    959 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
    960 	 * out additional references on the process for the moment.
    961 	 */
    962 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    963 
    964 	    (((attr->va_mode & S_ISUID) != 0 &&
    965 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
    966 
    967 	     ((attr->va_mode & S_ISGID) != 0 &&
    968 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
    969 		/*
    970 		 * Mark the process as SUGID before we do
    971 		 * anything that might block.
    972 		 */
    973 		proc_crmod_enter();
    974 		proc_crmod_leave(NULL, NULL, true);
    975 
    976 		/* Make sure file descriptors 0..2 are in use. */
    977 		if ((error = fd_checkstd()) != 0) {
    978 			DPRINTF(("%s: fdcheckstd failed %d\n",
    979 			    __func__, error));
    980 			return error;
    981 		}
    982 
    983 		/*
    984 		 * Copy the credential so other references don't see our
    985 		 * changes.
    986 		 */
    987 		l->l_cred = kauth_cred_copy(l->l_cred);
    988 #ifdef KTRACE
    989 		/*
    990 		 * If the persistent trace flag isn't set, turn off.
    991 		 */
    992 		if (p->p_tracep) {
    993 			mutex_enter(&ktrace_lock);
    994 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
    995 				ktrderef(p);
    996 			mutex_exit(&ktrace_lock);
    997 		}
    998 #endif
    999 		if (attr->va_mode & S_ISUID)
   1000 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
   1001 		if (attr->va_mode & S_ISGID)
   1002 			kauth_cred_setegid(l->l_cred, attr->va_gid);
   1003 	} else {
   1004 		if (kauth_cred_geteuid(l->l_cred) ==
   1005 		    kauth_cred_getuid(l->l_cred) &&
   1006 		    kauth_cred_getegid(l->l_cred) ==
   1007 		    kauth_cred_getgid(l->l_cred))
   1008 			p->p_flag &= ~PK_SUGID;
   1009 	}
   1010 
   1011 	/*
   1012 	 * Copy the credential so other references don't see our changes.
   1013 	 * Test to see if this is necessary first, since in the common case
   1014 	 * we won't need a private reference.
   1015 	 */
   1016 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1017 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1018 		l->l_cred = kauth_cred_copy(l->l_cred);
   1019 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1020 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1021 	}
   1022 
   1023 	/* Update the master credentials. */
   1024 	if (l->l_cred != p->p_cred) {
   1025 		kauth_cred_t ocred;
   1026 
   1027 		kauth_cred_hold(l->l_cred);
   1028 		mutex_enter(p->p_lock);
   1029 		ocred = p->p_cred;
   1030 		p->p_cred = l->l_cred;
   1031 		mutex_exit(p->p_lock);
   1032 		kauth_cred_free(ocred);
   1033 	}
   1034 
   1035 	return 0;
   1036 }
   1037 
   1038 static void
   1039 emulexec(struct lwp *l, struct exec_package *epp)
   1040 {
   1041 	struct proc		*p = l->l_proc;
   1042 
   1043 	/* The emulation root will usually have been found when we looked
   1044 	 * for the elf interpreter (or similar), if not look now. */
   1045 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1046 	    epp->ep_emul_root == NULL)
   1047 		emul_find_root(l, epp);
   1048 
   1049 	/* Any old emulation root got removed by fdcloseexec */
   1050 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1051 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1052 	rw_exit(&p->p_cwdi->cwdi_lock);
   1053 	epp->ep_emul_root = NULL;
   1054 	if (epp->ep_interp != NULL)
   1055 		vrele(epp->ep_interp);
   1056 
   1057 	/*
   1058 	 * Call emulation specific exec hook. This can setup per-process
   1059 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1060 	 *
   1061 	 * If we are executing process of different emulation than the
   1062 	 * original forked process, call e_proc_exit() of the old emulation
   1063 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1064 	 * same, the exec hook code should deallocate any old emulation
   1065 	 * resources held previously by this process.
   1066 	 */
   1067 	if (p->p_emul && p->p_emul->e_proc_exit
   1068 	    && p->p_emul != epp->ep_esch->es_emul)
   1069 		(*p->p_emul->e_proc_exit)(p);
   1070 
   1071 	/*
   1072 	 * This is now LWP 1.
   1073 	 */
   1074 	/* XXX elsewhere */
   1075 	mutex_enter(p->p_lock);
   1076 	p->p_nlwpid = 1;
   1077 	l->l_lid = 1;
   1078 	mutex_exit(p->p_lock);
   1079 
   1080 	/*
   1081 	 * Call exec hook. Emulation code may NOT store reference to anything
   1082 	 * from &pack.
   1083 	 */
   1084 	if (epp->ep_esch->es_emul->e_proc_exec)
   1085 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1086 
   1087 	/* update p_emul, the old value is no longer needed */
   1088 	p->p_emul = epp->ep_esch->es_emul;
   1089 
   1090 	/* ...and the same for p_execsw */
   1091 	p->p_execsw = epp->ep_esch;
   1092 
   1093 #ifdef __HAVE_SYSCALL_INTERN
   1094 	(*p->p_emul->e_syscall_intern)(p);
   1095 #endif
   1096 	ktremul();
   1097 }
   1098 
   1099 static int
   1100 execve_runproc(struct lwp *l, struct execve_data * restrict data,
   1101 	bool no_local_exec_lock, bool is_spawn)
   1102 {
   1103 	struct exec_package	* const epp = &data->ed_pack;
   1104 	int error = 0;
   1105 	struct proc		*p;
   1106 
   1107 	/*
   1108 	 * In case of a posix_spawn operation, the child doing the exec
   1109 	 * might not hold the reader lock on exec_lock, but the parent
   1110 	 * will do this instead.
   1111 	 */
   1112 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
   1113 	KASSERT(!no_local_exec_lock || is_spawn);
   1114 	KASSERT(data != NULL);
   1115 
   1116 	p = l->l_proc;
   1117 
   1118 	/* Get rid of other LWPs. */
   1119 	if (p->p_nlwps > 1) {
   1120 		mutex_enter(p->p_lock);
   1121 		exit_lwps(l);
   1122 		mutex_exit(p->p_lock);
   1123 	}
   1124 	KDASSERT(p->p_nlwps == 1);
   1125 
   1126 	/* Destroy any lwpctl info. */
   1127 	if (p->p_lwpctl != NULL)
   1128 		lwp_ctl_exit();
   1129 
   1130 	/* Remove POSIX timers */
   1131 	timers_free(p, TIMERS_POSIX);
   1132 
   1133 	/* Set the PaX flags. */
   1134 	pax_set_flags(epp, p);
   1135 
   1136 	/*
   1137 	 * Do whatever is necessary to prepare the address space
   1138 	 * for remapping.  Note that this might replace the current
   1139 	 * vmspace with another!
   1140 	 */
   1141 	if (is_spawn)
   1142 		uvmspace_spawn(l, epp->ep_vm_minaddr,
   1143 		    epp->ep_vm_maxaddr,
   1144 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1145 	else
   1146 		uvmspace_exec(l, epp->ep_vm_minaddr,
   1147 		    epp->ep_vm_maxaddr,
   1148 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1149 
   1150 	struct vmspace		*vm;
   1151 	vm = p->p_vmspace;
   1152 	vm->vm_taddr = (void *)epp->ep_taddr;
   1153 	vm->vm_tsize = btoc(epp->ep_tsize);
   1154 	vm->vm_daddr = (void*)epp->ep_daddr;
   1155 	vm->vm_dsize = btoc(epp->ep_dsize);
   1156 	vm->vm_ssize = btoc(epp->ep_ssize);
   1157 	vm->vm_issize = 0;
   1158 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
   1159 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
   1160 
   1161 	pax_aslr_init_vm(l, vm, epp);
   1162 
   1163 	/* Now map address space. */
   1164 	error = execve_dovmcmds(l, data);
   1165 	if (error != 0)
   1166 		goto exec_abort;
   1167 
   1168 	pathexec(epp, p, data->ed_pathstring);
   1169 
   1170 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1171 
   1172 	error = copyoutargs(data, l, newstack);
   1173 	if (error != 0)
   1174 		goto exec_abort;
   1175 
   1176 	cwdexec(p);
   1177 	fd_closeexec();		/* handle close on exec */
   1178 
   1179 	if (__predict_false(ktrace_on))
   1180 		fd_ktrexecfd();
   1181 
   1182 	execsigs(p);		/* reset catched signals */
   1183 
   1184 	mutex_enter(p->p_lock);
   1185 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1186 	p->p_acflag &= ~AFORK;
   1187 	p->p_flag |= PK_EXEC;
   1188 	mutex_exit(p->p_lock);
   1189 
   1190 	/*
   1191 	 * Stop profiling.
   1192 	 */
   1193 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1194 		mutex_spin_enter(&p->p_stmutex);
   1195 		stopprofclock(p);
   1196 		mutex_spin_exit(&p->p_stmutex);
   1197 	}
   1198 
   1199 	/*
   1200 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1201 	 * exited and exec()/exit() are the only places it will be cleared.
   1202 	 */
   1203 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1204 #if 0
   1205 		lwp_t *lp;
   1206 
   1207 		mutex_enter(proc_lock);
   1208 		lp = p->p_vforklwp;
   1209 		p->p_vforklwp = NULL;
   1210 
   1211 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1212 		p->p_lflag &= ~PL_PPWAIT;
   1213 
   1214 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
   1215 		cv_broadcast(&lp->l_waitcv);
   1216 		mutex_exit(proc_lock);
   1217 #else
   1218 		mutex_enter(proc_lock);
   1219 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1220 		p->p_lflag &= ~PL_PPWAIT;
   1221 		cv_broadcast(&p->p_pptr->p_waitcv);
   1222 		mutex_exit(proc_lock);
   1223 #endif
   1224 	}
   1225 
   1226 	error = credexec(l, &data->ed_attr);
   1227 	if (error)
   1228 		goto exec_abort;
   1229 
   1230 #if defined(__HAVE_RAS)
   1231 	/*
   1232 	 * Remove all RASs from the address space.
   1233 	 */
   1234 	ras_purgeall();
   1235 #endif
   1236 
   1237 	doexechooks(p);
   1238 
   1239 	/*
   1240 	 * Set initial SP at the top of the stack.
   1241 	 *
   1242 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1243 	 * the end of arg/env strings.  Userland guesses the address of argc
   1244 	 * via ps_strings::ps_argvstr.
   1245 	 */
   1246 
   1247 	/* Setup new registers and do misc. setup. */
   1248 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
   1249 	if (epp->ep_esch->es_setregs)
   1250 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
   1251 
   1252 	/* Provide a consistent LWP private setting */
   1253 	(void)lwp_setprivate(l, NULL);
   1254 
   1255 	/* Discard all PCU state; need to start fresh */
   1256 	pcu_discard_all(l);
   1257 
   1258 	/* map the process's signal trampoline code */
   1259 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1260 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1261 		goto exec_abort;
   1262 	}
   1263 
   1264 	pool_put(&exec_pool, data->ed_argp);
   1265 
   1266 	/* notify others that we exec'd */
   1267 	KNOTE(&p->p_klist, NOTE_EXEC);
   1268 
   1269 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1270 
   1271 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
   1272 
   1273 	emulexec(l, epp);
   1274 
   1275 	/* Allow new references from the debugger/procfs. */
   1276 	rw_exit(&p->p_reflock);
   1277 	if (!no_local_exec_lock)
   1278 		rw_exit(&exec_lock);
   1279 
   1280 	mutex_enter(proc_lock);
   1281 
   1282 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
   1283 		ksiginfo_t ksi;
   1284 
   1285 		KSI_INIT_EMPTY(&ksi);
   1286 		ksi.ksi_signo = SIGTRAP;
   1287 		ksi.ksi_lid = l->l_lid;
   1288 		kpsignal(p, &ksi, NULL);
   1289 	}
   1290 
   1291 	if (p->p_sflag & PS_STOPEXEC) {
   1292 		ksiginfoq_t kq;
   1293 
   1294 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1295 		p->p_pptr->p_nstopchild++;
   1296 		p->p_waited = 0;
   1297 		mutex_enter(p->p_lock);
   1298 		ksiginfo_queue_init(&kq);
   1299 		sigclearall(p, &contsigmask, &kq);
   1300 		lwp_lock(l);
   1301 		l->l_stat = LSSTOP;
   1302 		p->p_stat = SSTOP;
   1303 		p->p_nrlwps--;
   1304 		lwp_unlock(l);
   1305 		mutex_exit(p->p_lock);
   1306 		mutex_exit(proc_lock);
   1307 		lwp_lock(l);
   1308 		mi_switch(l);
   1309 		ksiginfo_queue_drain(&kq);
   1310 		KERNEL_LOCK(l->l_biglocks, l);
   1311 	} else {
   1312 		mutex_exit(proc_lock);
   1313 	}
   1314 
   1315 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1316 	pathbuf_destroy(data->ed_pathbuf);
   1317 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1318 #ifdef TRACE_EXEC
   1319 	DPRINTF(("%s finished\n", __func__));
   1320 #endif
   1321 	return EJUSTRETURN;
   1322 
   1323  exec_abort:
   1324 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
   1325 	rw_exit(&p->p_reflock);
   1326 	if (!no_local_exec_lock)
   1327 		rw_exit(&exec_lock);
   1328 
   1329 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1330 	pathbuf_destroy(data->ed_pathbuf);
   1331 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1332 
   1333 	/*
   1334 	 * the old process doesn't exist anymore.  exit gracefully.
   1335 	 * get rid of the (new) address space we have created, if any, get rid
   1336 	 * of our namei data and vnode, and exit noting failure
   1337 	 */
   1338 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1339 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1340 
   1341 	exec_free_emul_arg(epp);
   1342 	pool_put(&exec_pool, data->ed_argp);
   1343 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1344 	if (epp->ep_emul_root != NULL)
   1345 		vrele(epp->ep_emul_root);
   1346 	if (epp->ep_interp != NULL)
   1347 		vrele(epp->ep_interp);
   1348 
   1349 	/* Acquire the sched-state mutex (exit1() will release it). */
   1350 	if (!is_spawn) {
   1351 		mutex_enter(p->p_lock);
   1352 		exit1(l, error, SIGABRT);
   1353 	}
   1354 
   1355 	return error;
   1356 }
   1357 
   1358 int
   1359 execve1(struct lwp *l, const char *path, char * const *args,
   1360     char * const *envs, execve_fetch_element_t fetch_element)
   1361 {
   1362 	struct execve_data data;
   1363 	int error;
   1364 
   1365 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
   1366 	if (error)
   1367 		return error;
   1368 	error = execve_runproc(l, &data, false, false);
   1369 	return error;
   1370 }
   1371 
   1372 static size_t
   1373 fromptrsz(const struct exec_package *epp)
   1374 {
   1375 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
   1376 }
   1377 
   1378 static size_t
   1379 ptrsz(const struct exec_package *epp)
   1380 {
   1381 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
   1382 }
   1383 
   1384 static size_t
   1385 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
   1386 {
   1387 	struct exec_package	* const epp = &data->ed_pack;
   1388 
   1389 	const size_t nargenvptrs =
   1390 	    1 +				/* long argc */
   1391 	    data->ed_argc +		/* char *argv[] */
   1392 	    1 +				/* \0 */
   1393 	    data->ed_envc +		/* char *env[] */
   1394 	    1 +				/* \0 */
   1395 	    epp->ep_esch->es_arglen;	/* auxinfo */
   1396 
   1397 	return (nargenvptrs * ptrsz(epp)) + argenvstrlen;
   1398 }
   1399 
   1400 static size_t
   1401 calcstack(struct execve_data * restrict data, const size_t gaplen)
   1402 {
   1403 	struct exec_package	* const epp = &data->ed_pack;
   1404 
   1405 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
   1406 	    epp->ep_esch->es_emul->e_sigcode;
   1407 
   1408 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
   1409 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
   1410 
   1411 	const size_t sigcode_psstr_sz =
   1412 	    data->ed_szsigcode +	/* sigcode */
   1413 	    data->ed_ps_strings_sz +	/* ps_strings */
   1414 	    STACK_PTHREADSPACE;		/* pthread space */
   1415 
   1416 	const size_t stacklen =
   1417 	    data->ed_argslen +
   1418 	    gaplen +
   1419 	    sigcode_psstr_sz;
   1420 
   1421 	/* make the stack "safely" aligned */
   1422 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
   1423 }
   1424 
   1425 static int
   1426 copyoutargs(struct execve_data * restrict data, struct lwp *l,
   1427     char * const newstack)
   1428 {
   1429 	struct exec_package	* const epp = &data->ed_pack;
   1430 	struct proc		*p = l->l_proc;
   1431 	int			error;
   1432 
   1433 	/* remember information about the process */
   1434 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1435 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1436 
   1437 	/*
   1438 	 * Allocate the stack address passed to the newly execve()'ed process.
   1439 	 *
   1440 	 * The new stack address will be set to the SP (stack pointer) register
   1441 	 * in setregs().
   1442 	 */
   1443 
   1444 	char *newargs = STACK_ALLOC(
   1445 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
   1446 
   1447 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1448 	    &data->ed_arginfo, &newargs, data->ed_argp);
   1449 
   1450 	if (epp->ep_path) {
   1451 		PNBUF_PUT(epp->ep_path);
   1452 		epp->ep_path = NULL;
   1453 	}
   1454 	if (error) {
   1455 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1456 		return error;
   1457 	}
   1458 
   1459 	error = copyoutpsstrs(data, p);
   1460 	if (error != 0)
   1461 		return error;
   1462 
   1463 	return 0;
   1464 }
   1465 
   1466 static int
   1467 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
   1468 {
   1469 	struct exec_package	* const epp = &data->ed_pack;
   1470 	struct ps_strings32	arginfo32;
   1471 	void			*aip;
   1472 	int			error;
   1473 
   1474 	/* fill process ps_strings info */
   1475 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
   1476 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1477 
   1478 	if (epp->ep_flags & EXEC_32) {
   1479 		aip = &arginfo32;
   1480 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1481 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1482 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1483 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1484 	} else
   1485 		aip = &data->ed_arginfo;
   1486 
   1487 	/* copy out the process's ps_strings structure */
   1488 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1489 	    != 0) {
   1490 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1491 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1492 		return error;
   1493 	}
   1494 
   1495 	return 0;
   1496 }
   1497 
   1498 static int
   1499 copyinargs(struct execve_data * restrict data, char * const *args,
   1500     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1501 {
   1502 	struct exec_package	* const epp = &data->ed_pack;
   1503 	char			*dp;
   1504 	size_t			i;
   1505 	int			error;
   1506 
   1507 	dp = *dpp;
   1508 
   1509 	data->ed_argc = 0;
   1510 
   1511 	/* copy the fake args list, if there's one, freeing it as we go */
   1512 	if (epp->ep_flags & EXEC_HASARGL) {
   1513 		struct exec_fakearg	*fa = epp->ep_fa;
   1514 
   1515 		while (fa->fa_arg != NULL) {
   1516 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1517 			size_t len;
   1518 
   1519 			len = strlcpy(dp, fa->fa_arg, maxlen);
   1520 			/* Count NUL into len. */
   1521 			if (len < maxlen)
   1522 				len++;
   1523 			else {
   1524 				while (fa->fa_arg != NULL) {
   1525 					kmem_free(fa->fa_arg, fa->fa_len);
   1526 					fa++;
   1527 				}
   1528 				kmem_free(epp->ep_fa, epp->ep_fa_len);
   1529 				epp->ep_flags &= ~EXEC_HASARGL;
   1530 				return E2BIG;
   1531 			}
   1532 			ktrexecarg(fa->fa_arg, len - 1);
   1533 			dp += len;
   1534 
   1535 			kmem_free(fa->fa_arg, fa->fa_len);
   1536 			fa++;
   1537 			data->ed_argc++;
   1538 		}
   1539 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1540 		epp->ep_flags &= ~EXEC_HASARGL;
   1541 	}
   1542 
   1543 	/*
   1544 	 * Read and count argument strings from user.
   1545 	 */
   1546 
   1547 	if (args == NULL) {
   1548 		DPRINTF(("%s: null args\n", __func__));
   1549 		return EINVAL;
   1550 	}
   1551 	if (epp->ep_flags & EXEC_SKIPARG)
   1552 		args = (const void *)((const char *)args + fromptrsz(epp));
   1553 	i = 0;
   1554 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1555 	if (error != 0) {
   1556 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1557 		return error;
   1558 	}
   1559 	data->ed_argc += i;
   1560 
   1561 	/*
   1562 	 * Read and count environment strings from user.
   1563 	 */
   1564 
   1565 	data->ed_envc = 0;
   1566 	/* environment need not be there */
   1567 	if (envs == NULL)
   1568 		goto done;
   1569 	i = 0;
   1570 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1571 	if (error != 0) {
   1572 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1573 		return error;
   1574 	}
   1575 	data->ed_envc += i;
   1576 
   1577 done:
   1578 	*dpp = dp;
   1579 
   1580 	return 0;
   1581 }
   1582 
   1583 static int
   1584 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1585     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1586     void (*ktr)(const void *, size_t))
   1587 {
   1588 	char			*dp, *sp;
   1589 	size_t			i;
   1590 	int			error;
   1591 
   1592 	dp = *dpp;
   1593 
   1594 	i = 0;
   1595 	while (1) {
   1596 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1597 		size_t len;
   1598 
   1599 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1600 			return error;
   1601 		}
   1602 		if (!sp)
   1603 			break;
   1604 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1605 			if (error == ENAMETOOLONG)
   1606 				error = E2BIG;
   1607 			return error;
   1608 		}
   1609 		if (__predict_false(ktrace_on))
   1610 			(*ktr)(dp, len - 1);
   1611 		dp += len;
   1612 		i++;
   1613 	}
   1614 
   1615 	*dpp = dp;
   1616 	*ip = i;
   1617 
   1618 	return 0;
   1619 }
   1620 
   1621 /*
   1622  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1623  * Those strings are located just after auxinfo.
   1624  */
   1625 int
   1626 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1627     char **stackp, void *argp)
   1628 {
   1629 	char	**cpp, *dp, *sp;
   1630 	size_t	len;
   1631 	void	*nullp;
   1632 	long	argc, envc;
   1633 	int	error;
   1634 
   1635 	cpp = (char **)*stackp;
   1636 	nullp = NULL;
   1637 	argc = arginfo->ps_nargvstr;
   1638 	envc = arginfo->ps_nenvstr;
   1639 
   1640 	/* argc on stack is long */
   1641 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1642 
   1643 	dp = (char *)(cpp +
   1644 	    1 +				/* long argc */
   1645 	    argc +			/* char *argv[] */
   1646 	    1 +				/* \0 */
   1647 	    envc +			/* char *env[] */
   1648 	    1 +				/* \0 */
   1649 	    /* XXX auxinfo multiplied by ptr size? */
   1650 	    pack->ep_esch->es_arglen);	/* auxinfo */
   1651 	sp = argp;
   1652 
   1653 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1654 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1655 		return error;
   1656 	}
   1657 
   1658 	/* XXX don't copy them out, remap them! */
   1659 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1660 
   1661 	for (; --argc >= 0; sp += len, dp += len) {
   1662 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1663 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1664 			return error;
   1665 		}
   1666 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1667 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1668 			return error;
   1669 		}
   1670 	}
   1671 
   1672 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1673 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1674 		return error;
   1675 	}
   1676 
   1677 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1678 
   1679 	for (; --envc >= 0; sp += len, dp += len) {
   1680 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1681 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1682 			return error;
   1683 		}
   1684 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1685 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1686 			return error;
   1687 		}
   1688 
   1689 	}
   1690 
   1691 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1692 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1693 		return error;
   1694 	}
   1695 
   1696 	*stackp = (char *)cpp;
   1697 	return 0;
   1698 }
   1699 
   1700 
   1701 /*
   1702  * Add execsw[] entries.
   1703  */
   1704 int
   1705 exec_add(struct execsw *esp, int count)
   1706 {
   1707 	struct exec_entry	*it;
   1708 	int			i;
   1709 
   1710 	if (count == 0) {
   1711 		return 0;
   1712 	}
   1713 
   1714 	/* Check for duplicates. */
   1715 	rw_enter(&exec_lock, RW_WRITER);
   1716 	for (i = 0; i < count; i++) {
   1717 		LIST_FOREACH(it, &ex_head, ex_list) {
   1718 			/* assume unique (makecmds, probe_func, emulation) */
   1719 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1720 			    it->ex_sw->u.elf_probe_func ==
   1721 			    esp[i].u.elf_probe_func &&
   1722 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1723 				rw_exit(&exec_lock);
   1724 				return EEXIST;
   1725 			}
   1726 		}
   1727 	}
   1728 
   1729 	/* Allocate new entries. */
   1730 	for (i = 0; i < count; i++) {
   1731 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1732 		it->ex_sw = &esp[i];
   1733 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1734 	}
   1735 
   1736 	/* update execsw[] */
   1737 	exec_init(0);
   1738 	rw_exit(&exec_lock);
   1739 	return 0;
   1740 }
   1741 
   1742 /*
   1743  * Remove execsw[] entry.
   1744  */
   1745 int
   1746 exec_remove(struct execsw *esp, int count)
   1747 {
   1748 	struct exec_entry	*it, *next;
   1749 	int			i;
   1750 	const struct proclist_desc *pd;
   1751 	proc_t			*p;
   1752 
   1753 	if (count == 0) {
   1754 		return 0;
   1755 	}
   1756 
   1757 	/* Abort if any are busy. */
   1758 	rw_enter(&exec_lock, RW_WRITER);
   1759 	for (i = 0; i < count; i++) {
   1760 		mutex_enter(proc_lock);
   1761 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1762 			PROCLIST_FOREACH(p, pd->pd_list) {
   1763 				if (p->p_execsw == &esp[i]) {
   1764 					mutex_exit(proc_lock);
   1765 					rw_exit(&exec_lock);
   1766 					return EBUSY;
   1767 				}
   1768 			}
   1769 		}
   1770 		mutex_exit(proc_lock);
   1771 	}
   1772 
   1773 	/* None are busy, so remove them all. */
   1774 	for (i = 0; i < count; i++) {
   1775 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1776 			next = LIST_NEXT(it, ex_list);
   1777 			if (it->ex_sw == &esp[i]) {
   1778 				LIST_REMOVE(it, ex_list);
   1779 				kmem_free(it, sizeof(*it));
   1780 				break;
   1781 			}
   1782 		}
   1783 	}
   1784 
   1785 	/* update execsw[] */
   1786 	exec_init(0);
   1787 	rw_exit(&exec_lock);
   1788 	return 0;
   1789 }
   1790 
   1791 /*
   1792  * Initialize exec structures. If init_boot is true, also does necessary
   1793  * one-time initialization (it's called from main() that way).
   1794  * Once system is multiuser, this should be called with exec_lock held,
   1795  * i.e. via exec_{add|remove}().
   1796  */
   1797 int
   1798 exec_init(int init_boot)
   1799 {
   1800 	const struct execsw 	**sw;
   1801 	struct exec_entry	*ex;
   1802 	SLIST_HEAD(,exec_entry)	first;
   1803 	SLIST_HEAD(,exec_entry)	any;
   1804 	SLIST_HEAD(,exec_entry)	last;
   1805 	int			i, sz;
   1806 
   1807 	if (init_boot) {
   1808 		/* do one-time initializations */
   1809 		rw_init(&exec_lock);
   1810 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1811 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1812 		    "execargs", &exec_palloc, IPL_NONE);
   1813 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1814 	} else {
   1815 		KASSERT(rw_write_held(&exec_lock));
   1816 	}
   1817 
   1818 	/* Sort each entry onto the appropriate queue. */
   1819 	SLIST_INIT(&first);
   1820 	SLIST_INIT(&any);
   1821 	SLIST_INIT(&last);
   1822 	sz = 0;
   1823 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1824 		switch(ex->ex_sw->es_prio) {
   1825 		case EXECSW_PRIO_FIRST:
   1826 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1827 			break;
   1828 		case EXECSW_PRIO_ANY:
   1829 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1830 			break;
   1831 		case EXECSW_PRIO_LAST:
   1832 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1833 			break;
   1834 		default:
   1835 			panic("%s", __func__);
   1836 			break;
   1837 		}
   1838 		sz++;
   1839 	}
   1840 
   1841 	/*
   1842 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1843 	 * allocation.
   1844 	 */
   1845 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1846 	i = 0;
   1847 	SLIST_FOREACH(ex, &first, ex_slist) {
   1848 		sw[i++] = ex->ex_sw;
   1849 	}
   1850 	SLIST_FOREACH(ex, &any, ex_slist) {
   1851 		sw[i++] = ex->ex_sw;
   1852 	}
   1853 	SLIST_FOREACH(ex, &last, ex_slist) {
   1854 		sw[i++] = ex->ex_sw;
   1855 	}
   1856 
   1857 	/* Replace old execsw[] and free used memory. */
   1858 	if (execsw != NULL) {
   1859 		kmem_free(__UNCONST(execsw),
   1860 		    nexecs * sizeof(struct execsw *) + 1);
   1861 	}
   1862 	execsw = sw;
   1863 	nexecs = sz;
   1864 
   1865 	/* Figure out the maximum size of an exec header. */
   1866 	exec_maxhdrsz = sizeof(int);
   1867 	for (i = 0; i < nexecs; i++) {
   1868 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1869 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1870 	}
   1871 
   1872 	return 0;
   1873 }
   1874 
   1875 static int
   1876 exec_sigcode_map(struct proc *p, const struct emul *e)
   1877 {
   1878 	vaddr_t va;
   1879 	vsize_t sz;
   1880 	int error;
   1881 	struct uvm_object *uobj;
   1882 
   1883 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1884 
   1885 	if (e->e_sigobject == NULL || sz == 0) {
   1886 		return 0;
   1887 	}
   1888 
   1889 	/*
   1890 	 * If we don't have a sigobject for this emulation, create one.
   1891 	 *
   1892 	 * sigobject is an anonymous memory object (just like SYSV shared
   1893 	 * memory) that we keep a permanent reference to and that we map
   1894 	 * in all processes that need this sigcode. The creation is simple,
   1895 	 * we create an object, add a permanent reference to it, map it in
   1896 	 * kernel space, copy out the sigcode to it and unmap it.
   1897 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1898 	 * the way sys_mmap() would map it.
   1899 	 */
   1900 
   1901 	uobj = *e->e_sigobject;
   1902 	if (uobj == NULL) {
   1903 		mutex_enter(&sigobject_lock);
   1904 		if ((uobj = *e->e_sigobject) == NULL) {
   1905 			uobj = uao_create(sz, 0);
   1906 			(*uobj->pgops->pgo_reference)(uobj);
   1907 			va = vm_map_min(kernel_map);
   1908 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1909 			    uobj, 0, 0,
   1910 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1911 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1912 				printf("kernel mapping failed %d\n", error);
   1913 				(*uobj->pgops->pgo_detach)(uobj);
   1914 				mutex_exit(&sigobject_lock);
   1915 				return error;
   1916 			}
   1917 			memcpy((void *)va, e->e_sigcode, sz);
   1918 #ifdef PMAP_NEED_PROCWR
   1919 			pmap_procwr(&proc0, va, sz);
   1920 #endif
   1921 			uvm_unmap(kernel_map, va, va + round_page(sz));
   1922 			*e->e_sigobject = uobj;
   1923 		}
   1924 		mutex_exit(&sigobject_lock);
   1925 	}
   1926 
   1927 	/* Just a hint to uvm_map where to put it. */
   1928 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   1929 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1930 
   1931 #ifdef __alpha__
   1932 	/*
   1933 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   1934 	 * which causes the above calculation to put the sigcode at
   1935 	 * an invalid address.  Put it just below the text instead.
   1936 	 */
   1937 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   1938 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   1939 	}
   1940 #endif
   1941 
   1942 	(*uobj->pgops->pgo_reference)(uobj);
   1943 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   1944 			uobj, 0, 0,
   1945 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   1946 				    UVM_ADV_RANDOM, 0));
   1947 	if (error) {
   1948 		DPRINTF(("%s, %d: map %p "
   1949 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   1950 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   1951 		    va, error));
   1952 		(*uobj->pgops->pgo_detach)(uobj);
   1953 		return error;
   1954 	}
   1955 	p->p_sigctx.ps_sigcode = (void *)va;
   1956 	return 0;
   1957 }
   1958 
   1959 /*
   1960  * Release a refcount on spawn_exec_data and destroy memory, if this
   1961  * was the last one.
   1962  */
   1963 static void
   1964 spawn_exec_data_release(struct spawn_exec_data *data)
   1965 {
   1966 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   1967 		return;
   1968 
   1969 	cv_destroy(&data->sed_cv_child_ready);
   1970 	mutex_destroy(&data->sed_mtx_child);
   1971 
   1972 	if (data->sed_actions)
   1973 		posix_spawn_fa_free(data->sed_actions,
   1974 		    data->sed_actions->len);
   1975 	if (data->sed_attrs)
   1976 		kmem_free(data->sed_attrs,
   1977 		    sizeof(*data->sed_attrs));
   1978 	kmem_free(data, sizeof(*data));
   1979 }
   1980 
   1981 /*
   1982  * A child lwp of a posix_spawn operation starts here and ends up in
   1983  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   1984  * manipulations in between.
   1985  * The parent waits for the child, as it is not clear whether the child
   1986  * will be able to acquire its own exec_lock. If it can, the parent can
   1987  * be released early and continue running in parallel. If not (or if the
   1988  * magic debug flag is passed in the scheduler attribute struct), the
   1989  * child rides on the parent's exec lock until it is ready to return to
   1990  * to userland - and only then releases the parent. This method loses
   1991  * concurrency, but improves error reporting.
   1992  */
   1993 static void
   1994 spawn_return(void *arg)
   1995 {
   1996 	struct spawn_exec_data *spawn_data = arg;
   1997 	struct lwp *l = curlwp;
   1998 	int error, newfd;
   1999 	int ostat;
   2000 	size_t i;
   2001 	const struct posix_spawn_file_actions_entry *fae;
   2002 	pid_t ppid;
   2003 	register_t retval;
   2004 	bool have_reflock;
   2005 	bool parent_is_waiting = true;
   2006 
   2007 	/*
   2008 	 * Check if we can release parent early.
   2009 	 * We either need to have no sed_attrs, or sed_attrs does not
   2010 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   2011 	 * safe access to the parent proc (passed in sed_parent).
   2012 	 * We then try to get the exec_lock, and only if that works, we can
   2013 	 * release the parent here already.
   2014 	 */
   2015 	ppid = spawn_data->sed_parent->p_pid;
   2016 	if ((!spawn_data->sed_attrs
   2017 	    || (spawn_data->sed_attrs->sa_flags
   2018 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   2019 	    && rw_tryenter(&exec_lock, RW_READER)) {
   2020 		parent_is_waiting = false;
   2021 		mutex_enter(&spawn_data->sed_mtx_child);
   2022 		cv_signal(&spawn_data->sed_cv_child_ready);
   2023 		mutex_exit(&spawn_data->sed_mtx_child);
   2024 	}
   2025 
   2026 	/* don't allow debugger access yet */
   2027 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
   2028 	have_reflock = true;
   2029 
   2030 	error = 0;
   2031 	/* handle posix_spawn_file_actions */
   2032 	if (spawn_data->sed_actions != NULL) {
   2033 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   2034 			fae = &spawn_data->sed_actions->fae[i];
   2035 			switch (fae->fae_action) {
   2036 			case FAE_OPEN:
   2037 				if (fd_getfile(fae->fae_fildes) != NULL) {
   2038 					error = fd_close(fae->fae_fildes);
   2039 					if (error)
   2040 						break;
   2041 				}
   2042 				error = fd_open(fae->fae_path, fae->fae_oflag,
   2043 				    fae->fae_mode, &newfd);
   2044 				if (error)
   2045 					break;
   2046 				if (newfd != fae->fae_fildes) {
   2047 					error = dodup(l, newfd,
   2048 					    fae->fae_fildes, 0, &retval);
   2049 					if (fd_getfile(newfd) != NULL)
   2050 						fd_close(newfd);
   2051 				}
   2052 				break;
   2053 			case FAE_DUP2:
   2054 				error = dodup(l, fae->fae_fildes,
   2055 				    fae->fae_newfildes, 0, &retval);
   2056 				break;
   2057 			case FAE_CLOSE:
   2058 				if (fd_getfile(fae->fae_fildes) == NULL) {
   2059 					error = EBADF;
   2060 					break;
   2061 				}
   2062 				error = fd_close(fae->fae_fildes);
   2063 				break;
   2064 			}
   2065 			if (error)
   2066 				goto report_error;
   2067 		}
   2068 	}
   2069 
   2070 	/* handle posix_spawnattr */
   2071 	if (spawn_data->sed_attrs != NULL) {
   2072 		struct sigaction sigact;
   2073 		sigact._sa_u._sa_handler = SIG_DFL;
   2074 		sigact.sa_flags = 0;
   2075 
   2076 		/*
   2077 		 * set state to SSTOP so that this proc can be found by pid.
   2078 		 * see proc_enterprp, do_sched_setparam below
   2079 		 */
   2080 		mutex_enter(proc_lock);
   2081 		/*
   2082 		 * p_stat should be SACTIVE, so we need to adjust the
   2083 		 * parent's p_nstopchild here.  For safety, just make
   2084 		 * we're on the good side of SDEAD before we adjust.
   2085 		 */
   2086 		ostat = l->l_proc->p_stat;
   2087 		KASSERT(ostat < SSTOP);
   2088 		l->l_proc->p_stat = SSTOP;
   2089 		l->l_proc->p_waited = 0;
   2090 		l->l_proc->p_pptr->p_nstopchild++;
   2091 		mutex_exit(proc_lock);
   2092 
   2093 		/* Set process group */
   2094 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   2095 			pid_t mypid = l->l_proc->p_pid,
   2096 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   2097 
   2098 			if (pgrp == 0)
   2099 				pgrp = mypid;
   2100 
   2101 			error = proc_enterpgrp(spawn_data->sed_parent,
   2102 			    mypid, pgrp, false);
   2103 			if (error)
   2104 				goto report_error_stopped;
   2105 		}
   2106 
   2107 		/* Set scheduler policy */
   2108 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2109 			error = do_sched_setparam(l->l_proc->p_pid, 0,
   2110 			    spawn_data->sed_attrs->sa_schedpolicy,
   2111 			    &spawn_data->sed_attrs->sa_schedparam);
   2112 		else if (spawn_data->sed_attrs->sa_flags
   2113 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   2114 			error = do_sched_setparam(ppid, 0,
   2115 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   2116 		}
   2117 		if (error)
   2118 			goto report_error_stopped;
   2119 
   2120 		/* Reset user ID's */
   2121 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2122 			error = do_setresuid(l, -1,
   2123 			     kauth_cred_getgid(l->l_cred), -1,
   2124 			     ID_E_EQ_R | ID_E_EQ_S);
   2125 			if (error)
   2126 				goto report_error_stopped;
   2127 			error = do_setresuid(l, -1,
   2128 			    kauth_cred_getuid(l->l_cred), -1,
   2129 			    ID_E_EQ_R | ID_E_EQ_S);
   2130 			if (error)
   2131 				goto report_error_stopped;
   2132 		}
   2133 
   2134 		/* Set signal masks/defaults */
   2135 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2136 			mutex_enter(l->l_proc->p_lock);
   2137 			error = sigprocmask1(l, SIG_SETMASK,
   2138 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   2139 			mutex_exit(l->l_proc->p_lock);
   2140 			if (error)
   2141 				goto report_error_stopped;
   2142 		}
   2143 
   2144 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2145 			/*
   2146 			 * The following sigaction call is using a sigaction
   2147 			 * version 0 trampoline which is in the compatibility
   2148 			 * code only. This is not a problem because for SIG_DFL
   2149 			 * and SIG_IGN, the trampolines are now ignored. If they
   2150 			 * were not, this would be a problem because we are
   2151 			 * holding the exec_lock, and the compat code needs
   2152 			 * to do the same in order to replace the trampoline
   2153 			 * code of the process.
   2154 			 */
   2155 			for (i = 1; i <= NSIG; i++) {
   2156 				if (sigismember(
   2157 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   2158 					sigaction1(l, i, &sigact, NULL, NULL,
   2159 					    0);
   2160 			}
   2161 		}
   2162 		mutex_enter(proc_lock);
   2163 		l->l_proc->p_stat = ostat;
   2164 		l->l_proc->p_pptr->p_nstopchild--;
   2165 		mutex_exit(proc_lock);
   2166 	}
   2167 
   2168 	/* now do the real exec */
   2169 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2170 	    true);
   2171 	have_reflock = false;
   2172 	if (error == EJUSTRETURN)
   2173 		error = 0;
   2174 	else if (error)
   2175 		goto report_error;
   2176 
   2177 	if (parent_is_waiting) {
   2178 		mutex_enter(&spawn_data->sed_mtx_child);
   2179 		cv_signal(&spawn_data->sed_cv_child_ready);
   2180 		mutex_exit(&spawn_data->sed_mtx_child);
   2181 	}
   2182 
   2183 	/* release our refcount on the data */
   2184 	spawn_exec_data_release(spawn_data);
   2185 
   2186 	/* and finally: leave to userland for the first time */
   2187 	cpu_spawn_return(l);
   2188 
   2189 	/* NOTREACHED */
   2190 	return;
   2191 
   2192  report_error_stopped:
   2193 	mutex_enter(proc_lock);
   2194 	l->l_proc->p_stat = ostat;
   2195 	l->l_proc->p_pptr->p_nstopchild--;
   2196 	mutex_exit(proc_lock);
   2197  report_error:
   2198 	if (have_reflock) {
   2199 		/*
   2200 		 * We have not passed through execve_runproc(),
   2201 		 * which would have released the p_reflock and also
   2202 		 * taken ownership of the sed_exec part of spawn_data,
   2203 		 * so release/free both here.
   2204 		 */
   2205 		rw_exit(&l->l_proc->p_reflock);
   2206 		execve_free_data(&spawn_data->sed_exec);
   2207 	}
   2208 
   2209 	if (parent_is_waiting) {
   2210 		/* pass error to parent */
   2211 		mutex_enter(&spawn_data->sed_mtx_child);
   2212 		spawn_data->sed_error = error;
   2213 		cv_signal(&spawn_data->sed_cv_child_ready);
   2214 		mutex_exit(&spawn_data->sed_mtx_child);
   2215 	} else {
   2216 		rw_exit(&exec_lock);
   2217 	}
   2218 
   2219 	/* release our refcount on the data */
   2220 	spawn_exec_data_release(spawn_data);
   2221 
   2222 	/* done, exit */
   2223 	mutex_enter(l->l_proc->p_lock);
   2224 	/*
   2225 	 * Posix explicitly asks for an exit code of 127 if we report
   2226 	 * errors from the child process - so, unfortunately, there
   2227 	 * is no way to report a more exact error code.
   2228 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2229 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2230 	 */
   2231 	exit1(l, 127, 0);
   2232 }
   2233 
   2234 void
   2235 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2236 {
   2237 
   2238 	for (size_t i = 0; i < len; i++) {
   2239 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2240 		if (fae->fae_action != FAE_OPEN)
   2241 			continue;
   2242 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
   2243 	}
   2244 	if (fa->len > 0)
   2245 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2246 	kmem_free(fa, sizeof(*fa));
   2247 }
   2248 
   2249 static int
   2250 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2251     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2252 {
   2253 	struct posix_spawn_file_actions *fa;
   2254 	struct posix_spawn_file_actions_entry *fae;
   2255 	char *pbuf = NULL;
   2256 	int error;
   2257 	size_t i = 0;
   2258 
   2259 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2260 	error = copyin(ufa, fa, sizeof(*fa));
   2261 	if (error || fa->len == 0) {
   2262 		kmem_free(fa, sizeof(*fa));
   2263 		return error;	/* 0 if not an error, and len == 0 */
   2264 	}
   2265 
   2266 	if (fa->len > lim) {
   2267 		kmem_free(fa, sizeof(*fa));
   2268 		return EINVAL;
   2269 	}
   2270 
   2271 	fa->size = fa->len;
   2272 	size_t fal = fa->len * sizeof(*fae);
   2273 	fae = fa->fae;
   2274 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2275 	error = copyin(fae, fa->fae, fal);
   2276 	if (error)
   2277 		goto out;
   2278 
   2279 	pbuf = PNBUF_GET();
   2280 	for (; i < fa->len; i++) {
   2281 		fae = &fa->fae[i];
   2282 		if (fae->fae_action != FAE_OPEN)
   2283 			continue;
   2284 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2285 		if (error)
   2286 			goto out;
   2287 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2288 		memcpy(fae->fae_path, pbuf, fal);
   2289 	}
   2290 	PNBUF_PUT(pbuf);
   2291 
   2292 	*fap = fa;
   2293 	return 0;
   2294 out:
   2295 	if (pbuf)
   2296 		PNBUF_PUT(pbuf);
   2297 	posix_spawn_fa_free(fa, i);
   2298 	return error;
   2299 }
   2300 
   2301 int
   2302 check_posix_spawn(struct lwp *l1)
   2303 {
   2304 	int error, tnprocs, count;
   2305 	uid_t uid;
   2306 	struct proc *p1;
   2307 
   2308 	p1 = l1->l_proc;
   2309 	uid = kauth_cred_getuid(l1->l_cred);
   2310 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2311 
   2312 	/*
   2313 	 * Although process entries are dynamically created, we still keep
   2314 	 * a global limit on the maximum number we will create.
   2315 	 */
   2316 	if (__predict_false(tnprocs >= maxproc))
   2317 		error = -1;
   2318 	else
   2319 		error = kauth_authorize_process(l1->l_cred,
   2320 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2321 
   2322 	if (error) {
   2323 		atomic_dec_uint(&nprocs);
   2324 		return EAGAIN;
   2325 	}
   2326 
   2327 	/*
   2328 	 * Enforce limits.
   2329 	 */
   2330 	count = chgproccnt(uid, 1);
   2331 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2332 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2333 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2334 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2335 		(void)chgproccnt(uid, -1);
   2336 		atomic_dec_uint(&nprocs);
   2337 		return EAGAIN;
   2338 	}
   2339 
   2340 	return 0;
   2341 }
   2342 
   2343 int
   2344 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2345 	struct posix_spawn_file_actions *fa,
   2346 	struct posix_spawnattr *sa,
   2347 	char *const *argv, char *const *envp,
   2348 	execve_fetch_element_t fetch)
   2349 {
   2350 
   2351 	struct proc *p1, *p2;
   2352 	struct lwp *l2;
   2353 	int error;
   2354 	struct spawn_exec_data *spawn_data;
   2355 	vaddr_t uaddr;
   2356 	pid_t pid;
   2357 	bool have_exec_lock = false;
   2358 
   2359 	p1 = l1->l_proc;
   2360 
   2361 	/* Allocate and init spawn_data */
   2362 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2363 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2364 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2365 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2366 	mutex_enter(&spawn_data->sed_mtx_child);
   2367 
   2368 	/*
   2369 	 * Do the first part of the exec now, collect state
   2370 	 * in spawn_data.
   2371 	 */
   2372 	error = execve_loadvm(l1, path, argv,
   2373 	    envp, fetch, &spawn_data->sed_exec);
   2374 	if (error == EJUSTRETURN)
   2375 		error = 0;
   2376 	else if (error)
   2377 		goto error_exit;
   2378 
   2379 	have_exec_lock = true;
   2380 
   2381 	/*
   2382 	 * Allocate virtual address space for the U-area now, while it
   2383 	 * is still easy to abort the fork operation if we're out of
   2384 	 * kernel virtual address space.
   2385 	 */
   2386 	uaddr = uvm_uarea_alloc();
   2387 	if (__predict_false(uaddr == 0)) {
   2388 		error = ENOMEM;
   2389 		goto error_exit;
   2390 	}
   2391 
   2392 	/*
   2393 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2394 	 * replace it with its own before returning to userland
   2395 	 * in the child.
   2396 	 * This is a point of no return, we will have to go through
   2397 	 * the child proc to properly clean it up past this point.
   2398 	 */
   2399 	p2 = proc_alloc();
   2400 	pid = p2->p_pid;
   2401 
   2402 	/*
   2403 	 * Make a proc table entry for the new process.
   2404 	 * Start by zeroing the section of proc that is zero-initialized,
   2405 	 * then copy the section that is copied directly from the parent.
   2406 	 */
   2407 	memset(&p2->p_startzero, 0,
   2408 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2409 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2410 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2411 	p2->p_vmspace = proc0.p_vmspace;
   2412 
   2413 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2414 
   2415 	LIST_INIT(&p2->p_lwps);
   2416 	LIST_INIT(&p2->p_sigwaiters);
   2417 
   2418 	/*
   2419 	 * Duplicate sub-structures as needed.
   2420 	 * Increase reference counts on shared objects.
   2421 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2422 	 * handling are important in order to keep a consistent behaviour
   2423 	 * for the child after the fork.  If we are a 32-bit process, the
   2424 	 * child will be too.
   2425 	 */
   2426 	p2->p_flag =
   2427 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2428 	p2->p_emul = p1->p_emul;
   2429 	p2->p_execsw = p1->p_execsw;
   2430 
   2431 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2432 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2433 	rw_init(&p2->p_reflock);
   2434 	cv_init(&p2->p_waitcv, "wait");
   2435 	cv_init(&p2->p_lwpcv, "lwpwait");
   2436 
   2437 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2438 
   2439 	kauth_proc_fork(p1, p2);
   2440 
   2441 	p2->p_raslist = NULL;
   2442 	p2->p_fd = fd_copy();
   2443 
   2444 	/* XXX racy */
   2445 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2446 
   2447 	p2->p_cwdi = cwdinit();
   2448 
   2449 	/*
   2450 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2451 	 * we just need increase pl_refcnt.
   2452 	 */
   2453 	if (!p1->p_limit->pl_writeable) {
   2454 		lim_addref(p1->p_limit);
   2455 		p2->p_limit = p1->p_limit;
   2456 	} else {
   2457 		p2->p_limit = lim_copy(p1->p_limit);
   2458 	}
   2459 
   2460 	p2->p_lflag = 0;
   2461 	p2->p_sflag = 0;
   2462 	p2->p_slflag = 0;
   2463 	p2->p_pptr = p1;
   2464 	p2->p_ppid = p1->p_pid;
   2465 	LIST_INIT(&p2->p_children);
   2466 
   2467 	p2->p_aio = NULL;
   2468 
   2469 #ifdef KTRACE
   2470 	/*
   2471 	 * Copy traceflag and tracefile if enabled.
   2472 	 * If not inherited, these were zeroed above.
   2473 	 */
   2474 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2475 		mutex_enter(&ktrace_lock);
   2476 		p2->p_traceflag = p1->p_traceflag;
   2477 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2478 			ktradref(p2);
   2479 		mutex_exit(&ktrace_lock);
   2480 	}
   2481 #endif
   2482 
   2483 	/*
   2484 	 * Create signal actions for the child process.
   2485 	 */
   2486 	p2->p_sigacts = sigactsinit(p1, 0);
   2487 	mutex_enter(p1->p_lock);
   2488 	p2->p_sflag |=
   2489 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2490 	sched_proc_fork(p1, p2);
   2491 	mutex_exit(p1->p_lock);
   2492 
   2493 	p2->p_stflag = p1->p_stflag;
   2494 
   2495 	/*
   2496 	 * p_stats.
   2497 	 * Copy parts of p_stats, and zero out the rest.
   2498 	 */
   2499 	p2->p_stats = pstatscopy(p1->p_stats);
   2500 
   2501 	/* copy over machdep flags to the new proc */
   2502 	cpu_proc_fork(p1, p2);
   2503 
   2504 	/*
   2505 	 * Prepare remaining parts of spawn data
   2506 	 */
   2507 	spawn_data->sed_actions = fa;
   2508 	spawn_data->sed_attrs = sa;
   2509 
   2510 	spawn_data->sed_parent = p1;
   2511 
   2512 	/* create LWP */
   2513 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2514 	    &l2, l1->l_class);
   2515 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2516 
   2517 	/*
   2518 	 * Copy the credential so other references don't see our changes.
   2519 	 * Test to see if this is necessary first, since in the common case
   2520 	 * we won't need a private reference.
   2521 	 */
   2522 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2523 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2524 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2525 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2526 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2527 	}
   2528 
   2529 	/* Update the master credentials. */
   2530 	if (l2->l_cred != p2->p_cred) {
   2531 		kauth_cred_t ocred;
   2532 
   2533 		kauth_cred_hold(l2->l_cred);
   2534 		mutex_enter(p2->p_lock);
   2535 		ocred = p2->p_cred;
   2536 		p2->p_cred = l2->l_cred;
   2537 		mutex_exit(p2->p_lock);
   2538 		kauth_cred_free(ocred);
   2539 	}
   2540 
   2541 	*child_ok = true;
   2542 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2543 #if 0
   2544 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2545 #endif
   2546 
   2547 	/*
   2548 	 * It's now safe for the scheduler and other processes to see the
   2549 	 * child process.
   2550 	 */
   2551 	mutex_enter(proc_lock);
   2552 
   2553 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2554 		p2->p_lflag |= PL_CONTROLT;
   2555 
   2556 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2557 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2558 
   2559 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2560 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2561 
   2562 	p2->p_trace_enabled = trace_is_enabled(p2);
   2563 #ifdef __HAVE_SYSCALL_INTERN
   2564 	(*p2->p_emul->e_syscall_intern)(p2);
   2565 #endif
   2566 
   2567 	/*
   2568 	 * Make child runnable, set start time, and add to run queue except
   2569 	 * if the parent requested the child to start in SSTOP state.
   2570 	 */
   2571 	mutex_enter(p2->p_lock);
   2572 
   2573 	getmicrotime(&p2->p_stats->p_start);
   2574 
   2575 	lwp_lock(l2);
   2576 	KASSERT(p2->p_nrlwps == 1);
   2577 	p2->p_nrlwps = 1;
   2578 	p2->p_stat = SACTIVE;
   2579 	l2->l_stat = LSRUN;
   2580 	sched_enqueue(l2, false);
   2581 	lwp_unlock(l2);
   2582 
   2583 	mutex_exit(p2->p_lock);
   2584 	mutex_exit(proc_lock);
   2585 
   2586 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2587 	error = spawn_data->sed_error;
   2588 	mutex_exit(&spawn_data->sed_mtx_child);
   2589 	spawn_exec_data_release(spawn_data);
   2590 
   2591 	rw_exit(&p1->p_reflock);
   2592 	rw_exit(&exec_lock);
   2593 	have_exec_lock = false;
   2594 
   2595 	*pid_res = pid;
   2596 	return error;
   2597 
   2598  error_exit:
   2599 	if (have_exec_lock) {
   2600 		execve_free_data(&spawn_data->sed_exec);
   2601 		rw_exit(&p1->p_reflock);
   2602 		rw_exit(&exec_lock);
   2603 	}
   2604 	mutex_exit(&spawn_data->sed_mtx_child);
   2605 	spawn_exec_data_release(spawn_data);
   2606 
   2607 	return error;
   2608 }
   2609 
   2610 int
   2611 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2612     register_t *retval)
   2613 {
   2614 	/* {
   2615 		syscallarg(pid_t *) pid;
   2616 		syscallarg(const char *) path;
   2617 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2618 		syscallarg(const struct posix_spawnattr *) attrp;
   2619 		syscallarg(char *const *) argv;
   2620 		syscallarg(char *const *) envp;
   2621 	} */
   2622 
   2623 	int error;
   2624 	struct posix_spawn_file_actions *fa = NULL;
   2625 	struct posix_spawnattr *sa = NULL;
   2626 	pid_t pid;
   2627 	bool child_ok = false;
   2628 	rlim_t max_fileactions;
   2629 	proc_t *p = l1->l_proc;
   2630 
   2631 	error = check_posix_spawn(l1);
   2632 	if (error) {
   2633 		*retval = error;
   2634 		return 0;
   2635 	}
   2636 
   2637 	/* copy in file_actions struct */
   2638 	if (SCARG(uap, file_actions) != NULL) {
   2639 		max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2640 		    maxfiles);
   2641 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2642 		    max_fileactions);
   2643 		if (error)
   2644 			goto error_exit;
   2645 	}
   2646 
   2647 	/* copyin posix_spawnattr struct */
   2648 	if (SCARG(uap, attrp) != NULL) {
   2649 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2650 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2651 		if (error)
   2652 			goto error_exit;
   2653 	}
   2654 
   2655 	/*
   2656 	 * Do the spawn
   2657 	 */
   2658 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2659 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2660 	if (error)
   2661 		goto error_exit;
   2662 
   2663 	if (error == 0 && SCARG(uap, pid) != NULL)
   2664 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2665 
   2666 	*retval = error;
   2667 	return 0;
   2668 
   2669  error_exit:
   2670 	if (!child_ok) {
   2671 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2672 		atomic_dec_uint(&nprocs);
   2673 
   2674 		if (sa)
   2675 			kmem_free(sa, sizeof(*sa));
   2676 		if (fa)
   2677 			posix_spawn_fa_free(fa, fa->len);
   2678 	}
   2679 
   2680 	*retval = error;
   2681 	return 0;
   2682 }
   2683 
   2684 void
   2685 exec_free_emul_arg(struct exec_package *epp)
   2686 {
   2687 	if (epp->ep_emul_arg_free != NULL) {
   2688 		KASSERT(epp->ep_emul_arg != NULL);
   2689 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2690 		epp->ep_emul_arg_free = NULL;
   2691 		epp->ep_emul_arg = NULL;
   2692 	} else {
   2693 		KASSERT(epp->ep_emul_arg == NULL);
   2694 	}
   2695 }
   2696 
   2697 #ifdef DEBUG_EXEC
   2698 static void
   2699 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2700 {
   2701 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2702 	size_t j;
   2703 
   2704 	if (error == 0)
   2705 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2706 	else
   2707 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2708 		    epp->ep_vmcmds.evs_used, error));
   2709 
   2710 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2711 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2712 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2713 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2714 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2715 		    "pagedvn" :
   2716 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2717 		    "readvn" :
   2718 		    vp[j].ev_proc == vmcmd_map_zero ?
   2719 		    "zero" : "*unknown*",
   2720 		    vp[j].ev_addr, vp[j].ev_len,
   2721 		    vp[j].ev_offset, vp[j].ev_prot,
   2722 		    vp[j].ev_flags));
   2723 		if (error != 0 && j == x)
   2724 			DPRINTF(("     ^--- failed\n"));
   2725 	}
   2726 }
   2727 #endif
   2728