Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.436
      1 /*	$NetBSD: kern_exec.c,v 1.436 2016/08/06 15:13:13 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     31  * Copyright (C) 1992 Wolfgang Solfrank.
     32  * Copyright (C) 1992 TooLs GmbH.
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by TooLs GmbH.
     46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.436 2016/08/06 15:13:13 maxv Exp $");
     63 
     64 #include "opt_exec.h"
     65 #include "opt_execfmt.h"
     66 #include "opt_ktrace.h"
     67 #include "opt_modular.h"
     68 #include "opt_syscall_debug.h"
     69 #include "veriexec.h"
     70 #include "opt_pax.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/filedesc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/mount.h>
     78 #include <sys/kmem.h>
     79 #include <sys/namei.h>
     80 #include <sys/vnode.h>
     81 #include <sys/file.h>
     82 #include <sys/filedesc.h>
     83 #include <sys/acct.h>
     84 #include <sys/atomic.h>
     85 #include <sys/exec.h>
     86 #include <sys/ktrace.h>
     87 #include <sys/uidinfo.h>
     88 #include <sys/wait.h>
     89 #include <sys/mman.h>
     90 #include <sys/ras.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/stat.h>
     93 #include <sys/syscall.h>
     94 #include <sys/kauth.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/pax.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 #include <sys/syscallvar.h>
    100 #include <sys/syscallargs.h>
    101 #if NVERIEXEC > 0
    102 #include <sys/verified_exec.h>
    103 #endif /* NVERIEXEC > 0 */
    104 #include <sys/sdt.h>
    105 #include <sys/spawn.h>
    106 #include <sys/prot.h>
    107 #include <sys/cprng.h>
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #include <machine/reg.h>
    112 
    113 #include <compat/common/compat_util.h>
    114 
    115 #ifndef MD_TOPDOWN_INIT
    116 #ifdef __USE_TOPDOWN_VM
    117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    118 #else
    119 #define	MD_TOPDOWN_INIT(epp)
    120 #endif
    121 #endif
    122 
    123 struct execve_data;
    124 
    125 extern int user_va0_disable;
    126 
    127 static size_t calcargs(struct execve_data * restrict, const size_t);
    128 static size_t calcstack(struct execve_data * restrict, const size_t);
    129 static int copyoutargs(struct execve_data * restrict, struct lwp *,
    130     char * const);
    131 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
    132 static int copyinargs(struct execve_data * restrict, char * const *,
    133     char * const *, execve_fetch_element_t, char **);
    134 static int copyinargstrs(struct execve_data * restrict, char * const *,
    135     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    136 static int exec_sigcode_map(struct proc *, const struct emul *);
    137 
    138 #if defined(DEBUG) && !defined(DEBUG_EXEC)
    139 #define DEBUG_EXEC
    140 #endif
    141 #ifdef DEBUG_EXEC
    142 #define DPRINTF(a) printf a
    143 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    144     __LINE__, (s), (a), (b))
    145 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    146 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    147 #else
    148 #define DPRINTF(a)
    149 #define COPYPRINTF(s, a, b)
    150 #define DUMPVMCMDS(p, x, e) do {} while (0)
    151 #endif /* DEBUG_EXEC */
    152 
    153 /*
    154  * DTrace SDT provider definitions
    155  */
    156 SDT_PROVIDER_DECLARE(proc);
    157 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
    158 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
    159 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
    160 
    161 /*
    162  * Exec function switch:
    163  *
    164  * Note that each makecmds function is responsible for loading the
    165  * exec package with the necessary functions for any exec-type-specific
    166  * handling.
    167  *
    168  * Functions for specific exec types should be defined in their own
    169  * header file.
    170  */
    171 static const struct execsw	**execsw = NULL;
    172 static int			nexecs;
    173 
    174 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    175 
    176 /* list of dynamically loaded execsw entries */
    177 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    178     LIST_HEAD_INITIALIZER(ex_head);
    179 struct exec_entry {
    180 	LIST_ENTRY(exec_entry)	ex_list;
    181 	SLIST_ENTRY(exec_entry)	ex_slist;
    182 	const struct execsw	*ex_sw;
    183 };
    184 
    185 #ifndef __HAVE_SYSCALL_INTERN
    186 void	syscall(void);
    187 #endif
    188 
    189 /* NetBSD autoloadable syscalls */
    190 #ifdef MODULAR
    191 #include <kern/syscalls_autoload.c>
    192 #endif
    193 
    194 /* NetBSD emul struct */
    195 struct emul emul_netbsd = {
    196 	.e_name =		"netbsd",
    197 #ifdef EMUL_NATIVEROOT
    198 	.e_path =		EMUL_NATIVEROOT,
    199 #else
    200 	.e_path =		NULL,
    201 #endif
    202 #ifndef __HAVE_MINIMAL_EMUL
    203 	.e_flags =		EMUL_HAS_SYS___syscall,
    204 	.e_errno =		NULL,
    205 	.e_nosys =		SYS_syscall,
    206 	.e_nsysent =		SYS_NSYSENT,
    207 #endif
    208 #ifdef MODULAR
    209 	.e_sc_autoload =	netbsd_syscalls_autoload,
    210 #endif
    211 	.e_sysent =		sysent,
    212 #ifdef SYSCALL_DEBUG
    213 	.e_syscallnames =	syscallnames,
    214 #else
    215 	.e_syscallnames =	NULL,
    216 #endif
    217 	.e_sendsig =		sendsig,
    218 	.e_trapsignal =		trapsignal,
    219 	.e_tracesig =		NULL,
    220 	.e_sigcode =		NULL,
    221 	.e_esigcode =		NULL,
    222 	.e_sigobject =		NULL,
    223 	.e_setregs =		setregs,
    224 	.e_proc_exec =		NULL,
    225 	.e_proc_fork =		NULL,
    226 	.e_proc_exit =		NULL,
    227 	.e_lwp_fork =		NULL,
    228 	.e_lwp_exit =		NULL,
    229 #ifdef __HAVE_SYSCALL_INTERN
    230 	.e_syscall_intern =	syscall_intern,
    231 #else
    232 	.e_syscall =		syscall,
    233 #endif
    234 	.e_sysctlovly =		NULL,
    235 	.e_fault =		NULL,
    236 	.e_vm_default_addr =	uvm_default_mapaddr,
    237 	.e_usertrap =		NULL,
    238 	.e_ucsize =		sizeof(ucontext_t),
    239 	.e_startlwp =		startlwp
    240 };
    241 
    242 /*
    243  * Exec lock. Used to control access to execsw[] structures.
    244  * This must not be static so that netbsd32 can access it, too.
    245  */
    246 krwlock_t exec_lock;
    247 
    248 static kmutex_t sigobject_lock;
    249 
    250 /*
    251  * Data used between a loadvm and execve part of an "exec" operation
    252  */
    253 struct execve_data {
    254 	struct exec_package	ed_pack;
    255 	struct pathbuf		*ed_pathbuf;
    256 	struct vattr		ed_attr;
    257 	struct ps_strings	ed_arginfo;
    258 	char			*ed_argp;
    259 	const char		*ed_pathstring;
    260 	char			*ed_resolvedpathbuf;
    261 	size_t			ed_ps_strings_sz;
    262 	int			ed_szsigcode;
    263 	size_t			ed_argslen;
    264 	long			ed_argc;
    265 	long			ed_envc;
    266 };
    267 
    268 /*
    269  * data passed from parent lwp to child during a posix_spawn()
    270  */
    271 struct spawn_exec_data {
    272 	struct execve_data	sed_exec;
    273 	struct posix_spawn_file_actions
    274 				*sed_actions;
    275 	struct posix_spawnattr	*sed_attrs;
    276 	struct proc		*sed_parent;
    277 	kcondvar_t		sed_cv_child_ready;
    278 	kmutex_t		sed_mtx_child;
    279 	int			sed_error;
    280 	volatile uint32_t	sed_refcnt;
    281 };
    282 
    283 static void *
    284 exec_pool_alloc(struct pool *pp, int flags)
    285 {
    286 
    287 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
    288 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    289 }
    290 
    291 static void
    292 exec_pool_free(struct pool *pp, void *addr)
    293 {
    294 
    295 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    296 }
    297 
    298 static struct pool exec_pool;
    299 
    300 static struct pool_allocator exec_palloc = {
    301 	.pa_alloc = exec_pool_alloc,
    302 	.pa_free = exec_pool_free,
    303 	.pa_pagesz = NCARGS
    304 };
    305 
    306 /*
    307  * check exec:
    308  * given an "executable" described in the exec package's namei info,
    309  * see what we can do with it.
    310  *
    311  * ON ENTRY:
    312  *	exec package with appropriate namei info
    313  *	lwp pointer of exec'ing lwp
    314  *	NO SELF-LOCKED VNODES
    315  *
    316  * ON EXIT:
    317  *	error:	nothing held, etc.  exec header still allocated.
    318  *	ok:	filled exec package, executable's vnode (unlocked).
    319  *
    320  * EXEC SWITCH ENTRY:
    321  * 	Locked vnode to check, exec package, proc.
    322  *
    323  * EXEC SWITCH EXIT:
    324  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    325  *	error:	destructive:
    326  *			everything deallocated execept exec header.
    327  *		non-destructive:
    328  *			error code, executable's vnode (unlocked),
    329  *			exec header unmodified.
    330  */
    331 int
    332 /*ARGSUSED*/
    333 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
    334 {
    335 	int		error, i;
    336 	struct vnode	*vp;
    337 	struct nameidata nd;
    338 	size_t		resid;
    339 
    340 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    341 
    342 	/* first get the vnode */
    343 	if ((error = namei(&nd)) != 0)
    344 		return error;
    345 	epp->ep_vp = vp = nd.ni_vp;
    346 	/* normally this can't fail */
    347 	error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
    348 	KASSERT(error == 0);
    349 
    350 #ifdef DIAGNOSTIC
    351 	/* paranoia (take this out once namei stuff stabilizes) */
    352 	memset(nd.ni_pnbuf, '~', PATH_MAX);
    353 #endif
    354 
    355 	/* check access and type */
    356 	if (vp->v_type != VREG) {
    357 		error = EACCES;
    358 		goto bad1;
    359 	}
    360 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    361 		goto bad1;
    362 
    363 	/* get attributes */
    364 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    365 		goto bad1;
    366 
    367 	/* Check mount point */
    368 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    369 		error = EACCES;
    370 		goto bad1;
    371 	}
    372 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    373 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    374 
    375 	/* try to open it */
    376 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    377 		goto bad1;
    378 
    379 	/* unlock vp, since we need it unlocked from here on out. */
    380 	VOP_UNLOCK(vp);
    381 
    382 #if NVERIEXEC > 0
    383 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
    384 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    385 	    NULL);
    386 	if (error)
    387 		goto bad2;
    388 #endif /* NVERIEXEC > 0 */
    389 
    390 #ifdef PAX_SEGVGUARD
    391 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    392 	if (error)
    393 		goto bad2;
    394 #endif /* PAX_SEGVGUARD */
    395 
    396 	/* now we have the file, get the exec header */
    397 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    398 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
    399 	if (error)
    400 		goto bad2;
    401 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    402 
    403 	/*
    404 	 * Set up default address space limits.  Can be overridden
    405 	 * by individual exec packages.
    406 	 */
    407 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
    408 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    409 
    410 	/*
    411 	 * set up the vmcmds for creation of the process
    412 	 * address space
    413 	 */
    414 	error = ENOEXEC;
    415 	for (i = 0; i < nexecs; i++) {
    416 		int newerror;
    417 
    418 		epp->ep_esch = execsw[i];
    419 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    420 
    421 		if (!newerror) {
    422 			/* Seems ok: check that entry point is not too high */
    423 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
    424 #ifdef DIAGNOSTIC
    425 				printf("%s: rejecting %p due to "
    426 				    "too high entry address (> %p)\n",
    427 					 __func__, (void *)epp->ep_entry,
    428 					 (void *)epp->ep_vm_maxaddr);
    429 #endif
    430 				error = ENOEXEC;
    431 				break;
    432 			}
    433 			/* Seems ok: check that entry point is not too low */
    434 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    435 #ifdef DIAGNOSTIC
    436 				printf("%s: rejecting %p due to "
    437 				    "too low entry address (< %p)\n",
    438 				     __func__, (void *)epp->ep_entry,
    439 				     (void *)epp->ep_vm_minaddr);
    440 #endif
    441 				error = ENOEXEC;
    442 				break;
    443 			}
    444 
    445 			/* check limits */
    446 			if ((epp->ep_tsize > MAXTSIZ) ||
    447 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    448 						    [RLIMIT_DATA].rlim_cur)) {
    449 #ifdef DIAGNOSTIC
    450 				printf("%s: rejecting due to "
    451 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    452 				    __func__,
    453 				    (unsigned long long)epp->ep_tsize,
    454 				    (unsigned long long)MAXTSIZ,
    455 				    (unsigned long long)epp->ep_dsize,
    456 				    (unsigned long long)
    457 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    458 #endif
    459 				error = ENOMEM;
    460 				break;
    461 			}
    462 			return 0;
    463 		}
    464 
    465 		/*
    466 		 * Reset all the fields that may have been modified by the
    467 		 * loader.
    468 		 */
    469 		KASSERT(epp->ep_emul_arg == NULL);
    470 		if (epp->ep_emul_root != NULL) {
    471 			vrele(epp->ep_emul_root);
    472 			epp->ep_emul_root = NULL;
    473 		}
    474 		if (epp->ep_interp != NULL) {
    475 			vrele(epp->ep_interp);
    476 			epp->ep_interp = NULL;
    477 		}
    478 		epp->ep_pax_flags = 0;
    479 
    480 		/* make sure the first "interesting" error code is saved. */
    481 		if (error == ENOEXEC)
    482 			error = newerror;
    483 
    484 		if (epp->ep_flags & EXEC_DESTR)
    485 			/* Error from "#!" code, tidied up by recursive call */
    486 			return error;
    487 	}
    488 
    489 	/* not found, error */
    490 
    491 	/*
    492 	 * free any vmspace-creation commands,
    493 	 * and release their references
    494 	 */
    495 	kill_vmcmds(&epp->ep_vmcmds);
    496 
    497 bad2:
    498 	/*
    499 	 * close and release the vnode, restore the old one, free the
    500 	 * pathname buf, and punt.
    501 	 */
    502 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    503 	VOP_CLOSE(vp, FREAD, l->l_cred);
    504 	vput(vp);
    505 	return error;
    506 
    507 bad1:
    508 	/*
    509 	 * free the namei pathname buffer, and put the vnode
    510 	 * (which we don't yet have open).
    511 	 */
    512 	vput(vp);				/* was still locked */
    513 	return error;
    514 }
    515 
    516 #ifdef __MACHINE_STACK_GROWS_UP
    517 #define STACK_PTHREADSPACE NBPG
    518 #else
    519 #define STACK_PTHREADSPACE 0
    520 #endif
    521 
    522 static int
    523 execve_fetch_element(char * const *array, size_t index, char **value)
    524 {
    525 	return copyin(array + index, value, sizeof(*value));
    526 }
    527 
    528 /*
    529  * exec system call
    530  */
    531 int
    532 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    533 {
    534 	/* {
    535 		syscallarg(const char *)	path;
    536 		syscallarg(char * const *)	argp;
    537 		syscallarg(char * const *)	envp;
    538 	} */
    539 
    540 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
    541 	    SCARG(uap, envp), execve_fetch_element);
    542 }
    543 
    544 int
    545 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    546     register_t *retval)
    547 {
    548 	/* {
    549 		syscallarg(int)			fd;
    550 		syscallarg(char * const *)	argp;
    551 		syscallarg(char * const *)	envp;
    552 	} */
    553 
    554 	return ENOSYS;
    555 }
    556 
    557 /*
    558  * Load modules to try and execute an image that we do not understand.
    559  * If no execsw entries are present, we load those likely to be needed
    560  * in order to run native images only.  Otherwise, we autoload all
    561  * possible modules that could let us run the binary.  XXX lame
    562  */
    563 static void
    564 exec_autoload(void)
    565 {
    566 #ifdef MODULAR
    567 	static const char * const native[] = {
    568 		"exec_elf32",
    569 		"exec_elf64",
    570 		"exec_script",
    571 		NULL
    572 	};
    573 	static const char * const compat[] = {
    574 		"exec_elf32",
    575 		"exec_elf64",
    576 		"exec_script",
    577 		"exec_aout",
    578 		"exec_coff",
    579 		"exec_ecoff",
    580 		"compat_aoutm68k",
    581 		"compat_freebsd",
    582 		"compat_ibcs2",
    583 		"compat_linux",
    584 		"compat_linux32",
    585 		"compat_netbsd32",
    586 		"compat_sunos",
    587 		"compat_sunos32",
    588 		"compat_svr4",
    589 		"compat_svr4_32",
    590 		"compat_ultrix",
    591 		NULL
    592 	};
    593 	char const * const *list;
    594 	int i;
    595 
    596 	list = (nexecs == 0 ? native : compat);
    597 	for (i = 0; list[i] != NULL; i++) {
    598 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    599 			continue;
    600 		}
    601 		yield();
    602 	}
    603 #endif
    604 }
    605 
    606 static int
    607 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp,
    608     size_t *offs)
    609 {
    610 	char *path, *bp;
    611 	size_t len, tlen;
    612 	int error;
    613 	struct cwdinfo *cwdi;
    614 
    615 	path = PNBUF_GET();
    616 	error = copyinstr(upath, path, MAXPATHLEN, &len);
    617 	if (error) {
    618 		PNBUF_PUT(path);
    619 		DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
    620 		return error;
    621 	}
    622 
    623 	if (path[0] == '/') {
    624 		*offs = 0;
    625 		goto out;
    626 	}
    627 
    628 	len++;
    629 	if (len + 1 >= MAXPATHLEN)
    630 		goto out;
    631 	bp = path + MAXPATHLEN - len;
    632 	memmove(bp, path, len);
    633 	*(--bp) = '/';
    634 
    635 	cwdi = l->l_proc->p_cwdi;
    636 	rw_enter(&cwdi->cwdi_lock, RW_READER);
    637 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
    638 	    GETCWD_CHECK_ACCESS, l);
    639 	rw_exit(&cwdi->cwdi_lock);
    640 
    641 	if (error) {
    642 		DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
    643 		    error));
    644 		goto out;
    645 	}
    646 	tlen = path + MAXPATHLEN - bp;
    647 
    648 	memmove(path, bp, tlen);
    649 	path[tlen] = '\0';
    650 	*offs = tlen - len;
    651 out:
    652 	*pbp = pathbuf_assimilate(path);
    653 	return 0;
    654 }
    655 
    656 vaddr_t
    657 exec_vm_minaddr(vaddr_t va_min)
    658 {
    659 	/*
    660 	 * Increase va_min if we don't want NULL to be mappable by the
    661 	 * process.
    662 	 */
    663 #define VM_MIN_GUARD	(2 * PAGE_SIZE)
    664 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
    665 		return VM_MIN_GUARD;
    666 	return va_min;
    667 }
    668 
    669 static int
    670 execve_loadvm(struct lwp *l, const char *path, char * const *args,
    671 	char * const *envs, execve_fetch_element_t fetch_element,
    672 	struct execve_data * restrict data)
    673 {
    674 	struct exec_package	* const epp = &data->ed_pack;
    675 	int			error;
    676 	struct proc		*p;
    677 	char			*dp;
    678 	u_int			modgen;
    679 	size_t			offs = 0;	// XXX: GCC
    680 
    681 	KASSERT(data != NULL);
    682 
    683 	p = l->l_proc;
    684 	modgen = 0;
    685 
    686 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
    687 
    688 	/*
    689 	 * Check if we have exceeded our number of processes limit.
    690 	 * This is so that we handle the case where a root daemon
    691 	 * forked, ran setuid to become the desired user and is trying
    692 	 * to exec. The obvious place to do the reference counting check
    693 	 * is setuid(), but we don't do the reference counting check there
    694 	 * like other OS's do because then all the programs that use setuid()
    695 	 * must be modified to check the return code of setuid() and exit().
    696 	 * It is dangerous to make setuid() fail, because it fails open and
    697 	 * the program will continue to run as root. If we make it succeed
    698 	 * and return an error code, again we are not enforcing the limit.
    699 	 * The best place to enforce the limit is here, when the process tries
    700 	 * to execute a new image, because eventually the process will need
    701 	 * to call exec in order to do something useful.
    702 	 */
    703  retry:
    704 	if (p->p_flag & PK_SUGID) {
    705 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    706 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    707 		     &p->p_rlimit[RLIMIT_NPROC],
    708 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    709 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    710 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    711 		return EAGAIN;
    712 	}
    713 
    714 	/*
    715 	 * Drain existing references and forbid new ones.  The process
    716 	 * should be left alone until we're done here.  This is necessary
    717 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    718 	 * a local user to illicitly obtain elevated privileges.
    719 	 */
    720 	rw_enter(&p->p_reflock, RW_WRITER);
    721 
    722 	/*
    723 	 * Init the namei data to point the file user's program name.
    724 	 * This is done here rather than in check_exec(), so that it's
    725 	 * possible to override this settings if any of makecmd/probe
    726 	 * functions call check_exec() recursively - for example,
    727 	 * see exec_script_makecmds().
    728 	 */
    729 	if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0)
    730 		goto clrflg;
    731 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    732 	data->ed_resolvedpathbuf = PNBUF_GET();
    733 
    734 	/*
    735 	 * initialize the fields of the exec package.
    736 	 */
    737 	epp->ep_kname = data->ed_pathstring + offs;
    738 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
    739 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    740 	epp->ep_hdrlen = exec_maxhdrsz;
    741 	epp->ep_hdrvalid = 0;
    742 	epp->ep_emul_arg = NULL;
    743 	epp->ep_emul_arg_free = NULL;
    744 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    745 	epp->ep_vap = &data->ed_attr;
    746 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
    747 	MD_TOPDOWN_INIT(epp);
    748 	epp->ep_emul_root = NULL;
    749 	epp->ep_interp = NULL;
    750 	epp->ep_esch = NULL;
    751 	epp->ep_pax_flags = 0;
    752 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    753 
    754 	rw_enter(&exec_lock, RW_READER);
    755 
    756 	/* see if we can run it. */
    757 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
    758 		if (error != ENOENT && error != EACCES) {
    759 			DPRINTF(("%s: check exec failed %d\n",
    760 			    __func__, error));
    761 		}
    762 		goto freehdr;
    763 	}
    764 
    765 	/* allocate an argument buffer */
    766 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    767 	KASSERT(data->ed_argp != NULL);
    768 	dp = data->ed_argp;
    769 
    770 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    771 		goto bad;
    772 	}
    773 
    774 	/*
    775 	 * Calculate the new stack size.
    776 	 */
    777 
    778 #ifdef __MACHINE_STACK_GROWS_UP
    779 /*
    780  * copyargs() fills argc/argv/envp from the lower address even on
    781  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    782  * so that _rtld() use it.
    783  */
    784 #define	RTLD_GAP	32
    785 #else
    786 #define	RTLD_GAP	0
    787 #endif
    788 
    789 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    790 
    791 	data->ed_argslen = calcargs(data, argenvstrlen);
    792 
    793 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
    794 
    795 	if (len > epp->ep_ssize) {
    796 		/* in effect, compare to initial limit */
    797 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    798 		error = ENOMEM;
    799 		goto bad;
    800 	}
    801 	/* adjust "active stack depth" for process VSZ */
    802 	epp->ep_ssize = len;
    803 
    804 	return 0;
    805 
    806  bad:
    807 	/* free the vmspace-creation commands, and release their references */
    808 	kill_vmcmds(&epp->ep_vmcmds);
    809 	/* kill any opened file descriptor, if necessary */
    810 	if (epp->ep_flags & EXEC_HASFD) {
    811 		epp->ep_flags &= ~EXEC_HASFD;
    812 		fd_close(epp->ep_fd);
    813 	}
    814 	/* close and put the exec'd file */
    815 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    816 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    817 	vput(epp->ep_vp);
    818 	pool_put(&exec_pool, data->ed_argp);
    819 
    820  freehdr:
    821 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    822 	if (epp->ep_emul_root != NULL)
    823 		vrele(epp->ep_emul_root);
    824 	if (epp->ep_interp != NULL)
    825 		vrele(epp->ep_interp);
    826 
    827 	rw_exit(&exec_lock);
    828 
    829 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    830 	pathbuf_destroy(data->ed_pathbuf);
    831 	PNBUF_PUT(data->ed_resolvedpathbuf);
    832 
    833  clrflg:
    834 	rw_exit(&p->p_reflock);
    835 
    836 	if (modgen != module_gen && error == ENOEXEC) {
    837 		modgen = module_gen;
    838 		exec_autoload();
    839 		goto retry;
    840 	}
    841 
    842 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
    843 	return error;
    844 }
    845 
    846 static int
    847 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
    848 {
    849 	struct exec_package	* const epp = &data->ed_pack;
    850 	struct proc		*p = l->l_proc;
    851 	struct exec_vmcmd	*base_vcp;
    852 	int			error = 0;
    853 	size_t			i;
    854 
    855 	/* record proc's vnode, for use by procfs and others */
    856 	if (p->p_textvp)
    857 		vrele(p->p_textvp);
    858 	vref(epp->ep_vp);
    859 	p->p_textvp = epp->ep_vp;
    860 
    861 	/* create the new process's VM space by running the vmcmds */
    862 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    863 
    864 #ifdef TRACE_EXEC
    865 	DUMPVMCMDS(epp, 0, 0);
    866 #endif
    867 
    868 	base_vcp = NULL;
    869 
    870 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
    871 		struct exec_vmcmd *vcp;
    872 
    873 		vcp = &epp->ep_vmcmds.evs_cmds[i];
    874 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    875 			KASSERTMSG(base_vcp != NULL,
    876 			    "%s: relative vmcmd with no base", __func__);
    877 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
    878 			    "%s: illegal base & relative vmcmd", __func__);
    879 			vcp->ev_addr += base_vcp->ev_addr;
    880 		}
    881 		error = (*vcp->ev_proc)(l, vcp);
    882 		if (error)
    883 			DUMPVMCMDS(epp, i, error);
    884 		if (vcp->ev_flags & VMCMD_BASE)
    885 			base_vcp = vcp;
    886 	}
    887 
    888 	/* free the vmspace-creation commands, and release their references */
    889 	kill_vmcmds(&epp->ep_vmcmds);
    890 
    891 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    892 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    893 	vput(epp->ep_vp);
    894 
    895 	/* if an error happened, deallocate and punt */
    896 	if (error != 0) {
    897 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
    898 	}
    899 	return error;
    900 }
    901 
    902 static void
    903 execve_free_data(struct execve_data *data)
    904 {
    905 	struct exec_package	* const epp = &data->ed_pack;
    906 
    907 	/* free the vmspace-creation commands, and release their references */
    908 	kill_vmcmds(&epp->ep_vmcmds);
    909 	/* kill any opened file descriptor, if necessary */
    910 	if (epp->ep_flags & EXEC_HASFD) {
    911 		epp->ep_flags &= ~EXEC_HASFD;
    912 		fd_close(epp->ep_fd);
    913 	}
    914 
    915 	/* close and put the exec'd file */
    916 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    917 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
    918 	vput(epp->ep_vp);
    919 	pool_put(&exec_pool, data->ed_argp);
    920 
    921 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    922 	if (epp->ep_emul_root != NULL)
    923 		vrele(epp->ep_emul_root);
    924 	if (epp->ep_interp != NULL)
    925 		vrele(epp->ep_interp);
    926 
    927 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    928 	pathbuf_destroy(data->ed_pathbuf);
    929 	PNBUF_PUT(data->ed_resolvedpathbuf);
    930 }
    931 
    932 static void
    933 pathexec(struct exec_package *epp, struct lwp *l, const char *pathstring)
    934 {
    935 	const char		*commandname;
    936 	size_t			commandlen;
    937 	char			*path;
    938 	struct proc 		*p = l->l_proc;
    939 
    940 	/* set command name & other accounting info */
    941 	commandname = strrchr(epp->ep_resolvedname, '/');
    942 	if (commandname != NULL) {
    943 		commandname++;
    944 	} else {
    945 		commandname = epp->ep_resolvedname;
    946 	}
    947 	commandlen = min(strlen(commandname), MAXCOMLEN);
    948 	(void)memcpy(p->p_comm, commandname, commandlen);
    949 	p->p_comm[commandlen] = '\0';
    950 
    951 
    952 	/*
    953 	 * If the path starts with /, we don't need to do any work.
    954 	 * This handles the majority of the cases.
    955 	 * In the future perhaps we could canonicalize it?
    956 	 */
    957 	path = PNBUF_GET();
    958 	if (pathstring[0] == '/') {
    959 		(void)strlcpy(path, pathstring, MAXPATHLEN);
    960 		epp->ep_path = path;
    961 	}
    962 #ifdef notyet
    963 	/*
    964 	 * Although this works most of the time [since the entry was just
    965 	 * entered in the cache] we don't use it because it will fail for
    966 	 * entries that are not placed in the cache because their name is
    967 	 * longer than NCHNAMLEN and it is not the cleanest interface,
    968 	 * because there could be races. When the namei cache is re-written,
    969 	 * this can be changed to use the appropriate function.
    970 	 */
    971 	else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
    972 		epp->ep_path = path;
    973 #endif
    974 	else {
    975 #ifdef notyet
    976 		printf("Cannot get path for pid %d [%s] (error %d)\n",
    977 		    (int)p->p_pid, p->p_comm, error);
    978 #endif
    979 		PNBUF_PUT(path);
    980  		epp->ep_path = NULL;
    981 	}
    982 }
    983 
    984 /* XXX elsewhere */
    985 static int
    986 credexec(struct lwp *l, struct vattr *attr)
    987 {
    988 	struct proc *p = l->l_proc;
    989 	int error;
    990 
    991 	/*
    992 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
    993 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
    994 	 * out additional references on the process for the moment.
    995 	 */
    996 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    997 
    998 	    (((attr->va_mode & S_ISUID) != 0 &&
    999 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
   1000 
   1001 	     ((attr->va_mode & S_ISGID) != 0 &&
   1002 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
   1003 		/*
   1004 		 * Mark the process as SUGID before we do
   1005 		 * anything that might block.
   1006 		 */
   1007 		proc_crmod_enter();
   1008 		proc_crmod_leave(NULL, NULL, true);
   1009 
   1010 		/* Make sure file descriptors 0..2 are in use. */
   1011 		if ((error = fd_checkstd()) != 0) {
   1012 			DPRINTF(("%s: fdcheckstd failed %d\n",
   1013 			    __func__, error));
   1014 			return error;
   1015 		}
   1016 
   1017 		/*
   1018 		 * Copy the credential so other references don't see our
   1019 		 * changes.
   1020 		 */
   1021 		l->l_cred = kauth_cred_copy(l->l_cred);
   1022 #ifdef KTRACE
   1023 		/*
   1024 		 * If the persistent trace flag isn't set, turn off.
   1025 		 */
   1026 		if (p->p_tracep) {
   1027 			mutex_enter(&ktrace_lock);
   1028 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
   1029 				ktrderef(p);
   1030 			mutex_exit(&ktrace_lock);
   1031 		}
   1032 #endif
   1033 		if (attr->va_mode & S_ISUID)
   1034 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
   1035 		if (attr->va_mode & S_ISGID)
   1036 			kauth_cred_setegid(l->l_cred, attr->va_gid);
   1037 	} else {
   1038 		if (kauth_cred_geteuid(l->l_cred) ==
   1039 		    kauth_cred_getuid(l->l_cred) &&
   1040 		    kauth_cred_getegid(l->l_cred) ==
   1041 		    kauth_cred_getgid(l->l_cred))
   1042 			p->p_flag &= ~PK_SUGID;
   1043 	}
   1044 
   1045 	/*
   1046 	 * Copy the credential so other references don't see our changes.
   1047 	 * Test to see if this is necessary first, since in the common case
   1048 	 * we won't need a private reference.
   1049 	 */
   1050 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1051 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1052 		l->l_cred = kauth_cred_copy(l->l_cred);
   1053 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1054 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1055 	}
   1056 
   1057 	/* Update the master credentials. */
   1058 	if (l->l_cred != p->p_cred) {
   1059 		kauth_cred_t ocred;
   1060 
   1061 		kauth_cred_hold(l->l_cred);
   1062 		mutex_enter(p->p_lock);
   1063 		ocred = p->p_cred;
   1064 		p->p_cred = l->l_cred;
   1065 		mutex_exit(p->p_lock);
   1066 		kauth_cred_free(ocred);
   1067 	}
   1068 
   1069 	return 0;
   1070 }
   1071 
   1072 static void
   1073 emulexec(struct lwp *l, struct exec_package *epp)
   1074 {
   1075 	struct proc		*p = l->l_proc;
   1076 
   1077 	/* The emulation root will usually have been found when we looked
   1078 	 * for the elf interpreter (or similar), if not look now. */
   1079 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1080 	    epp->ep_emul_root == NULL)
   1081 		emul_find_root(l, epp);
   1082 
   1083 	/* Any old emulation root got removed by fdcloseexec */
   1084 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1085 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1086 	rw_exit(&p->p_cwdi->cwdi_lock);
   1087 	epp->ep_emul_root = NULL;
   1088 	if (epp->ep_interp != NULL)
   1089 		vrele(epp->ep_interp);
   1090 
   1091 	/*
   1092 	 * Call emulation specific exec hook. This can setup per-process
   1093 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1094 	 *
   1095 	 * If we are executing process of different emulation than the
   1096 	 * original forked process, call e_proc_exit() of the old emulation
   1097 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1098 	 * same, the exec hook code should deallocate any old emulation
   1099 	 * resources held previously by this process.
   1100 	 */
   1101 	if (p->p_emul && p->p_emul->e_proc_exit
   1102 	    && p->p_emul != epp->ep_esch->es_emul)
   1103 		(*p->p_emul->e_proc_exit)(p);
   1104 
   1105 	/*
   1106 	 * This is now LWP 1.
   1107 	 */
   1108 	/* XXX elsewhere */
   1109 	mutex_enter(p->p_lock);
   1110 	p->p_nlwpid = 1;
   1111 	l->l_lid = 1;
   1112 	mutex_exit(p->p_lock);
   1113 
   1114 	/*
   1115 	 * Call exec hook. Emulation code may NOT store reference to anything
   1116 	 * from &pack.
   1117 	 */
   1118 	if (epp->ep_esch->es_emul->e_proc_exec)
   1119 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1120 
   1121 	/* update p_emul, the old value is no longer needed */
   1122 	p->p_emul = epp->ep_esch->es_emul;
   1123 
   1124 	/* ...and the same for p_execsw */
   1125 	p->p_execsw = epp->ep_esch;
   1126 
   1127 #ifdef __HAVE_SYSCALL_INTERN
   1128 	(*p->p_emul->e_syscall_intern)(p);
   1129 #endif
   1130 	ktremul();
   1131 }
   1132 
   1133 static int
   1134 execve_runproc(struct lwp *l, struct execve_data * restrict data,
   1135 	bool no_local_exec_lock, bool is_spawn)
   1136 {
   1137 	struct exec_package	* const epp = &data->ed_pack;
   1138 	int error = 0;
   1139 	struct proc		*p;
   1140 
   1141 	/*
   1142 	 * In case of a posix_spawn operation, the child doing the exec
   1143 	 * might not hold the reader lock on exec_lock, but the parent
   1144 	 * will do this instead.
   1145 	 */
   1146 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
   1147 	KASSERT(!no_local_exec_lock || is_spawn);
   1148 	KASSERT(data != NULL);
   1149 
   1150 	p = l->l_proc;
   1151 
   1152 	/* Get rid of other LWPs. */
   1153 	if (p->p_nlwps > 1) {
   1154 		mutex_enter(p->p_lock);
   1155 		exit_lwps(l);
   1156 		mutex_exit(p->p_lock);
   1157 	}
   1158 	KDASSERT(p->p_nlwps == 1);
   1159 
   1160 	/* Destroy any lwpctl info. */
   1161 	if (p->p_lwpctl != NULL)
   1162 		lwp_ctl_exit();
   1163 
   1164 	/* Remove POSIX timers */
   1165 	timers_free(p, TIMERS_POSIX);
   1166 
   1167 	/* Set the PaX flags. */
   1168 	pax_set_flags(epp, p);
   1169 
   1170 	/*
   1171 	 * Do whatever is necessary to prepare the address space
   1172 	 * for remapping.  Note that this might replace the current
   1173 	 * vmspace with another!
   1174 	 */
   1175 	if (is_spawn)
   1176 		uvmspace_spawn(l, epp->ep_vm_minaddr,
   1177 		    epp->ep_vm_maxaddr,
   1178 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1179 	else
   1180 		uvmspace_exec(l, epp->ep_vm_minaddr,
   1181 		    epp->ep_vm_maxaddr,
   1182 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1183 
   1184 	struct vmspace		*vm;
   1185 	vm = p->p_vmspace;
   1186 	vm->vm_taddr = (void *)epp->ep_taddr;
   1187 	vm->vm_tsize = btoc(epp->ep_tsize);
   1188 	vm->vm_daddr = (void*)epp->ep_daddr;
   1189 	vm->vm_dsize = btoc(epp->ep_dsize);
   1190 	vm->vm_ssize = btoc(epp->ep_ssize);
   1191 	vm->vm_issize = 0;
   1192 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
   1193 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
   1194 
   1195 	pax_aslr_init_vm(l, vm, epp);
   1196 
   1197 	/* Now map address space. */
   1198 	error = execve_dovmcmds(l, data);
   1199 	if (error != 0)
   1200 		goto exec_abort;
   1201 
   1202 	pathexec(epp, l, data->ed_pathstring);
   1203 
   1204 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1205 
   1206 	error = copyoutargs(data, l, newstack);
   1207 	if (error != 0)
   1208 		goto exec_abort;
   1209 
   1210 	cwdexec(p);
   1211 	fd_closeexec();		/* handle close on exec */
   1212 
   1213 	if (__predict_false(ktrace_on))
   1214 		fd_ktrexecfd();
   1215 
   1216 	execsigs(p);		/* reset catched signals */
   1217 
   1218 	mutex_enter(p->p_lock);
   1219 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1220 	p->p_acflag &= ~AFORK;
   1221 	p->p_flag |= PK_EXEC;
   1222 	mutex_exit(p->p_lock);
   1223 
   1224 	/*
   1225 	 * Stop profiling.
   1226 	 */
   1227 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1228 		mutex_spin_enter(&p->p_stmutex);
   1229 		stopprofclock(p);
   1230 		mutex_spin_exit(&p->p_stmutex);
   1231 	}
   1232 
   1233 	/*
   1234 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1235 	 * exited and exec()/exit() are the only places it will be cleared.
   1236 	 */
   1237 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1238 #if 0
   1239 		lwp_t *lp;
   1240 
   1241 		mutex_enter(proc_lock);
   1242 		lp = p->p_vforklwp;
   1243 		p->p_vforklwp = NULL;
   1244 
   1245 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1246 		p->p_lflag &= ~PL_PPWAIT;
   1247 
   1248 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
   1249 		cv_broadcast(&lp->l_waitcv);
   1250 		mutex_exit(proc_lock);
   1251 #else
   1252 		mutex_enter(proc_lock);
   1253 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1254 		p->p_lflag &= ~PL_PPWAIT;
   1255 		cv_broadcast(&p->p_pptr->p_waitcv);
   1256 		mutex_exit(proc_lock);
   1257 #endif
   1258 	}
   1259 
   1260 	error = credexec(l, &data->ed_attr);
   1261 	if (error)
   1262 		goto exec_abort;
   1263 
   1264 #if defined(__HAVE_RAS)
   1265 	/*
   1266 	 * Remove all RASs from the address space.
   1267 	 */
   1268 	ras_purgeall();
   1269 #endif
   1270 
   1271 	doexechooks(p);
   1272 
   1273 	/*
   1274 	 * Set initial SP at the top of the stack.
   1275 	 *
   1276 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1277 	 * the end of arg/env strings.  Userland guesses the address of argc
   1278 	 * via ps_strings::ps_argvstr.
   1279 	 */
   1280 
   1281 	/* Setup new registers and do misc. setup. */
   1282 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
   1283 	if (epp->ep_esch->es_setregs)
   1284 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
   1285 
   1286 	/* Provide a consistent LWP private setting */
   1287 	(void)lwp_setprivate(l, NULL);
   1288 
   1289 	/* Discard all PCU state; need to start fresh */
   1290 	pcu_discard_all(l);
   1291 
   1292 	/* map the process's signal trampoline code */
   1293 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1294 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1295 		goto exec_abort;
   1296 	}
   1297 
   1298 	pool_put(&exec_pool, data->ed_argp);
   1299 
   1300 	/* notify others that we exec'd */
   1301 	KNOTE(&p->p_klist, NOTE_EXEC);
   1302 
   1303 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1304 
   1305 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
   1306 
   1307 	emulexec(l, epp);
   1308 
   1309 	/* Allow new references from the debugger/procfs. */
   1310 	rw_exit(&p->p_reflock);
   1311 	if (!no_local_exec_lock)
   1312 		rw_exit(&exec_lock);
   1313 
   1314 	mutex_enter(proc_lock);
   1315 
   1316 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
   1317 		ksiginfo_t ksi;
   1318 
   1319 		KSI_INIT_EMPTY(&ksi);
   1320 		ksi.ksi_signo = SIGTRAP;
   1321 		ksi.ksi_lid = l->l_lid;
   1322 		kpsignal(p, &ksi, NULL);
   1323 	}
   1324 
   1325 	if (p->p_sflag & PS_STOPEXEC) {
   1326 		ksiginfoq_t kq;
   1327 
   1328 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1329 		p->p_pptr->p_nstopchild++;
   1330 		p->p_waited = 0;
   1331 		mutex_enter(p->p_lock);
   1332 		ksiginfo_queue_init(&kq);
   1333 		sigclearall(p, &contsigmask, &kq);
   1334 		lwp_lock(l);
   1335 		l->l_stat = LSSTOP;
   1336 		p->p_stat = SSTOP;
   1337 		p->p_nrlwps--;
   1338 		lwp_unlock(l);
   1339 		mutex_exit(p->p_lock);
   1340 		mutex_exit(proc_lock);
   1341 		lwp_lock(l);
   1342 		mi_switch(l);
   1343 		ksiginfo_queue_drain(&kq);
   1344 		KERNEL_LOCK(l->l_biglocks, l);
   1345 	} else {
   1346 		mutex_exit(proc_lock);
   1347 	}
   1348 
   1349 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1350 	pathbuf_destroy(data->ed_pathbuf);
   1351 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1352 #ifdef TRACE_EXEC
   1353 	DPRINTF(("%s finished\n", __func__));
   1354 #endif
   1355 	return EJUSTRETURN;
   1356 
   1357  exec_abort:
   1358 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
   1359 	rw_exit(&p->p_reflock);
   1360 	if (!no_local_exec_lock)
   1361 		rw_exit(&exec_lock);
   1362 
   1363 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1364 	pathbuf_destroy(data->ed_pathbuf);
   1365 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1366 
   1367 	/*
   1368 	 * the old process doesn't exist anymore.  exit gracefully.
   1369 	 * get rid of the (new) address space we have created, if any, get rid
   1370 	 * of our namei data and vnode, and exit noting failure
   1371 	 */
   1372 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1373 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1374 
   1375 	exec_free_emul_arg(epp);
   1376 	pool_put(&exec_pool, data->ed_argp);
   1377 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1378 	if (epp->ep_emul_root != NULL)
   1379 		vrele(epp->ep_emul_root);
   1380 	if (epp->ep_interp != NULL)
   1381 		vrele(epp->ep_interp);
   1382 
   1383 	/* Acquire the sched-state mutex (exit1() will release it). */
   1384 	if (!is_spawn) {
   1385 		mutex_enter(p->p_lock);
   1386 		exit1(l, error, SIGABRT);
   1387 	}
   1388 
   1389 	return error;
   1390 }
   1391 
   1392 int
   1393 execve1(struct lwp *l, const char *path, char * const *args,
   1394     char * const *envs, execve_fetch_element_t fetch_element)
   1395 {
   1396 	struct execve_data data;
   1397 	int error;
   1398 
   1399 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
   1400 	if (error)
   1401 		return error;
   1402 	error = execve_runproc(l, &data, false, false);
   1403 	return error;
   1404 }
   1405 
   1406 static size_t
   1407 fromptrsz(const struct exec_package *epp)
   1408 {
   1409 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
   1410 }
   1411 
   1412 static size_t
   1413 ptrsz(const struct exec_package *epp)
   1414 {
   1415 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
   1416 }
   1417 
   1418 static size_t
   1419 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
   1420 {
   1421 	struct exec_package	* const epp = &data->ed_pack;
   1422 
   1423 	const size_t nargenvptrs =
   1424 	    1 +				/* long argc */
   1425 	    data->ed_argc +		/* char *argv[] */
   1426 	    1 +				/* \0 */
   1427 	    data->ed_envc +		/* char *env[] */
   1428 	    1 +				/* \0 */
   1429 	    epp->ep_esch->es_arglen;	/* auxinfo */
   1430 
   1431 	return (nargenvptrs * ptrsz(epp)) + argenvstrlen;
   1432 }
   1433 
   1434 static size_t
   1435 calcstack(struct execve_data * restrict data, const size_t gaplen)
   1436 {
   1437 	struct exec_package	* const epp = &data->ed_pack;
   1438 
   1439 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
   1440 	    epp->ep_esch->es_emul->e_sigcode;
   1441 
   1442 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
   1443 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
   1444 
   1445 	const size_t sigcode_psstr_sz =
   1446 	    data->ed_szsigcode +	/* sigcode */
   1447 	    data->ed_ps_strings_sz +	/* ps_strings */
   1448 	    STACK_PTHREADSPACE;		/* pthread space */
   1449 
   1450 	const size_t stacklen =
   1451 	    data->ed_argslen +
   1452 	    gaplen +
   1453 	    sigcode_psstr_sz;
   1454 
   1455 	/* make the stack "safely" aligned */
   1456 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
   1457 }
   1458 
   1459 static int
   1460 copyoutargs(struct execve_data * restrict data, struct lwp *l,
   1461     char * const newstack)
   1462 {
   1463 	struct exec_package	* const epp = &data->ed_pack;
   1464 	struct proc		*p = l->l_proc;
   1465 	int			error;
   1466 
   1467 	/* remember information about the process */
   1468 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1469 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1470 
   1471 	/*
   1472 	 * Allocate the stack address passed to the newly execve()'ed process.
   1473 	 *
   1474 	 * The new stack address will be set to the SP (stack pointer) register
   1475 	 * in setregs().
   1476 	 */
   1477 
   1478 	char *newargs = STACK_ALLOC(
   1479 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
   1480 
   1481 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1482 	    &data->ed_arginfo, &newargs, data->ed_argp);
   1483 
   1484 	if (epp->ep_path) {
   1485 		PNBUF_PUT(epp->ep_path);
   1486 		epp->ep_path = NULL;
   1487 	}
   1488 	if (error) {
   1489 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1490 		return error;
   1491 	}
   1492 
   1493 	error = copyoutpsstrs(data, p);
   1494 	if (error != 0)
   1495 		return error;
   1496 
   1497 	return 0;
   1498 }
   1499 
   1500 static int
   1501 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
   1502 {
   1503 	struct exec_package	* const epp = &data->ed_pack;
   1504 	struct ps_strings32	arginfo32;
   1505 	void			*aip;
   1506 	int			error;
   1507 
   1508 	/* fill process ps_strings info */
   1509 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
   1510 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1511 
   1512 	if (epp->ep_flags & EXEC_32) {
   1513 		aip = &arginfo32;
   1514 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1515 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1516 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1517 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1518 	} else
   1519 		aip = &data->ed_arginfo;
   1520 
   1521 	/* copy out the process's ps_strings structure */
   1522 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1523 	    != 0) {
   1524 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1525 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1526 		return error;
   1527 	}
   1528 
   1529 	return 0;
   1530 }
   1531 
   1532 static int
   1533 copyinargs(struct execve_data * restrict data, char * const *args,
   1534     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1535 {
   1536 	struct exec_package	* const epp = &data->ed_pack;
   1537 	char			*dp;
   1538 	size_t			i;
   1539 	int			error;
   1540 
   1541 	dp = *dpp;
   1542 
   1543 	data->ed_argc = 0;
   1544 
   1545 	/* copy the fake args list, if there's one, freeing it as we go */
   1546 	if (epp->ep_flags & EXEC_HASARGL) {
   1547 		struct exec_fakearg	*fa = epp->ep_fa;
   1548 
   1549 		while (fa->fa_arg != NULL) {
   1550 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1551 			size_t len;
   1552 
   1553 			len = strlcpy(dp, fa->fa_arg, maxlen);
   1554 			/* Count NUL into len. */
   1555 			if (len < maxlen)
   1556 				len++;
   1557 			else {
   1558 				while (fa->fa_arg != NULL) {
   1559 					kmem_free(fa->fa_arg, fa->fa_len);
   1560 					fa++;
   1561 				}
   1562 				kmem_free(epp->ep_fa, epp->ep_fa_len);
   1563 				epp->ep_flags &= ~EXEC_HASARGL;
   1564 				return E2BIG;
   1565 			}
   1566 			ktrexecarg(fa->fa_arg, len - 1);
   1567 			dp += len;
   1568 
   1569 			kmem_free(fa->fa_arg, fa->fa_len);
   1570 			fa++;
   1571 			data->ed_argc++;
   1572 		}
   1573 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1574 		epp->ep_flags &= ~EXEC_HASARGL;
   1575 	}
   1576 
   1577 	/*
   1578 	 * Read and count argument strings from user.
   1579 	 */
   1580 
   1581 	if (args == NULL) {
   1582 		DPRINTF(("%s: null args\n", __func__));
   1583 		return EINVAL;
   1584 	}
   1585 	if (epp->ep_flags & EXEC_SKIPARG)
   1586 		args = (const void *)((const char *)args + fromptrsz(epp));
   1587 	i = 0;
   1588 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1589 	if (error != 0) {
   1590 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1591 		return error;
   1592 	}
   1593 	data->ed_argc += i;
   1594 
   1595 	/*
   1596 	 * Read and count environment strings from user.
   1597 	 */
   1598 
   1599 	data->ed_envc = 0;
   1600 	/* environment need not be there */
   1601 	if (envs == NULL)
   1602 		goto done;
   1603 	i = 0;
   1604 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1605 	if (error != 0) {
   1606 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1607 		return error;
   1608 	}
   1609 	data->ed_envc += i;
   1610 
   1611 done:
   1612 	*dpp = dp;
   1613 
   1614 	return 0;
   1615 }
   1616 
   1617 static int
   1618 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1619     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1620     void (*ktr)(const void *, size_t))
   1621 {
   1622 	char			*dp, *sp;
   1623 	size_t			i;
   1624 	int			error;
   1625 
   1626 	dp = *dpp;
   1627 
   1628 	i = 0;
   1629 	while (1) {
   1630 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1631 		size_t len;
   1632 
   1633 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1634 			return error;
   1635 		}
   1636 		if (!sp)
   1637 			break;
   1638 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1639 			if (error == ENAMETOOLONG)
   1640 				error = E2BIG;
   1641 			return error;
   1642 		}
   1643 		if (__predict_false(ktrace_on))
   1644 			(*ktr)(dp, len - 1);
   1645 		dp += len;
   1646 		i++;
   1647 	}
   1648 
   1649 	*dpp = dp;
   1650 	*ip = i;
   1651 
   1652 	return 0;
   1653 }
   1654 
   1655 /*
   1656  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1657  * Those strings are located just after auxinfo.
   1658  */
   1659 int
   1660 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1661     char **stackp, void *argp)
   1662 {
   1663 	char	**cpp, *dp, *sp;
   1664 	size_t	len;
   1665 	void	*nullp;
   1666 	long	argc, envc;
   1667 	int	error;
   1668 
   1669 	cpp = (char **)*stackp;
   1670 	nullp = NULL;
   1671 	argc = arginfo->ps_nargvstr;
   1672 	envc = arginfo->ps_nenvstr;
   1673 
   1674 	/* argc on stack is long */
   1675 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1676 
   1677 	dp = (char *)(cpp +
   1678 	    1 +				/* long argc */
   1679 	    argc +			/* char *argv[] */
   1680 	    1 +				/* \0 */
   1681 	    envc +			/* char *env[] */
   1682 	    1 +				/* \0 */
   1683 	    /* XXX auxinfo multiplied by ptr size? */
   1684 	    pack->ep_esch->es_arglen);	/* auxinfo */
   1685 	sp = argp;
   1686 
   1687 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1688 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1689 		return error;
   1690 	}
   1691 
   1692 	/* XXX don't copy them out, remap them! */
   1693 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1694 
   1695 	for (; --argc >= 0; sp += len, dp += len) {
   1696 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1697 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1698 			return error;
   1699 		}
   1700 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1701 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1702 			return error;
   1703 		}
   1704 	}
   1705 
   1706 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1707 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1708 		return error;
   1709 	}
   1710 
   1711 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1712 
   1713 	for (; --envc >= 0; sp += len, dp += len) {
   1714 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1715 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1716 			return error;
   1717 		}
   1718 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1719 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1720 			return error;
   1721 		}
   1722 
   1723 	}
   1724 
   1725 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1726 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1727 		return error;
   1728 	}
   1729 
   1730 	*stackp = (char *)cpp;
   1731 	return 0;
   1732 }
   1733 
   1734 
   1735 /*
   1736  * Add execsw[] entries.
   1737  */
   1738 int
   1739 exec_add(struct execsw *esp, int count)
   1740 {
   1741 	struct exec_entry	*it;
   1742 	int			i;
   1743 
   1744 	if (count == 0) {
   1745 		return 0;
   1746 	}
   1747 
   1748 	/* Check for duplicates. */
   1749 	rw_enter(&exec_lock, RW_WRITER);
   1750 	for (i = 0; i < count; i++) {
   1751 		LIST_FOREACH(it, &ex_head, ex_list) {
   1752 			/* assume unique (makecmds, probe_func, emulation) */
   1753 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1754 			    it->ex_sw->u.elf_probe_func ==
   1755 			    esp[i].u.elf_probe_func &&
   1756 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1757 				rw_exit(&exec_lock);
   1758 				return EEXIST;
   1759 			}
   1760 		}
   1761 	}
   1762 
   1763 	/* Allocate new entries. */
   1764 	for (i = 0; i < count; i++) {
   1765 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1766 		it->ex_sw = &esp[i];
   1767 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1768 	}
   1769 
   1770 	/* update execsw[] */
   1771 	exec_init(0);
   1772 	rw_exit(&exec_lock);
   1773 	return 0;
   1774 }
   1775 
   1776 /*
   1777  * Remove execsw[] entry.
   1778  */
   1779 int
   1780 exec_remove(struct execsw *esp, int count)
   1781 {
   1782 	struct exec_entry	*it, *next;
   1783 	int			i;
   1784 	const struct proclist_desc *pd;
   1785 	proc_t			*p;
   1786 
   1787 	if (count == 0) {
   1788 		return 0;
   1789 	}
   1790 
   1791 	/* Abort if any are busy. */
   1792 	rw_enter(&exec_lock, RW_WRITER);
   1793 	for (i = 0; i < count; i++) {
   1794 		mutex_enter(proc_lock);
   1795 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1796 			PROCLIST_FOREACH(p, pd->pd_list) {
   1797 				if (p->p_execsw == &esp[i]) {
   1798 					mutex_exit(proc_lock);
   1799 					rw_exit(&exec_lock);
   1800 					return EBUSY;
   1801 				}
   1802 			}
   1803 		}
   1804 		mutex_exit(proc_lock);
   1805 	}
   1806 
   1807 	/* None are busy, so remove them all. */
   1808 	for (i = 0; i < count; i++) {
   1809 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1810 			next = LIST_NEXT(it, ex_list);
   1811 			if (it->ex_sw == &esp[i]) {
   1812 				LIST_REMOVE(it, ex_list);
   1813 				kmem_free(it, sizeof(*it));
   1814 				break;
   1815 			}
   1816 		}
   1817 	}
   1818 
   1819 	/* update execsw[] */
   1820 	exec_init(0);
   1821 	rw_exit(&exec_lock);
   1822 	return 0;
   1823 }
   1824 
   1825 /*
   1826  * Initialize exec structures. If init_boot is true, also does necessary
   1827  * one-time initialization (it's called from main() that way).
   1828  * Once system is multiuser, this should be called with exec_lock held,
   1829  * i.e. via exec_{add|remove}().
   1830  */
   1831 int
   1832 exec_init(int init_boot)
   1833 {
   1834 	const struct execsw 	**sw;
   1835 	struct exec_entry	*ex;
   1836 	SLIST_HEAD(,exec_entry)	first;
   1837 	SLIST_HEAD(,exec_entry)	any;
   1838 	SLIST_HEAD(,exec_entry)	last;
   1839 	int			i, sz;
   1840 
   1841 	if (init_boot) {
   1842 		/* do one-time initializations */
   1843 		rw_init(&exec_lock);
   1844 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1845 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1846 		    "execargs", &exec_palloc, IPL_NONE);
   1847 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1848 	} else {
   1849 		KASSERT(rw_write_held(&exec_lock));
   1850 	}
   1851 
   1852 	/* Sort each entry onto the appropriate queue. */
   1853 	SLIST_INIT(&first);
   1854 	SLIST_INIT(&any);
   1855 	SLIST_INIT(&last);
   1856 	sz = 0;
   1857 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1858 		switch(ex->ex_sw->es_prio) {
   1859 		case EXECSW_PRIO_FIRST:
   1860 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1861 			break;
   1862 		case EXECSW_PRIO_ANY:
   1863 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1864 			break;
   1865 		case EXECSW_PRIO_LAST:
   1866 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1867 			break;
   1868 		default:
   1869 			panic("%s", __func__);
   1870 			break;
   1871 		}
   1872 		sz++;
   1873 	}
   1874 
   1875 	/*
   1876 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1877 	 * allocation.
   1878 	 */
   1879 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1880 	i = 0;
   1881 	SLIST_FOREACH(ex, &first, ex_slist) {
   1882 		sw[i++] = ex->ex_sw;
   1883 	}
   1884 	SLIST_FOREACH(ex, &any, ex_slist) {
   1885 		sw[i++] = ex->ex_sw;
   1886 	}
   1887 	SLIST_FOREACH(ex, &last, ex_slist) {
   1888 		sw[i++] = ex->ex_sw;
   1889 	}
   1890 
   1891 	/* Replace old execsw[] and free used memory. */
   1892 	if (execsw != NULL) {
   1893 		kmem_free(__UNCONST(execsw),
   1894 		    nexecs * sizeof(struct execsw *) + 1);
   1895 	}
   1896 	execsw = sw;
   1897 	nexecs = sz;
   1898 
   1899 	/* Figure out the maximum size of an exec header. */
   1900 	exec_maxhdrsz = sizeof(int);
   1901 	for (i = 0; i < nexecs; i++) {
   1902 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1903 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1904 	}
   1905 
   1906 	return 0;
   1907 }
   1908 
   1909 static int
   1910 exec_sigcode_map(struct proc *p, const struct emul *e)
   1911 {
   1912 	vaddr_t va;
   1913 	vsize_t sz;
   1914 	int error;
   1915 	struct uvm_object *uobj;
   1916 
   1917 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1918 
   1919 	if (e->e_sigobject == NULL || sz == 0) {
   1920 		return 0;
   1921 	}
   1922 
   1923 	/*
   1924 	 * If we don't have a sigobject for this emulation, create one.
   1925 	 *
   1926 	 * sigobject is an anonymous memory object (just like SYSV shared
   1927 	 * memory) that we keep a permanent reference to and that we map
   1928 	 * in all processes that need this sigcode. The creation is simple,
   1929 	 * we create an object, add a permanent reference to it, map it in
   1930 	 * kernel space, copy out the sigcode to it and unmap it.
   1931 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1932 	 * the way sys_mmap() would map it.
   1933 	 */
   1934 
   1935 	uobj = *e->e_sigobject;
   1936 	if (uobj == NULL) {
   1937 		mutex_enter(&sigobject_lock);
   1938 		if ((uobj = *e->e_sigobject) == NULL) {
   1939 			uobj = uao_create(sz, 0);
   1940 			(*uobj->pgops->pgo_reference)(uobj);
   1941 			va = vm_map_min(kernel_map);
   1942 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1943 			    uobj, 0, 0,
   1944 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1945 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1946 				printf("kernel mapping failed %d\n", error);
   1947 				(*uobj->pgops->pgo_detach)(uobj);
   1948 				mutex_exit(&sigobject_lock);
   1949 				return error;
   1950 			}
   1951 			memcpy((void *)va, e->e_sigcode, sz);
   1952 #ifdef PMAP_NEED_PROCWR
   1953 			pmap_procwr(&proc0, va, sz);
   1954 #endif
   1955 			uvm_unmap(kernel_map, va, va + round_page(sz));
   1956 			*e->e_sigobject = uobj;
   1957 		}
   1958 		mutex_exit(&sigobject_lock);
   1959 	}
   1960 
   1961 	/* Just a hint to uvm_map where to put it. */
   1962 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   1963 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1964 
   1965 #ifdef __alpha__
   1966 	/*
   1967 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   1968 	 * which causes the above calculation to put the sigcode at
   1969 	 * an invalid address.  Put it just below the text instead.
   1970 	 */
   1971 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   1972 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   1973 	}
   1974 #endif
   1975 
   1976 	(*uobj->pgops->pgo_reference)(uobj);
   1977 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   1978 			uobj, 0, 0,
   1979 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   1980 				    UVM_ADV_RANDOM, 0));
   1981 	if (error) {
   1982 		DPRINTF(("%s, %d: map %p "
   1983 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   1984 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   1985 		    va, error));
   1986 		(*uobj->pgops->pgo_detach)(uobj);
   1987 		return error;
   1988 	}
   1989 	p->p_sigctx.ps_sigcode = (void *)va;
   1990 	return 0;
   1991 }
   1992 
   1993 /*
   1994  * Release a refcount on spawn_exec_data and destroy memory, if this
   1995  * was the last one.
   1996  */
   1997 static void
   1998 spawn_exec_data_release(struct spawn_exec_data *data)
   1999 {
   2000 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   2001 		return;
   2002 
   2003 	cv_destroy(&data->sed_cv_child_ready);
   2004 	mutex_destroy(&data->sed_mtx_child);
   2005 
   2006 	if (data->sed_actions)
   2007 		posix_spawn_fa_free(data->sed_actions,
   2008 		    data->sed_actions->len);
   2009 	if (data->sed_attrs)
   2010 		kmem_free(data->sed_attrs,
   2011 		    sizeof(*data->sed_attrs));
   2012 	kmem_free(data, sizeof(*data));
   2013 }
   2014 
   2015 /*
   2016  * A child lwp of a posix_spawn operation starts here and ends up in
   2017  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   2018  * manipulations in between.
   2019  * The parent waits for the child, as it is not clear whether the child
   2020  * will be able to acquire its own exec_lock. If it can, the parent can
   2021  * be released early and continue running in parallel. If not (or if the
   2022  * magic debug flag is passed in the scheduler attribute struct), the
   2023  * child rides on the parent's exec lock until it is ready to return to
   2024  * to userland - and only then releases the parent. This method loses
   2025  * concurrency, but improves error reporting.
   2026  */
   2027 static void
   2028 spawn_return(void *arg)
   2029 {
   2030 	struct spawn_exec_data *spawn_data = arg;
   2031 	struct lwp *l = curlwp;
   2032 	int error, newfd;
   2033 	int ostat;
   2034 	size_t i;
   2035 	const struct posix_spawn_file_actions_entry *fae;
   2036 	pid_t ppid;
   2037 	register_t retval;
   2038 	bool have_reflock;
   2039 	bool parent_is_waiting = true;
   2040 
   2041 	/*
   2042 	 * Check if we can release parent early.
   2043 	 * We either need to have no sed_attrs, or sed_attrs does not
   2044 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   2045 	 * safe access to the parent proc (passed in sed_parent).
   2046 	 * We then try to get the exec_lock, and only if that works, we can
   2047 	 * release the parent here already.
   2048 	 */
   2049 	ppid = spawn_data->sed_parent->p_pid;
   2050 	if ((!spawn_data->sed_attrs
   2051 	    || (spawn_data->sed_attrs->sa_flags
   2052 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   2053 	    && rw_tryenter(&exec_lock, RW_READER)) {
   2054 		parent_is_waiting = false;
   2055 		mutex_enter(&spawn_data->sed_mtx_child);
   2056 		cv_signal(&spawn_data->sed_cv_child_ready);
   2057 		mutex_exit(&spawn_data->sed_mtx_child);
   2058 	}
   2059 
   2060 	/* don't allow debugger access yet */
   2061 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
   2062 	have_reflock = true;
   2063 
   2064 	error = 0;
   2065 	/* handle posix_spawn_file_actions */
   2066 	if (spawn_data->sed_actions != NULL) {
   2067 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   2068 			fae = &spawn_data->sed_actions->fae[i];
   2069 			switch (fae->fae_action) {
   2070 			case FAE_OPEN:
   2071 				if (fd_getfile(fae->fae_fildes) != NULL) {
   2072 					error = fd_close(fae->fae_fildes);
   2073 					if (error)
   2074 						break;
   2075 				}
   2076 				error = fd_open(fae->fae_path, fae->fae_oflag,
   2077 				    fae->fae_mode, &newfd);
   2078 				if (error)
   2079 					break;
   2080 				if (newfd != fae->fae_fildes) {
   2081 					error = dodup(l, newfd,
   2082 					    fae->fae_fildes, 0, &retval);
   2083 					if (fd_getfile(newfd) != NULL)
   2084 						fd_close(newfd);
   2085 				}
   2086 				break;
   2087 			case FAE_DUP2:
   2088 				error = dodup(l, fae->fae_fildes,
   2089 				    fae->fae_newfildes, 0, &retval);
   2090 				break;
   2091 			case FAE_CLOSE:
   2092 				if (fd_getfile(fae->fae_fildes) == NULL) {
   2093 					error = EBADF;
   2094 					break;
   2095 				}
   2096 				error = fd_close(fae->fae_fildes);
   2097 				break;
   2098 			}
   2099 			if (error)
   2100 				goto report_error;
   2101 		}
   2102 	}
   2103 
   2104 	/* handle posix_spawnattr */
   2105 	if (spawn_data->sed_attrs != NULL) {
   2106 		struct sigaction sigact;
   2107 		sigact._sa_u._sa_handler = SIG_DFL;
   2108 		sigact.sa_flags = 0;
   2109 
   2110 		/*
   2111 		 * set state to SSTOP so that this proc can be found by pid.
   2112 		 * see proc_enterprp, do_sched_setparam below
   2113 		 */
   2114 		mutex_enter(proc_lock);
   2115 		/*
   2116 		 * p_stat should be SACTIVE, so we need to adjust the
   2117 		 * parent's p_nstopchild here.  For safety, just make
   2118 		 * we're on the good side of SDEAD before we adjust.
   2119 		 */
   2120 		ostat = l->l_proc->p_stat;
   2121 		KASSERT(ostat < SSTOP);
   2122 		l->l_proc->p_stat = SSTOP;
   2123 		l->l_proc->p_waited = 0;
   2124 		l->l_proc->p_pptr->p_nstopchild++;
   2125 		mutex_exit(proc_lock);
   2126 
   2127 		/* Set process group */
   2128 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   2129 			pid_t mypid = l->l_proc->p_pid,
   2130 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   2131 
   2132 			if (pgrp == 0)
   2133 				pgrp = mypid;
   2134 
   2135 			error = proc_enterpgrp(spawn_data->sed_parent,
   2136 			    mypid, pgrp, false);
   2137 			if (error)
   2138 				goto report_error_stopped;
   2139 		}
   2140 
   2141 		/* Set scheduler policy */
   2142 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2143 			error = do_sched_setparam(l->l_proc->p_pid, 0,
   2144 			    spawn_data->sed_attrs->sa_schedpolicy,
   2145 			    &spawn_data->sed_attrs->sa_schedparam);
   2146 		else if (spawn_data->sed_attrs->sa_flags
   2147 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   2148 			error = do_sched_setparam(ppid, 0,
   2149 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   2150 		}
   2151 		if (error)
   2152 			goto report_error_stopped;
   2153 
   2154 		/* Reset user ID's */
   2155 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2156 			error = do_setresuid(l, -1,
   2157 			     kauth_cred_getgid(l->l_cred), -1,
   2158 			     ID_E_EQ_R | ID_E_EQ_S);
   2159 			if (error)
   2160 				goto report_error_stopped;
   2161 			error = do_setresuid(l, -1,
   2162 			    kauth_cred_getuid(l->l_cred), -1,
   2163 			    ID_E_EQ_R | ID_E_EQ_S);
   2164 			if (error)
   2165 				goto report_error_stopped;
   2166 		}
   2167 
   2168 		/* Set signal masks/defaults */
   2169 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2170 			mutex_enter(l->l_proc->p_lock);
   2171 			error = sigprocmask1(l, SIG_SETMASK,
   2172 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   2173 			mutex_exit(l->l_proc->p_lock);
   2174 			if (error)
   2175 				goto report_error_stopped;
   2176 		}
   2177 
   2178 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2179 			/*
   2180 			 * The following sigaction call is using a sigaction
   2181 			 * version 0 trampoline which is in the compatibility
   2182 			 * code only. This is not a problem because for SIG_DFL
   2183 			 * and SIG_IGN, the trampolines are now ignored. If they
   2184 			 * were not, this would be a problem because we are
   2185 			 * holding the exec_lock, and the compat code needs
   2186 			 * to do the same in order to replace the trampoline
   2187 			 * code of the process.
   2188 			 */
   2189 			for (i = 1; i <= NSIG; i++) {
   2190 				if (sigismember(
   2191 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   2192 					sigaction1(l, i, &sigact, NULL, NULL,
   2193 					    0);
   2194 			}
   2195 		}
   2196 		mutex_enter(proc_lock);
   2197 		l->l_proc->p_stat = ostat;
   2198 		l->l_proc->p_pptr->p_nstopchild--;
   2199 		mutex_exit(proc_lock);
   2200 	}
   2201 
   2202 	/* now do the real exec */
   2203 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2204 	    true);
   2205 	have_reflock = false;
   2206 	if (error == EJUSTRETURN)
   2207 		error = 0;
   2208 	else if (error)
   2209 		goto report_error;
   2210 
   2211 	if (parent_is_waiting) {
   2212 		mutex_enter(&spawn_data->sed_mtx_child);
   2213 		cv_signal(&spawn_data->sed_cv_child_ready);
   2214 		mutex_exit(&spawn_data->sed_mtx_child);
   2215 	}
   2216 
   2217 	/* release our refcount on the data */
   2218 	spawn_exec_data_release(spawn_data);
   2219 
   2220 	/* and finally: leave to userland for the first time */
   2221 	cpu_spawn_return(l);
   2222 
   2223 	/* NOTREACHED */
   2224 	return;
   2225 
   2226  report_error_stopped:
   2227 	mutex_enter(proc_lock);
   2228 	l->l_proc->p_stat = ostat;
   2229 	l->l_proc->p_pptr->p_nstopchild--;
   2230 	mutex_exit(proc_lock);
   2231  report_error:
   2232 	if (have_reflock) {
   2233 		/*
   2234 		 * We have not passed through execve_runproc(),
   2235 		 * which would have released the p_reflock and also
   2236 		 * taken ownership of the sed_exec part of spawn_data,
   2237 		 * so release/free both here.
   2238 		 */
   2239 		rw_exit(&l->l_proc->p_reflock);
   2240 		execve_free_data(&spawn_data->sed_exec);
   2241 	}
   2242 
   2243 	if (parent_is_waiting) {
   2244 		/* pass error to parent */
   2245 		mutex_enter(&spawn_data->sed_mtx_child);
   2246 		spawn_data->sed_error = error;
   2247 		cv_signal(&spawn_data->sed_cv_child_ready);
   2248 		mutex_exit(&spawn_data->sed_mtx_child);
   2249 	} else {
   2250 		rw_exit(&exec_lock);
   2251 	}
   2252 
   2253 	/* release our refcount on the data */
   2254 	spawn_exec_data_release(spawn_data);
   2255 
   2256 	/* done, exit */
   2257 	mutex_enter(l->l_proc->p_lock);
   2258 	/*
   2259 	 * Posix explicitly asks for an exit code of 127 if we report
   2260 	 * errors from the child process - so, unfortunately, there
   2261 	 * is no way to report a more exact error code.
   2262 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2263 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2264 	 */
   2265 	exit1(l, 127, 0);
   2266 }
   2267 
   2268 void
   2269 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2270 {
   2271 
   2272 	for (size_t i = 0; i < len; i++) {
   2273 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2274 		if (fae->fae_action != FAE_OPEN)
   2275 			continue;
   2276 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
   2277 	}
   2278 	if (fa->len > 0)
   2279 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2280 	kmem_free(fa, sizeof(*fa));
   2281 }
   2282 
   2283 static int
   2284 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2285     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2286 {
   2287 	struct posix_spawn_file_actions *fa;
   2288 	struct posix_spawn_file_actions_entry *fae;
   2289 	char *pbuf = NULL;
   2290 	int error;
   2291 	size_t i = 0;
   2292 
   2293 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2294 	error = copyin(ufa, fa, sizeof(*fa));
   2295 	if (error || fa->len == 0) {
   2296 		kmem_free(fa, sizeof(*fa));
   2297 		return error;	/* 0 if not an error, and len == 0 */
   2298 	}
   2299 
   2300 	if (fa->len > lim) {
   2301 		kmem_free(fa, sizeof(*fa));
   2302 		return EINVAL;
   2303 	}
   2304 
   2305 	fa->size = fa->len;
   2306 	size_t fal = fa->len * sizeof(*fae);
   2307 	fae = fa->fae;
   2308 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2309 	error = copyin(fae, fa->fae, fal);
   2310 	if (error)
   2311 		goto out;
   2312 
   2313 	pbuf = PNBUF_GET();
   2314 	for (; i < fa->len; i++) {
   2315 		fae = &fa->fae[i];
   2316 		if (fae->fae_action != FAE_OPEN)
   2317 			continue;
   2318 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2319 		if (error)
   2320 			goto out;
   2321 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2322 		memcpy(fae->fae_path, pbuf, fal);
   2323 	}
   2324 	PNBUF_PUT(pbuf);
   2325 
   2326 	*fap = fa;
   2327 	return 0;
   2328 out:
   2329 	if (pbuf)
   2330 		PNBUF_PUT(pbuf);
   2331 	posix_spawn_fa_free(fa, i);
   2332 	return error;
   2333 }
   2334 
   2335 int
   2336 check_posix_spawn(struct lwp *l1)
   2337 {
   2338 	int error, tnprocs, count;
   2339 	uid_t uid;
   2340 	struct proc *p1;
   2341 
   2342 	p1 = l1->l_proc;
   2343 	uid = kauth_cred_getuid(l1->l_cred);
   2344 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2345 
   2346 	/*
   2347 	 * Although process entries are dynamically created, we still keep
   2348 	 * a global limit on the maximum number we will create.
   2349 	 */
   2350 	if (__predict_false(tnprocs >= maxproc))
   2351 		error = -1;
   2352 	else
   2353 		error = kauth_authorize_process(l1->l_cred,
   2354 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2355 
   2356 	if (error) {
   2357 		atomic_dec_uint(&nprocs);
   2358 		return EAGAIN;
   2359 	}
   2360 
   2361 	/*
   2362 	 * Enforce limits.
   2363 	 */
   2364 	count = chgproccnt(uid, 1);
   2365 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2366 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2367 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2368 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2369 		(void)chgproccnt(uid, -1);
   2370 		atomic_dec_uint(&nprocs);
   2371 		return EAGAIN;
   2372 	}
   2373 
   2374 	return 0;
   2375 }
   2376 
   2377 int
   2378 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2379 	struct posix_spawn_file_actions *fa,
   2380 	struct posix_spawnattr *sa,
   2381 	char *const *argv, char *const *envp,
   2382 	execve_fetch_element_t fetch)
   2383 {
   2384 
   2385 	struct proc *p1, *p2;
   2386 	struct lwp *l2;
   2387 	int error;
   2388 	struct spawn_exec_data *spawn_data;
   2389 	vaddr_t uaddr;
   2390 	pid_t pid;
   2391 	bool have_exec_lock = false;
   2392 
   2393 	p1 = l1->l_proc;
   2394 
   2395 	/* Allocate and init spawn_data */
   2396 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2397 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2398 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2399 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2400 	mutex_enter(&spawn_data->sed_mtx_child);
   2401 
   2402 	/*
   2403 	 * Do the first part of the exec now, collect state
   2404 	 * in spawn_data.
   2405 	 */
   2406 	error = execve_loadvm(l1, path, argv,
   2407 	    envp, fetch, &spawn_data->sed_exec);
   2408 	if (error == EJUSTRETURN)
   2409 		error = 0;
   2410 	else if (error)
   2411 		goto error_exit;
   2412 
   2413 	have_exec_lock = true;
   2414 
   2415 	/*
   2416 	 * Allocate virtual address space for the U-area now, while it
   2417 	 * is still easy to abort the fork operation if we're out of
   2418 	 * kernel virtual address space.
   2419 	 */
   2420 	uaddr = uvm_uarea_alloc();
   2421 	if (__predict_false(uaddr == 0)) {
   2422 		error = ENOMEM;
   2423 		goto error_exit;
   2424 	}
   2425 
   2426 	/*
   2427 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2428 	 * replace it with its own before returning to userland
   2429 	 * in the child.
   2430 	 * This is a point of no return, we will have to go through
   2431 	 * the child proc to properly clean it up past this point.
   2432 	 */
   2433 	p2 = proc_alloc();
   2434 	pid = p2->p_pid;
   2435 
   2436 	/*
   2437 	 * Make a proc table entry for the new process.
   2438 	 * Start by zeroing the section of proc that is zero-initialized,
   2439 	 * then copy the section that is copied directly from the parent.
   2440 	 */
   2441 	memset(&p2->p_startzero, 0,
   2442 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2443 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2444 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2445 	p2->p_vmspace = proc0.p_vmspace;
   2446 
   2447 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2448 
   2449 	LIST_INIT(&p2->p_lwps);
   2450 	LIST_INIT(&p2->p_sigwaiters);
   2451 
   2452 	/*
   2453 	 * Duplicate sub-structures as needed.
   2454 	 * Increase reference counts on shared objects.
   2455 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2456 	 * handling are important in order to keep a consistent behaviour
   2457 	 * for the child after the fork.  If we are a 32-bit process, the
   2458 	 * child will be too.
   2459 	 */
   2460 	p2->p_flag =
   2461 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2462 	p2->p_emul = p1->p_emul;
   2463 	p2->p_execsw = p1->p_execsw;
   2464 
   2465 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2466 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2467 	rw_init(&p2->p_reflock);
   2468 	cv_init(&p2->p_waitcv, "wait");
   2469 	cv_init(&p2->p_lwpcv, "lwpwait");
   2470 
   2471 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2472 
   2473 	kauth_proc_fork(p1, p2);
   2474 
   2475 	p2->p_raslist = NULL;
   2476 	p2->p_fd = fd_copy();
   2477 
   2478 	/* XXX racy */
   2479 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2480 
   2481 	p2->p_cwdi = cwdinit();
   2482 
   2483 	/*
   2484 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2485 	 * we just need increase pl_refcnt.
   2486 	 */
   2487 	if (!p1->p_limit->pl_writeable) {
   2488 		lim_addref(p1->p_limit);
   2489 		p2->p_limit = p1->p_limit;
   2490 	} else {
   2491 		p2->p_limit = lim_copy(p1->p_limit);
   2492 	}
   2493 
   2494 	p2->p_lflag = 0;
   2495 	p2->p_sflag = 0;
   2496 	p2->p_slflag = 0;
   2497 	p2->p_pptr = p1;
   2498 	p2->p_ppid = p1->p_pid;
   2499 	LIST_INIT(&p2->p_children);
   2500 
   2501 	p2->p_aio = NULL;
   2502 
   2503 #ifdef KTRACE
   2504 	/*
   2505 	 * Copy traceflag and tracefile if enabled.
   2506 	 * If not inherited, these were zeroed above.
   2507 	 */
   2508 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2509 		mutex_enter(&ktrace_lock);
   2510 		p2->p_traceflag = p1->p_traceflag;
   2511 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2512 			ktradref(p2);
   2513 		mutex_exit(&ktrace_lock);
   2514 	}
   2515 #endif
   2516 
   2517 	/*
   2518 	 * Create signal actions for the child process.
   2519 	 */
   2520 	p2->p_sigacts = sigactsinit(p1, 0);
   2521 	mutex_enter(p1->p_lock);
   2522 	p2->p_sflag |=
   2523 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2524 	sched_proc_fork(p1, p2);
   2525 	mutex_exit(p1->p_lock);
   2526 
   2527 	p2->p_stflag = p1->p_stflag;
   2528 
   2529 	/*
   2530 	 * p_stats.
   2531 	 * Copy parts of p_stats, and zero out the rest.
   2532 	 */
   2533 	p2->p_stats = pstatscopy(p1->p_stats);
   2534 
   2535 	/* copy over machdep flags to the new proc */
   2536 	cpu_proc_fork(p1, p2);
   2537 
   2538 	/*
   2539 	 * Prepare remaining parts of spawn data
   2540 	 */
   2541 	spawn_data->sed_actions = fa;
   2542 	spawn_data->sed_attrs = sa;
   2543 
   2544 	spawn_data->sed_parent = p1;
   2545 
   2546 	/* create LWP */
   2547 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2548 	    &l2, l1->l_class);
   2549 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2550 
   2551 	/*
   2552 	 * Copy the credential so other references don't see our changes.
   2553 	 * Test to see if this is necessary first, since in the common case
   2554 	 * we won't need a private reference.
   2555 	 */
   2556 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2557 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2558 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2559 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2560 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2561 	}
   2562 
   2563 	/* Update the master credentials. */
   2564 	if (l2->l_cred != p2->p_cred) {
   2565 		kauth_cred_t ocred;
   2566 
   2567 		kauth_cred_hold(l2->l_cred);
   2568 		mutex_enter(p2->p_lock);
   2569 		ocred = p2->p_cred;
   2570 		p2->p_cred = l2->l_cred;
   2571 		mutex_exit(p2->p_lock);
   2572 		kauth_cred_free(ocred);
   2573 	}
   2574 
   2575 	*child_ok = true;
   2576 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2577 #if 0
   2578 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2579 #endif
   2580 
   2581 	/*
   2582 	 * It's now safe for the scheduler and other processes to see the
   2583 	 * child process.
   2584 	 */
   2585 	mutex_enter(proc_lock);
   2586 
   2587 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2588 		p2->p_lflag |= PL_CONTROLT;
   2589 
   2590 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2591 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2592 
   2593 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2594 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2595 
   2596 	p2->p_trace_enabled = trace_is_enabled(p2);
   2597 #ifdef __HAVE_SYSCALL_INTERN
   2598 	(*p2->p_emul->e_syscall_intern)(p2);
   2599 #endif
   2600 
   2601 	/*
   2602 	 * Make child runnable, set start time, and add to run queue except
   2603 	 * if the parent requested the child to start in SSTOP state.
   2604 	 */
   2605 	mutex_enter(p2->p_lock);
   2606 
   2607 	getmicrotime(&p2->p_stats->p_start);
   2608 
   2609 	lwp_lock(l2);
   2610 	KASSERT(p2->p_nrlwps == 1);
   2611 	p2->p_nrlwps = 1;
   2612 	p2->p_stat = SACTIVE;
   2613 	l2->l_stat = LSRUN;
   2614 	sched_enqueue(l2, false);
   2615 	lwp_unlock(l2);
   2616 
   2617 	mutex_exit(p2->p_lock);
   2618 	mutex_exit(proc_lock);
   2619 
   2620 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2621 	error = spawn_data->sed_error;
   2622 	mutex_exit(&spawn_data->sed_mtx_child);
   2623 	spawn_exec_data_release(spawn_data);
   2624 
   2625 	rw_exit(&p1->p_reflock);
   2626 	rw_exit(&exec_lock);
   2627 	have_exec_lock = false;
   2628 
   2629 	*pid_res = pid;
   2630 	return error;
   2631 
   2632  error_exit:
   2633 	if (have_exec_lock) {
   2634 		execve_free_data(&spawn_data->sed_exec);
   2635 		rw_exit(&p1->p_reflock);
   2636 		rw_exit(&exec_lock);
   2637 	}
   2638 	mutex_exit(&spawn_data->sed_mtx_child);
   2639 	spawn_exec_data_release(spawn_data);
   2640 
   2641 	return error;
   2642 }
   2643 
   2644 int
   2645 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2646     register_t *retval)
   2647 {
   2648 	/* {
   2649 		syscallarg(pid_t *) pid;
   2650 		syscallarg(const char *) path;
   2651 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2652 		syscallarg(const struct posix_spawnattr *) attrp;
   2653 		syscallarg(char *const *) argv;
   2654 		syscallarg(char *const *) envp;
   2655 	} */
   2656 
   2657 	int error;
   2658 	struct posix_spawn_file_actions *fa = NULL;
   2659 	struct posix_spawnattr *sa = NULL;
   2660 	pid_t pid;
   2661 	bool child_ok = false;
   2662 	rlim_t max_fileactions;
   2663 	proc_t *p = l1->l_proc;
   2664 
   2665 	error = check_posix_spawn(l1);
   2666 	if (error) {
   2667 		*retval = error;
   2668 		return 0;
   2669 	}
   2670 
   2671 	/* copy in file_actions struct */
   2672 	if (SCARG(uap, file_actions) != NULL) {
   2673 		max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2674 		    maxfiles);
   2675 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2676 		    max_fileactions);
   2677 		if (error)
   2678 			goto error_exit;
   2679 	}
   2680 
   2681 	/* copyin posix_spawnattr struct */
   2682 	if (SCARG(uap, attrp) != NULL) {
   2683 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2684 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2685 		if (error)
   2686 			goto error_exit;
   2687 	}
   2688 
   2689 	/*
   2690 	 * Do the spawn
   2691 	 */
   2692 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2693 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2694 	if (error)
   2695 		goto error_exit;
   2696 
   2697 	if (error == 0 && SCARG(uap, pid) != NULL)
   2698 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2699 
   2700 	*retval = error;
   2701 	return 0;
   2702 
   2703  error_exit:
   2704 	if (!child_ok) {
   2705 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2706 		atomic_dec_uint(&nprocs);
   2707 
   2708 		if (sa)
   2709 			kmem_free(sa, sizeof(*sa));
   2710 		if (fa)
   2711 			posix_spawn_fa_free(fa, fa->len);
   2712 	}
   2713 
   2714 	*retval = error;
   2715 	return 0;
   2716 }
   2717 
   2718 void
   2719 exec_free_emul_arg(struct exec_package *epp)
   2720 {
   2721 	if (epp->ep_emul_arg_free != NULL) {
   2722 		KASSERT(epp->ep_emul_arg != NULL);
   2723 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2724 		epp->ep_emul_arg_free = NULL;
   2725 		epp->ep_emul_arg = NULL;
   2726 	} else {
   2727 		KASSERT(epp->ep_emul_arg == NULL);
   2728 	}
   2729 }
   2730 
   2731 #ifdef DEBUG_EXEC
   2732 static void
   2733 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2734 {
   2735 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2736 	size_t j;
   2737 
   2738 	if (error == 0)
   2739 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2740 	else
   2741 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2742 		    epp->ep_vmcmds.evs_used, error));
   2743 
   2744 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2745 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2746 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2747 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2748 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2749 		    "pagedvn" :
   2750 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2751 		    "readvn" :
   2752 		    vp[j].ev_proc == vmcmd_map_zero ?
   2753 		    "zero" : "*unknown*",
   2754 		    vp[j].ev_addr, vp[j].ev_len,
   2755 		    vp[j].ev_offset, vp[j].ev_prot,
   2756 		    vp[j].ev_flags));
   2757 		if (error != 0 && j == x)
   2758 			DPRINTF(("     ^--- failed\n"));
   2759 	}
   2760 }
   2761 #endif
   2762