kern_exec.c revision 1.453 1 /* $NetBSD: kern_exec.c,v 1.453 2017/11/13 22:01:45 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.453 2017/11/13 22:01:45 christos Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108
109 #include <uvm/uvm_extern.h>
110
111 #include <machine/reg.h>
112
113 #include <compat/common/compat_util.h>
114
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USE_TOPDOWN_VM
117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122
123 struct execve_data;
124
125 extern int user_va0_disable;
126
127 static size_t calcargs(struct execve_data * restrict, const size_t);
128 static size_t calcstack(struct execve_data * restrict, const size_t);
129 static int copyoutargs(struct execve_data * restrict, struct lwp *,
130 char * const);
131 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
132 static int copyinargs(struct execve_data * restrict, char * const *,
133 char * const *, execve_fetch_element_t, char **);
134 static int copyinargstrs(struct execve_data * restrict, char * const *,
135 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
136 static int exec_sigcode_map(struct proc *, const struct emul *);
137
138 #if defined(DEBUG) && !defined(DEBUG_EXEC)
139 #define DEBUG_EXEC
140 #endif
141 #ifdef DEBUG_EXEC
142 #define DPRINTF(a) printf a
143 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
144 __LINE__, (s), (a), (b))
145 static void dump_vmcmds(const struct exec_package * const, size_t, int);
146 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
147 #else
148 #define DPRINTF(a)
149 #define COPYPRINTF(s, a, b)
150 #define DUMPVMCMDS(p, x, e) do {} while (0)
151 #endif /* DEBUG_EXEC */
152
153 /*
154 * DTrace SDT provider definitions
155 */
156 SDT_PROVIDER_DECLARE(proc);
157 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
158 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
159 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
160
161 /*
162 * Exec function switch:
163 *
164 * Note that each makecmds function is responsible for loading the
165 * exec package with the necessary functions for any exec-type-specific
166 * handling.
167 *
168 * Functions for specific exec types should be defined in their own
169 * header file.
170 */
171 static const struct execsw **execsw = NULL;
172 static int nexecs;
173
174 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
175
176 /* list of dynamically loaded execsw entries */
177 static LIST_HEAD(execlist_head, exec_entry) ex_head =
178 LIST_HEAD_INITIALIZER(ex_head);
179 struct exec_entry {
180 LIST_ENTRY(exec_entry) ex_list;
181 SLIST_ENTRY(exec_entry) ex_slist;
182 const struct execsw *ex_sw;
183 };
184
185 #ifndef __HAVE_SYSCALL_INTERN
186 void syscall(void);
187 #endif
188
189 /* NetBSD autoloadable syscalls */
190 #ifdef MODULAR
191 #include <kern/syscalls_autoload.c>
192 #endif
193
194 /* NetBSD emul struct */
195 struct emul emul_netbsd = {
196 .e_name = "netbsd",
197 #ifdef EMUL_NATIVEROOT
198 .e_path = EMUL_NATIVEROOT,
199 #else
200 .e_path = NULL,
201 #endif
202 #ifndef __HAVE_MINIMAL_EMUL
203 .e_flags = EMUL_HAS_SYS___syscall,
204 .e_errno = NULL,
205 .e_nosys = SYS_syscall,
206 .e_nsysent = SYS_NSYSENT,
207 #endif
208 #ifdef MODULAR
209 .e_sc_autoload = netbsd_syscalls_autoload,
210 #endif
211 .e_sysent = sysent,
212 #ifdef SYSCALL_DEBUG
213 .e_syscallnames = syscallnames,
214 #else
215 .e_syscallnames = NULL,
216 #endif
217 .e_sendsig = sendsig,
218 .e_trapsignal = trapsignal,
219 .e_tracesig = NULL,
220 .e_sigcode = NULL,
221 .e_esigcode = NULL,
222 .e_sigobject = NULL,
223 .e_setregs = setregs,
224 .e_proc_exec = NULL,
225 .e_proc_fork = NULL,
226 .e_proc_exit = NULL,
227 .e_lwp_fork = NULL,
228 .e_lwp_exit = NULL,
229 #ifdef __HAVE_SYSCALL_INTERN
230 .e_syscall_intern = syscall_intern,
231 #else
232 .e_syscall = syscall,
233 #endif
234 .e_sysctlovly = NULL,
235 .e_fault = NULL,
236 .e_vm_default_addr = uvm_default_mapaddr,
237 .e_usertrap = NULL,
238 .e_ucsize = sizeof(ucontext_t),
239 .e_startlwp = startlwp
240 };
241
242 /*
243 * Exec lock. Used to control access to execsw[] structures.
244 * This must not be static so that netbsd32 can access it, too.
245 */
246 krwlock_t exec_lock;
247
248 static kmutex_t sigobject_lock;
249
250 /*
251 * Data used between a loadvm and execve part of an "exec" operation
252 */
253 struct execve_data {
254 struct exec_package ed_pack;
255 struct pathbuf *ed_pathbuf;
256 struct vattr ed_attr;
257 struct ps_strings ed_arginfo;
258 char *ed_argp;
259 const char *ed_pathstring;
260 char *ed_resolvedpathbuf;
261 size_t ed_ps_strings_sz;
262 int ed_szsigcode;
263 size_t ed_argslen;
264 long ed_argc;
265 long ed_envc;
266 };
267
268 /*
269 * data passed from parent lwp to child during a posix_spawn()
270 */
271 struct spawn_exec_data {
272 struct execve_data sed_exec;
273 struct posix_spawn_file_actions
274 *sed_actions;
275 struct posix_spawnattr *sed_attrs;
276 struct proc *sed_parent;
277 kcondvar_t sed_cv_child_ready;
278 kmutex_t sed_mtx_child;
279 int sed_error;
280 volatile uint32_t sed_refcnt;
281 };
282
283 static struct vm_map *exec_map;
284 static struct pool exec_pool;
285
286 static void *
287 exec_pool_alloc(struct pool *pp, int flags)
288 {
289
290 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
291 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
292 }
293
294 static void
295 exec_pool_free(struct pool *pp, void *addr)
296 {
297
298 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
299 }
300
301 static struct pool_allocator exec_palloc = {
302 .pa_alloc = exec_pool_alloc,
303 .pa_free = exec_pool_free,
304 .pa_pagesz = NCARGS
305 };
306
307 /*
308 * check exec:
309 * given an "executable" described in the exec package's namei info,
310 * see what we can do with it.
311 *
312 * ON ENTRY:
313 * exec package with appropriate namei info
314 * lwp pointer of exec'ing lwp
315 * NO SELF-LOCKED VNODES
316 *
317 * ON EXIT:
318 * error: nothing held, etc. exec header still allocated.
319 * ok: filled exec package, executable's vnode (unlocked).
320 *
321 * EXEC SWITCH ENTRY:
322 * Locked vnode to check, exec package, proc.
323 *
324 * EXEC SWITCH EXIT:
325 * ok: return 0, filled exec package, executable's vnode (unlocked).
326 * error: destructive:
327 * everything deallocated execept exec header.
328 * non-destructive:
329 * error code, executable's vnode (unlocked),
330 * exec header unmodified.
331 */
332 int
333 /*ARGSUSED*/
334 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
335 {
336 int error, i;
337 struct vnode *vp;
338 struct nameidata nd;
339 size_t resid;
340
341 #if 1
342 // grab the absolute pathbuf here before namei() trashes it.
343 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
344 #endif
345 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
346
347 /* first get the vnode */
348 if ((error = namei(&nd)) != 0)
349 return error;
350 epp->ep_vp = vp = nd.ni_vp;
351 #if 0
352 /*
353 * XXX: can't use nd.ni_pnbuf, because although pb contains an
354 * absolute path, nd.ni_pnbuf does not if the path contains symlinks.
355 */
356 /* normally this can't fail */
357 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
358 KASSERT(error == 0);
359 #endif
360
361 #ifdef DIAGNOSTIC
362 /* paranoia (take this out once namei stuff stabilizes) */
363 memset(nd.ni_pnbuf, '~', PATH_MAX);
364 #endif
365
366 /* check access and type */
367 if (vp->v_type != VREG) {
368 error = EACCES;
369 goto bad1;
370 }
371 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
372 goto bad1;
373
374 /* get attributes */
375 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
376 goto bad1;
377
378 /* Check mount point */
379 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
380 error = EACCES;
381 goto bad1;
382 }
383 if (vp->v_mount->mnt_flag & MNT_NOSUID)
384 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
385
386 /* try to open it */
387 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
388 goto bad1;
389
390 /* unlock vp, since we need it unlocked from here on out. */
391 VOP_UNLOCK(vp);
392
393 #if NVERIEXEC > 0
394 error = veriexec_verify(l, vp, epp->ep_resolvedname,
395 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
396 NULL);
397 if (error)
398 goto bad2;
399 #endif /* NVERIEXEC > 0 */
400
401 #ifdef PAX_SEGVGUARD
402 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
403 if (error)
404 goto bad2;
405 #endif /* PAX_SEGVGUARD */
406
407 /* now we have the file, get the exec header */
408 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
409 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
410 if (error)
411 goto bad2;
412 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
413
414 /*
415 * Set up default address space limits. Can be overridden
416 * by individual exec packages.
417 */
418 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
419 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
420
421 /*
422 * set up the vmcmds for creation of the process
423 * address space
424 */
425 error = ENOEXEC;
426 for (i = 0; i < nexecs; i++) {
427 int newerror;
428
429 epp->ep_esch = execsw[i];
430 newerror = (*execsw[i]->es_makecmds)(l, epp);
431
432 if (!newerror) {
433 /* Seems ok: check that entry point is not too high */
434 if (epp->ep_entry > epp->ep_vm_maxaddr) {
435 #ifdef DIAGNOSTIC
436 printf("%s: rejecting %p due to "
437 "too high entry address (> %p)\n",
438 __func__, (void *)epp->ep_entry,
439 (void *)epp->ep_vm_maxaddr);
440 #endif
441 error = ENOEXEC;
442 break;
443 }
444 /* Seems ok: check that entry point is not too low */
445 if (epp->ep_entry < epp->ep_vm_minaddr) {
446 #ifdef DIAGNOSTIC
447 printf("%s: rejecting %p due to "
448 "too low entry address (< %p)\n",
449 __func__, (void *)epp->ep_entry,
450 (void *)epp->ep_vm_minaddr);
451 #endif
452 error = ENOEXEC;
453 break;
454 }
455
456 /* check limits */
457 if ((epp->ep_tsize > MAXTSIZ) ||
458 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
459 [RLIMIT_DATA].rlim_cur)) {
460 #ifdef DIAGNOSTIC
461 printf("%s: rejecting due to "
462 "limits (t=%llu > %llu || d=%llu > %llu)\n",
463 __func__,
464 (unsigned long long)epp->ep_tsize,
465 (unsigned long long)MAXTSIZ,
466 (unsigned long long)epp->ep_dsize,
467 (unsigned long long)
468 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
469 #endif
470 error = ENOMEM;
471 break;
472 }
473 return 0;
474 }
475
476 /*
477 * Reset all the fields that may have been modified by the
478 * loader.
479 */
480 KASSERT(epp->ep_emul_arg == NULL);
481 if (epp->ep_emul_root != NULL) {
482 vrele(epp->ep_emul_root);
483 epp->ep_emul_root = NULL;
484 }
485 if (epp->ep_interp != NULL) {
486 vrele(epp->ep_interp);
487 epp->ep_interp = NULL;
488 }
489 epp->ep_pax_flags = 0;
490
491 /* make sure the first "interesting" error code is saved. */
492 if (error == ENOEXEC)
493 error = newerror;
494
495 if (epp->ep_flags & EXEC_DESTR)
496 /* Error from "#!" code, tidied up by recursive call */
497 return error;
498 }
499
500 /* not found, error */
501
502 /*
503 * free any vmspace-creation commands,
504 * and release their references
505 */
506 kill_vmcmds(&epp->ep_vmcmds);
507
508 bad2:
509 /*
510 * close and release the vnode, restore the old one, free the
511 * pathname buf, and punt.
512 */
513 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
514 VOP_CLOSE(vp, FREAD, l->l_cred);
515 vput(vp);
516 return error;
517
518 bad1:
519 /*
520 * free the namei pathname buffer, and put the vnode
521 * (which we don't yet have open).
522 */
523 vput(vp); /* was still locked */
524 return error;
525 }
526
527 #ifdef __MACHINE_STACK_GROWS_UP
528 #define STACK_PTHREADSPACE NBPG
529 #else
530 #define STACK_PTHREADSPACE 0
531 #endif
532
533 static int
534 execve_fetch_element(char * const *array, size_t index, char **value)
535 {
536 return copyin(array + index, value, sizeof(*value));
537 }
538
539 /*
540 * exec system call
541 */
542 int
543 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
544 {
545 /* {
546 syscallarg(const char *) path;
547 syscallarg(char * const *) argp;
548 syscallarg(char * const *) envp;
549 } */
550
551 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
552 SCARG(uap, envp), execve_fetch_element);
553 }
554
555 int
556 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
557 register_t *retval)
558 {
559 /* {
560 syscallarg(int) fd;
561 syscallarg(char * const *) argp;
562 syscallarg(char * const *) envp;
563 } */
564
565 return ENOSYS;
566 }
567
568 /*
569 * Load modules to try and execute an image that we do not understand.
570 * If no execsw entries are present, we load those likely to be needed
571 * in order to run native images only. Otherwise, we autoload all
572 * possible modules that could let us run the binary. XXX lame
573 */
574 static void
575 exec_autoload(void)
576 {
577 #ifdef MODULAR
578 static const char * const native[] = {
579 "exec_elf32",
580 "exec_elf64",
581 "exec_script",
582 NULL
583 };
584 static const char * const compat[] = {
585 "exec_elf32",
586 "exec_elf64",
587 "exec_script",
588 "exec_aout",
589 "exec_coff",
590 "exec_ecoff",
591 "compat_aoutm68k",
592 "compat_netbsd32",
593 "compat_sunos",
594 "compat_sunos32",
595 "compat_ultrix",
596 NULL
597 };
598 char const * const *list;
599 int i;
600
601 list = (nexecs == 0 ? native : compat);
602 for (i = 0; list[i] != NULL; i++) {
603 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
604 continue;
605 }
606 yield();
607 }
608 #endif
609 }
610
611 static int
612 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp,
613 size_t *offs)
614 {
615 char *path, *bp;
616 size_t len, tlen;
617 int error;
618 struct cwdinfo *cwdi;
619
620 path = PNBUF_GET();
621 error = copyinstr(upath, path, MAXPATHLEN, &len);
622 if (error) {
623 PNBUF_PUT(path);
624 DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
625 return error;
626 }
627
628 if (path[0] == '/') {
629 *offs = 0;
630 goto out;
631 }
632
633 len++;
634 if (len + 1 >= MAXPATHLEN)
635 goto out;
636 bp = path + MAXPATHLEN - len;
637 memmove(bp, path, len);
638 *(--bp) = '/';
639
640 cwdi = l->l_proc->p_cwdi;
641 rw_enter(&cwdi->cwdi_lock, RW_READER);
642 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
643 GETCWD_CHECK_ACCESS, l);
644 rw_exit(&cwdi->cwdi_lock);
645
646 if (error) {
647 DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
648 error));
649 goto out;
650 }
651 tlen = path + MAXPATHLEN - bp;
652
653 memmove(path, bp, tlen);
654 path[tlen] = '\0';
655 *offs = tlen - len;
656 out:
657 *pbp = pathbuf_assimilate(path);
658 return 0;
659 }
660
661 vaddr_t
662 exec_vm_minaddr(vaddr_t va_min)
663 {
664 /*
665 * Increase va_min if we don't want NULL to be mappable by the
666 * process.
667 */
668 #define VM_MIN_GUARD PAGE_SIZE
669 if (user_va0_disable && (va_min < VM_MIN_GUARD))
670 return VM_MIN_GUARD;
671 return va_min;
672 }
673
674 static int
675 execve_loadvm(struct lwp *l, const char *path, char * const *args,
676 char * const *envs, execve_fetch_element_t fetch_element,
677 struct execve_data * restrict data)
678 {
679 struct exec_package * const epp = &data->ed_pack;
680 int error;
681 struct proc *p;
682 char *dp;
683 u_int modgen;
684 size_t offs = 0; // XXX: GCC
685
686 KASSERT(data != NULL);
687
688 p = l->l_proc;
689 modgen = 0;
690
691 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
692
693 /*
694 * Check if we have exceeded our number of processes limit.
695 * This is so that we handle the case where a root daemon
696 * forked, ran setuid to become the desired user and is trying
697 * to exec. The obvious place to do the reference counting check
698 * is setuid(), but we don't do the reference counting check there
699 * like other OS's do because then all the programs that use setuid()
700 * must be modified to check the return code of setuid() and exit().
701 * It is dangerous to make setuid() fail, because it fails open and
702 * the program will continue to run as root. If we make it succeed
703 * and return an error code, again we are not enforcing the limit.
704 * The best place to enforce the limit is here, when the process tries
705 * to execute a new image, because eventually the process will need
706 * to call exec in order to do something useful.
707 */
708 retry:
709 if (p->p_flag & PK_SUGID) {
710 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
711 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
712 &p->p_rlimit[RLIMIT_NPROC],
713 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
714 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
715 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
716 return EAGAIN;
717 }
718
719 /*
720 * Drain existing references and forbid new ones. The process
721 * should be left alone until we're done here. This is necessary
722 * to avoid race conditions - e.g. in ptrace() - that might allow
723 * a local user to illicitly obtain elevated privileges.
724 */
725 rw_enter(&p->p_reflock, RW_WRITER);
726
727 /*
728 * Init the namei data to point the file user's program name.
729 * This is done here rather than in check_exec(), so that it's
730 * possible to override this settings if any of makecmd/probe
731 * functions call check_exec() recursively - for example,
732 * see exec_script_makecmds().
733 */
734 if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0)
735 goto clrflg;
736 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
737 data->ed_resolvedpathbuf = PNBUF_GET();
738
739 /*
740 * initialize the fields of the exec package.
741 */
742 epp->ep_kname = data->ed_pathstring + offs;
743 epp->ep_resolvedname = data->ed_resolvedpathbuf;
744 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
745 epp->ep_hdrlen = exec_maxhdrsz;
746 epp->ep_hdrvalid = 0;
747 epp->ep_emul_arg = NULL;
748 epp->ep_emul_arg_free = NULL;
749 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
750 epp->ep_vap = &data->ed_attr;
751 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
752 MD_TOPDOWN_INIT(epp);
753 epp->ep_emul_root = NULL;
754 epp->ep_interp = NULL;
755 epp->ep_esch = NULL;
756 epp->ep_pax_flags = 0;
757 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
758
759 rw_enter(&exec_lock, RW_READER);
760
761 /* see if we can run it. */
762 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
763 if (error != ENOENT && error != EACCES) {
764 DPRINTF(("%s: check exec failed for %s, error %d\n",
765 __func__, epp->ep_kname, error));
766 }
767 goto freehdr;
768 }
769
770 /* allocate an argument buffer */
771 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
772 KASSERT(data->ed_argp != NULL);
773 dp = data->ed_argp;
774
775 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
776 goto bad;
777 }
778
779 /*
780 * Calculate the new stack size.
781 */
782
783 #ifdef __MACHINE_STACK_GROWS_UP
784 /*
785 * copyargs() fills argc/argv/envp from the lower address even on
786 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
787 * so that _rtld() use it.
788 */
789 #define RTLD_GAP 32
790 #else
791 #define RTLD_GAP 0
792 #endif
793
794 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
795
796 data->ed_argslen = calcargs(data, argenvstrlen);
797
798 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
799
800 if (len > epp->ep_ssize) {
801 /* in effect, compare to initial limit */
802 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
803 error = ENOMEM;
804 goto bad;
805 }
806 /* adjust "active stack depth" for process VSZ */
807 epp->ep_ssize = len;
808
809 return 0;
810
811 bad:
812 /* free the vmspace-creation commands, and release their references */
813 kill_vmcmds(&epp->ep_vmcmds);
814 /* kill any opened file descriptor, if necessary */
815 if (epp->ep_flags & EXEC_HASFD) {
816 epp->ep_flags &= ~EXEC_HASFD;
817 fd_close(epp->ep_fd);
818 }
819 /* close and put the exec'd file */
820 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
821 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
822 vput(epp->ep_vp);
823 pool_put(&exec_pool, data->ed_argp);
824
825 freehdr:
826 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
827 if (epp->ep_emul_root != NULL)
828 vrele(epp->ep_emul_root);
829 if (epp->ep_interp != NULL)
830 vrele(epp->ep_interp);
831
832 rw_exit(&exec_lock);
833
834 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
835 pathbuf_destroy(data->ed_pathbuf);
836 PNBUF_PUT(data->ed_resolvedpathbuf);
837
838 clrflg:
839 rw_exit(&p->p_reflock);
840
841 if (modgen != module_gen && error == ENOEXEC) {
842 modgen = module_gen;
843 exec_autoload();
844 goto retry;
845 }
846
847 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
848 return error;
849 }
850
851 static int
852 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
853 {
854 struct exec_package * const epp = &data->ed_pack;
855 struct proc *p = l->l_proc;
856 struct exec_vmcmd *base_vcp;
857 int error = 0;
858 size_t i;
859
860 /* record proc's vnode, for use by procfs and others */
861 if (p->p_textvp)
862 vrele(p->p_textvp);
863 vref(epp->ep_vp);
864 p->p_textvp = epp->ep_vp;
865
866 /* create the new process's VM space by running the vmcmds */
867 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
868
869 #ifdef TRACE_EXEC
870 DUMPVMCMDS(epp, 0, 0);
871 #endif
872
873 base_vcp = NULL;
874
875 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
876 struct exec_vmcmd *vcp;
877
878 vcp = &epp->ep_vmcmds.evs_cmds[i];
879 if (vcp->ev_flags & VMCMD_RELATIVE) {
880 KASSERTMSG(base_vcp != NULL,
881 "%s: relative vmcmd with no base", __func__);
882 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
883 "%s: illegal base & relative vmcmd", __func__);
884 vcp->ev_addr += base_vcp->ev_addr;
885 }
886 error = (*vcp->ev_proc)(l, vcp);
887 if (error)
888 DUMPVMCMDS(epp, i, error);
889 if (vcp->ev_flags & VMCMD_BASE)
890 base_vcp = vcp;
891 }
892
893 /* free the vmspace-creation commands, and release their references */
894 kill_vmcmds(&epp->ep_vmcmds);
895
896 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
897 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
898 vput(epp->ep_vp);
899
900 /* if an error happened, deallocate and punt */
901 if (error != 0) {
902 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
903 }
904 return error;
905 }
906
907 static void
908 execve_free_data(struct execve_data *data)
909 {
910 struct exec_package * const epp = &data->ed_pack;
911
912 /* free the vmspace-creation commands, and release their references */
913 kill_vmcmds(&epp->ep_vmcmds);
914 /* kill any opened file descriptor, if necessary */
915 if (epp->ep_flags & EXEC_HASFD) {
916 epp->ep_flags &= ~EXEC_HASFD;
917 fd_close(epp->ep_fd);
918 }
919
920 /* close and put the exec'd file */
921 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
922 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
923 vput(epp->ep_vp);
924 pool_put(&exec_pool, data->ed_argp);
925
926 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
927 if (epp->ep_emul_root != NULL)
928 vrele(epp->ep_emul_root);
929 if (epp->ep_interp != NULL)
930 vrele(epp->ep_interp);
931
932 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
933 pathbuf_destroy(data->ed_pathbuf);
934 PNBUF_PUT(data->ed_resolvedpathbuf);
935 }
936
937 static void
938 pathexec(struct proc *p, const char *resolvedname)
939 {
940 KASSERT(resolvedname[0] == '/');
941
942 /* set command name & other accounting info */
943 strlcpy(p->p_comm, strrchr(resolvedname, '/') + 1, sizeof(p->p_comm));
944
945 kmem_strfree(p->p_path);
946 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
947 }
948
949 /* XXX elsewhere */
950 static int
951 credexec(struct lwp *l, struct vattr *attr)
952 {
953 struct proc *p = l->l_proc;
954 int error;
955
956 /*
957 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
958 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
959 * out additional references on the process for the moment.
960 */
961 if ((p->p_slflag & PSL_TRACED) == 0 &&
962
963 (((attr->va_mode & S_ISUID) != 0 &&
964 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
965
966 ((attr->va_mode & S_ISGID) != 0 &&
967 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
968 /*
969 * Mark the process as SUGID before we do
970 * anything that might block.
971 */
972 proc_crmod_enter();
973 proc_crmod_leave(NULL, NULL, true);
974
975 /* Make sure file descriptors 0..2 are in use. */
976 if ((error = fd_checkstd()) != 0) {
977 DPRINTF(("%s: fdcheckstd failed %d\n",
978 __func__, error));
979 return error;
980 }
981
982 /*
983 * Copy the credential so other references don't see our
984 * changes.
985 */
986 l->l_cred = kauth_cred_copy(l->l_cred);
987 #ifdef KTRACE
988 /*
989 * If the persistent trace flag isn't set, turn off.
990 */
991 if (p->p_tracep) {
992 mutex_enter(&ktrace_lock);
993 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
994 ktrderef(p);
995 mutex_exit(&ktrace_lock);
996 }
997 #endif
998 if (attr->va_mode & S_ISUID)
999 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1000 if (attr->va_mode & S_ISGID)
1001 kauth_cred_setegid(l->l_cred, attr->va_gid);
1002 } else {
1003 if (kauth_cred_geteuid(l->l_cred) ==
1004 kauth_cred_getuid(l->l_cred) &&
1005 kauth_cred_getegid(l->l_cred) ==
1006 kauth_cred_getgid(l->l_cred))
1007 p->p_flag &= ~PK_SUGID;
1008 }
1009
1010 /*
1011 * Copy the credential so other references don't see our changes.
1012 * Test to see if this is necessary first, since in the common case
1013 * we won't need a private reference.
1014 */
1015 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1016 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1017 l->l_cred = kauth_cred_copy(l->l_cred);
1018 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1019 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1020 }
1021
1022 /* Update the master credentials. */
1023 if (l->l_cred != p->p_cred) {
1024 kauth_cred_t ocred;
1025
1026 kauth_cred_hold(l->l_cred);
1027 mutex_enter(p->p_lock);
1028 ocred = p->p_cred;
1029 p->p_cred = l->l_cred;
1030 mutex_exit(p->p_lock);
1031 kauth_cred_free(ocred);
1032 }
1033
1034 return 0;
1035 }
1036
1037 static void
1038 emulexec(struct lwp *l, struct exec_package *epp)
1039 {
1040 struct proc *p = l->l_proc;
1041
1042 /* The emulation root will usually have been found when we looked
1043 * for the elf interpreter (or similar), if not look now. */
1044 if (epp->ep_esch->es_emul->e_path != NULL &&
1045 epp->ep_emul_root == NULL)
1046 emul_find_root(l, epp);
1047
1048 /* Any old emulation root got removed by fdcloseexec */
1049 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1050 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1051 rw_exit(&p->p_cwdi->cwdi_lock);
1052 epp->ep_emul_root = NULL;
1053 if (epp->ep_interp != NULL)
1054 vrele(epp->ep_interp);
1055
1056 /*
1057 * Call emulation specific exec hook. This can setup per-process
1058 * p->p_emuldata or do any other per-process stuff an emulation needs.
1059 *
1060 * If we are executing process of different emulation than the
1061 * original forked process, call e_proc_exit() of the old emulation
1062 * first, then e_proc_exec() of new emulation. If the emulation is
1063 * same, the exec hook code should deallocate any old emulation
1064 * resources held previously by this process.
1065 */
1066 if (p->p_emul && p->p_emul->e_proc_exit
1067 && p->p_emul != epp->ep_esch->es_emul)
1068 (*p->p_emul->e_proc_exit)(p);
1069
1070 /*
1071 * This is now LWP 1.
1072 */
1073 /* XXX elsewhere */
1074 mutex_enter(p->p_lock);
1075 p->p_nlwpid = 1;
1076 l->l_lid = 1;
1077 mutex_exit(p->p_lock);
1078
1079 /*
1080 * Call exec hook. Emulation code may NOT store reference to anything
1081 * from &pack.
1082 */
1083 if (epp->ep_esch->es_emul->e_proc_exec)
1084 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1085
1086 /* update p_emul, the old value is no longer needed */
1087 p->p_emul = epp->ep_esch->es_emul;
1088
1089 /* ...and the same for p_execsw */
1090 p->p_execsw = epp->ep_esch;
1091
1092 #ifdef __HAVE_SYSCALL_INTERN
1093 (*p->p_emul->e_syscall_intern)(p);
1094 #endif
1095 ktremul();
1096 }
1097
1098 static int
1099 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1100 bool no_local_exec_lock, bool is_spawn)
1101 {
1102 struct exec_package * const epp = &data->ed_pack;
1103 int error = 0;
1104 struct proc *p;
1105
1106 /*
1107 * In case of a posix_spawn operation, the child doing the exec
1108 * might not hold the reader lock on exec_lock, but the parent
1109 * will do this instead.
1110 */
1111 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1112 KASSERT(!no_local_exec_lock || is_spawn);
1113 KASSERT(data != NULL);
1114
1115 p = l->l_proc;
1116
1117 /* Get rid of other LWPs. */
1118 if (p->p_nlwps > 1) {
1119 mutex_enter(p->p_lock);
1120 exit_lwps(l);
1121 mutex_exit(p->p_lock);
1122 }
1123 KDASSERT(p->p_nlwps == 1);
1124
1125 /* Destroy any lwpctl info. */
1126 if (p->p_lwpctl != NULL)
1127 lwp_ctl_exit();
1128
1129 /* Remove POSIX timers */
1130 timers_free(p, TIMERS_POSIX);
1131
1132 /* Set the PaX flags. */
1133 pax_set_flags(epp, p);
1134
1135 /*
1136 * Do whatever is necessary to prepare the address space
1137 * for remapping. Note that this might replace the current
1138 * vmspace with another!
1139 */
1140 if (is_spawn)
1141 uvmspace_spawn(l, epp->ep_vm_minaddr,
1142 epp->ep_vm_maxaddr,
1143 epp->ep_flags & EXEC_TOPDOWN_VM);
1144 else
1145 uvmspace_exec(l, epp->ep_vm_minaddr,
1146 epp->ep_vm_maxaddr,
1147 epp->ep_flags & EXEC_TOPDOWN_VM);
1148
1149 struct vmspace *vm;
1150 vm = p->p_vmspace;
1151 vm->vm_taddr = (void *)epp->ep_taddr;
1152 vm->vm_tsize = btoc(epp->ep_tsize);
1153 vm->vm_daddr = (void*)epp->ep_daddr;
1154 vm->vm_dsize = btoc(epp->ep_dsize);
1155 vm->vm_ssize = btoc(epp->ep_ssize);
1156 vm->vm_issize = 0;
1157 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1158 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1159
1160 pax_aslr_init_vm(l, vm, epp);
1161
1162 /* Now map address space. */
1163 error = execve_dovmcmds(l, data);
1164 if (error != 0)
1165 goto exec_abort;
1166
1167 pathexec(p, epp->ep_resolvedname);
1168
1169 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1170
1171 error = copyoutargs(data, l, newstack);
1172 if (error != 0)
1173 goto exec_abort;
1174
1175 cwdexec(p);
1176 fd_closeexec(); /* handle close on exec */
1177
1178 if (__predict_false(ktrace_on))
1179 fd_ktrexecfd();
1180
1181 execsigs(p); /* reset caught signals */
1182
1183 mutex_enter(p->p_lock);
1184 l->l_ctxlink = NULL; /* reset ucontext link */
1185 p->p_acflag &= ~AFORK;
1186 p->p_flag |= PK_EXEC;
1187 mutex_exit(p->p_lock);
1188
1189 /*
1190 * Stop profiling.
1191 */
1192 if ((p->p_stflag & PST_PROFIL) != 0) {
1193 mutex_spin_enter(&p->p_stmutex);
1194 stopprofclock(p);
1195 mutex_spin_exit(&p->p_stmutex);
1196 }
1197
1198 /*
1199 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1200 * exited and exec()/exit() are the only places it will be cleared.
1201 */
1202 if ((p->p_lflag & PL_PPWAIT) != 0) {
1203 mutex_enter(proc_lock);
1204 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1205 p->p_lflag &= ~PL_PPWAIT;
1206 cv_broadcast(&p->p_pptr->p_waitcv);
1207 mutex_exit(proc_lock);
1208 }
1209
1210 error = credexec(l, &data->ed_attr);
1211 if (error)
1212 goto exec_abort;
1213
1214 #if defined(__HAVE_RAS)
1215 /*
1216 * Remove all RASs from the address space.
1217 */
1218 ras_purgeall();
1219 #endif
1220
1221 doexechooks(p);
1222
1223 /*
1224 * Set initial SP at the top of the stack.
1225 *
1226 * Note that on machines where stack grows up (e.g. hppa), SP points to
1227 * the end of arg/env strings. Userland guesses the address of argc
1228 * via ps_strings::ps_argvstr.
1229 */
1230
1231 /* Setup new registers and do misc. setup. */
1232 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1233 if (epp->ep_esch->es_setregs)
1234 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1235
1236 /* Provide a consistent LWP private setting */
1237 (void)lwp_setprivate(l, NULL);
1238
1239 /* Discard all PCU state; need to start fresh */
1240 pcu_discard_all(l);
1241
1242 /* map the process's signal trampoline code */
1243 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1244 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1245 goto exec_abort;
1246 }
1247
1248 pool_put(&exec_pool, data->ed_argp);
1249
1250 /* notify others that we exec'd */
1251 KNOTE(&p->p_klist, NOTE_EXEC);
1252
1253 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1254
1255 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1256
1257 emulexec(l, epp);
1258
1259 /* Allow new references from the debugger/procfs. */
1260 rw_exit(&p->p_reflock);
1261 if (!no_local_exec_lock)
1262 rw_exit(&exec_lock);
1263
1264 mutex_enter(proc_lock);
1265
1266 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1267 ksiginfo_t ksi;
1268
1269 KSI_INIT_EMPTY(&ksi);
1270 ksi.ksi_signo = SIGTRAP;
1271 ksi.ksi_code = TRAP_EXEC;
1272 ksi.ksi_lid = l->l_lid;
1273 kpsignal(p, &ksi, NULL);
1274 }
1275
1276 if (p->p_sflag & PS_STOPEXEC) {
1277 ksiginfoq_t kq;
1278
1279 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1280 p->p_pptr->p_nstopchild++;
1281 p->p_waited = 0;
1282 mutex_enter(p->p_lock);
1283 ksiginfo_queue_init(&kq);
1284 sigclearall(p, &contsigmask, &kq);
1285 lwp_lock(l);
1286 l->l_stat = LSSTOP;
1287 p->p_stat = SSTOP;
1288 p->p_nrlwps--;
1289 lwp_unlock(l);
1290 mutex_exit(p->p_lock);
1291 mutex_exit(proc_lock);
1292 lwp_lock(l);
1293 mi_switch(l);
1294 ksiginfo_queue_drain(&kq);
1295 KERNEL_LOCK(l->l_biglocks, l);
1296 } else {
1297 mutex_exit(proc_lock);
1298 }
1299
1300 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1301 pathbuf_destroy(data->ed_pathbuf);
1302 PNBUF_PUT(data->ed_resolvedpathbuf);
1303 #ifdef TRACE_EXEC
1304 DPRINTF(("%s finished\n", __func__));
1305 #endif
1306 return EJUSTRETURN;
1307
1308 exec_abort:
1309 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1310 rw_exit(&p->p_reflock);
1311 if (!no_local_exec_lock)
1312 rw_exit(&exec_lock);
1313
1314 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1315 pathbuf_destroy(data->ed_pathbuf);
1316 PNBUF_PUT(data->ed_resolvedpathbuf);
1317
1318 /*
1319 * the old process doesn't exist anymore. exit gracefully.
1320 * get rid of the (new) address space we have created, if any, get rid
1321 * of our namei data and vnode, and exit noting failure
1322 */
1323 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1324 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1325
1326 exec_free_emul_arg(epp);
1327 pool_put(&exec_pool, data->ed_argp);
1328 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1329 if (epp->ep_emul_root != NULL)
1330 vrele(epp->ep_emul_root);
1331 if (epp->ep_interp != NULL)
1332 vrele(epp->ep_interp);
1333
1334 /* Acquire the sched-state mutex (exit1() will release it). */
1335 if (!is_spawn) {
1336 mutex_enter(p->p_lock);
1337 exit1(l, error, SIGABRT);
1338 }
1339
1340 return error;
1341 }
1342
1343 int
1344 execve1(struct lwp *l, const char *path, char * const *args,
1345 char * const *envs, execve_fetch_element_t fetch_element)
1346 {
1347 struct execve_data data;
1348 int error;
1349
1350 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1351 if (error)
1352 return error;
1353 error = execve_runproc(l, &data, false, false);
1354 return error;
1355 }
1356
1357 static size_t
1358 fromptrsz(const struct exec_package *epp)
1359 {
1360 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1361 }
1362
1363 static size_t
1364 ptrsz(const struct exec_package *epp)
1365 {
1366 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1367 }
1368
1369 static size_t
1370 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1371 {
1372 struct exec_package * const epp = &data->ed_pack;
1373
1374 const size_t nargenvptrs =
1375 1 + /* long argc */
1376 data->ed_argc + /* char *argv[] */
1377 1 + /* \0 */
1378 data->ed_envc + /* char *env[] */
1379 1; /* \0 */
1380
1381 return (nargenvptrs * ptrsz(epp)) /* pointers */
1382 + argenvstrlen /* strings */
1383 + epp->ep_esch->es_arglen; /* auxinfo */
1384 }
1385
1386 static size_t
1387 calcstack(struct execve_data * restrict data, const size_t gaplen)
1388 {
1389 struct exec_package * const epp = &data->ed_pack;
1390
1391 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1392 epp->ep_esch->es_emul->e_sigcode;
1393
1394 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1395 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1396
1397 const size_t sigcode_psstr_sz =
1398 data->ed_szsigcode + /* sigcode */
1399 data->ed_ps_strings_sz + /* ps_strings */
1400 STACK_PTHREADSPACE; /* pthread space */
1401
1402 const size_t stacklen =
1403 data->ed_argslen +
1404 gaplen +
1405 sigcode_psstr_sz;
1406
1407 /* make the stack "safely" aligned */
1408 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1409 }
1410
1411 static int
1412 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1413 char * const newstack)
1414 {
1415 struct exec_package * const epp = &data->ed_pack;
1416 struct proc *p = l->l_proc;
1417 int error;
1418
1419 /* remember information about the process */
1420 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1421 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1422
1423 /*
1424 * Allocate the stack address passed to the newly execve()'ed process.
1425 *
1426 * The new stack address will be set to the SP (stack pointer) register
1427 * in setregs().
1428 */
1429
1430 char *newargs = STACK_ALLOC(
1431 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1432
1433 error = (*epp->ep_esch->es_copyargs)(l, epp,
1434 &data->ed_arginfo, &newargs, data->ed_argp);
1435
1436 if (error) {
1437 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1438 return error;
1439 }
1440
1441 error = copyoutpsstrs(data, p);
1442 if (error != 0)
1443 return error;
1444
1445 return 0;
1446 }
1447
1448 static int
1449 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1450 {
1451 struct exec_package * const epp = &data->ed_pack;
1452 struct ps_strings32 arginfo32;
1453 void *aip;
1454 int error;
1455
1456 /* fill process ps_strings info */
1457 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1458 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1459
1460 if (epp->ep_flags & EXEC_32) {
1461 aip = &arginfo32;
1462 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1463 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1464 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1465 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1466 } else
1467 aip = &data->ed_arginfo;
1468
1469 /* copy out the process's ps_strings structure */
1470 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1471 != 0) {
1472 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1473 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1474 return error;
1475 }
1476
1477 return 0;
1478 }
1479
1480 static int
1481 copyinargs(struct execve_data * restrict data, char * const *args,
1482 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1483 {
1484 struct exec_package * const epp = &data->ed_pack;
1485 char *dp;
1486 size_t i;
1487 int error;
1488
1489 dp = *dpp;
1490
1491 data->ed_argc = 0;
1492
1493 /* copy the fake args list, if there's one, freeing it as we go */
1494 if (epp->ep_flags & EXEC_HASARGL) {
1495 struct exec_fakearg *fa = epp->ep_fa;
1496
1497 while (fa->fa_arg != NULL) {
1498 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1499 size_t len;
1500
1501 len = strlcpy(dp, fa->fa_arg, maxlen);
1502 /* Count NUL into len. */
1503 if (len < maxlen)
1504 len++;
1505 else {
1506 while (fa->fa_arg != NULL) {
1507 kmem_free(fa->fa_arg, fa->fa_len);
1508 fa++;
1509 }
1510 kmem_free(epp->ep_fa, epp->ep_fa_len);
1511 epp->ep_flags &= ~EXEC_HASARGL;
1512 return E2BIG;
1513 }
1514 ktrexecarg(fa->fa_arg, len - 1);
1515 dp += len;
1516
1517 kmem_free(fa->fa_arg, fa->fa_len);
1518 fa++;
1519 data->ed_argc++;
1520 }
1521 kmem_free(epp->ep_fa, epp->ep_fa_len);
1522 epp->ep_flags &= ~EXEC_HASARGL;
1523 }
1524
1525 /*
1526 * Read and count argument strings from user.
1527 */
1528
1529 if (args == NULL) {
1530 DPRINTF(("%s: null args\n", __func__));
1531 return EINVAL;
1532 }
1533 if (epp->ep_flags & EXEC_SKIPARG)
1534 args = (const void *)((const char *)args + fromptrsz(epp));
1535 i = 0;
1536 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1537 if (error != 0) {
1538 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1539 return error;
1540 }
1541 data->ed_argc += i;
1542
1543 /*
1544 * Read and count environment strings from user.
1545 */
1546
1547 data->ed_envc = 0;
1548 /* environment need not be there */
1549 if (envs == NULL)
1550 goto done;
1551 i = 0;
1552 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1553 if (error != 0) {
1554 DPRINTF(("%s: copyin env %d\n", __func__, error));
1555 return error;
1556 }
1557 data->ed_envc += i;
1558
1559 done:
1560 *dpp = dp;
1561
1562 return 0;
1563 }
1564
1565 static int
1566 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1567 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1568 void (*ktr)(const void *, size_t))
1569 {
1570 char *dp, *sp;
1571 size_t i;
1572 int error;
1573
1574 dp = *dpp;
1575
1576 i = 0;
1577 while (1) {
1578 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1579 size_t len;
1580
1581 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1582 return error;
1583 }
1584 if (!sp)
1585 break;
1586 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1587 if (error == ENAMETOOLONG)
1588 error = E2BIG;
1589 return error;
1590 }
1591 if (__predict_false(ktrace_on))
1592 (*ktr)(dp, len - 1);
1593 dp += len;
1594 i++;
1595 }
1596
1597 *dpp = dp;
1598 *ip = i;
1599
1600 return 0;
1601 }
1602
1603 /*
1604 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1605 * Those strings are located just after auxinfo.
1606 */
1607 int
1608 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1609 char **stackp, void *argp)
1610 {
1611 char **cpp, *dp, *sp;
1612 size_t len;
1613 void *nullp;
1614 long argc, envc;
1615 int error;
1616
1617 cpp = (char **)*stackp;
1618 nullp = NULL;
1619 argc = arginfo->ps_nargvstr;
1620 envc = arginfo->ps_nenvstr;
1621
1622 /* argc on stack is long */
1623 CTASSERT(sizeof(*cpp) == sizeof(argc));
1624
1625 dp = (char *)(cpp +
1626 1 + /* long argc */
1627 argc + /* char *argv[] */
1628 1 + /* \0 */
1629 envc + /* char *env[] */
1630 1) + /* \0 */
1631 pack->ep_esch->es_arglen; /* auxinfo */
1632 sp = argp;
1633
1634 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1635 COPYPRINTF("", cpp - 1, sizeof(argc));
1636 return error;
1637 }
1638
1639 /* XXX don't copy them out, remap them! */
1640 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1641
1642 for (; --argc >= 0; sp += len, dp += len) {
1643 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1644 COPYPRINTF("", cpp - 1, sizeof(dp));
1645 return error;
1646 }
1647 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1648 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1649 return error;
1650 }
1651 }
1652
1653 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1654 COPYPRINTF("", cpp - 1, sizeof(nullp));
1655 return error;
1656 }
1657
1658 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1659
1660 for (; --envc >= 0; sp += len, dp += len) {
1661 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1662 COPYPRINTF("", cpp - 1, sizeof(dp));
1663 return error;
1664 }
1665 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1666 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1667 return error;
1668 }
1669
1670 }
1671
1672 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1673 COPYPRINTF("", cpp - 1, sizeof(nullp));
1674 return error;
1675 }
1676
1677 *stackp = (char *)cpp;
1678 return 0;
1679 }
1680
1681
1682 /*
1683 * Add execsw[] entries.
1684 */
1685 int
1686 exec_add(struct execsw *esp, int count)
1687 {
1688 struct exec_entry *it;
1689 int i;
1690
1691 if (count == 0) {
1692 return 0;
1693 }
1694
1695 /* Check for duplicates. */
1696 rw_enter(&exec_lock, RW_WRITER);
1697 for (i = 0; i < count; i++) {
1698 LIST_FOREACH(it, &ex_head, ex_list) {
1699 /* assume unique (makecmds, probe_func, emulation) */
1700 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1701 it->ex_sw->u.elf_probe_func ==
1702 esp[i].u.elf_probe_func &&
1703 it->ex_sw->es_emul == esp[i].es_emul) {
1704 rw_exit(&exec_lock);
1705 return EEXIST;
1706 }
1707 }
1708 }
1709
1710 /* Allocate new entries. */
1711 for (i = 0; i < count; i++) {
1712 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1713 it->ex_sw = &esp[i];
1714 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1715 }
1716
1717 /* update execsw[] */
1718 exec_init(0);
1719 rw_exit(&exec_lock);
1720 return 0;
1721 }
1722
1723 /*
1724 * Remove execsw[] entry.
1725 */
1726 int
1727 exec_remove(struct execsw *esp, int count)
1728 {
1729 struct exec_entry *it, *next;
1730 int i;
1731 const struct proclist_desc *pd;
1732 proc_t *p;
1733
1734 if (count == 0) {
1735 return 0;
1736 }
1737
1738 /* Abort if any are busy. */
1739 rw_enter(&exec_lock, RW_WRITER);
1740 for (i = 0; i < count; i++) {
1741 mutex_enter(proc_lock);
1742 for (pd = proclists; pd->pd_list != NULL; pd++) {
1743 PROCLIST_FOREACH(p, pd->pd_list) {
1744 if (p->p_execsw == &esp[i]) {
1745 mutex_exit(proc_lock);
1746 rw_exit(&exec_lock);
1747 return EBUSY;
1748 }
1749 }
1750 }
1751 mutex_exit(proc_lock);
1752 }
1753
1754 /* None are busy, so remove them all. */
1755 for (i = 0; i < count; i++) {
1756 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1757 next = LIST_NEXT(it, ex_list);
1758 if (it->ex_sw == &esp[i]) {
1759 LIST_REMOVE(it, ex_list);
1760 kmem_free(it, sizeof(*it));
1761 break;
1762 }
1763 }
1764 }
1765
1766 /* update execsw[] */
1767 exec_init(0);
1768 rw_exit(&exec_lock);
1769 return 0;
1770 }
1771
1772 /*
1773 * Initialize exec structures. If init_boot is true, also does necessary
1774 * one-time initialization (it's called from main() that way).
1775 * Once system is multiuser, this should be called with exec_lock held,
1776 * i.e. via exec_{add|remove}().
1777 */
1778 int
1779 exec_init(int init_boot)
1780 {
1781 const struct execsw **sw;
1782 struct exec_entry *ex;
1783 SLIST_HEAD(,exec_entry) first;
1784 SLIST_HEAD(,exec_entry) any;
1785 SLIST_HEAD(,exec_entry) last;
1786 int i, sz;
1787
1788 if (init_boot) {
1789 /* do one-time initializations */
1790 vaddr_t vmin = 0, vmax;
1791
1792 rw_init(&exec_lock);
1793 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1794 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1795 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1796 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1797 "execargs", &exec_palloc, IPL_NONE);
1798 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1799 } else {
1800 KASSERT(rw_write_held(&exec_lock));
1801 }
1802
1803 /* Sort each entry onto the appropriate queue. */
1804 SLIST_INIT(&first);
1805 SLIST_INIT(&any);
1806 SLIST_INIT(&last);
1807 sz = 0;
1808 LIST_FOREACH(ex, &ex_head, ex_list) {
1809 switch(ex->ex_sw->es_prio) {
1810 case EXECSW_PRIO_FIRST:
1811 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1812 break;
1813 case EXECSW_PRIO_ANY:
1814 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1815 break;
1816 case EXECSW_PRIO_LAST:
1817 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1818 break;
1819 default:
1820 panic("%s", __func__);
1821 break;
1822 }
1823 sz++;
1824 }
1825
1826 /*
1827 * Create new execsw[]. Ensure we do not try a zero-sized
1828 * allocation.
1829 */
1830 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1831 i = 0;
1832 SLIST_FOREACH(ex, &first, ex_slist) {
1833 sw[i++] = ex->ex_sw;
1834 }
1835 SLIST_FOREACH(ex, &any, ex_slist) {
1836 sw[i++] = ex->ex_sw;
1837 }
1838 SLIST_FOREACH(ex, &last, ex_slist) {
1839 sw[i++] = ex->ex_sw;
1840 }
1841
1842 /* Replace old execsw[] and free used memory. */
1843 if (execsw != NULL) {
1844 kmem_free(__UNCONST(execsw),
1845 nexecs * sizeof(struct execsw *) + 1);
1846 }
1847 execsw = sw;
1848 nexecs = sz;
1849
1850 /* Figure out the maximum size of an exec header. */
1851 exec_maxhdrsz = sizeof(int);
1852 for (i = 0; i < nexecs; i++) {
1853 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1854 exec_maxhdrsz = execsw[i]->es_hdrsz;
1855 }
1856
1857 return 0;
1858 }
1859
1860 static int
1861 exec_sigcode_map(struct proc *p, const struct emul *e)
1862 {
1863 vaddr_t va;
1864 vsize_t sz;
1865 int error;
1866 struct uvm_object *uobj;
1867
1868 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1869
1870 if (e->e_sigobject == NULL || sz == 0) {
1871 return 0;
1872 }
1873
1874 /*
1875 * If we don't have a sigobject for this emulation, create one.
1876 *
1877 * sigobject is an anonymous memory object (just like SYSV shared
1878 * memory) that we keep a permanent reference to and that we map
1879 * in all processes that need this sigcode. The creation is simple,
1880 * we create an object, add a permanent reference to it, map it in
1881 * kernel space, copy out the sigcode to it and unmap it.
1882 * We map it with PROT_READ|PROT_EXEC into the process just
1883 * the way sys_mmap() would map it.
1884 */
1885
1886 uobj = *e->e_sigobject;
1887 if (uobj == NULL) {
1888 mutex_enter(&sigobject_lock);
1889 if ((uobj = *e->e_sigobject) == NULL) {
1890 uobj = uao_create(sz, 0);
1891 (*uobj->pgops->pgo_reference)(uobj);
1892 va = vm_map_min(kernel_map);
1893 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1894 uobj, 0, 0,
1895 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1896 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1897 printf("kernel mapping failed %d\n", error);
1898 (*uobj->pgops->pgo_detach)(uobj);
1899 mutex_exit(&sigobject_lock);
1900 return error;
1901 }
1902 memcpy((void *)va, e->e_sigcode, sz);
1903 #ifdef PMAP_NEED_PROCWR
1904 pmap_procwr(&proc0, va, sz);
1905 #endif
1906 uvm_unmap(kernel_map, va, va + round_page(sz));
1907 *e->e_sigobject = uobj;
1908 }
1909 mutex_exit(&sigobject_lock);
1910 }
1911
1912 /* Just a hint to uvm_map where to put it. */
1913 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1914 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1915
1916 #ifdef __alpha__
1917 /*
1918 * Tru64 puts /sbin/loader at the end of user virtual memory,
1919 * which causes the above calculation to put the sigcode at
1920 * an invalid address. Put it just below the text instead.
1921 */
1922 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1923 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1924 }
1925 #endif
1926
1927 (*uobj->pgops->pgo_reference)(uobj);
1928 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1929 uobj, 0, 0,
1930 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1931 UVM_ADV_RANDOM, 0));
1932 if (error) {
1933 DPRINTF(("%s, %d: map %p "
1934 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1935 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1936 va, error));
1937 (*uobj->pgops->pgo_detach)(uobj);
1938 return error;
1939 }
1940 p->p_sigctx.ps_sigcode = (void *)va;
1941 return 0;
1942 }
1943
1944 /*
1945 * Release a refcount on spawn_exec_data and destroy memory, if this
1946 * was the last one.
1947 */
1948 static void
1949 spawn_exec_data_release(struct spawn_exec_data *data)
1950 {
1951 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1952 return;
1953
1954 cv_destroy(&data->sed_cv_child_ready);
1955 mutex_destroy(&data->sed_mtx_child);
1956
1957 if (data->sed_actions)
1958 posix_spawn_fa_free(data->sed_actions,
1959 data->sed_actions->len);
1960 if (data->sed_attrs)
1961 kmem_free(data->sed_attrs,
1962 sizeof(*data->sed_attrs));
1963 kmem_free(data, sizeof(*data));
1964 }
1965
1966 /*
1967 * A child lwp of a posix_spawn operation starts here and ends up in
1968 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1969 * manipulations in between.
1970 * The parent waits for the child, as it is not clear whether the child
1971 * will be able to acquire its own exec_lock. If it can, the parent can
1972 * be released early and continue running in parallel. If not (or if the
1973 * magic debug flag is passed in the scheduler attribute struct), the
1974 * child rides on the parent's exec lock until it is ready to return to
1975 * to userland - and only then releases the parent. This method loses
1976 * concurrency, but improves error reporting.
1977 */
1978 static void
1979 spawn_return(void *arg)
1980 {
1981 struct spawn_exec_data *spawn_data = arg;
1982 struct lwp *l = curlwp;
1983 int error, newfd;
1984 int ostat;
1985 size_t i;
1986 const struct posix_spawn_file_actions_entry *fae;
1987 pid_t ppid;
1988 register_t retval;
1989 bool have_reflock;
1990 bool parent_is_waiting = true;
1991
1992 /*
1993 * Check if we can release parent early.
1994 * We either need to have no sed_attrs, or sed_attrs does not
1995 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1996 * safe access to the parent proc (passed in sed_parent).
1997 * We then try to get the exec_lock, and only if that works, we can
1998 * release the parent here already.
1999 */
2000 ppid = spawn_data->sed_parent->p_pid;
2001 if ((!spawn_data->sed_attrs
2002 || (spawn_data->sed_attrs->sa_flags
2003 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2004 && rw_tryenter(&exec_lock, RW_READER)) {
2005 parent_is_waiting = false;
2006 mutex_enter(&spawn_data->sed_mtx_child);
2007 cv_signal(&spawn_data->sed_cv_child_ready);
2008 mutex_exit(&spawn_data->sed_mtx_child);
2009 }
2010
2011 /* don't allow debugger access yet */
2012 rw_enter(&l->l_proc->p_reflock, RW_WRITER);
2013 have_reflock = true;
2014
2015 error = 0;
2016 /* handle posix_spawn_file_actions */
2017 if (spawn_data->sed_actions != NULL) {
2018 for (i = 0; i < spawn_data->sed_actions->len; i++) {
2019 fae = &spawn_data->sed_actions->fae[i];
2020 switch (fae->fae_action) {
2021 case FAE_OPEN:
2022 if (fd_getfile(fae->fae_fildes) != NULL) {
2023 error = fd_close(fae->fae_fildes);
2024 if (error)
2025 break;
2026 }
2027 error = fd_open(fae->fae_path, fae->fae_oflag,
2028 fae->fae_mode, &newfd);
2029 if (error)
2030 break;
2031 if (newfd != fae->fae_fildes) {
2032 error = dodup(l, newfd,
2033 fae->fae_fildes, 0, &retval);
2034 if (fd_getfile(newfd) != NULL)
2035 fd_close(newfd);
2036 }
2037 break;
2038 case FAE_DUP2:
2039 error = dodup(l, fae->fae_fildes,
2040 fae->fae_newfildes, 0, &retval);
2041 break;
2042 case FAE_CLOSE:
2043 if (fd_getfile(fae->fae_fildes) == NULL) {
2044 error = EBADF;
2045 break;
2046 }
2047 error = fd_close(fae->fae_fildes);
2048 break;
2049 }
2050 if (error)
2051 goto report_error;
2052 }
2053 }
2054
2055 /* handle posix_spawnattr */
2056 if (spawn_data->sed_attrs != NULL) {
2057 struct sigaction sigact;
2058 sigact._sa_u._sa_handler = SIG_DFL;
2059 sigact.sa_flags = 0;
2060
2061 /*
2062 * set state to SSTOP so that this proc can be found by pid.
2063 * see proc_enterprp, do_sched_setparam below
2064 */
2065 mutex_enter(proc_lock);
2066 /*
2067 * p_stat should be SACTIVE, so we need to adjust the
2068 * parent's p_nstopchild here. For safety, just make
2069 * we're on the good side of SDEAD before we adjust.
2070 */
2071 ostat = l->l_proc->p_stat;
2072 KASSERT(ostat < SSTOP);
2073 l->l_proc->p_stat = SSTOP;
2074 l->l_proc->p_waited = 0;
2075 l->l_proc->p_pptr->p_nstopchild++;
2076 mutex_exit(proc_lock);
2077
2078 /* Set process group */
2079 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2080 pid_t mypid = l->l_proc->p_pid,
2081 pgrp = spawn_data->sed_attrs->sa_pgroup;
2082
2083 if (pgrp == 0)
2084 pgrp = mypid;
2085
2086 error = proc_enterpgrp(spawn_data->sed_parent,
2087 mypid, pgrp, false);
2088 if (error)
2089 goto report_error_stopped;
2090 }
2091
2092 /* Set scheduler policy */
2093 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2094 error = do_sched_setparam(l->l_proc->p_pid, 0,
2095 spawn_data->sed_attrs->sa_schedpolicy,
2096 &spawn_data->sed_attrs->sa_schedparam);
2097 else if (spawn_data->sed_attrs->sa_flags
2098 & POSIX_SPAWN_SETSCHEDPARAM) {
2099 error = do_sched_setparam(ppid, 0,
2100 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2101 }
2102 if (error)
2103 goto report_error_stopped;
2104
2105 /* Reset user ID's */
2106 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2107 error = do_setresuid(l, -1,
2108 kauth_cred_getgid(l->l_cred), -1,
2109 ID_E_EQ_R | ID_E_EQ_S);
2110 if (error)
2111 goto report_error_stopped;
2112 error = do_setresuid(l, -1,
2113 kauth_cred_getuid(l->l_cred), -1,
2114 ID_E_EQ_R | ID_E_EQ_S);
2115 if (error)
2116 goto report_error_stopped;
2117 }
2118
2119 /* Set signal masks/defaults */
2120 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2121 mutex_enter(l->l_proc->p_lock);
2122 error = sigprocmask1(l, SIG_SETMASK,
2123 &spawn_data->sed_attrs->sa_sigmask, NULL);
2124 mutex_exit(l->l_proc->p_lock);
2125 if (error)
2126 goto report_error_stopped;
2127 }
2128
2129 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2130 /*
2131 * The following sigaction call is using a sigaction
2132 * version 0 trampoline which is in the compatibility
2133 * code only. This is not a problem because for SIG_DFL
2134 * and SIG_IGN, the trampolines are now ignored. If they
2135 * were not, this would be a problem because we are
2136 * holding the exec_lock, and the compat code needs
2137 * to do the same in order to replace the trampoline
2138 * code of the process.
2139 */
2140 for (i = 1; i <= NSIG; i++) {
2141 if (sigismember(
2142 &spawn_data->sed_attrs->sa_sigdefault, i))
2143 sigaction1(l, i, &sigact, NULL, NULL,
2144 0);
2145 }
2146 }
2147 mutex_enter(proc_lock);
2148 l->l_proc->p_stat = ostat;
2149 l->l_proc->p_pptr->p_nstopchild--;
2150 mutex_exit(proc_lock);
2151 }
2152
2153 /* now do the real exec */
2154 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2155 true);
2156 have_reflock = false;
2157 if (error == EJUSTRETURN)
2158 error = 0;
2159 else if (error)
2160 goto report_error;
2161
2162 if (parent_is_waiting) {
2163 mutex_enter(&spawn_data->sed_mtx_child);
2164 cv_signal(&spawn_data->sed_cv_child_ready);
2165 mutex_exit(&spawn_data->sed_mtx_child);
2166 }
2167
2168 /* release our refcount on the data */
2169 spawn_exec_data_release(spawn_data);
2170
2171 /* and finally: leave to userland for the first time */
2172 cpu_spawn_return(l);
2173
2174 /* NOTREACHED */
2175 return;
2176
2177 report_error_stopped:
2178 mutex_enter(proc_lock);
2179 l->l_proc->p_stat = ostat;
2180 l->l_proc->p_pptr->p_nstopchild--;
2181 mutex_exit(proc_lock);
2182 report_error:
2183 if (have_reflock) {
2184 /*
2185 * We have not passed through execve_runproc(),
2186 * which would have released the p_reflock and also
2187 * taken ownership of the sed_exec part of spawn_data,
2188 * so release/free both here.
2189 */
2190 rw_exit(&l->l_proc->p_reflock);
2191 execve_free_data(&spawn_data->sed_exec);
2192 }
2193
2194 if (parent_is_waiting) {
2195 /* pass error to parent */
2196 mutex_enter(&spawn_data->sed_mtx_child);
2197 spawn_data->sed_error = error;
2198 cv_signal(&spawn_data->sed_cv_child_ready);
2199 mutex_exit(&spawn_data->sed_mtx_child);
2200 } else {
2201 rw_exit(&exec_lock);
2202 }
2203
2204 /* release our refcount on the data */
2205 spawn_exec_data_release(spawn_data);
2206
2207 /* done, exit */
2208 mutex_enter(l->l_proc->p_lock);
2209 /*
2210 * Posix explicitly asks for an exit code of 127 if we report
2211 * errors from the child process - so, unfortunately, there
2212 * is no way to report a more exact error code.
2213 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2214 * flag bit in the attrp argument to posix_spawn(2), see above.
2215 */
2216 exit1(l, 127, 0);
2217 }
2218
2219 void
2220 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2221 {
2222
2223 for (size_t i = 0; i < len; i++) {
2224 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2225 if (fae->fae_action != FAE_OPEN)
2226 continue;
2227 kmem_strfree(fae->fae_path);
2228 }
2229 if (fa->len > 0)
2230 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2231 kmem_free(fa, sizeof(*fa));
2232 }
2233
2234 static int
2235 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2236 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2237 {
2238 struct posix_spawn_file_actions *fa;
2239 struct posix_spawn_file_actions_entry *fae;
2240 char *pbuf = NULL;
2241 int error;
2242 size_t i = 0;
2243
2244 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2245 error = copyin(ufa, fa, sizeof(*fa));
2246 if (error || fa->len == 0) {
2247 kmem_free(fa, sizeof(*fa));
2248 return error; /* 0 if not an error, and len == 0 */
2249 }
2250
2251 if (fa->len > lim) {
2252 kmem_free(fa, sizeof(*fa));
2253 return EINVAL;
2254 }
2255
2256 fa->size = fa->len;
2257 size_t fal = fa->len * sizeof(*fae);
2258 fae = fa->fae;
2259 fa->fae = kmem_alloc(fal, KM_SLEEP);
2260 error = copyin(fae, fa->fae, fal);
2261 if (error)
2262 goto out;
2263
2264 pbuf = PNBUF_GET();
2265 for (; i < fa->len; i++) {
2266 fae = &fa->fae[i];
2267 if (fae->fae_action != FAE_OPEN)
2268 continue;
2269 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2270 if (error)
2271 goto out;
2272 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2273 memcpy(fae->fae_path, pbuf, fal);
2274 }
2275 PNBUF_PUT(pbuf);
2276
2277 *fap = fa;
2278 return 0;
2279 out:
2280 if (pbuf)
2281 PNBUF_PUT(pbuf);
2282 posix_spawn_fa_free(fa, i);
2283 return error;
2284 }
2285
2286 int
2287 check_posix_spawn(struct lwp *l1)
2288 {
2289 int error, tnprocs, count;
2290 uid_t uid;
2291 struct proc *p1;
2292
2293 p1 = l1->l_proc;
2294 uid = kauth_cred_getuid(l1->l_cred);
2295 tnprocs = atomic_inc_uint_nv(&nprocs);
2296
2297 /*
2298 * Although process entries are dynamically created, we still keep
2299 * a global limit on the maximum number we will create.
2300 */
2301 if (__predict_false(tnprocs >= maxproc))
2302 error = -1;
2303 else
2304 error = kauth_authorize_process(l1->l_cred,
2305 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2306
2307 if (error) {
2308 atomic_dec_uint(&nprocs);
2309 return EAGAIN;
2310 }
2311
2312 /*
2313 * Enforce limits.
2314 */
2315 count = chgproccnt(uid, 1);
2316 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2317 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2318 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2319 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2320 (void)chgproccnt(uid, -1);
2321 atomic_dec_uint(&nprocs);
2322 return EAGAIN;
2323 }
2324
2325 return 0;
2326 }
2327
2328 int
2329 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2330 struct posix_spawn_file_actions *fa,
2331 struct posix_spawnattr *sa,
2332 char *const *argv, char *const *envp,
2333 execve_fetch_element_t fetch)
2334 {
2335
2336 struct proc *p1, *p2;
2337 struct lwp *l2;
2338 int error;
2339 struct spawn_exec_data *spawn_data;
2340 vaddr_t uaddr;
2341 pid_t pid;
2342 bool have_exec_lock = false;
2343
2344 p1 = l1->l_proc;
2345
2346 /* Allocate and init spawn_data */
2347 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2348 spawn_data->sed_refcnt = 1; /* only parent so far */
2349 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2350 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2351 mutex_enter(&spawn_data->sed_mtx_child);
2352
2353 /*
2354 * Do the first part of the exec now, collect state
2355 * in spawn_data.
2356 */
2357 error = execve_loadvm(l1, path, argv,
2358 envp, fetch, &spawn_data->sed_exec);
2359 if (error == EJUSTRETURN)
2360 error = 0;
2361 else if (error)
2362 goto error_exit;
2363
2364 have_exec_lock = true;
2365
2366 /*
2367 * Allocate virtual address space for the U-area now, while it
2368 * is still easy to abort the fork operation if we're out of
2369 * kernel virtual address space.
2370 */
2371 uaddr = uvm_uarea_alloc();
2372 if (__predict_false(uaddr == 0)) {
2373 error = ENOMEM;
2374 goto error_exit;
2375 }
2376
2377 /*
2378 * Allocate new proc. Borrow proc0 vmspace for it, we will
2379 * replace it with its own before returning to userland
2380 * in the child.
2381 * This is a point of no return, we will have to go through
2382 * the child proc to properly clean it up past this point.
2383 */
2384 p2 = proc_alloc();
2385 pid = p2->p_pid;
2386
2387 /*
2388 * Make a proc table entry for the new process.
2389 * Start by zeroing the section of proc that is zero-initialized,
2390 * then copy the section that is copied directly from the parent.
2391 */
2392 memset(&p2->p_startzero, 0,
2393 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2394 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2395 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2396 p2->p_vmspace = proc0.p_vmspace;
2397
2398 TAILQ_INIT(&p2->p_sigpend.sp_info);
2399
2400 LIST_INIT(&p2->p_lwps);
2401 LIST_INIT(&p2->p_sigwaiters);
2402
2403 /*
2404 * Duplicate sub-structures as needed.
2405 * Increase reference counts on shared objects.
2406 * Inherit flags we want to keep. The flags related to SIGCHLD
2407 * handling are important in order to keep a consistent behaviour
2408 * for the child after the fork. If we are a 32-bit process, the
2409 * child will be too.
2410 */
2411 p2->p_flag =
2412 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2413 p2->p_emul = p1->p_emul;
2414 p2->p_execsw = p1->p_execsw;
2415
2416 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2417 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2418 rw_init(&p2->p_reflock);
2419 cv_init(&p2->p_waitcv, "wait");
2420 cv_init(&p2->p_lwpcv, "lwpwait");
2421
2422 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2423
2424 kauth_proc_fork(p1, p2);
2425
2426 p2->p_raslist = NULL;
2427 p2->p_fd = fd_copy();
2428
2429 /* XXX racy */
2430 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2431
2432 p2->p_cwdi = cwdinit();
2433
2434 /*
2435 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2436 * we just need increase pl_refcnt.
2437 */
2438 if (!p1->p_limit->pl_writeable) {
2439 lim_addref(p1->p_limit);
2440 p2->p_limit = p1->p_limit;
2441 } else {
2442 p2->p_limit = lim_copy(p1->p_limit);
2443 }
2444
2445 p2->p_lflag = 0;
2446 p2->p_sflag = 0;
2447 p2->p_slflag = 0;
2448 p2->p_pptr = p1;
2449 p2->p_ppid = p1->p_pid;
2450 LIST_INIT(&p2->p_children);
2451
2452 p2->p_aio = NULL;
2453
2454 #ifdef KTRACE
2455 /*
2456 * Copy traceflag and tracefile if enabled.
2457 * If not inherited, these were zeroed above.
2458 */
2459 if (p1->p_traceflag & KTRFAC_INHERIT) {
2460 mutex_enter(&ktrace_lock);
2461 p2->p_traceflag = p1->p_traceflag;
2462 if ((p2->p_tracep = p1->p_tracep) != NULL)
2463 ktradref(p2);
2464 mutex_exit(&ktrace_lock);
2465 }
2466 #endif
2467
2468 /*
2469 * Create signal actions for the child process.
2470 */
2471 p2->p_sigacts = sigactsinit(p1, 0);
2472 mutex_enter(p1->p_lock);
2473 p2->p_sflag |=
2474 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2475 sched_proc_fork(p1, p2);
2476 mutex_exit(p1->p_lock);
2477
2478 p2->p_stflag = p1->p_stflag;
2479
2480 /*
2481 * p_stats.
2482 * Copy parts of p_stats, and zero out the rest.
2483 */
2484 p2->p_stats = pstatscopy(p1->p_stats);
2485
2486 /* copy over machdep flags to the new proc */
2487 cpu_proc_fork(p1, p2);
2488
2489 /*
2490 * Prepare remaining parts of spawn data
2491 */
2492 spawn_data->sed_actions = fa;
2493 spawn_data->sed_attrs = sa;
2494
2495 spawn_data->sed_parent = p1;
2496
2497 /* create LWP */
2498 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2499 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2500 l2->l_ctxlink = NULL; /* reset ucontext link */
2501
2502 /*
2503 * Copy the credential so other references don't see our changes.
2504 * Test to see if this is necessary first, since in the common case
2505 * we won't need a private reference.
2506 */
2507 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2508 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2509 l2->l_cred = kauth_cred_copy(l2->l_cred);
2510 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2511 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2512 }
2513
2514 /* Update the master credentials. */
2515 if (l2->l_cred != p2->p_cred) {
2516 kauth_cred_t ocred;
2517
2518 kauth_cred_hold(l2->l_cred);
2519 mutex_enter(p2->p_lock);
2520 ocred = p2->p_cred;
2521 p2->p_cred = l2->l_cred;
2522 mutex_exit(p2->p_lock);
2523 kauth_cred_free(ocred);
2524 }
2525
2526 *child_ok = true;
2527 spawn_data->sed_refcnt = 2; /* child gets it as well */
2528 #if 0
2529 l2->l_nopreempt = 1; /* start it non-preemptable */
2530 #endif
2531
2532 /*
2533 * It's now safe for the scheduler and other processes to see the
2534 * child process.
2535 */
2536 mutex_enter(proc_lock);
2537
2538 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2539 p2->p_lflag |= PL_CONTROLT;
2540
2541 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2542 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2543
2544 LIST_INSERT_AFTER(p1, p2, p_pglist);
2545 LIST_INSERT_HEAD(&allproc, p2, p_list);
2546
2547 p2->p_trace_enabled = trace_is_enabled(p2);
2548 #ifdef __HAVE_SYSCALL_INTERN
2549 (*p2->p_emul->e_syscall_intern)(p2);
2550 #endif
2551
2552 /*
2553 * Make child runnable, set start time, and add to run queue except
2554 * if the parent requested the child to start in SSTOP state.
2555 */
2556 mutex_enter(p2->p_lock);
2557
2558 getmicrotime(&p2->p_stats->p_start);
2559
2560 lwp_lock(l2);
2561 KASSERT(p2->p_nrlwps == 1);
2562 p2->p_nrlwps = 1;
2563 p2->p_stat = SACTIVE;
2564 l2->l_stat = LSRUN;
2565 sched_enqueue(l2, false);
2566 lwp_unlock(l2);
2567
2568 mutex_exit(p2->p_lock);
2569 mutex_exit(proc_lock);
2570
2571 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2572 error = spawn_data->sed_error;
2573 mutex_exit(&spawn_data->sed_mtx_child);
2574 spawn_exec_data_release(spawn_data);
2575
2576 rw_exit(&p1->p_reflock);
2577 rw_exit(&exec_lock);
2578 have_exec_lock = false;
2579
2580 *pid_res = pid;
2581 return error;
2582
2583 error_exit:
2584 if (have_exec_lock) {
2585 execve_free_data(&spawn_data->sed_exec);
2586 rw_exit(&p1->p_reflock);
2587 rw_exit(&exec_lock);
2588 }
2589 mutex_exit(&spawn_data->sed_mtx_child);
2590 spawn_exec_data_release(spawn_data);
2591
2592 return error;
2593 }
2594
2595 int
2596 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2597 register_t *retval)
2598 {
2599 /* {
2600 syscallarg(pid_t *) pid;
2601 syscallarg(const char *) path;
2602 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2603 syscallarg(const struct posix_spawnattr *) attrp;
2604 syscallarg(char *const *) argv;
2605 syscallarg(char *const *) envp;
2606 } */
2607
2608 int error;
2609 struct posix_spawn_file_actions *fa = NULL;
2610 struct posix_spawnattr *sa = NULL;
2611 pid_t pid;
2612 bool child_ok = false;
2613 rlim_t max_fileactions;
2614 proc_t *p = l1->l_proc;
2615
2616 error = check_posix_spawn(l1);
2617 if (error) {
2618 *retval = error;
2619 return 0;
2620 }
2621
2622 /* copy in file_actions struct */
2623 if (SCARG(uap, file_actions) != NULL) {
2624 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2625 maxfiles);
2626 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2627 max_fileactions);
2628 if (error)
2629 goto error_exit;
2630 }
2631
2632 /* copyin posix_spawnattr struct */
2633 if (SCARG(uap, attrp) != NULL) {
2634 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2635 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2636 if (error)
2637 goto error_exit;
2638 }
2639
2640 /*
2641 * Do the spawn
2642 */
2643 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2644 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2645 if (error)
2646 goto error_exit;
2647
2648 if (error == 0 && SCARG(uap, pid) != NULL)
2649 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2650
2651 *retval = error;
2652 return 0;
2653
2654 error_exit:
2655 if (!child_ok) {
2656 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2657 atomic_dec_uint(&nprocs);
2658
2659 if (sa)
2660 kmem_free(sa, sizeof(*sa));
2661 if (fa)
2662 posix_spawn_fa_free(fa, fa->len);
2663 }
2664
2665 *retval = error;
2666 return 0;
2667 }
2668
2669 void
2670 exec_free_emul_arg(struct exec_package *epp)
2671 {
2672 if (epp->ep_emul_arg_free != NULL) {
2673 KASSERT(epp->ep_emul_arg != NULL);
2674 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2675 epp->ep_emul_arg_free = NULL;
2676 epp->ep_emul_arg = NULL;
2677 } else {
2678 KASSERT(epp->ep_emul_arg == NULL);
2679 }
2680 }
2681
2682 #ifdef DEBUG_EXEC
2683 static void
2684 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2685 {
2686 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2687 size_t j;
2688
2689 if (error == 0)
2690 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2691 else
2692 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2693 epp->ep_vmcmds.evs_used, error));
2694
2695 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2696 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2697 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2698 PRIxVSIZE" prot=0%o flags=%d\n", j,
2699 vp[j].ev_proc == vmcmd_map_pagedvn ?
2700 "pagedvn" :
2701 vp[j].ev_proc == vmcmd_map_readvn ?
2702 "readvn" :
2703 vp[j].ev_proc == vmcmd_map_zero ?
2704 "zero" : "*unknown*",
2705 vp[j].ev_addr, vp[j].ev_len,
2706 vp[j].ev_offset, vp[j].ev_prot,
2707 vp[j].ev_flags));
2708 if (error != 0 && j == x)
2709 DPRINTF((" ^--- failed\n"));
2710 }
2711 }
2712 #endif
2713