Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.464
      1 /*	$NetBSD: kern_exec.c,v 1.464 2019/05/03 22:34:21 kamil Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     31  * Copyright (C) 1992 Wolfgang Solfrank.
     32  * Copyright (C) 1992 TooLs GmbH.
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by TooLs GmbH.
     46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.464 2019/05/03 22:34:21 kamil Exp $");
     63 
     64 #include "opt_exec.h"
     65 #include "opt_execfmt.h"
     66 #include "opt_ktrace.h"
     67 #include "opt_modular.h"
     68 #include "opt_syscall_debug.h"
     69 #include "veriexec.h"
     70 #include "opt_pax.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/filedesc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/mount.h>
     78 #include <sys/kmem.h>
     79 #include <sys/namei.h>
     80 #include <sys/vnode.h>
     81 #include <sys/file.h>
     82 #include <sys/filedesc.h>
     83 #include <sys/acct.h>
     84 #include <sys/atomic.h>
     85 #include <sys/exec.h>
     86 #include <sys/ktrace.h>
     87 #include <sys/uidinfo.h>
     88 #include <sys/wait.h>
     89 #include <sys/mman.h>
     90 #include <sys/ras.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/stat.h>
     93 #include <sys/syscall.h>
     94 #include <sys/kauth.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/pax.h>
     97 #include <sys/cpu.h>
     98 #include <sys/module.h>
     99 #include <sys/syscallvar.h>
    100 #include <sys/syscallargs.h>
    101 #if NVERIEXEC > 0
    102 #include <sys/verified_exec.h>
    103 #endif /* NVERIEXEC > 0 */
    104 #include <sys/sdt.h>
    105 #include <sys/spawn.h>
    106 #include <sys/prot.h>
    107 #include <sys/cprng.h>
    108 
    109 #include <uvm/uvm_extern.h>
    110 
    111 #include <machine/reg.h>
    112 
    113 #include <compat/common/compat_util.h>
    114 
    115 #ifndef MD_TOPDOWN_INIT
    116 #ifdef __USE_TOPDOWN_VM
    117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    118 #else
    119 #define	MD_TOPDOWN_INIT(epp)
    120 #endif
    121 #endif
    122 
    123 struct execve_data;
    124 
    125 extern int user_va0_disable;
    126 
    127 static size_t calcargs(struct execve_data * restrict, const size_t);
    128 static size_t calcstack(struct execve_data * restrict, const size_t);
    129 static int copyoutargs(struct execve_data * restrict, struct lwp *,
    130     char * const);
    131 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
    132 static int copyinargs(struct execve_data * restrict, char * const *,
    133     char * const *, execve_fetch_element_t, char **);
    134 static int copyinargstrs(struct execve_data * restrict, char * const *,
    135     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    136 static int exec_sigcode_map(struct proc *, const struct emul *);
    137 
    138 #if defined(DEBUG) && !defined(DEBUG_EXEC)
    139 #define DEBUG_EXEC
    140 #endif
    141 #ifdef DEBUG_EXEC
    142 #define DPRINTF(a) printf a
    143 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    144     __LINE__, (s), (a), (b))
    145 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    146 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    147 #else
    148 #define DPRINTF(a)
    149 #define COPYPRINTF(s, a, b)
    150 #define DUMPVMCMDS(p, x, e) do {} while (0)
    151 #endif /* DEBUG_EXEC */
    152 
    153 /*
    154  * DTrace SDT provider definitions
    155  */
    156 SDT_PROVIDER_DECLARE(proc);
    157 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
    158 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
    159 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
    160 
    161 /*
    162  * Exec function switch:
    163  *
    164  * Note that each makecmds function is responsible for loading the
    165  * exec package with the necessary functions for any exec-type-specific
    166  * handling.
    167  *
    168  * Functions for specific exec types should be defined in their own
    169  * header file.
    170  */
    171 static const struct execsw	**execsw = NULL;
    172 static int			nexecs;
    173 
    174 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    175 
    176 /* list of dynamically loaded execsw entries */
    177 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    178     LIST_HEAD_INITIALIZER(ex_head);
    179 struct exec_entry {
    180 	LIST_ENTRY(exec_entry)	ex_list;
    181 	SLIST_ENTRY(exec_entry)	ex_slist;
    182 	const struct execsw	*ex_sw;
    183 };
    184 
    185 #ifndef __HAVE_SYSCALL_INTERN
    186 void	syscall(void);
    187 #endif
    188 
    189 /* NetBSD autoloadable syscalls */
    190 #ifdef MODULAR
    191 #include <kern/syscalls_autoload.c>
    192 #endif
    193 
    194 /* NetBSD emul struct */
    195 struct emul emul_netbsd = {
    196 	.e_name =		"netbsd",
    197 #ifdef EMUL_NATIVEROOT
    198 	.e_path =		EMUL_NATIVEROOT,
    199 #else
    200 	.e_path =		NULL,
    201 #endif
    202 #ifndef __HAVE_MINIMAL_EMUL
    203 	.e_flags =		EMUL_HAS_SYS___syscall,
    204 	.e_errno =		NULL,
    205 	.e_nosys =		SYS_syscall,
    206 	.e_nsysent =		SYS_NSYSENT,
    207 #endif
    208 #ifdef MODULAR
    209 	.e_sc_autoload =	netbsd_syscalls_autoload,
    210 #endif
    211 	.e_sysent =		sysent,
    212 	.e_nomodbits =		sysent_nomodbits,
    213 #ifdef SYSCALL_DEBUG
    214 	.e_syscallnames =	syscallnames,
    215 #else
    216 	.e_syscallnames =	NULL,
    217 #endif
    218 	.e_sendsig =		sendsig,
    219 	.e_trapsignal =		trapsignal,
    220 	.e_sigcode =		NULL,
    221 	.e_esigcode =		NULL,
    222 	.e_sigobject =		NULL,
    223 	.e_setregs =		setregs,
    224 	.e_proc_exec =		NULL,
    225 	.e_proc_fork =		NULL,
    226 	.e_proc_exit =		NULL,
    227 	.e_lwp_fork =		NULL,
    228 	.e_lwp_exit =		NULL,
    229 #ifdef __HAVE_SYSCALL_INTERN
    230 	.e_syscall_intern =	syscall_intern,
    231 #else
    232 	.e_syscall =		syscall,
    233 #endif
    234 	.e_sysctlovly =		NULL,
    235 	.e_vm_default_addr =	uvm_default_mapaddr,
    236 	.e_usertrap =		NULL,
    237 	.e_ucsize =		sizeof(ucontext_t),
    238 	.e_startlwp =		startlwp
    239 };
    240 
    241 /*
    242  * Exec lock. Used to control access to execsw[] structures.
    243  * This must not be static so that netbsd32 can access it, too.
    244  */
    245 krwlock_t exec_lock;
    246 
    247 static kmutex_t sigobject_lock;
    248 
    249 /*
    250  * Data used between a loadvm and execve part of an "exec" operation
    251  */
    252 struct execve_data {
    253 	struct exec_package	ed_pack;
    254 	struct pathbuf		*ed_pathbuf;
    255 	struct vattr		ed_attr;
    256 	struct ps_strings	ed_arginfo;
    257 	char			*ed_argp;
    258 	const char		*ed_pathstring;
    259 	char			*ed_resolvedpathbuf;
    260 	size_t			ed_ps_strings_sz;
    261 	int			ed_szsigcode;
    262 	size_t			ed_argslen;
    263 	long			ed_argc;
    264 	long			ed_envc;
    265 };
    266 
    267 /*
    268  * data passed from parent lwp to child during a posix_spawn()
    269  */
    270 struct spawn_exec_data {
    271 	struct execve_data	sed_exec;
    272 	struct posix_spawn_file_actions
    273 				*sed_actions;
    274 	struct posix_spawnattr	*sed_attrs;
    275 	struct proc		*sed_parent;
    276 	kcondvar_t		sed_cv_child_ready;
    277 	kmutex_t		sed_mtx_child;
    278 	int			sed_error;
    279 	volatile uint32_t	sed_refcnt;
    280 };
    281 
    282 static struct vm_map *exec_map;
    283 static struct pool exec_pool;
    284 
    285 static void *
    286 exec_pool_alloc(struct pool *pp, int flags)
    287 {
    288 
    289 	return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
    290 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    291 }
    292 
    293 static void
    294 exec_pool_free(struct pool *pp, void *addr)
    295 {
    296 
    297 	uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    298 }
    299 
    300 static struct pool_allocator exec_palloc = {
    301 	.pa_alloc = exec_pool_alloc,
    302 	.pa_free = exec_pool_free,
    303 	.pa_pagesz = NCARGS
    304 };
    305 
    306 /*
    307  * check exec:
    308  * given an "executable" described in the exec package's namei info,
    309  * see what we can do with it.
    310  *
    311  * ON ENTRY:
    312  *	exec package with appropriate namei info
    313  *	lwp pointer of exec'ing lwp
    314  *	NO SELF-LOCKED VNODES
    315  *
    316  * ON EXIT:
    317  *	error:	nothing held, etc.  exec header still allocated.
    318  *	ok:	filled exec package, executable's vnode (unlocked).
    319  *
    320  * EXEC SWITCH ENTRY:
    321  * 	Locked vnode to check, exec package, proc.
    322  *
    323  * EXEC SWITCH EXIT:
    324  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    325  *	error:	destructive:
    326  *			everything deallocated execept exec header.
    327  *		non-destructive:
    328  *			error code, executable's vnode (unlocked),
    329  *			exec header unmodified.
    330  */
    331 int
    332 /*ARGSUSED*/
    333 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
    334 {
    335 	int		error, i;
    336 	struct vnode	*vp;
    337 	struct nameidata nd;
    338 	size_t		resid;
    339 
    340 #if 1
    341 	// grab the absolute pathbuf here before namei() trashes it.
    342 	pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
    343 #endif
    344 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    345 
    346 	/* first get the vnode */
    347 	if ((error = namei(&nd)) != 0)
    348 		return error;
    349 	epp->ep_vp = vp = nd.ni_vp;
    350 #if 0
    351 	/*
    352 	 * XXX: can't use nd.ni_pnbuf, because although pb contains an
    353 	 * absolute path, nd.ni_pnbuf does not if the path contains symlinks.
    354 	 */
    355 	/* normally this can't fail */
    356 	error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
    357 	KASSERT(error == 0);
    358 #endif
    359 
    360 #ifdef DIAGNOSTIC
    361 	/* paranoia (take this out once namei stuff stabilizes) */
    362 	memset(nd.ni_pnbuf, '~', PATH_MAX);
    363 #endif
    364 
    365 	/* check access and type */
    366 	if (vp->v_type != VREG) {
    367 		error = EACCES;
    368 		goto bad1;
    369 	}
    370 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    371 		goto bad1;
    372 
    373 	/* get attributes */
    374 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    375 		goto bad1;
    376 
    377 	/* Check mount point */
    378 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    379 		error = EACCES;
    380 		goto bad1;
    381 	}
    382 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    383 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    384 
    385 	/* try to open it */
    386 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    387 		goto bad1;
    388 
    389 	/* unlock vp, since we need it unlocked from here on out. */
    390 	VOP_UNLOCK(vp);
    391 
    392 #if NVERIEXEC > 0
    393 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
    394 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    395 	    NULL);
    396 	if (error)
    397 		goto bad2;
    398 #endif /* NVERIEXEC > 0 */
    399 
    400 #ifdef PAX_SEGVGUARD
    401 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    402 	if (error)
    403 		goto bad2;
    404 #endif /* PAX_SEGVGUARD */
    405 
    406 	/* now we have the file, get the exec header */
    407 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    408 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
    409 	if (error)
    410 		goto bad2;
    411 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    412 
    413 	/*
    414 	 * Set up default address space limits.  Can be overridden
    415 	 * by individual exec packages.
    416 	 */
    417 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
    418 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    419 
    420 	/*
    421 	 * set up the vmcmds for creation of the process
    422 	 * address space
    423 	 */
    424 	error = ENOEXEC;
    425 	for (i = 0; i < nexecs; i++) {
    426 		int newerror;
    427 
    428 		epp->ep_esch = execsw[i];
    429 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    430 
    431 		if (!newerror) {
    432 			/* Seems ok: check that entry point is not too high */
    433 			if (epp->ep_entry >= epp->ep_vm_maxaddr) {
    434 #ifdef DIAGNOSTIC
    435 				printf("%s: rejecting %p due to "
    436 				    "too high entry address (>= %p)\n",
    437 					 __func__, (void *)epp->ep_entry,
    438 					 (void *)epp->ep_vm_maxaddr);
    439 #endif
    440 				error = ENOEXEC;
    441 				break;
    442 			}
    443 			/* Seems ok: check that entry point is not too low */
    444 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    445 #ifdef DIAGNOSTIC
    446 				printf("%s: rejecting %p due to "
    447 				    "too low entry address (< %p)\n",
    448 				     __func__, (void *)epp->ep_entry,
    449 				     (void *)epp->ep_vm_minaddr);
    450 #endif
    451 				error = ENOEXEC;
    452 				break;
    453 			}
    454 
    455 			/* check limits */
    456 			if ((epp->ep_tsize > MAXTSIZ) ||
    457 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    458 						    [RLIMIT_DATA].rlim_cur)) {
    459 #ifdef DIAGNOSTIC
    460 				printf("%s: rejecting due to "
    461 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    462 				    __func__,
    463 				    (unsigned long long)epp->ep_tsize,
    464 				    (unsigned long long)MAXTSIZ,
    465 				    (unsigned long long)epp->ep_dsize,
    466 				    (unsigned long long)
    467 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    468 #endif
    469 				error = ENOMEM;
    470 				break;
    471 			}
    472 			return 0;
    473 		}
    474 
    475 		/*
    476 		 * Reset all the fields that may have been modified by the
    477 		 * loader.
    478 		 */
    479 		KASSERT(epp->ep_emul_arg == NULL);
    480 		if (epp->ep_emul_root != NULL) {
    481 			vrele(epp->ep_emul_root);
    482 			epp->ep_emul_root = NULL;
    483 		}
    484 		if (epp->ep_interp != NULL) {
    485 			vrele(epp->ep_interp);
    486 			epp->ep_interp = NULL;
    487 		}
    488 		epp->ep_pax_flags = 0;
    489 
    490 		/* make sure the first "interesting" error code is saved. */
    491 		if (error == ENOEXEC)
    492 			error = newerror;
    493 
    494 		if (epp->ep_flags & EXEC_DESTR)
    495 			/* Error from "#!" code, tidied up by recursive call */
    496 			return error;
    497 	}
    498 
    499 	/* not found, error */
    500 
    501 	/*
    502 	 * free any vmspace-creation commands,
    503 	 * and release their references
    504 	 */
    505 	kill_vmcmds(&epp->ep_vmcmds);
    506 
    507 bad2:
    508 	/*
    509 	 * close and release the vnode, restore the old one, free the
    510 	 * pathname buf, and punt.
    511 	 */
    512 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    513 	VOP_CLOSE(vp, FREAD, l->l_cred);
    514 	vput(vp);
    515 	return error;
    516 
    517 bad1:
    518 	/*
    519 	 * free the namei pathname buffer, and put the vnode
    520 	 * (which we don't yet have open).
    521 	 */
    522 	vput(vp);				/* was still locked */
    523 	return error;
    524 }
    525 
    526 #ifdef __MACHINE_STACK_GROWS_UP
    527 #define STACK_PTHREADSPACE NBPG
    528 #else
    529 #define STACK_PTHREADSPACE 0
    530 #endif
    531 
    532 static int
    533 execve_fetch_element(char * const *array, size_t index, char **value)
    534 {
    535 	return copyin(array + index, value, sizeof(*value));
    536 }
    537 
    538 /*
    539  * exec system call
    540  */
    541 int
    542 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    543 {
    544 	/* {
    545 		syscallarg(const char *)	path;
    546 		syscallarg(char * const *)	argp;
    547 		syscallarg(char * const *)	envp;
    548 	} */
    549 
    550 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
    551 	    SCARG(uap, envp), execve_fetch_element);
    552 }
    553 
    554 int
    555 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    556     register_t *retval)
    557 {
    558 	/* {
    559 		syscallarg(int)			fd;
    560 		syscallarg(char * const *)	argp;
    561 		syscallarg(char * const *)	envp;
    562 	} */
    563 
    564 	return ENOSYS;
    565 }
    566 
    567 /*
    568  * Load modules to try and execute an image that we do not understand.
    569  * If no execsw entries are present, we load those likely to be needed
    570  * in order to run native images only.  Otherwise, we autoload all
    571  * possible modules that could let us run the binary.  XXX lame
    572  */
    573 static void
    574 exec_autoload(void)
    575 {
    576 #ifdef MODULAR
    577 	static const char * const native[] = {
    578 		"exec_elf32",
    579 		"exec_elf64",
    580 		"exec_script",
    581 		NULL
    582 	};
    583 	static const char * const compat[] = {
    584 		"exec_elf32",
    585 		"exec_elf64",
    586 		"exec_script",
    587 		"exec_aout",
    588 		"exec_coff",
    589 		"exec_ecoff",
    590 		"compat_aoutm68k",
    591 		"compat_netbsd32",
    592 		"compat_sunos",
    593 		"compat_sunos32",
    594 		"compat_ultrix",
    595 		NULL
    596 	};
    597 	char const * const *list;
    598 	int i;
    599 
    600 	list = (nexecs == 0 ? native : compat);
    601 	for (i = 0; list[i] != NULL; i++) {
    602 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    603 			continue;
    604 		}
    605 		yield();
    606 	}
    607 #endif
    608 }
    609 
    610 int
    611 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
    612     struct pathbuf **pbp, size_t *offs)
    613 {
    614 	char *path, *bp;
    615 	size_t len, tlen;
    616 	int error;
    617 	struct cwdinfo *cwdi;
    618 
    619 	path = PNBUF_GET();
    620 	if (seg == UIO_SYSSPACE) {
    621 		error = copystr(upath, path, MAXPATHLEN, &len);
    622 	} else {
    623 		error = copyinstr(upath, path, MAXPATHLEN, &len);
    624 	}
    625 	if (error) {
    626 		PNBUF_PUT(path);
    627 		DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
    628 		return error;
    629 	}
    630 
    631 	if (path[0] == '/') {
    632 		if (offs)
    633 			*offs = 0;
    634 		goto out;
    635 	}
    636 
    637 	len++;
    638 	if (len + 1 >= MAXPATHLEN)
    639 		goto out;
    640 	bp = path + MAXPATHLEN - len;
    641 	memmove(bp, path, len);
    642 	*(--bp) = '/';
    643 
    644 	cwdi = l->l_proc->p_cwdi;
    645 	rw_enter(&cwdi->cwdi_lock, RW_READER);
    646 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
    647 	    GETCWD_CHECK_ACCESS, l);
    648 	rw_exit(&cwdi->cwdi_lock);
    649 
    650 	if (error) {
    651 		DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
    652 		    error));
    653 		goto out;
    654 	}
    655 	tlen = path + MAXPATHLEN - bp;
    656 
    657 	memmove(path, bp, tlen);
    658 	path[tlen] = '\0';
    659 	if (offs)
    660 		*offs = tlen - len;
    661 out:
    662 	*pbp = pathbuf_assimilate(path);
    663 	return 0;
    664 }
    665 
    666 vaddr_t
    667 exec_vm_minaddr(vaddr_t va_min)
    668 {
    669 	/*
    670 	 * Increase va_min if we don't want NULL to be mappable by the
    671 	 * process.
    672 	 */
    673 #define VM_MIN_GUARD	PAGE_SIZE
    674 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
    675 		return VM_MIN_GUARD;
    676 	return va_min;
    677 }
    678 
    679 static int
    680 execve_loadvm(struct lwp *l, const char *path, char * const *args,
    681 	char * const *envs, execve_fetch_element_t fetch_element,
    682 	struct execve_data * restrict data)
    683 {
    684 	struct exec_package	* const epp = &data->ed_pack;
    685 	int			error;
    686 	struct proc		*p;
    687 	char			*dp;
    688 	u_int			modgen;
    689 	size_t			offs = 0;	// XXX: GCC
    690 
    691 	KASSERT(data != NULL);
    692 
    693 	p = l->l_proc;
    694 	modgen = 0;
    695 
    696 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
    697 
    698 	/*
    699 	 * Check if we have exceeded our number of processes limit.
    700 	 * This is so that we handle the case where a root daemon
    701 	 * forked, ran setuid to become the desired user and is trying
    702 	 * to exec. The obvious place to do the reference counting check
    703 	 * is setuid(), but we don't do the reference counting check there
    704 	 * like other OS's do because then all the programs that use setuid()
    705 	 * must be modified to check the return code of setuid() and exit().
    706 	 * It is dangerous to make setuid() fail, because it fails open and
    707 	 * the program will continue to run as root. If we make it succeed
    708 	 * and return an error code, again we are not enforcing the limit.
    709 	 * The best place to enforce the limit is here, when the process tries
    710 	 * to execute a new image, because eventually the process will need
    711 	 * to call exec in order to do something useful.
    712 	 */
    713  retry:
    714 	if (p->p_flag & PK_SUGID) {
    715 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    716 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    717 		     &p->p_rlimit[RLIMIT_NPROC],
    718 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    719 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    720 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    721 		return EAGAIN;
    722 	}
    723 
    724 	/*
    725 	 * Drain existing references and forbid new ones.  The process
    726 	 * should be left alone until we're done here.  This is necessary
    727 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    728 	 * a local user to illicitly obtain elevated privileges.
    729 	 */
    730 	rw_enter(&p->p_reflock, RW_WRITER);
    731 
    732 	/*
    733 	 * Init the namei data to point the file user's program name.
    734 	 * This is done here rather than in check_exec(), so that it's
    735 	 * possible to override this settings if any of makecmd/probe
    736 	 * functions call check_exec() recursively - for example,
    737 	 * see exec_script_makecmds().
    738 	 */
    739 	if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
    740 	    &data->ed_pathbuf, &offs)) != 0)
    741 		goto clrflg;
    742 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    743 	data->ed_resolvedpathbuf = PNBUF_GET();
    744 
    745 	/*
    746 	 * initialize the fields of the exec package.
    747 	 */
    748 	epp->ep_kname = data->ed_pathstring + offs;
    749 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
    750 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    751 	epp->ep_hdrlen = exec_maxhdrsz;
    752 	epp->ep_hdrvalid = 0;
    753 	epp->ep_emul_arg = NULL;
    754 	epp->ep_emul_arg_free = NULL;
    755 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    756 	epp->ep_vap = &data->ed_attr;
    757 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
    758 	MD_TOPDOWN_INIT(epp);
    759 	epp->ep_emul_root = NULL;
    760 	epp->ep_interp = NULL;
    761 	epp->ep_esch = NULL;
    762 	epp->ep_pax_flags = 0;
    763 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    764 
    765 	rw_enter(&exec_lock, RW_READER);
    766 
    767 	/* see if we can run it. */
    768 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
    769 		if (error != ENOENT && error != EACCES && error != ENOEXEC) {
    770 			DPRINTF(("%s: check exec failed for %s, error %d\n",
    771 			    __func__, epp->ep_kname, error));
    772 		}
    773 		goto freehdr;
    774 	}
    775 
    776 	/* allocate an argument buffer */
    777 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    778 	KASSERT(data->ed_argp != NULL);
    779 	dp = data->ed_argp;
    780 
    781 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    782 		goto bad;
    783 	}
    784 
    785 	/*
    786 	 * Calculate the new stack size.
    787 	 */
    788 
    789 #ifdef __MACHINE_STACK_GROWS_UP
    790 /*
    791  * copyargs() fills argc/argv/envp from the lower address even on
    792  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    793  * so that _rtld() use it.
    794  */
    795 #define	RTLD_GAP	32
    796 #else
    797 #define	RTLD_GAP	0
    798 #endif
    799 
    800 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    801 
    802 	data->ed_argslen = calcargs(data, argenvstrlen);
    803 
    804 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
    805 
    806 	if (len > epp->ep_ssize) {
    807 		/* in effect, compare to initial limit */
    808 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    809 		error = ENOMEM;
    810 		goto bad;
    811 	}
    812 	/* adjust "active stack depth" for process VSZ */
    813 	epp->ep_ssize = len;
    814 
    815 	return 0;
    816 
    817  bad:
    818 	/* free the vmspace-creation commands, and release their references */
    819 	kill_vmcmds(&epp->ep_vmcmds);
    820 	/* kill any opened file descriptor, if necessary */
    821 	if (epp->ep_flags & EXEC_HASFD) {
    822 		epp->ep_flags &= ~EXEC_HASFD;
    823 		fd_close(epp->ep_fd);
    824 	}
    825 	/* close and put the exec'd file */
    826 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    827 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    828 	vput(epp->ep_vp);
    829 	pool_put(&exec_pool, data->ed_argp);
    830 
    831  freehdr:
    832 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    833 	if (epp->ep_emul_root != NULL)
    834 		vrele(epp->ep_emul_root);
    835 	if (epp->ep_interp != NULL)
    836 		vrele(epp->ep_interp);
    837 
    838 	rw_exit(&exec_lock);
    839 
    840 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    841 	pathbuf_destroy(data->ed_pathbuf);
    842 	PNBUF_PUT(data->ed_resolvedpathbuf);
    843 
    844  clrflg:
    845 	rw_exit(&p->p_reflock);
    846 
    847 	if (modgen != module_gen && error == ENOEXEC) {
    848 		modgen = module_gen;
    849 		exec_autoload();
    850 		goto retry;
    851 	}
    852 
    853 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
    854 	return error;
    855 }
    856 
    857 static int
    858 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
    859 {
    860 	struct exec_package	* const epp = &data->ed_pack;
    861 	struct proc		*p = l->l_proc;
    862 	struct exec_vmcmd	*base_vcp;
    863 	int			error = 0;
    864 	size_t			i;
    865 
    866 	/* record proc's vnode, for use by procfs and others */
    867 	if (p->p_textvp)
    868 		vrele(p->p_textvp);
    869 	vref(epp->ep_vp);
    870 	p->p_textvp = epp->ep_vp;
    871 
    872 	/* create the new process's VM space by running the vmcmds */
    873 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    874 
    875 #ifdef TRACE_EXEC
    876 	DUMPVMCMDS(epp, 0, 0);
    877 #endif
    878 
    879 	base_vcp = NULL;
    880 
    881 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
    882 		struct exec_vmcmd *vcp;
    883 
    884 		vcp = &epp->ep_vmcmds.evs_cmds[i];
    885 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    886 			KASSERTMSG(base_vcp != NULL,
    887 			    "%s: relative vmcmd with no base", __func__);
    888 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
    889 			    "%s: illegal base & relative vmcmd", __func__);
    890 			vcp->ev_addr += base_vcp->ev_addr;
    891 		}
    892 		error = (*vcp->ev_proc)(l, vcp);
    893 		if (error)
    894 			DUMPVMCMDS(epp, i, error);
    895 		if (vcp->ev_flags & VMCMD_BASE)
    896 			base_vcp = vcp;
    897 	}
    898 
    899 	/* free the vmspace-creation commands, and release their references */
    900 	kill_vmcmds(&epp->ep_vmcmds);
    901 
    902 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    903 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    904 	vput(epp->ep_vp);
    905 
    906 	/* if an error happened, deallocate and punt */
    907 	if (error != 0) {
    908 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
    909 	}
    910 	return error;
    911 }
    912 
    913 static void
    914 execve_free_data(struct execve_data *data)
    915 {
    916 	struct exec_package	* const epp = &data->ed_pack;
    917 
    918 	/* free the vmspace-creation commands, and release their references */
    919 	kill_vmcmds(&epp->ep_vmcmds);
    920 	/* kill any opened file descriptor, if necessary */
    921 	if (epp->ep_flags & EXEC_HASFD) {
    922 		epp->ep_flags &= ~EXEC_HASFD;
    923 		fd_close(epp->ep_fd);
    924 	}
    925 
    926 	/* close and put the exec'd file */
    927 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    928 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
    929 	vput(epp->ep_vp);
    930 	pool_put(&exec_pool, data->ed_argp);
    931 
    932 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    933 	if (epp->ep_emul_root != NULL)
    934 		vrele(epp->ep_emul_root);
    935 	if (epp->ep_interp != NULL)
    936 		vrele(epp->ep_interp);
    937 
    938 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    939 	pathbuf_destroy(data->ed_pathbuf);
    940 	PNBUF_PUT(data->ed_resolvedpathbuf);
    941 }
    942 
    943 static void
    944 pathexec(struct proc *p, const char *resolvedname)
    945 {
    946 	KASSERT(resolvedname[0] == '/');
    947 
    948 	/* set command name & other accounting info */
    949 	strlcpy(p->p_comm, strrchr(resolvedname, '/') + 1, sizeof(p->p_comm));
    950 
    951 	kmem_strfree(p->p_path);
    952 	p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
    953 }
    954 
    955 /* XXX elsewhere */
    956 static int
    957 credexec(struct lwp *l, struct vattr *attr)
    958 {
    959 	struct proc *p = l->l_proc;
    960 	int error;
    961 
    962 	/*
    963 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
    964 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
    965 	 * out additional references on the process for the moment.
    966 	 */
    967 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    968 
    969 	    (((attr->va_mode & S_ISUID) != 0 &&
    970 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
    971 
    972 	     ((attr->va_mode & S_ISGID) != 0 &&
    973 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
    974 		/*
    975 		 * Mark the process as SUGID before we do
    976 		 * anything that might block.
    977 		 */
    978 		proc_crmod_enter();
    979 		proc_crmod_leave(NULL, NULL, true);
    980 
    981 		/* Make sure file descriptors 0..2 are in use. */
    982 		if ((error = fd_checkstd()) != 0) {
    983 			DPRINTF(("%s: fdcheckstd failed %d\n",
    984 			    __func__, error));
    985 			return error;
    986 		}
    987 
    988 		/*
    989 		 * Copy the credential so other references don't see our
    990 		 * changes.
    991 		 */
    992 		l->l_cred = kauth_cred_copy(l->l_cred);
    993 #ifdef KTRACE
    994 		/*
    995 		 * If the persistent trace flag isn't set, turn off.
    996 		 */
    997 		if (p->p_tracep) {
    998 			mutex_enter(&ktrace_lock);
    999 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
   1000 				ktrderef(p);
   1001 			mutex_exit(&ktrace_lock);
   1002 		}
   1003 #endif
   1004 		if (attr->va_mode & S_ISUID)
   1005 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
   1006 		if (attr->va_mode & S_ISGID)
   1007 			kauth_cred_setegid(l->l_cred, attr->va_gid);
   1008 	} else {
   1009 		if (kauth_cred_geteuid(l->l_cred) ==
   1010 		    kauth_cred_getuid(l->l_cred) &&
   1011 		    kauth_cred_getegid(l->l_cred) ==
   1012 		    kauth_cred_getgid(l->l_cred))
   1013 			p->p_flag &= ~PK_SUGID;
   1014 	}
   1015 
   1016 	/*
   1017 	 * Copy the credential so other references don't see our changes.
   1018 	 * Test to see if this is necessary first, since in the common case
   1019 	 * we won't need a private reference.
   1020 	 */
   1021 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1022 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1023 		l->l_cred = kauth_cred_copy(l->l_cred);
   1024 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1025 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1026 	}
   1027 
   1028 	/* Update the master credentials. */
   1029 	if (l->l_cred != p->p_cred) {
   1030 		kauth_cred_t ocred;
   1031 
   1032 		kauth_cred_hold(l->l_cred);
   1033 		mutex_enter(p->p_lock);
   1034 		ocred = p->p_cred;
   1035 		p->p_cred = l->l_cred;
   1036 		mutex_exit(p->p_lock);
   1037 		kauth_cred_free(ocred);
   1038 	}
   1039 
   1040 	return 0;
   1041 }
   1042 
   1043 static void
   1044 emulexec(struct lwp *l, struct exec_package *epp)
   1045 {
   1046 	struct proc		*p = l->l_proc;
   1047 
   1048 	/* The emulation root will usually have been found when we looked
   1049 	 * for the elf interpreter (or similar), if not look now. */
   1050 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1051 	    epp->ep_emul_root == NULL)
   1052 		emul_find_root(l, epp);
   1053 
   1054 	/* Any old emulation root got removed by fdcloseexec */
   1055 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1056 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1057 	rw_exit(&p->p_cwdi->cwdi_lock);
   1058 	epp->ep_emul_root = NULL;
   1059 	if (epp->ep_interp != NULL)
   1060 		vrele(epp->ep_interp);
   1061 
   1062 	/*
   1063 	 * Call emulation specific exec hook. This can setup per-process
   1064 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1065 	 *
   1066 	 * If we are executing process of different emulation than the
   1067 	 * original forked process, call e_proc_exit() of the old emulation
   1068 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1069 	 * same, the exec hook code should deallocate any old emulation
   1070 	 * resources held previously by this process.
   1071 	 */
   1072 	if (p->p_emul && p->p_emul->e_proc_exit
   1073 	    && p->p_emul != epp->ep_esch->es_emul)
   1074 		(*p->p_emul->e_proc_exit)(p);
   1075 
   1076 	/*
   1077 	 * This is now LWP 1.
   1078 	 */
   1079 	/* XXX elsewhere */
   1080 	mutex_enter(p->p_lock);
   1081 	p->p_nlwpid = 1;
   1082 	l->l_lid = 1;
   1083 	mutex_exit(p->p_lock);
   1084 
   1085 	/*
   1086 	 * Call exec hook. Emulation code may NOT store reference to anything
   1087 	 * from &pack.
   1088 	 */
   1089 	if (epp->ep_esch->es_emul->e_proc_exec)
   1090 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1091 
   1092 	/* update p_emul, the old value is no longer needed */
   1093 	p->p_emul = epp->ep_esch->es_emul;
   1094 
   1095 	/* ...and the same for p_execsw */
   1096 	p->p_execsw = epp->ep_esch;
   1097 
   1098 #ifdef __HAVE_SYSCALL_INTERN
   1099 	(*p->p_emul->e_syscall_intern)(p);
   1100 #endif
   1101 	ktremul();
   1102 }
   1103 
   1104 static int
   1105 execve_runproc(struct lwp *l, struct execve_data * restrict data,
   1106 	bool no_local_exec_lock, bool is_spawn)
   1107 {
   1108 	struct exec_package	* const epp = &data->ed_pack;
   1109 	int error = 0;
   1110 	struct proc		*p;
   1111 
   1112 	/*
   1113 	 * In case of a posix_spawn operation, the child doing the exec
   1114 	 * might not hold the reader lock on exec_lock, but the parent
   1115 	 * will do this instead.
   1116 	 */
   1117 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
   1118 	KASSERT(!no_local_exec_lock || is_spawn);
   1119 	KASSERT(data != NULL);
   1120 
   1121 	p = l->l_proc;
   1122 
   1123 	/* Get rid of other LWPs. */
   1124 	if (p->p_nlwps > 1) {
   1125 		mutex_enter(p->p_lock);
   1126 		exit_lwps(l);
   1127 		mutex_exit(p->p_lock);
   1128 	}
   1129 	KDASSERT(p->p_nlwps == 1);
   1130 
   1131 	/* Destroy any lwpctl info. */
   1132 	if (p->p_lwpctl != NULL)
   1133 		lwp_ctl_exit();
   1134 
   1135 	/* Remove POSIX timers */
   1136 	timers_free(p, TIMERS_POSIX);
   1137 
   1138 	/* Set the PaX flags. */
   1139 	pax_set_flags(epp, p);
   1140 
   1141 	/*
   1142 	 * Do whatever is necessary to prepare the address space
   1143 	 * for remapping.  Note that this might replace the current
   1144 	 * vmspace with another!
   1145 	 */
   1146 	if (is_spawn)
   1147 		uvmspace_spawn(l, epp->ep_vm_minaddr,
   1148 		    epp->ep_vm_maxaddr,
   1149 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1150 	else
   1151 		uvmspace_exec(l, epp->ep_vm_minaddr,
   1152 		    epp->ep_vm_maxaddr,
   1153 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1154 
   1155 	struct vmspace		*vm;
   1156 	vm = p->p_vmspace;
   1157 	vm->vm_taddr = (void *)epp->ep_taddr;
   1158 	vm->vm_tsize = btoc(epp->ep_tsize);
   1159 	vm->vm_daddr = (void*)epp->ep_daddr;
   1160 	vm->vm_dsize = btoc(epp->ep_dsize);
   1161 	vm->vm_ssize = btoc(epp->ep_ssize);
   1162 	vm->vm_issize = 0;
   1163 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
   1164 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
   1165 
   1166 	pax_aslr_init_vm(l, vm, epp);
   1167 
   1168 	/* Now map address space. */
   1169 	error = execve_dovmcmds(l, data);
   1170 	if (error != 0)
   1171 		goto exec_abort;
   1172 
   1173 	pathexec(p, epp->ep_resolvedname);
   1174 
   1175 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1176 
   1177 	error = copyoutargs(data, l, newstack);
   1178 	if (error != 0)
   1179 		goto exec_abort;
   1180 
   1181 	cwdexec(p);
   1182 	fd_closeexec();		/* handle close on exec */
   1183 
   1184 	if (__predict_false(ktrace_on))
   1185 		fd_ktrexecfd();
   1186 
   1187 	execsigs(p);		/* reset caught signals */
   1188 
   1189 	mutex_enter(p->p_lock);
   1190 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1191 	p->p_acflag &= ~AFORK;
   1192 	p->p_flag |= PK_EXEC;
   1193 	mutex_exit(p->p_lock);
   1194 
   1195 	/*
   1196 	 * Stop profiling.
   1197 	 */
   1198 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1199 		mutex_spin_enter(&p->p_stmutex);
   1200 		stopprofclock(p);
   1201 		mutex_spin_exit(&p->p_stmutex);
   1202 	}
   1203 
   1204 	/*
   1205 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1206 	 * exited and exec()/exit() are the only places it will be cleared.
   1207 	 */
   1208 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1209 		mutex_enter(proc_lock);
   1210 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1211 		p->p_lflag &= ~PL_PPWAIT;
   1212 		cv_broadcast(&p->p_pptr->p_waitcv);
   1213 		mutex_exit(proc_lock);
   1214 	}
   1215 
   1216 	error = credexec(l, &data->ed_attr);
   1217 	if (error)
   1218 		goto exec_abort;
   1219 
   1220 #if defined(__HAVE_RAS)
   1221 	/*
   1222 	 * Remove all RASs from the address space.
   1223 	 */
   1224 	ras_purgeall();
   1225 #endif
   1226 
   1227 	doexechooks(p);
   1228 
   1229 	/*
   1230 	 * Set initial SP at the top of the stack.
   1231 	 *
   1232 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1233 	 * the end of arg/env strings.  Userland guesses the address of argc
   1234 	 * via ps_strings::ps_argvstr.
   1235 	 */
   1236 
   1237 	/* Setup new registers and do misc. setup. */
   1238 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
   1239 	if (epp->ep_esch->es_setregs)
   1240 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
   1241 
   1242 	/* Provide a consistent LWP private setting */
   1243 	(void)lwp_setprivate(l, NULL);
   1244 
   1245 	/* Discard all PCU state; need to start fresh */
   1246 	pcu_discard_all(l);
   1247 
   1248 	/* map the process's signal trampoline code */
   1249 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1250 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1251 		goto exec_abort;
   1252 	}
   1253 
   1254 	pool_put(&exec_pool, data->ed_argp);
   1255 
   1256 	/* notify others that we exec'd */
   1257 	KNOTE(&p->p_klist, NOTE_EXEC);
   1258 
   1259 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1260 
   1261 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
   1262 
   1263 	emulexec(l, epp);
   1264 
   1265 	/* Allow new references from the debugger/procfs. */
   1266 	rw_exit(&p->p_reflock);
   1267 	if (!no_local_exec_lock)
   1268 		rw_exit(&exec_lock);
   1269 
   1270 	mutex_enter(proc_lock);
   1271 
   1272 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
   1273 		mutex_enter(p->p_lock);
   1274 		eventswitch(TRAP_EXEC);
   1275 		mutex_enter(proc_lock);
   1276 	}
   1277 
   1278 	if (p->p_sflag & PS_STOPEXEC) {
   1279 		ksiginfoq_t kq;
   1280 
   1281 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1282 		p->p_pptr->p_nstopchild++;
   1283 		p->p_waited = 0;
   1284 		mutex_enter(p->p_lock);
   1285 		ksiginfo_queue_init(&kq);
   1286 		sigclearall(p, &contsigmask, &kq);
   1287 		lwp_lock(l);
   1288 		l->l_stat = LSSTOP;
   1289 		p->p_stat = SSTOP;
   1290 		p->p_nrlwps--;
   1291 		lwp_unlock(l);
   1292 		mutex_exit(p->p_lock);
   1293 		mutex_exit(proc_lock);
   1294 		lwp_lock(l);
   1295 		mi_switch(l);
   1296 		ksiginfo_queue_drain(&kq);
   1297 		KERNEL_LOCK(l->l_biglocks, l);
   1298 	} else {
   1299 		mutex_exit(proc_lock);
   1300 	}
   1301 
   1302 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1303 	pathbuf_destroy(data->ed_pathbuf);
   1304 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1305 #ifdef TRACE_EXEC
   1306 	DPRINTF(("%s finished\n", __func__));
   1307 #endif
   1308 	return EJUSTRETURN;
   1309 
   1310  exec_abort:
   1311 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
   1312 	rw_exit(&p->p_reflock);
   1313 	if (!no_local_exec_lock)
   1314 		rw_exit(&exec_lock);
   1315 
   1316 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1317 	pathbuf_destroy(data->ed_pathbuf);
   1318 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1319 
   1320 	/*
   1321 	 * the old process doesn't exist anymore.  exit gracefully.
   1322 	 * get rid of the (new) address space we have created, if any, get rid
   1323 	 * of our namei data and vnode, and exit noting failure
   1324 	 */
   1325 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1326 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1327 
   1328 	exec_free_emul_arg(epp);
   1329 	pool_put(&exec_pool, data->ed_argp);
   1330 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1331 	if (epp->ep_emul_root != NULL)
   1332 		vrele(epp->ep_emul_root);
   1333 	if (epp->ep_interp != NULL)
   1334 		vrele(epp->ep_interp);
   1335 
   1336 	/* Acquire the sched-state mutex (exit1() will release it). */
   1337 	if (!is_spawn) {
   1338 		mutex_enter(p->p_lock);
   1339 		exit1(l, error, SIGABRT);
   1340 	}
   1341 
   1342 	return error;
   1343 }
   1344 
   1345 int
   1346 execve1(struct lwp *l, const char *path, char * const *args,
   1347     char * const *envs, execve_fetch_element_t fetch_element)
   1348 {
   1349 	struct execve_data data;
   1350 	int error;
   1351 
   1352 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
   1353 	if (error)
   1354 		return error;
   1355 	error = execve_runproc(l, &data, false, false);
   1356 	return error;
   1357 }
   1358 
   1359 static size_t
   1360 fromptrsz(const struct exec_package *epp)
   1361 {
   1362 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
   1363 }
   1364 
   1365 static size_t
   1366 ptrsz(const struct exec_package *epp)
   1367 {
   1368 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
   1369 }
   1370 
   1371 static size_t
   1372 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
   1373 {
   1374 	struct exec_package	* const epp = &data->ed_pack;
   1375 
   1376 	const size_t nargenvptrs =
   1377 	    1 +				/* long argc */
   1378 	    data->ed_argc +		/* char *argv[] */
   1379 	    1 +				/* \0 */
   1380 	    data->ed_envc +		/* char *env[] */
   1381 	    1;				/* \0 */
   1382 
   1383 	return (nargenvptrs * ptrsz(epp))	/* pointers */
   1384 	    + argenvstrlen			/* strings */
   1385 	    + epp->ep_esch->es_arglen;		/* auxinfo */
   1386 }
   1387 
   1388 static size_t
   1389 calcstack(struct execve_data * restrict data, const size_t gaplen)
   1390 {
   1391 	struct exec_package	* const epp = &data->ed_pack;
   1392 
   1393 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
   1394 	    epp->ep_esch->es_emul->e_sigcode;
   1395 
   1396 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
   1397 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
   1398 
   1399 	const size_t sigcode_psstr_sz =
   1400 	    data->ed_szsigcode +	/* sigcode */
   1401 	    data->ed_ps_strings_sz +	/* ps_strings */
   1402 	    STACK_PTHREADSPACE;		/* pthread space */
   1403 
   1404 	const size_t stacklen =
   1405 	    data->ed_argslen +
   1406 	    gaplen +
   1407 	    sigcode_psstr_sz;
   1408 
   1409 	/* make the stack "safely" aligned */
   1410 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
   1411 }
   1412 
   1413 static int
   1414 copyoutargs(struct execve_data * restrict data, struct lwp *l,
   1415     char * const newstack)
   1416 {
   1417 	struct exec_package	* const epp = &data->ed_pack;
   1418 	struct proc		*p = l->l_proc;
   1419 	int			error;
   1420 
   1421 	memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
   1422 
   1423 	/* remember information about the process */
   1424 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1425 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1426 
   1427 	/*
   1428 	 * Allocate the stack address passed to the newly execve()'ed process.
   1429 	 *
   1430 	 * The new stack address will be set to the SP (stack pointer) register
   1431 	 * in setregs().
   1432 	 */
   1433 
   1434 	char *newargs = STACK_ALLOC(
   1435 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
   1436 
   1437 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1438 	    &data->ed_arginfo, &newargs, data->ed_argp);
   1439 
   1440 	if (error) {
   1441 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1442 		return error;
   1443 	}
   1444 
   1445 	error = copyoutpsstrs(data, p);
   1446 	if (error != 0)
   1447 		return error;
   1448 
   1449 	return 0;
   1450 }
   1451 
   1452 static int
   1453 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
   1454 {
   1455 	struct exec_package	* const epp = &data->ed_pack;
   1456 	struct ps_strings32	arginfo32;
   1457 	void			*aip;
   1458 	int			error;
   1459 
   1460 	/* fill process ps_strings info */
   1461 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
   1462 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1463 
   1464 	if (epp->ep_flags & EXEC_32) {
   1465 		aip = &arginfo32;
   1466 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1467 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1468 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1469 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1470 	} else
   1471 		aip = &data->ed_arginfo;
   1472 
   1473 	/* copy out the process's ps_strings structure */
   1474 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1475 	    != 0) {
   1476 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1477 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1478 		return error;
   1479 	}
   1480 
   1481 	return 0;
   1482 }
   1483 
   1484 static int
   1485 copyinargs(struct execve_data * restrict data, char * const *args,
   1486     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1487 {
   1488 	struct exec_package	* const epp = &data->ed_pack;
   1489 	char			*dp;
   1490 	size_t			i;
   1491 	int			error;
   1492 
   1493 	dp = *dpp;
   1494 
   1495 	data->ed_argc = 0;
   1496 
   1497 	/* copy the fake args list, if there's one, freeing it as we go */
   1498 	if (epp->ep_flags & EXEC_HASARGL) {
   1499 		struct exec_fakearg	*fa = epp->ep_fa;
   1500 
   1501 		while (fa->fa_arg != NULL) {
   1502 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1503 			size_t len;
   1504 
   1505 			len = strlcpy(dp, fa->fa_arg, maxlen);
   1506 			/* Count NUL into len. */
   1507 			if (len < maxlen)
   1508 				len++;
   1509 			else {
   1510 				while (fa->fa_arg != NULL) {
   1511 					kmem_free(fa->fa_arg, fa->fa_len);
   1512 					fa++;
   1513 				}
   1514 				kmem_free(epp->ep_fa, epp->ep_fa_len);
   1515 				epp->ep_flags &= ~EXEC_HASARGL;
   1516 				return E2BIG;
   1517 			}
   1518 			ktrexecarg(fa->fa_arg, len - 1);
   1519 			dp += len;
   1520 
   1521 			kmem_free(fa->fa_arg, fa->fa_len);
   1522 			fa++;
   1523 			data->ed_argc++;
   1524 		}
   1525 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1526 		epp->ep_flags &= ~EXEC_HASARGL;
   1527 	}
   1528 
   1529 	/*
   1530 	 * Read and count argument strings from user.
   1531 	 */
   1532 
   1533 	if (args == NULL) {
   1534 		DPRINTF(("%s: null args\n", __func__));
   1535 		return EINVAL;
   1536 	}
   1537 	if (epp->ep_flags & EXEC_SKIPARG)
   1538 		args = (const void *)((const char *)args + fromptrsz(epp));
   1539 	i = 0;
   1540 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1541 	if (error != 0) {
   1542 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1543 		return error;
   1544 	}
   1545 	data->ed_argc += i;
   1546 
   1547 	/*
   1548 	 * Read and count environment strings from user.
   1549 	 */
   1550 
   1551 	data->ed_envc = 0;
   1552 	/* environment need not be there */
   1553 	if (envs == NULL)
   1554 		goto done;
   1555 	i = 0;
   1556 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1557 	if (error != 0) {
   1558 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1559 		return error;
   1560 	}
   1561 	data->ed_envc += i;
   1562 
   1563 done:
   1564 	*dpp = dp;
   1565 
   1566 	return 0;
   1567 }
   1568 
   1569 static int
   1570 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1571     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1572     void (*ktr)(const void *, size_t))
   1573 {
   1574 	char			*dp, *sp;
   1575 	size_t			i;
   1576 	int			error;
   1577 
   1578 	dp = *dpp;
   1579 
   1580 	i = 0;
   1581 	while (1) {
   1582 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1583 		size_t len;
   1584 
   1585 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1586 			return error;
   1587 		}
   1588 		if (!sp)
   1589 			break;
   1590 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1591 			if (error == ENAMETOOLONG)
   1592 				error = E2BIG;
   1593 			return error;
   1594 		}
   1595 		if (__predict_false(ktrace_on))
   1596 			(*ktr)(dp, len - 1);
   1597 		dp += len;
   1598 		i++;
   1599 	}
   1600 
   1601 	*dpp = dp;
   1602 	*ip = i;
   1603 
   1604 	return 0;
   1605 }
   1606 
   1607 /*
   1608  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1609  * Those strings are located just after auxinfo.
   1610  */
   1611 int
   1612 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1613     char **stackp, void *argp)
   1614 {
   1615 	char	**cpp, *dp, *sp;
   1616 	size_t	len;
   1617 	void	*nullp;
   1618 	long	argc, envc;
   1619 	int	error;
   1620 
   1621 	cpp = (char **)*stackp;
   1622 	nullp = NULL;
   1623 	argc = arginfo->ps_nargvstr;
   1624 	envc = arginfo->ps_nenvstr;
   1625 
   1626 	/* argc on stack is long */
   1627 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1628 
   1629 	dp = (char *)(cpp +
   1630 	    1 +				/* long argc */
   1631 	    argc +			/* char *argv[] */
   1632 	    1 +				/* \0 */
   1633 	    envc +			/* char *env[] */
   1634 	    1) +			/* \0 */
   1635 	    pack->ep_esch->es_arglen;	/* auxinfo */
   1636 	sp = argp;
   1637 
   1638 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1639 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1640 		return error;
   1641 	}
   1642 
   1643 	/* XXX don't copy them out, remap them! */
   1644 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1645 
   1646 	for (; --argc >= 0; sp += len, dp += len) {
   1647 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1648 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1649 			return error;
   1650 		}
   1651 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1652 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1653 			return error;
   1654 		}
   1655 	}
   1656 
   1657 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1658 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1659 		return error;
   1660 	}
   1661 
   1662 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1663 
   1664 	for (; --envc >= 0; sp += len, dp += len) {
   1665 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1666 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1667 			return error;
   1668 		}
   1669 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1670 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1671 			return error;
   1672 		}
   1673 
   1674 	}
   1675 
   1676 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1677 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1678 		return error;
   1679 	}
   1680 
   1681 	*stackp = (char *)cpp;
   1682 	return 0;
   1683 }
   1684 
   1685 
   1686 /*
   1687  * Add execsw[] entries.
   1688  */
   1689 int
   1690 exec_add(struct execsw *esp, int count)
   1691 {
   1692 	struct exec_entry	*it;
   1693 	int			i;
   1694 
   1695 	if (count == 0) {
   1696 		return 0;
   1697 	}
   1698 
   1699 	/* Check for duplicates. */
   1700 	rw_enter(&exec_lock, RW_WRITER);
   1701 	for (i = 0; i < count; i++) {
   1702 		LIST_FOREACH(it, &ex_head, ex_list) {
   1703 			/* assume unique (makecmds, probe_func, emulation) */
   1704 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1705 			    it->ex_sw->u.elf_probe_func ==
   1706 			    esp[i].u.elf_probe_func &&
   1707 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1708 				rw_exit(&exec_lock);
   1709 				return EEXIST;
   1710 			}
   1711 		}
   1712 	}
   1713 
   1714 	/* Allocate new entries. */
   1715 	for (i = 0; i < count; i++) {
   1716 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1717 		it->ex_sw = &esp[i];
   1718 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1719 	}
   1720 
   1721 	/* update execsw[] */
   1722 	exec_init(0);
   1723 	rw_exit(&exec_lock);
   1724 	return 0;
   1725 }
   1726 
   1727 /*
   1728  * Remove execsw[] entry.
   1729  */
   1730 int
   1731 exec_remove(struct execsw *esp, int count)
   1732 {
   1733 	struct exec_entry	*it, *next;
   1734 	int			i;
   1735 	const struct proclist_desc *pd;
   1736 	proc_t			*p;
   1737 
   1738 	if (count == 0) {
   1739 		return 0;
   1740 	}
   1741 
   1742 	/* Abort if any are busy. */
   1743 	rw_enter(&exec_lock, RW_WRITER);
   1744 	for (i = 0; i < count; i++) {
   1745 		mutex_enter(proc_lock);
   1746 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1747 			PROCLIST_FOREACH(p, pd->pd_list) {
   1748 				if (p->p_execsw == &esp[i]) {
   1749 					mutex_exit(proc_lock);
   1750 					rw_exit(&exec_lock);
   1751 					return EBUSY;
   1752 				}
   1753 			}
   1754 		}
   1755 		mutex_exit(proc_lock);
   1756 	}
   1757 
   1758 	/* None are busy, so remove them all. */
   1759 	for (i = 0; i < count; i++) {
   1760 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1761 			next = LIST_NEXT(it, ex_list);
   1762 			if (it->ex_sw == &esp[i]) {
   1763 				LIST_REMOVE(it, ex_list);
   1764 				kmem_free(it, sizeof(*it));
   1765 				break;
   1766 			}
   1767 		}
   1768 	}
   1769 
   1770 	/* update execsw[] */
   1771 	exec_init(0);
   1772 	rw_exit(&exec_lock);
   1773 	return 0;
   1774 }
   1775 
   1776 /*
   1777  * Initialize exec structures. If init_boot is true, also does necessary
   1778  * one-time initialization (it's called from main() that way).
   1779  * Once system is multiuser, this should be called with exec_lock held,
   1780  * i.e. via exec_{add|remove}().
   1781  */
   1782 int
   1783 exec_init(int init_boot)
   1784 {
   1785 	const struct execsw 	**sw;
   1786 	struct exec_entry	*ex;
   1787 	SLIST_HEAD(,exec_entry)	first;
   1788 	SLIST_HEAD(,exec_entry)	any;
   1789 	SLIST_HEAD(,exec_entry)	last;
   1790 	int			i, sz;
   1791 
   1792 	if (init_boot) {
   1793 		/* do one-time initializations */
   1794 		vaddr_t vmin = 0, vmax;
   1795 
   1796 		rw_init(&exec_lock);
   1797 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1798 		exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
   1799 		    maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
   1800 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1801 		    "execargs", &exec_palloc, IPL_NONE);
   1802 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1803 	} else {
   1804 		KASSERT(rw_write_held(&exec_lock));
   1805 	}
   1806 
   1807 	/* Sort each entry onto the appropriate queue. */
   1808 	SLIST_INIT(&first);
   1809 	SLIST_INIT(&any);
   1810 	SLIST_INIT(&last);
   1811 	sz = 0;
   1812 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1813 		switch(ex->ex_sw->es_prio) {
   1814 		case EXECSW_PRIO_FIRST:
   1815 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1816 			break;
   1817 		case EXECSW_PRIO_ANY:
   1818 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1819 			break;
   1820 		case EXECSW_PRIO_LAST:
   1821 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1822 			break;
   1823 		default:
   1824 			panic("%s", __func__);
   1825 			break;
   1826 		}
   1827 		sz++;
   1828 	}
   1829 
   1830 	/*
   1831 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1832 	 * allocation.
   1833 	 */
   1834 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1835 	i = 0;
   1836 	SLIST_FOREACH(ex, &first, ex_slist) {
   1837 		sw[i++] = ex->ex_sw;
   1838 	}
   1839 	SLIST_FOREACH(ex, &any, ex_slist) {
   1840 		sw[i++] = ex->ex_sw;
   1841 	}
   1842 	SLIST_FOREACH(ex, &last, ex_slist) {
   1843 		sw[i++] = ex->ex_sw;
   1844 	}
   1845 
   1846 	/* Replace old execsw[] and free used memory. */
   1847 	if (execsw != NULL) {
   1848 		kmem_free(__UNCONST(execsw),
   1849 		    nexecs * sizeof(struct execsw *) + 1);
   1850 	}
   1851 	execsw = sw;
   1852 	nexecs = sz;
   1853 
   1854 	/* Figure out the maximum size of an exec header. */
   1855 	exec_maxhdrsz = sizeof(int);
   1856 	for (i = 0; i < nexecs; i++) {
   1857 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1858 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1859 	}
   1860 
   1861 	return 0;
   1862 }
   1863 
   1864 static int
   1865 exec_sigcode_map(struct proc *p, const struct emul *e)
   1866 {
   1867 	vaddr_t va;
   1868 	vsize_t sz;
   1869 	int error;
   1870 	struct uvm_object *uobj;
   1871 
   1872 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1873 
   1874 	if (e->e_sigobject == NULL || sz == 0) {
   1875 		return 0;
   1876 	}
   1877 
   1878 	/*
   1879 	 * If we don't have a sigobject for this emulation, create one.
   1880 	 *
   1881 	 * sigobject is an anonymous memory object (just like SYSV shared
   1882 	 * memory) that we keep a permanent reference to and that we map
   1883 	 * in all processes that need this sigcode. The creation is simple,
   1884 	 * we create an object, add a permanent reference to it, map it in
   1885 	 * kernel space, copy out the sigcode to it and unmap it.
   1886 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1887 	 * the way sys_mmap() would map it.
   1888 	 */
   1889 
   1890 	uobj = *e->e_sigobject;
   1891 	if (uobj == NULL) {
   1892 		mutex_enter(&sigobject_lock);
   1893 		if ((uobj = *e->e_sigobject) == NULL) {
   1894 			uobj = uao_create(sz, 0);
   1895 			(*uobj->pgops->pgo_reference)(uobj);
   1896 			va = vm_map_min(kernel_map);
   1897 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1898 			    uobj, 0, 0,
   1899 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1900 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1901 				printf("kernel mapping failed %d\n", error);
   1902 				(*uobj->pgops->pgo_detach)(uobj);
   1903 				mutex_exit(&sigobject_lock);
   1904 				return error;
   1905 			}
   1906 			memcpy((void *)va, e->e_sigcode, sz);
   1907 #ifdef PMAP_NEED_PROCWR
   1908 			pmap_procwr(&proc0, va, sz);
   1909 #endif
   1910 			uvm_unmap(kernel_map, va, va + round_page(sz));
   1911 			*e->e_sigobject = uobj;
   1912 		}
   1913 		mutex_exit(&sigobject_lock);
   1914 	}
   1915 
   1916 	/* Just a hint to uvm_map where to put it. */
   1917 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   1918 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1919 
   1920 #ifdef __alpha__
   1921 	/*
   1922 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   1923 	 * which causes the above calculation to put the sigcode at
   1924 	 * an invalid address.  Put it just below the text instead.
   1925 	 */
   1926 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   1927 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   1928 	}
   1929 #endif
   1930 
   1931 	(*uobj->pgops->pgo_reference)(uobj);
   1932 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   1933 			uobj, 0, 0,
   1934 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   1935 				    UVM_ADV_RANDOM, 0));
   1936 	if (error) {
   1937 		DPRINTF(("%s, %d: map %p "
   1938 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   1939 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   1940 		    va, error));
   1941 		(*uobj->pgops->pgo_detach)(uobj);
   1942 		return error;
   1943 	}
   1944 	p->p_sigctx.ps_sigcode = (void *)va;
   1945 	return 0;
   1946 }
   1947 
   1948 /*
   1949  * Release a refcount on spawn_exec_data and destroy memory, if this
   1950  * was the last one.
   1951  */
   1952 static void
   1953 spawn_exec_data_release(struct spawn_exec_data *data)
   1954 {
   1955 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   1956 		return;
   1957 
   1958 	cv_destroy(&data->sed_cv_child_ready);
   1959 	mutex_destroy(&data->sed_mtx_child);
   1960 
   1961 	if (data->sed_actions)
   1962 		posix_spawn_fa_free(data->sed_actions,
   1963 		    data->sed_actions->len);
   1964 	if (data->sed_attrs)
   1965 		kmem_free(data->sed_attrs,
   1966 		    sizeof(*data->sed_attrs));
   1967 	kmem_free(data, sizeof(*data));
   1968 }
   1969 
   1970 /*
   1971  * A child lwp of a posix_spawn operation starts here and ends up in
   1972  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   1973  * manipulations in between.
   1974  * The parent waits for the child, as it is not clear whether the child
   1975  * will be able to acquire its own exec_lock. If it can, the parent can
   1976  * be released early and continue running in parallel. If not (or if the
   1977  * magic debug flag is passed in the scheduler attribute struct), the
   1978  * child rides on the parent's exec lock until it is ready to return to
   1979  * to userland - and only then releases the parent. This method loses
   1980  * concurrency, but improves error reporting.
   1981  */
   1982 static void
   1983 spawn_return(void *arg)
   1984 {
   1985 	struct spawn_exec_data *spawn_data = arg;
   1986 	struct lwp *l = curlwp;
   1987 	int error, newfd;
   1988 	int ostat;
   1989 	size_t i;
   1990 	const struct posix_spawn_file_actions_entry *fae;
   1991 	pid_t ppid;
   1992 	register_t retval;
   1993 	bool have_reflock;
   1994 	bool parent_is_waiting = true;
   1995 
   1996 	/*
   1997 	 * Check if we can release parent early.
   1998 	 * We either need to have no sed_attrs, or sed_attrs does not
   1999 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   2000 	 * safe access to the parent proc (passed in sed_parent).
   2001 	 * We then try to get the exec_lock, and only if that works, we can
   2002 	 * release the parent here already.
   2003 	 */
   2004 	ppid = spawn_data->sed_parent->p_pid;
   2005 	if ((!spawn_data->sed_attrs
   2006 	    || (spawn_data->sed_attrs->sa_flags
   2007 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   2008 	    && rw_tryenter(&exec_lock, RW_READER)) {
   2009 		parent_is_waiting = false;
   2010 		mutex_enter(&spawn_data->sed_mtx_child);
   2011 		cv_signal(&spawn_data->sed_cv_child_ready);
   2012 		mutex_exit(&spawn_data->sed_mtx_child);
   2013 	}
   2014 
   2015 	/* don't allow debugger access yet */
   2016 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
   2017 	have_reflock = true;
   2018 
   2019 	error = 0;
   2020 	/* handle posix_spawn_file_actions */
   2021 	if (spawn_data->sed_actions != NULL) {
   2022 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   2023 			fae = &spawn_data->sed_actions->fae[i];
   2024 			switch (fae->fae_action) {
   2025 			case FAE_OPEN:
   2026 				if (fd_getfile(fae->fae_fildes) != NULL) {
   2027 					error = fd_close(fae->fae_fildes);
   2028 					if (error)
   2029 						break;
   2030 				}
   2031 				error = fd_open(fae->fae_path, fae->fae_oflag,
   2032 				    fae->fae_mode, &newfd);
   2033 				if (error)
   2034 					break;
   2035 				if (newfd != fae->fae_fildes) {
   2036 					error = dodup(l, newfd,
   2037 					    fae->fae_fildes, 0, &retval);
   2038 					if (fd_getfile(newfd) != NULL)
   2039 						fd_close(newfd);
   2040 				}
   2041 				break;
   2042 			case FAE_DUP2:
   2043 				error = dodup(l, fae->fae_fildes,
   2044 				    fae->fae_newfildes, 0, &retval);
   2045 				break;
   2046 			case FAE_CLOSE:
   2047 				if (fd_getfile(fae->fae_fildes) == NULL) {
   2048 					error = EBADF;
   2049 					break;
   2050 				}
   2051 				error = fd_close(fae->fae_fildes);
   2052 				break;
   2053 			}
   2054 			if (error)
   2055 				goto report_error;
   2056 		}
   2057 	}
   2058 
   2059 	/* handle posix_spawnattr */
   2060 	if (spawn_data->sed_attrs != NULL) {
   2061 		struct sigaction sigact;
   2062 		sigact._sa_u._sa_handler = SIG_DFL;
   2063 		sigact.sa_flags = 0;
   2064 
   2065 		/*
   2066 		 * set state to SSTOP so that this proc can be found by pid.
   2067 		 * see proc_enterprp, do_sched_setparam below
   2068 		 */
   2069 		mutex_enter(proc_lock);
   2070 		/*
   2071 		 * p_stat should be SACTIVE, so we need to adjust the
   2072 		 * parent's p_nstopchild here.  For safety, just make
   2073 		 * we're on the good side of SDEAD before we adjust.
   2074 		 */
   2075 		ostat = l->l_proc->p_stat;
   2076 		KASSERT(ostat < SSTOP);
   2077 		l->l_proc->p_stat = SSTOP;
   2078 		l->l_proc->p_waited = 0;
   2079 		l->l_proc->p_pptr->p_nstopchild++;
   2080 		mutex_exit(proc_lock);
   2081 
   2082 		/* Set process group */
   2083 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   2084 			pid_t mypid = l->l_proc->p_pid,
   2085 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   2086 
   2087 			if (pgrp == 0)
   2088 				pgrp = mypid;
   2089 
   2090 			error = proc_enterpgrp(spawn_data->sed_parent,
   2091 			    mypid, pgrp, false);
   2092 			if (error)
   2093 				goto report_error_stopped;
   2094 		}
   2095 
   2096 		/* Set scheduler policy */
   2097 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2098 			error = do_sched_setparam(l->l_proc->p_pid, 0,
   2099 			    spawn_data->sed_attrs->sa_schedpolicy,
   2100 			    &spawn_data->sed_attrs->sa_schedparam);
   2101 		else if (spawn_data->sed_attrs->sa_flags
   2102 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   2103 			error = do_sched_setparam(ppid, 0,
   2104 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   2105 		}
   2106 		if (error)
   2107 			goto report_error_stopped;
   2108 
   2109 		/* Reset user ID's */
   2110 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2111 			error = do_setresuid(l, -1,
   2112 			     kauth_cred_getgid(l->l_cred), -1,
   2113 			     ID_E_EQ_R | ID_E_EQ_S);
   2114 			if (error)
   2115 				goto report_error_stopped;
   2116 			error = do_setresuid(l, -1,
   2117 			    kauth_cred_getuid(l->l_cred), -1,
   2118 			    ID_E_EQ_R | ID_E_EQ_S);
   2119 			if (error)
   2120 				goto report_error_stopped;
   2121 		}
   2122 
   2123 		/* Set signal masks/defaults */
   2124 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2125 			mutex_enter(l->l_proc->p_lock);
   2126 			error = sigprocmask1(l, SIG_SETMASK,
   2127 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   2128 			mutex_exit(l->l_proc->p_lock);
   2129 			if (error)
   2130 				goto report_error_stopped;
   2131 		}
   2132 
   2133 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2134 			/*
   2135 			 * The following sigaction call is using a sigaction
   2136 			 * version 0 trampoline which is in the compatibility
   2137 			 * code only. This is not a problem because for SIG_DFL
   2138 			 * and SIG_IGN, the trampolines are now ignored. If they
   2139 			 * were not, this would be a problem because we are
   2140 			 * holding the exec_lock, and the compat code needs
   2141 			 * to do the same in order to replace the trampoline
   2142 			 * code of the process.
   2143 			 */
   2144 			for (i = 1; i <= NSIG; i++) {
   2145 				if (sigismember(
   2146 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   2147 					sigaction1(l, i, &sigact, NULL, NULL,
   2148 					    0);
   2149 			}
   2150 		}
   2151 		mutex_enter(proc_lock);
   2152 		l->l_proc->p_stat = ostat;
   2153 		l->l_proc->p_pptr->p_nstopchild--;
   2154 		mutex_exit(proc_lock);
   2155 	}
   2156 
   2157 	/* now do the real exec */
   2158 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2159 	    true);
   2160 	have_reflock = false;
   2161 	if (error == EJUSTRETURN)
   2162 		error = 0;
   2163 	else if (error)
   2164 		goto report_error;
   2165 
   2166 	if (parent_is_waiting) {
   2167 		mutex_enter(&spawn_data->sed_mtx_child);
   2168 		cv_signal(&spawn_data->sed_cv_child_ready);
   2169 		mutex_exit(&spawn_data->sed_mtx_child);
   2170 	}
   2171 
   2172 	/* release our refcount on the data */
   2173 	spawn_exec_data_release(spawn_data);
   2174 
   2175 	/* and finally: leave to userland for the first time */
   2176 	cpu_spawn_return(l);
   2177 
   2178 	/* NOTREACHED */
   2179 	return;
   2180 
   2181  report_error_stopped:
   2182 	mutex_enter(proc_lock);
   2183 	l->l_proc->p_stat = ostat;
   2184 	l->l_proc->p_pptr->p_nstopchild--;
   2185 	mutex_exit(proc_lock);
   2186  report_error:
   2187 	if (have_reflock) {
   2188 		/*
   2189 		 * We have not passed through execve_runproc(),
   2190 		 * which would have released the p_reflock and also
   2191 		 * taken ownership of the sed_exec part of spawn_data,
   2192 		 * so release/free both here.
   2193 		 */
   2194 		rw_exit(&l->l_proc->p_reflock);
   2195 		execve_free_data(&spawn_data->sed_exec);
   2196 	}
   2197 
   2198 	if (parent_is_waiting) {
   2199 		/* pass error to parent */
   2200 		mutex_enter(&spawn_data->sed_mtx_child);
   2201 		spawn_data->sed_error = error;
   2202 		cv_signal(&spawn_data->sed_cv_child_ready);
   2203 		mutex_exit(&spawn_data->sed_mtx_child);
   2204 	} else {
   2205 		rw_exit(&exec_lock);
   2206 	}
   2207 
   2208 	/* release our refcount on the data */
   2209 	spawn_exec_data_release(spawn_data);
   2210 
   2211 	/* done, exit */
   2212 	mutex_enter(l->l_proc->p_lock);
   2213 	/*
   2214 	 * Posix explicitly asks for an exit code of 127 if we report
   2215 	 * errors from the child process - so, unfortunately, there
   2216 	 * is no way to report a more exact error code.
   2217 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2218 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2219 	 */
   2220 	exit1(l, 127, 0);
   2221 }
   2222 
   2223 void
   2224 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2225 {
   2226 
   2227 	for (size_t i = 0; i < len; i++) {
   2228 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2229 		if (fae->fae_action != FAE_OPEN)
   2230 			continue;
   2231 		kmem_strfree(fae->fae_path);
   2232 	}
   2233 	if (fa->len > 0)
   2234 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2235 	kmem_free(fa, sizeof(*fa));
   2236 }
   2237 
   2238 static int
   2239 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2240     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2241 {
   2242 	struct posix_spawn_file_actions *fa;
   2243 	struct posix_spawn_file_actions_entry *fae;
   2244 	char *pbuf = NULL;
   2245 	int error;
   2246 	size_t i = 0;
   2247 
   2248 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2249 	error = copyin(ufa, fa, sizeof(*fa));
   2250 	if (error || fa->len == 0) {
   2251 		kmem_free(fa, sizeof(*fa));
   2252 		return error;	/* 0 if not an error, and len == 0 */
   2253 	}
   2254 
   2255 	if (fa->len > lim) {
   2256 		kmem_free(fa, sizeof(*fa));
   2257 		return EINVAL;
   2258 	}
   2259 
   2260 	fa->size = fa->len;
   2261 	size_t fal = fa->len * sizeof(*fae);
   2262 	fae = fa->fae;
   2263 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2264 	error = copyin(fae, fa->fae, fal);
   2265 	if (error)
   2266 		goto out;
   2267 
   2268 	pbuf = PNBUF_GET();
   2269 	for (; i < fa->len; i++) {
   2270 		fae = &fa->fae[i];
   2271 		if (fae->fae_action != FAE_OPEN)
   2272 			continue;
   2273 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2274 		if (error)
   2275 			goto out;
   2276 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2277 		memcpy(fae->fae_path, pbuf, fal);
   2278 	}
   2279 	PNBUF_PUT(pbuf);
   2280 
   2281 	*fap = fa;
   2282 	return 0;
   2283 out:
   2284 	if (pbuf)
   2285 		PNBUF_PUT(pbuf);
   2286 	posix_spawn_fa_free(fa, i);
   2287 	return error;
   2288 }
   2289 
   2290 int
   2291 check_posix_spawn(struct lwp *l1)
   2292 {
   2293 	int error, tnprocs, count;
   2294 	uid_t uid;
   2295 	struct proc *p1;
   2296 
   2297 	p1 = l1->l_proc;
   2298 	uid = kauth_cred_getuid(l1->l_cred);
   2299 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2300 
   2301 	/*
   2302 	 * Although process entries are dynamically created, we still keep
   2303 	 * a global limit on the maximum number we will create.
   2304 	 */
   2305 	if (__predict_false(tnprocs >= maxproc))
   2306 		error = -1;
   2307 	else
   2308 		error = kauth_authorize_process(l1->l_cred,
   2309 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2310 
   2311 	if (error) {
   2312 		atomic_dec_uint(&nprocs);
   2313 		return EAGAIN;
   2314 	}
   2315 
   2316 	/*
   2317 	 * Enforce limits.
   2318 	 */
   2319 	count = chgproccnt(uid, 1);
   2320 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2321 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2322 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2323 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2324 		(void)chgproccnt(uid, -1);
   2325 		atomic_dec_uint(&nprocs);
   2326 		return EAGAIN;
   2327 	}
   2328 
   2329 	return 0;
   2330 }
   2331 
   2332 int
   2333 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2334 	struct posix_spawn_file_actions *fa,
   2335 	struct posix_spawnattr *sa,
   2336 	char *const *argv, char *const *envp,
   2337 	execve_fetch_element_t fetch)
   2338 {
   2339 
   2340 	struct proc *p1, *p2;
   2341 	struct lwp *l2;
   2342 	int error;
   2343 	struct spawn_exec_data *spawn_data;
   2344 	vaddr_t uaddr;
   2345 	pid_t pid;
   2346 	bool have_exec_lock = false;
   2347 
   2348 	p1 = l1->l_proc;
   2349 
   2350 	/* Allocate and init spawn_data */
   2351 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2352 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2353 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2354 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2355 	mutex_enter(&spawn_data->sed_mtx_child);
   2356 
   2357 	/*
   2358 	 * Do the first part of the exec now, collect state
   2359 	 * in spawn_data.
   2360 	 */
   2361 	error = execve_loadvm(l1, path, argv,
   2362 	    envp, fetch, &spawn_data->sed_exec);
   2363 	if (error == EJUSTRETURN)
   2364 		error = 0;
   2365 	else if (error)
   2366 		goto error_exit;
   2367 
   2368 	have_exec_lock = true;
   2369 
   2370 	/*
   2371 	 * Allocate virtual address space for the U-area now, while it
   2372 	 * is still easy to abort the fork operation if we're out of
   2373 	 * kernel virtual address space.
   2374 	 */
   2375 	uaddr = uvm_uarea_alloc();
   2376 	if (__predict_false(uaddr == 0)) {
   2377 		error = ENOMEM;
   2378 		goto error_exit;
   2379 	}
   2380 
   2381 	/*
   2382 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2383 	 * replace it with its own before returning to userland
   2384 	 * in the child.
   2385 	 * This is a point of no return, we will have to go through
   2386 	 * the child proc to properly clean it up past this point.
   2387 	 */
   2388 	p2 = proc_alloc();
   2389 	pid = p2->p_pid;
   2390 
   2391 	/*
   2392 	 * Make a proc table entry for the new process.
   2393 	 * Start by zeroing the section of proc that is zero-initialized,
   2394 	 * then copy the section that is copied directly from the parent.
   2395 	 */
   2396 	memset(&p2->p_startzero, 0,
   2397 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2398 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2399 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2400 	p2->p_vmspace = proc0.p_vmspace;
   2401 
   2402 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2403 
   2404 	LIST_INIT(&p2->p_lwps);
   2405 	LIST_INIT(&p2->p_sigwaiters);
   2406 
   2407 	/*
   2408 	 * Duplicate sub-structures as needed.
   2409 	 * Increase reference counts on shared objects.
   2410 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2411 	 * handling are important in order to keep a consistent behaviour
   2412 	 * for the child after the fork.  If we are a 32-bit process, the
   2413 	 * child will be too.
   2414 	 */
   2415 	p2->p_flag =
   2416 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2417 	p2->p_emul = p1->p_emul;
   2418 	p2->p_execsw = p1->p_execsw;
   2419 
   2420 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2421 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2422 	rw_init(&p2->p_reflock);
   2423 	cv_init(&p2->p_waitcv, "wait");
   2424 	cv_init(&p2->p_lwpcv, "lwpwait");
   2425 
   2426 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2427 
   2428 	kauth_proc_fork(p1, p2);
   2429 
   2430 	p2->p_raslist = NULL;
   2431 	p2->p_fd = fd_copy();
   2432 
   2433 	/* XXX racy */
   2434 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2435 
   2436 	p2->p_cwdi = cwdinit();
   2437 
   2438 	/*
   2439 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2440 	 * we just need increase pl_refcnt.
   2441 	 */
   2442 	if (!p1->p_limit->pl_writeable) {
   2443 		lim_addref(p1->p_limit);
   2444 		p2->p_limit = p1->p_limit;
   2445 	} else {
   2446 		p2->p_limit = lim_copy(p1->p_limit);
   2447 	}
   2448 
   2449 	p2->p_lflag = 0;
   2450 	p2->p_sflag = 0;
   2451 	p2->p_slflag = 0;
   2452 	p2->p_pptr = p1;
   2453 	p2->p_ppid = p1->p_pid;
   2454 	LIST_INIT(&p2->p_children);
   2455 
   2456 	p2->p_aio = NULL;
   2457 
   2458 #ifdef KTRACE
   2459 	/*
   2460 	 * Copy traceflag and tracefile if enabled.
   2461 	 * If not inherited, these were zeroed above.
   2462 	 */
   2463 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2464 		mutex_enter(&ktrace_lock);
   2465 		p2->p_traceflag = p1->p_traceflag;
   2466 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2467 			ktradref(p2);
   2468 		mutex_exit(&ktrace_lock);
   2469 	}
   2470 #endif
   2471 
   2472 	/*
   2473 	 * Create signal actions for the child process.
   2474 	 */
   2475 	p2->p_sigacts = sigactsinit(p1, 0);
   2476 	mutex_enter(p1->p_lock);
   2477 	p2->p_sflag |=
   2478 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2479 	sched_proc_fork(p1, p2);
   2480 	mutex_exit(p1->p_lock);
   2481 
   2482 	p2->p_stflag = p1->p_stflag;
   2483 
   2484 	/*
   2485 	 * p_stats.
   2486 	 * Copy parts of p_stats, and zero out the rest.
   2487 	 */
   2488 	p2->p_stats = pstatscopy(p1->p_stats);
   2489 
   2490 	/* copy over machdep flags to the new proc */
   2491 	cpu_proc_fork(p1, p2);
   2492 
   2493 	/*
   2494 	 * Prepare remaining parts of spawn data
   2495 	 */
   2496 	spawn_data->sed_actions = fa;
   2497 	spawn_data->sed_attrs = sa;
   2498 
   2499 	spawn_data->sed_parent = p1;
   2500 
   2501 	/* create LWP */
   2502 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2503 	    &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
   2504 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2505 
   2506 	/*
   2507 	 * Copy the credential so other references don't see our changes.
   2508 	 * Test to see if this is necessary first, since in the common case
   2509 	 * we won't need a private reference.
   2510 	 */
   2511 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2512 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2513 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2514 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2515 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2516 	}
   2517 
   2518 	/* Update the master credentials. */
   2519 	if (l2->l_cred != p2->p_cred) {
   2520 		kauth_cred_t ocred;
   2521 
   2522 		kauth_cred_hold(l2->l_cred);
   2523 		mutex_enter(p2->p_lock);
   2524 		ocred = p2->p_cred;
   2525 		p2->p_cred = l2->l_cred;
   2526 		mutex_exit(p2->p_lock);
   2527 		kauth_cred_free(ocred);
   2528 	}
   2529 
   2530 	*child_ok = true;
   2531 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2532 #if 0
   2533 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2534 #endif
   2535 
   2536 	/*
   2537 	 * It's now safe for the scheduler and other processes to see the
   2538 	 * child process.
   2539 	 */
   2540 	mutex_enter(proc_lock);
   2541 
   2542 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2543 		p2->p_lflag |= PL_CONTROLT;
   2544 
   2545 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2546 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2547 
   2548 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2549 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2550 
   2551 	p2->p_trace_enabled = trace_is_enabled(p2);
   2552 #ifdef __HAVE_SYSCALL_INTERN
   2553 	(*p2->p_emul->e_syscall_intern)(p2);
   2554 #endif
   2555 
   2556 	/*
   2557 	 * Make child runnable, set start time, and add to run queue except
   2558 	 * if the parent requested the child to start in SSTOP state.
   2559 	 */
   2560 	mutex_enter(p2->p_lock);
   2561 
   2562 	getmicrotime(&p2->p_stats->p_start);
   2563 
   2564 	lwp_lock(l2);
   2565 	KASSERT(p2->p_nrlwps == 1);
   2566 	p2->p_nrlwps = 1;
   2567 	p2->p_stat = SACTIVE;
   2568 	l2->l_stat = LSRUN;
   2569 	sched_enqueue(l2, false);
   2570 	lwp_unlock(l2);
   2571 
   2572 	mutex_exit(p2->p_lock);
   2573 	mutex_exit(proc_lock);
   2574 
   2575 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2576 	error = spawn_data->sed_error;
   2577 	mutex_exit(&spawn_data->sed_mtx_child);
   2578 	spawn_exec_data_release(spawn_data);
   2579 
   2580 	rw_exit(&p1->p_reflock);
   2581 	rw_exit(&exec_lock);
   2582 	have_exec_lock = false;
   2583 
   2584 	*pid_res = pid;
   2585 	return error;
   2586 
   2587  error_exit:
   2588 	if (have_exec_lock) {
   2589 		execve_free_data(&spawn_data->sed_exec);
   2590 		rw_exit(&p1->p_reflock);
   2591 		rw_exit(&exec_lock);
   2592 	}
   2593 	mutex_exit(&spawn_data->sed_mtx_child);
   2594 	spawn_exec_data_release(spawn_data);
   2595 
   2596 	return error;
   2597 }
   2598 
   2599 int
   2600 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2601     register_t *retval)
   2602 {
   2603 	/* {
   2604 		syscallarg(pid_t *) pid;
   2605 		syscallarg(const char *) path;
   2606 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2607 		syscallarg(const struct posix_spawnattr *) attrp;
   2608 		syscallarg(char *const *) argv;
   2609 		syscallarg(char *const *) envp;
   2610 	} */
   2611 
   2612 	int error;
   2613 	struct posix_spawn_file_actions *fa = NULL;
   2614 	struct posix_spawnattr *sa = NULL;
   2615 	pid_t pid;
   2616 	bool child_ok = false;
   2617 	rlim_t max_fileactions;
   2618 	proc_t *p = l1->l_proc;
   2619 
   2620 	error = check_posix_spawn(l1);
   2621 	if (error) {
   2622 		*retval = error;
   2623 		return 0;
   2624 	}
   2625 
   2626 	/* copy in file_actions struct */
   2627 	if (SCARG(uap, file_actions) != NULL) {
   2628 		max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2629 		    maxfiles);
   2630 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2631 		    max_fileactions);
   2632 		if (error)
   2633 			goto error_exit;
   2634 	}
   2635 
   2636 	/* copyin posix_spawnattr struct */
   2637 	if (SCARG(uap, attrp) != NULL) {
   2638 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2639 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2640 		if (error)
   2641 			goto error_exit;
   2642 	}
   2643 
   2644 	/*
   2645 	 * Do the spawn
   2646 	 */
   2647 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2648 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2649 	if (error)
   2650 		goto error_exit;
   2651 
   2652 	if (error == 0 && SCARG(uap, pid) != NULL)
   2653 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2654 
   2655 	*retval = error;
   2656 	return 0;
   2657 
   2658  error_exit:
   2659 	if (!child_ok) {
   2660 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2661 		atomic_dec_uint(&nprocs);
   2662 
   2663 		if (sa)
   2664 			kmem_free(sa, sizeof(*sa));
   2665 		if (fa)
   2666 			posix_spawn_fa_free(fa, fa->len);
   2667 	}
   2668 
   2669 	*retval = error;
   2670 	return 0;
   2671 }
   2672 
   2673 void
   2674 exec_free_emul_arg(struct exec_package *epp)
   2675 {
   2676 	if (epp->ep_emul_arg_free != NULL) {
   2677 		KASSERT(epp->ep_emul_arg != NULL);
   2678 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2679 		epp->ep_emul_arg_free = NULL;
   2680 		epp->ep_emul_arg = NULL;
   2681 	} else {
   2682 		KASSERT(epp->ep_emul_arg == NULL);
   2683 	}
   2684 }
   2685 
   2686 #ifdef DEBUG_EXEC
   2687 static void
   2688 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2689 {
   2690 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2691 	size_t j;
   2692 
   2693 	if (error == 0)
   2694 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2695 	else
   2696 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2697 		    epp->ep_vmcmds.evs_used, error));
   2698 
   2699 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2700 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2701 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2702 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2703 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2704 		    "pagedvn" :
   2705 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2706 		    "readvn" :
   2707 		    vp[j].ev_proc == vmcmd_map_zero ?
   2708 		    "zero" : "*unknown*",
   2709 		    vp[j].ev_addr, vp[j].ev_len,
   2710 		    vp[j].ev_offset, vp[j].ev_prot,
   2711 		    vp[j].ev_flags));
   2712 		if (error != 0 && j == x)
   2713 			DPRINTF(("     ^--- failed\n"));
   2714 	}
   2715 }
   2716 #endif
   2717