kern_exec.c revision 1.466 1 /* $NetBSD: kern_exec.c,v 1.466 2019/06/11 23:18:55 kamil Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.466 2019/06/11 23:18:55 kamil Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/ptrace.h>
78 #include <sys/mount.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/filedesc.h>
84 #include <sys/acct.h>
85 #include <sys/atomic.h>
86 #include <sys/exec.h>
87 #include <sys/ktrace.h>
88 #include <sys/uidinfo.h>
89 #include <sys/wait.h>
90 #include <sys/mman.h>
91 #include <sys/ras.h>
92 #include <sys/signalvar.h>
93 #include <sys/stat.h>
94 #include <sys/syscall.h>
95 #include <sys/kauth.h>
96 #include <sys/lwpctl.h>
97 #include <sys/pax.h>
98 #include <sys/cpu.h>
99 #include <sys/module.h>
100 #include <sys/syscallvar.h>
101 #include <sys/syscallargs.h>
102 #if NVERIEXEC > 0
103 #include <sys/verified_exec.h>
104 #endif /* NVERIEXEC > 0 */
105 #include <sys/sdt.h>
106 #include <sys/spawn.h>
107 #include <sys/prot.h>
108 #include <sys/cprng.h>
109
110 #include <uvm/uvm_extern.h>
111
112 #include <machine/reg.h>
113
114 #include <compat/common/compat_util.h>
115
116 #ifndef MD_TOPDOWN_INIT
117 #ifdef __USE_TOPDOWN_VM
118 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
119 #else
120 #define MD_TOPDOWN_INIT(epp)
121 #endif
122 #endif
123
124 struct execve_data;
125
126 extern int user_va0_disable;
127
128 static size_t calcargs(struct execve_data * restrict, const size_t);
129 static size_t calcstack(struct execve_data * restrict, const size_t);
130 static int copyoutargs(struct execve_data * restrict, struct lwp *,
131 char * const);
132 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
133 static int copyinargs(struct execve_data * restrict, char * const *,
134 char * const *, execve_fetch_element_t, char **);
135 static int copyinargstrs(struct execve_data * restrict, char * const *,
136 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
137 static int exec_sigcode_map(struct proc *, const struct emul *);
138
139 #if defined(DEBUG) && !defined(DEBUG_EXEC)
140 #define DEBUG_EXEC
141 #endif
142 #ifdef DEBUG_EXEC
143 #define DPRINTF(a) printf a
144 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
145 __LINE__, (s), (a), (b))
146 static void dump_vmcmds(const struct exec_package * const, size_t, int);
147 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
148 #else
149 #define DPRINTF(a)
150 #define COPYPRINTF(s, a, b)
151 #define DUMPVMCMDS(p, x, e) do {} while (0)
152 #endif /* DEBUG_EXEC */
153
154 /*
155 * DTrace SDT provider definitions
156 */
157 SDT_PROVIDER_DECLARE(proc);
158 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
159 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
160 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
161
162 /*
163 * Exec function switch:
164 *
165 * Note that each makecmds function is responsible for loading the
166 * exec package with the necessary functions for any exec-type-specific
167 * handling.
168 *
169 * Functions for specific exec types should be defined in their own
170 * header file.
171 */
172 static const struct execsw **execsw = NULL;
173 static int nexecs;
174
175 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
176
177 /* list of dynamically loaded execsw entries */
178 static LIST_HEAD(execlist_head, exec_entry) ex_head =
179 LIST_HEAD_INITIALIZER(ex_head);
180 struct exec_entry {
181 LIST_ENTRY(exec_entry) ex_list;
182 SLIST_ENTRY(exec_entry) ex_slist;
183 const struct execsw *ex_sw;
184 };
185
186 #ifndef __HAVE_SYSCALL_INTERN
187 void syscall(void);
188 #endif
189
190 /* NetBSD autoloadable syscalls */
191 #ifdef MODULAR
192 #include <kern/syscalls_autoload.c>
193 #endif
194
195 /* NetBSD emul struct */
196 struct emul emul_netbsd = {
197 .e_name = "netbsd",
198 #ifdef EMUL_NATIVEROOT
199 .e_path = EMUL_NATIVEROOT,
200 #else
201 .e_path = NULL,
202 #endif
203 #ifndef __HAVE_MINIMAL_EMUL
204 .e_flags = EMUL_HAS_SYS___syscall,
205 .e_errno = NULL,
206 .e_nosys = SYS_syscall,
207 .e_nsysent = SYS_NSYSENT,
208 #endif
209 #ifdef MODULAR
210 .e_sc_autoload = netbsd_syscalls_autoload,
211 #endif
212 .e_sysent = sysent,
213 .e_nomodbits = sysent_nomodbits,
214 #ifdef SYSCALL_DEBUG
215 .e_syscallnames = syscallnames,
216 #else
217 .e_syscallnames = NULL,
218 #endif
219 .e_sendsig = sendsig,
220 .e_trapsignal = trapsignal,
221 .e_sigcode = NULL,
222 .e_esigcode = NULL,
223 .e_sigobject = NULL,
224 .e_setregs = setregs,
225 .e_proc_exec = NULL,
226 .e_proc_fork = NULL,
227 .e_proc_exit = NULL,
228 .e_lwp_fork = NULL,
229 .e_lwp_exit = NULL,
230 #ifdef __HAVE_SYSCALL_INTERN
231 .e_syscall_intern = syscall_intern,
232 #else
233 .e_syscall = syscall,
234 #endif
235 .e_sysctlovly = NULL,
236 .e_vm_default_addr = uvm_default_mapaddr,
237 .e_usertrap = NULL,
238 .e_ucsize = sizeof(ucontext_t),
239 .e_startlwp = startlwp
240 };
241
242 /*
243 * Exec lock. Used to control access to execsw[] structures.
244 * This must not be static so that netbsd32 can access it, too.
245 */
246 krwlock_t exec_lock;
247
248 static kmutex_t sigobject_lock;
249
250 /*
251 * Data used between a loadvm and execve part of an "exec" operation
252 */
253 struct execve_data {
254 struct exec_package ed_pack;
255 struct pathbuf *ed_pathbuf;
256 struct vattr ed_attr;
257 struct ps_strings ed_arginfo;
258 char *ed_argp;
259 const char *ed_pathstring;
260 char *ed_resolvedpathbuf;
261 size_t ed_ps_strings_sz;
262 int ed_szsigcode;
263 size_t ed_argslen;
264 long ed_argc;
265 long ed_envc;
266 };
267
268 /*
269 * data passed from parent lwp to child during a posix_spawn()
270 */
271 struct spawn_exec_data {
272 struct execve_data sed_exec;
273 struct posix_spawn_file_actions
274 *sed_actions;
275 struct posix_spawnattr *sed_attrs;
276 struct proc *sed_parent;
277 kcondvar_t sed_cv_child_ready;
278 kmutex_t sed_mtx_child;
279 int sed_error;
280 volatile uint32_t sed_refcnt;
281 };
282
283 static struct vm_map *exec_map;
284 static struct pool exec_pool;
285
286 static void *
287 exec_pool_alloc(struct pool *pp, int flags)
288 {
289
290 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
291 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
292 }
293
294 static void
295 exec_pool_free(struct pool *pp, void *addr)
296 {
297
298 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
299 }
300
301 static struct pool_allocator exec_palloc = {
302 .pa_alloc = exec_pool_alloc,
303 .pa_free = exec_pool_free,
304 .pa_pagesz = NCARGS
305 };
306
307 /*
308 * check exec:
309 * given an "executable" described in the exec package's namei info,
310 * see what we can do with it.
311 *
312 * ON ENTRY:
313 * exec package with appropriate namei info
314 * lwp pointer of exec'ing lwp
315 * NO SELF-LOCKED VNODES
316 *
317 * ON EXIT:
318 * error: nothing held, etc. exec header still allocated.
319 * ok: filled exec package, executable's vnode (unlocked).
320 *
321 * EXEC SWITCH ENTRY:
322 * Locked vnode to check, exec package, proc.
323 *
324 * EXEC SWITCH EXIT:
325 * ok: return 0, filled exec package, executable's vnode (unlocked).
326 * error: destructive:
327 * everything deallocated execept exec header.
328 * non-destructive:
329 * error code, executable's vnode (unlocked),
330 * exec header unmodified.
331 */
332 int
333 /*ARGSUSED*/
334 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
335 {
336 int error, i;
337 struct vnode *vp;
338 struct nameidata nd;
339 size_t resid;
340
341 #if 1
342 // grab the absolute pathbuf here before namei() trashes it.
343 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
344 #endif
345 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
346
347 /* first get the vnode */
348 if ((error = namei(&nd)) != 0)
349 return error;
350 epp->ep_vp = vp = nd.ni_vp;
351 #if 0
352 /*
353 * XXX: can't use nd.ni_pnbuf, because although pb contains an
354 * absolute path, nd.ni_pnbuf does not if the path contains symlinks.
355 */
356 /* normally this can't fail */
357 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
358 KASSERT(error == 0);
359 #endif
360
361 #ifdef DIAGNOSTIC
362 /* paranoia (take this out once namei stuff stabilizes) */
363 memset(nd.ni_pnbuf, '~', PATH_MAX);
364 #endif
365
366 /* check access and type */
367 if (vp->v_type != VREG) {
368 error = EACCES;
369 goto bad1;
370 }
371 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
372 goto bad1;
373
374 /* get attributes */
375 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
376 goto bad1;
377
378 /* Check mount point */
379 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
380 error = EACCES;
381 goto bad1;
382 }
383 if (vp->v_mount->mnt_flag & MNT_NOSUID)
384 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
385
386 /* try to open it */
387 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
388 goto bad1;
389
390 /* unlock vp, since we need it unlocked from here on out. */
391 VOP_UNLOCK(vp);
392
393 #if NVERIEXEC > 0
394 error = veriexec_verify(l, vp, epp->ep_resolvedname,
395 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
396 NULL);
397 if (error)
398 goto bad2;
399 #endif /* NVERIEXEC > 0 */
400
401 #ifdef PAX_SEGVGUARD
402 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
403 if (error)
404 goto bad2;
405 #endif /* PAX_SEGVGUARD */
406
407 /* now we have the file, get the exec header */
408 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
409 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
410 if (error)
411 goto bad2;
412 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
413
414 /*
415 * Set up default address space limits. Can be overridden
416 * by individual exec packages.
417 */
418 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
419 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
420
421 /*
422 * set up the vmcmds for creation of the process
423 * address space
424 */
425 error = ENOEXEC;
426 for (i = 0; i < nexecs; i++) {
427 int newerror;
428
429 epp->ep_esch = execsw[i];
430 newerror = (*execsw[i]->es_makecmds)(l, epp);
431
432 if (!newerror) {
433 /* Seems ok: check that entry point is not too high */
434 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
435 #ifdef DIAGNOSTIC
436 printf("%s: rejecting %p due to "
437 "too high entry address (>= %p)\n",
438 __func__, (void *)epp->ep_entry,
439 (void *)epp->ep_vm_maxaddr);
440 #endif
441 error = ENOEXEC;
442 break;
443 }
444 /* Seems ok: check that entry point is not too low */
445 if (epp->ep_entry < epp->ep_vm_minaddr) {
446 #ifdef DIAGNOSTIC
447 printf("%s: rejecting %p due to "
448 "too low entry address (< %p)\n",
449 __func__, (void *)epp->ep_entry,
450 (void *)epp->ep_vm_minaddr);
451 #endif
452 error = ENOEXEC;
453 break;
454 }
455
456 /* check limits */
457 if ((epp->ep_tsize > MAXTSIZ) ||
458 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
459 [RLIMIT_DATA].rlim_cur)) {
460 #ifdef DIAGNOSTIC
461 printf("%s: rejecting due to "
462 "limits (t=%llu > %llu || d=%llu > %llu)\n",
463 __func__,
464 (unsigned long long)epp->ep_tsize,
465 (unsigned long long)MAXTSIZ,
466 (unsigned long long)epp->ep_dsize,
467 (unsigned long long)
468 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
469 #endif
470 error = ENOMEM;
471 break;
472 }
473 return 0;
474 }
475
476 /*
477 * Reset all the fields that may have been modified by the
478 * loader.
479 */
480 KASSERT(epp->ep_emul_arg == NULL);
481 if (epp->ep_emul_root != NULL) {
482 vrele(epp->ep_emul_root);
483 epp->ep_emul_root = NULL;
484 }
485 if (epp->ep_interp != NULL) {
486 vrele(epp->ep_interp);
487 epp->ep_interp = NULL;
488 }
489 epp->ep_pax_flags = 0;
490
491 /* make sure the first "interesting" error code is saved. */
492 if (error == ENOEXEC)
493 error = newerror;
494
495 if (epp->ep_flags & EXEC_DESTR)
496 /* Error from "#!" code, tidied up by recursive call */
497 return error;
498 }
499
500 /* not found, error */
501
502 /*
503 * free any vmspace-creation commands,
504 * and release their references
505 */
506 kill_vmcmds(&epp->ep_vmcmds);
507
508 bad2:
509 /*
510 * close and release the vnode, restore the old one, free the
511 * pathname buf, and punt.
512 */
513 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
514 VOP_CLOSE(vp, FREAD, l->l_cred);
515 vput(vp);
516 return error;
517
518 bad1:
519 /*
520 * free the namei pathname buffer, and put the vnode
521 * (which we don't yet have open).
522 */
523 vput(vp); /* was still locked */
524 return error;
525 }
526
527 #ifdef __MACHINE_STACK_GROWS_UP
528 #define STACK_PTHREADSPACE NBPG
529 #else
530 #define STACK_PTHREADSPACE 0
531 #endif
532
533 static int
534 execve_fetch_element(char * const *array, size_t index, char **value)
535 {
536 return copyin(array + index, value, sizeof(*value));
537 }
538
539 /*
540 * exec system call
541 */
542 int
543 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
544 {
545 /* {
546 syscallarg(const char *) path;
547 syscallarg(char * const *) argp;
548 syscallarg(char * const *) envp;
549 } */
550
551 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
552 SCARG(uap, envp), execve_fetch_element);
553 }
554
555 int
556 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
557 register_t *retval)
558 {
559 /* {
560 syscallarg(int) fd;
561 syscallarg(char * const *) argp;
562 syscallarg(char * const *) envp;
563 } */
564
565 return ENOSYS;
566 }
567
568 /*
569 * Load modules to try and execute an image that we do not understand.
570 * If no execsw entries are present, we load those likely to be needed
571 * in order to run native images only. Otherwise, we autoload all
572 * possible modules that could let us run the binary. XXX lame
573 */
574 static void
575 exec_autoload(void)
576 {
577 #ifdef MODULAR
578 static const char * const native[] = {
579 "exec_elf32",
580 "exec_elf64",
581 "exec_script",
582 NULL
583 };
584 static const char * const compat[] = {
585 "exec_elf32",
586 "exec_elf64",
587 "exec_script",
588 "exec_aout",
589 "exec_coff",
590 "exec_ecoff",
591 "compat_aoutm68k",
592 "compat_netbsd32",
593 "compat_sunos",
594 "compat_sunos32",
595 "compat_ultrix",
596 NULL
597 };
598 char const * const *list;
599 int i;
600
601 list = (nexecs == 0 ? native : compat);
602 for (i = 0; list[i] != NULL; i++) {
603 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
604 continue;
605 }
606 yield();
607 }
608 #endif
609 }
610
611 int
612 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
613 struct pathbuf **pbp, size_t *offs)
614 {
615 char *path, *bp;
616 size_t len, tlen;
617 int error;
618 struct cwdinfo *cwdi;
619
620 path = PNBUF_GET();
621 if (seg == UIO_SYSSPACE) {
622 error = copystr(upath, path, MAXPATHLEN, &len);
623 } else {
624 error = copyinstr(upath, path, MAXPATHLEN, &len);
625 }
626 if (error) {
627 PNBUF_PUT(path);
628 DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
629 return error;
630 }
631
632 if (path[0] == '/') {
633 if (offs)
634 *offs = 0;
635 goto out;
636 }
637
638 len++;
639 if (len + 1 >= MAXPATHLEN)
640 goto out;
641 bp = path + MAXPATHLEN - len;
642 memmove(bp, path, len);
643 *(--bp) = '/';
644
645 cwdi = l->l_proc->p_cwdi;
646 rw_enter(&cwdi->cwdi_lock, RW_READER);
647 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
648 GETCWD_CHECK_ACCESS, l);
649 rw_exit(&cwdi->cwdi_lock);
650
651 if (error) {
652 DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
653 error));
654 goto out;
655 }
656 tlen = path + MAXPATHLEN - bp;
657
658 memmove(path, bp, tlen);
659 path[tlen] = '\0';
660 if (offs)
661 *offs = tlen - len;
662 out:
663 *pbp = pathbuf_assimilate(path);
664 return 0;
665 }
666
667 vaddr_t
668 exec_vm_minaddr(vaddr_t va_min)
669 {
670 /*
671 * Increase va_min if we don't want NULL to be mappable by the
672 * process.
673 */
674 #define VM_MIN_GUARD PAGE_SIZE
675 if (user_va0_disable && (va_min < VM_MIN_GUARD))
676 return VM_MIN_GUARD;
677 return va_min;
678 }
679
680 static int
681 execve_loadvm(struct lwp *l, const char *path, char * const *args,
682 char * const *envs, execve_fetch_element_t fetch_element,
683 struct execve_data * restrict data)
684 {
685 struct exec_package * const epp = &data->ed_pack;
686 int error;
687 struct proc *p;
688 char *dp;
689 u_int modgen;
690 size_t offs = 0; // XXX: GCC
691
692 KASSERT(data != NULL);
693
694 p = l->l_proc;
695 modgen = 0;
696
697 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
698
699 /*
700 * Check if we have exceeded our number of processes limit.
701 * This is so that we handle the case where a root daemon
702 * forked, ran setuid to become the desired user and is trying
703 * to exec. The obvious place to do the reference counting check
704 * is setuid(), but we don't do the reference counting check there
705 * like other OS's do because then all the programs that use setuid()
706 * must be modified to check the return code of setuid() and exit().
707 * It is dangerous to make setuid() fail, because it fails open and
708 * the program will continue to run as root. If we make it succeed
709 * and return an error code, again we are not enforcing the limit.
710 * The best place to enforce the limit is here, when the process tries
711 * to execute a new image, because eventually the process will need
712 * to call exec in order to do something useful.
713 */
714 retry:
715 if (p->p_flag & PK_SUGID) {
716 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
717 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
718 &p->p_rlimit[RLIMIT_NPROC],
719 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
720 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
721 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
722 return EAGAIN;
723 }
724
725 /*
726 * Drain existing references and forbid new ones. The process
727 * should be left alone until we're done here. This is necessary
728 * to avoid race conditions - e.g. in ptrace() - that might allow
729 * a local user to illicitly obtain elevated privileges.
730 */
731 rw_enter(&p->p_reflock, RW_WRITER);
732
733 /*
734 * Init the namei data to point the file user's program name.
735 * This is done here rather than in check_exec(), so that it's
736 * possible to override this settings if any of makecmd/probe
737 * functions call check_exec() recursively - for example,
738 * see exec_script_makecmds().
739 */
740 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
741 &data->ed_pathbuf, &offs)) != 0)
742 goto clrflg;
743 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
744 data->ed_resolvedpathbuf = PNBUF_GET();
745
746 /*
747 * initialize the fields of the exec package.
748 */
749 epp->ep_kname = data->ed_pathstring + offs;
750 epp->ep_resolvedname = data->ed_resolvedpathbuf;
751 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
752 epp->ep_hdrlen = exec_maxhdrsz;
753 epp->ep_hdrvalid = 0;
754 epp->ep_emul_arg = NULL;
755 epp->ep_emul_arg_free = NULL;
756 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
757 epp->ep_vap = &data->ed_attr;
758 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
759 MD_TOPDOWN_INIT(epp);
760 epp->ep_emul_root = NULL;
761 epp->ep_interp = NULL;
762 epp->ep_esch = NULL;
763 epp->ep_pax_flags = 0;
764 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
765
766 rw_enter(&exec_lock, RW_READER);
767
768 /* see if we can run it. */
769 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
770 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
771 DPRINTF(("%s: check exec failed for %s, error %d\n",
772 __func__, epp->ep_kname, error));
773 }
774 goto freehdr;
775 }
776
777 /* allocate an argument buffer */
778 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
779 KASSERT(data->ed_argp != NULL);
780 dp = data->ed_argp;
781
782 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
783 goto bad;
784 }
785
786 /*
787 * Calculate the new stack size.
788 */
789
790 #ifdef __MACHINE_STACK_GROWS_UP
791 /*
792 * copyargs() fills argc/argv/envp from the lower address even on
793 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
794 * so that _rtld() use it.
795 */
796 #define RTLD_GAP 32
797 #else
798 #define RTLD_GAP 0
799 #endif
800
801 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
802
803 data->ed_argslen = calcargs(data, argenvstrlen);
804
805 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
806
807 if (len > epp->ep_ssize) {
808 /* in effect, compare to initial limit */
809 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
810 error = ENOMEM;
811 goto bad;
812 }
813 /* adjust "active stack depth" for process VSZ */
814 epp->ep_ssize = len;
815
816 return 0;
817
818 bad:
819 /* free the vmspace-creation commands, and release their references */
820 kill_vmcmds(&epp->ep_vmcmds);
821 /* kill any opened file descriptor, if necessary */
822 if (epp->ep_flags & EXEC_HASFD) {
823 epp->ep_flags &= ~EXEC_HASFD;
824 fd_close(epp->ep_fd);
825 }
826 /* close and put the exec'd file */
827 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
828 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
829 vput(epp->ep_vp);
830 pool_put(&exec_pool, data->ed_argp);
831
832 freehdr:
833 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
834 if (epp->ep_emul_root != NULL)
835 vrele(epp->ep_emul_root);
836 if (epp->ep_interp != NULL)
837 vrele(epp->ep_interp);
838
839 rw_exit(&exec_lock);
840
841 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
842 pathbuf_destroy(data->ed_pathbuf);
843 PNBUF_PUT(data->ed_resolvedpathbuf);
844
845 clrflg:
846 rw_exit(&p->p_reflock);
847
848 if (modgen != module_gen && error == ENOEXEC) {
849 modgen = module_gen;
850 exec_autoload();
851 goto retry;
852 }
853
854 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
855 return error;
856 }
857
858 static int
859 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
860 {
861 struct exec_package * const epp = &data->ed_pack;
862 struct proc *p = l->l_proc;
863 struct exec_vmcmd *base_vcp;
864 int error = 0;
865 size_t i;
866
867 /* record proc's vnode, for use by procfs and others */
868 if (p->p_textvp)
869 vrele(p->p_textvp);
870 vref(epp->ep_vp);
871 p->p_textvp = epp->ep_vp;
872
873 /* create the new process's VM space by running the vmcmds */
874 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
875
876 #ifdef TRACE_EXEC
877 DUMPVMCMDS(epp, 0, 0);
878 #endif
879
880 base_vcp = NULL;
881
882 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
883 struct exec_vmcmd *vcp;
884
885 vcp = &epp->ep_vmcmds.evs_cmds[i];
886 if (vcp->ev_flags & VMCMD_RELATIVE) {
887 KASSERTMSG(base_vcp != NULL,
888 "%s: relative vmcmd with no base", __func__);
889 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
890 "%s: illegal base & relative vmcmd", __func__);
891 vcp->ev_addr += base_vcp->ev_addr;
892 }
893 error = (*vcp->ev_proc)(l, vcp);
894 if (error)
895 DUMPVMCMDS(epp, i, error);
896 if (vcp->ev_flags & VMCMD_BASE)
897 base_vcp = vcp;
898 }
899
900 /* free the vmspace-creation commands, and release their references */
901 kill_vmcmds(&epp->ep_vmcmds);
902
903 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
904 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
905 vput(epp->ep_vp);
906
907 /* if an error happened, deallocate and punt */
908 if (error != 0) {
909 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
910 }
911 return error;
912 }
913
914 static void
915 execve_free_data(struct execve_data *data)
916 {
917 struct exec_package * const epp = &data->ed_pack;
918
919 /* free the vmspace-creation commands, and release their references */
920 kill_vmcmds(&epp->ep_vmcmds);
921 /* kill any opened file descriptor, if necessary */
922 if (epp->ep_flags & EXEC_HASFD) {
923 epp->ep_flags &= ~EXEC_HASFD;
924 fd_close(epp->ep_fd);
925 }
926
927 /* close and put the exec'd file */
928 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
929 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
930 vput(epp->ep_vp);
931 pool_put(&exec_pool, data->ed_argp);
932
933 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
934 if (epp->ep_emul_root != NULL)
935 vrele(epp->ep_emul_root);
936 if (epp->ep_interp != NULL)
937 vrele(epp->ep_interp);
938
939 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
940 pathbuf_destroy(data->ed_pathbuf);
941 PNBUF_PUT(data->ed_resolvedpathbuf);
942 }
943
944 static void
945 pathexec(struct proc *p, const char *resolvedname)
946 {
947 KASSERT(resolvedname[0] == '/');
948
949 /* set command name & other accounting info */
950 strlcpy(p->p_comm, strrchr(resolvedname, '/') + 1, sizeof(p->p_comm));
951
952 kmem_strfree(p->p_path);
953 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
954 }
955
956 /* XXX elsewhere */
957 static int
958 credexec(struct lwp *l, struct vattr *attr)
959 {
960 struct proc *p = l->l_proc;
961 int error;
962
963 /*
964 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
965 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
966 * out additional references on the process for the moment.
967 */
968 if ((p->p_slflag & PSL_TRACED) == 0 &&
969
970 (((attr->va_mode & S_ISUID) != 0 &&
971 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
972
973 ((attr->va_mode & S_ISGID) != 0 &&
974 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
975 /*
976 * Mark the process as SUGID before we do
977 * anything that might block.
978 */
979 proc_crmod_enter();
980 proc_crmod_leave(NULL, NULL, true);
981
982 /* Make sure file descriptors 0..2 are in use. */
983 if ((error = fd_checkstd()) != 0) {
984 DPRINTF(("%s: fdcheckstd failed %d\n",
985 __func__, error));
986 return error;
987 }
988
989 /*
990 * Copy the credential so other references don't see our
991 * changes.
992 */
993 l->l_cred = kauth_cred_copy(l->l_cred);
994 #ifdef KTRACE
995 /*
996 * If the persistent trace flag isn't set, turn off.
997 */
998 if (p->p_tracep) {
999 mutex_enter(&ktrace_lock);
1000 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1001 ktrderef(p);
1002 mutex_exit(&ktrace_lock);
1003 }
1004 #endif
1005 if (attr->va_mode & S_ISUID)
1006 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1007 if (attr->va_mode & S_ISGID)
1008 kauth_cred_setegid(l->l_cred, attr->va_gid);
1009 } else {
1010 if (kauth_cred_geteuid(l->l_cred) ==
1011 kauth_cred_getuid(l->l_cred) &&
1012 kauth_cred_getegid(l->l_cred) ==
1013 kauth_cred_getgid(l->l_cred))
1014 p->p_flag &= ~PK_SUGID;
1015 }
1016
1017 /*
1018 * Copy the credential so other references don't see our changes.
1019 * Test to see if this is necessary first, since in the common case
1020 * we won't need a private reference.
1021 */
1022 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1023 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1024 l->l_cred = kauth_cred_copy(l->l_cred);
1025 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1026 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1027 }
1028
1029 /* Update the master credentials. */
1030 if (l->l_cred != p->p_cred) {
1031 kauth_cred_t ocred;
1032
1033 kauth_cred_hold(l->l_cred);
1034 mutex_enter(p->p_lock);
1035 ocred = p->p_cred;
1036 p->p_cred = l->l_cred;
1037 mutex_exit(p->p_lock);
1038 kauth_cred_free(ocred);
1039 }
1040
1041 return 0;
1042 }
1043
1044 static void
1045 emulexec(struct lwp *l, struct exec_package *epp)
1046 {
1047 struct proc *p = l->l_proc;
1048
1049 /* The emulation root will usually have been found when we looked
1050 * for the elf interpreter (or similar), if not look now. */
1051 if (epp->ep_esch->es_emul->e_path != NULL &&
1052 epp->ep_emul_root == NULL)
1053 emul_find_root(l, epp);
1054
1055 /* Any old emulation root got removed by fdcloseexec */
1056 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1057 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1058 rw_exit(&p->p_cwdi->cwdi_lock);
1059 epp->ep_emul_root = NULL;
1060 if (epp->ep_interp != NULL)
1061 vrele(epp->ep_interp);
1062
1063 /*
1064 * Call emulation specific exec hook. This can setup per-process
1065 * p->p_emuldata or do any other per-process stuff an emulation needs.
1066 *
1067 * If we are executing process of different emulation than the
1068 * original forked process, call e_proc_exit() of the old emulation
1069 * first, then e_proc_exec() of new emulation. If the emulation is
1070 * same, the exec hook code should deallocate any old emulation
1071 * resources held previously by this process.
1072 */
1073 if (p->p_emul && p->p_emul->e_proc_exit
1074 && p->p_emul != epp->ep_esch->es_emul)
1075 (*p->p_emul->e_proc_exit)(p);
1076
1077 /*
1078 * This is now LWP 1.
1079 */
1080 /* XXX elsewhere */
1081 mutex_enter(p->p_lock);
1082 p->p_nlwpid = 1;
1083 l->l_lid = 1;
1084 mutex_exit(p->p_lock);
1085
1086 /*
1087 * Call exec hook. Emulation code may NOT store reference to anything
1088 * from &pack.
1089 */
1090 if (epp->ep_esch->es_emul->e_proc_exec)
1091 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1092
1093 /* update p_emul, the old value is no longer needed */
1094 p->p_emul = epp->ep_esch->es_emul;
1095
1096 /* ...and the same for p_execsw */
1097 p->p_execsw = epp->ep_esch;
1098
1099 #ifdef __HAVE_SYSCALL_INTERN
1100 (*p->p_emul->e_syscall_intern)(p);
1101 #endif
1102 ktremul();
1103 }
1104
1105 static int
1106 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1107 bool no_local_exec_lock, bool is_spawn)
1108 {
1109 struct exec_package * const epp = &data->ed_pack;
1110 int error = 0;
1111 struct proc *p;
1112
1113 /*
1114 * In case of a posix_spawn operation, the child doing the exec
1115 * might not hold the reader lock on exec_lock, but the parent
1116 * will do this instead.
1117 */
1118 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1119 KASSERT(!no_local_exec_lock || is_spawn);
1120 KASSERT(data != NULL);
1121
1122 p = l->l_proc;
1123
1124 /* Get rid of other LWPs. */
1125 if (p->p_nlwps > 1) {
1126 mutex_enter(p->p_lock);
1127 exit_lwps(l);
1128 mutex_exit(p->p_lock);
1129 }
1130 KDASSERT(p->p_nlwps == 1);
1131
1132 /* Destroy any lwpctl info. */
1133 if (p->p_lwpctl != NULL)
1134 lwp_ctl_exit();
1135
1136 /* Remove POSIX timers */
1137 timers_free(p, TIMERS_POSIX);
1138
1139 /* Set the PaX flags. */
1140 pax_set_flags(epp, p);
1141
1142 /*
1143 * Do whatever is necessary to prepare the address space
1144 * for remapping. Note that this might replace the current
1145 * vmspace with another!
1146 */
1147 if (is_spawn)
1148 uvmspace_spawn(l, epp->ep_vm_minaddr,
1149 epp->ep_vm_maxaddr,
1150 epp->ep_flags & EXEC_TOPDOWN_VM);
1151 else
1152 uvmspace_exec(l, epp->ep_vm_minaddr,
1153 epp->ep_vm_maxaddr,
1154 epp->ep_flags & EXEC_TOPDOWN_VM);
1155
1156 struct vmspace *vm;
1157 vm = p->p_vmspace;
1158 vm->vm_taddr = (void *)epp->ep_taddr;
1159 vm->vm_tsize = btoc(epp->ep_tsize);
1160 vm->vm_daddr = (void*)epp->ep_daddr;
1161 vm->vm_dsize = btoc(epp->ep_dsize);
1162 vm->vm_ssize = btoc(epp->ep_ssize);
1163 vm->vm_issize = 0;
1164 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1165 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1166
1167 pax_aslr_init_vm(l, vm, epp);
1168
1169 /* Now map address space. */
1170 error = execve_dovmcmds(l, data);
1171 if (error != 0)
1172 goto exec_abort;
1173
1174 pathexec(p, epp->ep_resolvedname);
1175
1176 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1177
1178 error = copyoutargs(data, l, newstack);
1179 if (error != 0)
1180 goto exec_abort;
1181
1182 cwdexec(p);
1183 fd_closeexec(); /* handle close on exec */
1184
1185 if (__predict_false(ktrace_on))
1186 fd_ktrexecfd();
1187
1188 execsigs(p); /* reset caught signals */
1189
1190 mutex_enter(p->p_lock);
1191 l->l_ctxlink = NULL; /* reset ucontext link */
1192 p->p_acflag &= ~AFORK;
1193 p->p_flag |= PK_EXEC;
1194 mutex_exit(p->p_lock);
1195
1196 /*
1197 * Stop profiling.
1198 */
1199 if ((p->p_stflag & PST_PROFIL) != 0) {
1200 mutex_spin_enter(&p->p_stmutex);
1201 stopprofclock(p);
1202 mutex_spin_exit(&p->p_stmutex);
1203 }
1204
1205 /*
1206 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1207 * exited and exec()/exit() are the only places it will be cleared.
1208 */
1209 if ((p->p_lflag & PL_PPWAIT) != 0) {
1210 mutex_enter(proc_lock);
1211 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1212 p->p_lflag &= ~PL_PPWAIT;
1213 cv_broadcast(&p->p_pptr->p_waitcv);
1214 mutex_exit(proc_lock);
1215 }
1216
1217 error = credexec(l, &data->ed_attr);
1218 if (error)
1219 goto exec_abort;
1220
1221 #if defined(__HAVE_RAS)
1222 /*
1223 * Remove all RASs from the address space.
1224 */
1225 ras_purgeall();
1226 #endif
1227
1228 doexechooks(p);
1229
1230 /*
1231 * Set initial SP at the top of the stack.
1232 *
1233 * Note that on machines where stack grows up (e.g. hppa), SP points to
1234 * the end of arg/env strings. Userland guesses the address of argc
1235 * via ps_strings::ps_argvstr.
1236 */
1237
1238 /* Setup new registers and do misc. setup. */
1239 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1240 if (epp->ep_esch->es_setregs)
1241 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1242
1243 /* Provide a consistent LWP private setting */
1244 (void)lwp_setprivate(l, NULL);
1245
1246 /* Discard all PCU state; need to start fresh */
1247 pcu_discard_all(l);
1248
1249 /* map the process's signal trampoline code */
1250 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1251 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1252 goto exec_abort;
1253 }
1254
1255 pool_put(&exec_pool, data->ed_argp);
1256
1257 /* notify others that we exec'd */
1258 KNOTE(&p->p_klist, NOTE_EXEC);
1259
1260 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1261
1262 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1263
1264 emulexec(l, epp);
1265
1266 /* Allow new references from the debugger/procfs. */
1267 rw_exit(&p->p_reflock);
1268 if (!no_local_exec_lock)
1269 rw_exit(&exec_lock);
1270
1271 mutex_enter(proc_lock);
1272
1273 /* posix_spawn(3) reports a single event with implied exec(3) */
1274 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1275 mutex_enter(p->p_lock);
1276 eventswitch(TRAP_EXEC);
1277 mutex_enter(proc_lock);
1278 }
1279
1280 if (p->p_sflag & PS_STOPEXEC) {
1281 ksiginfoq_t kq;
1282
1283 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1284 p->p_pptr->p_nstopchild++;
1285 p->p_waited = 0;
1286 mutex_enter(p->p_lock);
1287 ksiginfo_queue_init(&kq);
1288 sigclearall(p, &contsigmask, &kq);
1289 lwp_lock(l);
1290 l->l_stat = LSSTOP;
1291 p->p_stat = SSTOP;
1292 p->p_nrlwps--;
1293 lwp_unlock(l);
1294 mutex_exit(p->p_lock);
1295 mutex_exit(proc_lock);
1296 lwp_lock(l);
1297 mi_switch(l);
1298 ksiginfo_queue_drain(&kq);
1299 KERNEL_LOCK(l->l_biglocks, l);
1300 } else {
1301 mutex_exit(proc_lock);
1302 }
1303
1304 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1305 pathbuf_destroy(data->ed_pathbuf);
1306 PNBUF_PUT(data->ed_resolvedpathbuf);
1307 #ifdef TRACE_EXEC
1308 DPRINTF(("%s finished\n", __func__));
1309 #endif
1310 return EJUSTRETURN;
1311
1312 exec_abort:
1313 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1314 rw_exit(&p->p_reflock);
1315 if (!no_local_exec_lock)
1316 rw_exit(&exec_lock);
1317
1318 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1319 pathbuf_destroy(data->ed_pathbuf);
1320 PNBUF_PUT(data->ed_resolvedpathbuf);
1321
1322 /*
1323 * the old process doesn't exist anymore. exit gracefully.
1324 * get rid of the (new) address space we have created, if any, get rid
1325 * of our namei data and vnode, and exit noting failure
1326 */
1327 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1328 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1329
1330 exec_free_emul_arg(epp);
1331 pool_put(&exec_pool, data->ed_argp);
1332 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1333 if (epp->ep_emul_root != NULL)
1334 vrele(epp->ep_emul_root);
1335 if (epp->ep_interp != NULL)
1336 vrele(epp->ep_interp);
1337
1338 /* Acquire the sched-state mutex (exit1() will release it). */
1339 if (!is_spawn) {
1340 mutex_enter(p->p_lock);
1341 exit1(l, error, SIGABRT);
1342 }
1343
1344 return error;
1345 }
1346
1347 int
1348 execve1(struct lwp *l, const char *path, char * const *args,
1349 char * const *envs, execve_fetch_element_t fetch_element)
1350 {
1351 struct execve_data data;
1352 int error;
1353
1354 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1355 if (error)
1356 return error;
1357 error = execve_runproc(l, &data, false, false);
1358 return error;
1359 }
1360
1361 static size_t
1362 fromptrsz(const struct exec_package *epp)
1363 {
1364 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1365 }
1366
1367 static size_t
1368 ptrsz(const struct exec_package *epp)
1369 {
1370 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1371 }
1372
1373 static size_t
1374 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1375 {
1376 struct exec_package * const epp = &data->ed_pack;
1377
1378 const size_t nargenvptrs =
1379 1 + /* long argc */
1380 data->ed_argc + /* char *argv[] */
1381 1 + /* \0 */
1382 data->ed_envc + /* char *env[] */
1383 1; /* \0 */
1384
1385 return (nargenvptrs * ptrsz(epp)) /* pointers */
1386 + argenvstrlen /* strings */
1387 + epp->ep_esch->es_arglen; /* auxinfo */
1388 }
1389
1390 static size_t
1391 calcstack(struct execve_data * restrict data, const size_t gaplen)
1392 {
1393 struct exec_package * const epp = &data->ed_pack;
1394
1395 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1396 epp->ep_esch->es_emul->e_sigcode;
1397
1398 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1399 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1400
1401 const size_t sigcode_psstr_sz =
1402 data->ed_szsigcode + /* sigcode */
1403 data->ed_ps_strings_sz + /* ps_strings */
1404 STACK_PTHREADSPACE; /* pthread space */
1405
1406 const size_t stacklen =
1407 data->ed_argslen +
1408 gaplen +
1409 sigcode_psstr_sz;
1410
1411 /* make the stack "safely" aligned */
1412 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1413 }
1414
1415 static int
1416 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1417 char * const newstack)
1418 {
1419 struct exec_package * const epp = &data->ed_pack;
1420 struct proc *p = l->l_proc;
1421 int error;
1422
1423 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1424
1425 /* remember information about the process */
1426 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1427 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1428
1429 /*
1430 * Allocate the stack address passed to the newly execve()'ed process.
1431 *
1432 * The new stack address will be set to the SP (stack pointer) register
1433 * in setregs().
1434 */
1435
1436 char *newargs = STACK_ALLOC(
1437 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1438
1439 error = (*epp->ep_esch->es_copyargs)(l, epp,
1440 &data->ed_arginfo, &newargs, data->ed_argp);
1441
1442 if (error) {
1443 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1444 return error;
1445 }
1446
1447 error = copyoutpsstrs(data, p);
1448 if (error != 0)
1449 return error;
1450
1451 return 0;
1452 }
1453
1454 static int
1455 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1456 {
1457 struct exec_package * const epp = &data->ed_pack;
1458 struct ps_strings32 arginfo32;
1459 void *aip;
1460 int error;
1461
1462 /* fill process ps_strings info */
1463 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1464 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1465
1466 if (epp->ep_flags & EXEC_32) {
1467 aip = &arginfo32;
1468 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1469 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1470 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1471 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1472 } else
1473 aip = &data->ed_arginfo;
1474
1475 /* copy out the process's ps_strings structure */
1476 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1477 != 0) {
1478 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1479 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1480 return error;
1481 }
1482
1483 return 0;
1484 }
1485
1486 static int
1487 copyinargs(struct execve_data * restrict data, char * const *args,
1488 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1489 {
1490 struct exec_package * const epp = &data->ed_pack;
1491 char *dp;
1492 size_t i;
1493 int error;
1494
1495 dp = *dpp;
1496
1497 data->ed_argc = 0;
1498
1499 /* copy the fake args list, if there's one, freeing it as we go */
1500 if (epp->ep_flags & EXEC_HASARGL) {
1501 struct exec_fakearg *fa = epp->ep_fa;
1502
1503 while (fa->fa_arg != NULL) {
1504 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1505 size_t len;
1506
1507 len = strlcpy(dp, fa->fa_arg, maxlen);
1508 /* Count NUL into len. */
1509 if (len < maxlen)
1510 len++;
1511 else {
1512 while (fa->fa_arg != NULL) {
1513 kmem_free(fa->fa_arg, fa->fa_len);
1514 fa++;
1515 }
1516 kmem_free(epp->ep_fa, epp->ep_fa_len);
1517 epp->ep_flags &= ~EXEC_HASARGL;
1518 return E2BIG;
1519 }
1520 ktrexecarg(fa->fa_arg, len - 1);
1521 dp += len;
1522
1523 kmem_free(fa->fa_arg, fa->fa_len);
1524 fa++;
1525 data->ed_argc++;
1526 }
1527 kmem_free(epp->ep_fa, epp->ep_fa_len);
1528 epp->ep_flags &= ~EXEC_HASARGL;
1529 }
1530
1531 /*
1532 * Read and count argument strings from user.
1533 */
1534
1535 if (args == NULL) {
1536 DPRINTF(("%s: null args\n", __func__));
1537 return EINVAL;
1538 }
1539 if (epp->ep_flags & EXEC_SKIPARG)
1540 args = (const void *)((const char *)args + fromptrsz(epp));
1541 i = 0;
1542 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1543 if (error != 0) {
1544 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1545 return error;
1546 }
1547 data->ed_argc += i;
1548
1549 /*
1550 * Read and count environment strings from user.
1551 */
1552
1553 data->ed_envc = 0;
1554 /* environment need not be there */
1555 if (envs == NULL)
1556 goto done;
1557 i = 0;
1558 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1559 if (error != 0) {
1560 DPRINTF(("%s: copyin env %d\n", __func__, error));
1561 return error;
1562 }
1563 data->ed_envc += i;
1564
1565 done:
1566 *dpp = dp;
1567
1568 return 0;
1569 }
1570
1571 static int
1572 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1573 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1574 void (*ktr)(const void *, size_t))
1575 {
1576 char *dp, *sp;
1577 size_t i;
1578 int error;
1579
1580 dp = *dpp;
1581
1582 i = 0;
1583 while (1) {
1584 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1585 size_t len;
1586
1587 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1588 return error;
1589 }
1590 if (!sp)
1591 break;
1592 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1593 if (error == ENAMETOOLONG)
1594 error = E2BIG;
1595 return error;
1596 }
1597 if (__predict_false(ktrace_on))
1598 (*ktr)(dp, len - 1);
1599 dp += len;
1600 i++;
1601 }
1602
1603 *dpp = dp;
1604 *ip = i;
1605
1606 return 0;
1607 }
1608
1609 /*
1610 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1611 * Those strings are located just after auxinfo.
1612 */
1613 int
1614 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1615 char **stackp, void *argp)
1616 {
1617 char **cpp, *dp, *sp;
1618 size_t len;
1619 void *nullp;
1620 long argc, envc;
1621 int error;
1622
1623 cpp = (char **)*stackp;
1624 nullp = NULL;
1625 argc = arginfo->ps_nargvstr;
1626 envc = arginfo->ps_nenvstr;
1627
1628 /* argc on stack is long */
1629 CTASSERT(sizeof(*cpp) == sizeof(argc));
1630
1631 dp = (char *)(cpp +
1632 1 + /* long argc */
1633 argc + /* char *argv[] */
1634 1 + /* \0 */
1635 envc + /* char *env[] */
1636 1) + /* \0 */
1637 pack->ep_esch->es_arglen; /* auxinfo */
1638 sp = argp;
1639
1640 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1641 COPYPRINTF("", cpp - 1, sizeof(argc));
1642 return error;
1643 }
1644
1645 /* XXX don't copy them out, remap them! */
1646 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1647
1648 for (; --argc >= 0; sp += len, dp += len) {
1649 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1650 COPYPRINTF("", cpp - 1, sizeof(dp));
1651 return error;
1652 }
1653 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1654 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1655 return error;
1656 }
1657 }
1658
1659 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1660 COPYPRINTF("", cpp - 1, sizeof(nullp));
1661 return error;
1662 }
1663
1664 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1665
1666 for (; --envc >= 0; sp += len, dp += len) {
1667 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1668 COPYPRINTF("", cpp - 1, sizeof(dp));
1669 return error;
1670 }
1671 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1672 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1673 return error;
1674 }
1675
1676 }
1677
1678 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1679 COPYPRINTF("", cpp - 1, sizeof(nullp));
1680 return error;
1681 }
1682
1683 *stackp = (char *)cpp;
1684 return 0;
1685 }
1686
1687
1688 /*
1689 * Add execsw[] entries.
1690 */
1691 int
1692 exec_add(struct execsw *esp, int count)
1693 {
1694 struct exec_entry *it;
1695 int i;
1696
1697 if (count == 0) {
1698 return 0;
1699 }
1700
1701 /* Check for duplicates. */
1702 rw_enter(&exec_lock, RW_WRITER);
1703 for (i = 0; i < count; i++) {
1704 LIST_FOREACH(it, &ex_head, ex_list) {
1705 /* assume unique (makecmds, probe_func, emulation) */
1706 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1707 it->ex_sw->u.elf_probe_func ==
1708 esp[i].u.elf_probe_func &&
1709 it->ex_sw->es_emul == esp[i].es_emul) {
1710 rw_exit(&exec_lock);
1711 return EEXIST;
1712 }
1713 }
1714 }
1715
1716 /* Allocate new entries. */
1717 for (i = 0; i < count; i++) {
1718 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1719 it->ex_sw = &esp[i];
1720 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1721 }
1722
1723 /* update execsw[] */
1724 exec_init(0);
1725 rw_exit(&exec_lock);
1726 return 0;
1727 }
1728
1729 /*
1730 * Remove execsw[] entry.
1731 */
1732 int
1733 exec_remove(struct execsw *esp, int count)
1734 {
1735 struct exec_entry *it, *next;
1736 int i;
1737 const struct proclist_desc *pd;
1738 proc_t *p;
1739
1740 if (count == 0) {
1741 return 0;
1742 }
1743
1744 /* Abort if any are busy. */
1745 rw_enter(&exec_lock, RW_WRITER);
1746 for (i = 0; i < count; i++) {
1747 mutex_enter(proc_lock);
1748 for (pd = proclists; pd->pd_list != NULL; pd++) {
1749 PROCLIST_FOREACH(p, pd->pd_list) {
1750 if (p->p_execsw == &esp[i]) {
1751 mutex_exit(proc_lock);
1752 rw_exit(&exec_lock);
1753 return EBUSY;
1754 }
1755 }
1756 }
1757 mutex_exit(proc_lock);
1758 }
1759
1760 /* None are busy, so remove them all. */
1761 for (i = 0; i < count; i++) {
1762 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1763 next = LIST_NEXT(it, ex_list);
1764 if (it->ex_sw == &esp[i]) {
1765 LIST_REMOVE(it, ex_list);
1766 kmem_free(it, sizeof(*it));
1767 break;
1768 }
1769 }
1770 }
1771
1772 /* update execsw[] */
1773 exec_init(0);
1774 rw_exit(&exec_lock);
1775 return 0;
1776 }
1777
1778 /*
1779 * Initialize exec structures. If init_boot is true, also does necessary
1780 * one-time initialization (it's called from main() that way).
1781 * Once system is multiuser, this should be called with exec_lock held,
1782 * i.e. via exec_{add|remove}().
1783 */
1784 int
1785 exec_init(int init_boot)
1786 {
1787 const struct execsw **sw;
1788 struct exec_entry *ex;
1789 SLIST_HEAD(,exec_entry) first;
1790 SLIST_HEAD(,exec_entry) any;
1791 SLIST_HEAD(,exec_entry) last;
1792 int i, sz;
1793
1794 if (init_boot) {
1795 /* do one-time initializations */
1796 vaddr_t vmin = 0, vmax;
1797
1798 rw_init(&exec_lock);
1799 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1800 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1801 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1802 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1803 "execargs", &exec_palloc, IPL_NONE);
1804 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1805 } else {
1806 KASSERT(rw_write_held(&exec_lock));
1807 }
1808
1809 /* Sort each entry onto the appropriate queue. */
1810 SLIST_INIT(&first);
1811 SLIST_INIT(&any);
1812 SLIST_INIT(&last);
1813 sz = 0;
1814 LIST_FOREACH(ex, &ex_head, ex_list) {
1815 switch(ex->ex_sw->es_prio) {
1816 case EXECSW_PRIO_FIRST:
1817 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1818 break;
1819 case EXECSW_PRIO_ANY:
1820 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1821 break;
1822 case EXECSW_PRIO_LAST:
1823 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1824 break;
1825 default:
1826 panic("%s", __func__);
1827 break;
1828 }
1829 sz++;
1830 }
1831
1832 /*
1833 * Create new execsw[]. Ensure we do not try a zero-sized
1834 * allocation.
1835 */
1836 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1837 i = 0;
1838 SLIST_FOREACH(ex, &first, ex_slist) {
1839 sw[i++] = ex->ex_sw;
1840 }
1841 SLIST_FOREACH(ex, &any, ex_slist) {
1842 sw[i++] = ex->ex_sw;
1843 }
1844 SLIST_FOREACH(ex, &last, ex_slist) {
1845 sw[i++] = ex->ex_sw;
1846 }
1847
1848 /* Replace old execsw[] and free used memory. */
1849 if (execsw != NULL) {
1850 kmem_free(__UNCONST(execsw),
1851 nexecs * sizeof(struct execsw *) + 1);
1852 }
1853 execsw = sw;
1854 nexecs = sz;
1855
1856 /* Figure out the maximum size of an exec header. */
1857 exec_maxhdrsz = sizeof(int);
1858 for (i = 0; i < nexecs; i++) {
1859 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1860 exec_maxhdrsz = execsw[i]->es_hdrsz;
1861 }
1862
1863 return 0;
1864 }
1865
1866 static int
1867 exec_sigcode_map(struct proc *p, const struct emul *e)
1868 {
1869 vaddr_t va;
1870 vsize_t sz;
1871 int error;
1872 struct uvm_object *uobj;
1873
1874 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1875
1876 if (e->e_sigobject == NULL || sz == 0) {
1877 return 0;
1878 }
1879
1880 /*
1881 * If we don't have a sigobject for this emulation, create one.
1882 *
1883 * sigobject is an anonymous memory object (just like SYSV shared
1884 * memory) that we keep a permanent reference to and that we map
1885 * in all processes that need this sigcode. The creation is simple,
1886 * we create an object, add a permanent reference to it, map it in
1887 * kernel space, copy out the sigcode to it and unmap it.
1888 * We map it with PROT_READ|PROT_EXEC into the process just
1889 * the way sys_mmap() would map it.
1890 */
1891
1892 uobj = *e->e_sigobject;
1893 if (uobj == NULL) {
1894 mutex_enter(&sigobject_lock);
1895 if ((uobj = *e->e_sigobject) == NULL) {
1896 uobj = uao_create(sz, 0);
1897 (*uobj->pgops->pgo_reference)(uobj);
1898 va = vm_map_min(kernel_map);
1899 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1900 uobj, 0, 0,
1901 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1902 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1903 printf("kernel mapping failed %d\n", error);
1904 (*uobj->pgops->pgo_detach)(uobj);
1905 mutex_exit(&sigobject_lock);
1906 return error;
1907 }
1908 memcpy((void *)va, e->e_sigcode, sz);
1909 #ifdef PMAP_NEED_PROCWR
1910 pmap_procwr(&proc0, va, sz);
1911 #endif
1912 uvm_unmap(kernel_map, va, va + round_page(sz));
1913 *e->e_sigobject = uobj;
1914 }
1915 mutex_exit(&sigobject_lock);
1916 }
1917
1918 /* Just a hint to uvm_map where to put it. */
1919 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1920 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1921
1922 #ifdef __alpha__
1923 /*
1924 * Tru64 puts /sbin/loader at the end of user virtual memory,
1925 * which causes the above calculation to put the sigcode at
1926 * an invalid address. Put it just below the text instead.
1927 */
1928 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1929 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1930 }
1931 #endif
1932
1933 (*uobj->pgops->pgo_reference)(uobj);
1934 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1935 uobj, 0, 0,
1936 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1937 UVM_ADV_RANDOM, 0));
1938 if (error) {
1939 DPRINTF(("%s, %d: map %p "
1940 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1941 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1942 va, error));
1943 (*uobj->pgops->pgo_detach)(uobj);
1944 return error;
1945 }
1946 p->p_sigctx.ps_sigcode = (void *)va;
1947 return 0;
1948 }
1949
1950 /*
1951 * Release a refcount on spawn_exec_data and destroy memory, if this
1952 * was the last one.
1953 */
1954 static void
1955 spawn_exec_data_release(struct spawn_exec_data *data)
1956 {
1957 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1958 return;
1959
1960 cv_destroy(&data->sed_cv_child_ready);
1961 mutex_destroy(&data->sed_mtx_child);
1962
1963 if (data->sed_actions)
1964 posix_spawn_fa_free(data->sed_actions,
1965 data->sed_actions->len);
1966 if (data->sed_attrs)
1967 kmem_free(data->sed_attrs,
1968 sizeof(*data->sed_attrs));
1969 kmem_free(data, sizeof(*data));
1970 }
1971
1972 /*
1973 * A child lwp of a posix_spawn operation starts here and ends up in
1974 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1975 * manipulations in between.
1976 * The parent waits for the child, as it is not clear whether the child
1977 * will be able to acquire its own exec_lock. If it can, the parent can
1978 * be released early and continue running in parallel. If not (or if the
1979 * magic debug flag is passed in the scheduler attribute struct), the
1980 * child rides on the parent's exec lock until it is ready to return to
1981 * to userland - and only then releases the parent. This method loses
1982 * concurrency, but improves error reporting.
1983 */
1984 static void
1985 spawn_return(void *arg)
1986 {
1987 struct spawn_exec_data *spawn_data = arg;
1988 struct lwp *l = curlwp;
1989 struct proc *p = l->l_proc;
1990 int error, newfd;
1991 int ostat;
1992 size_t i;
1993 const struct posix_spawn_file_actions_entry *fae;
1994 pid_t ppid;
1995 register_t retval;
1996 bool have_reflock;
1997 bool parent_is_waiting = true;
1998
1999 /*
2000 * Check if we can release parent early.
2001 * We either need to have no sed_attrs, or sed_attrs does not
2002 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2003 * safe access to the parent proc (passed in sed_parent).
2004 * We then try to get the exec_lock, and only if that works, we can
2005 * release the parent here already.
2006 */
2007 ppid = spawn_data->sed_parent->p_pid;
2008 if ((!spawn_data->sed_attrs
2009 || (spawn_data->sed_attrs->sa_flags
2010 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2011 && rw_tryenter(&exec_lock, RW_READER)) {
2012 parent_is_waiting = false;
2013 mutex_enter(&spawn_data->sed_mtx_child);
2014 cv_signal(&spawn_data->sed_cv_child_ready);
2015 mutex_exit(&spawn_data->sed_mtx_child);
2016 }
2017
2018 /* don't allow debugger access yet */
2019 rw_enter(&p->p_reflock, RW_WRITER);
2020 have_reflock = true;
2021
2022 error = 0;
2023 /* handle posix_spawn_file_actions */
2024 if (spawn_data->sed_actions != NULL) {
2025 for (i = 0; i < spawn_data->sed_actions->len; i++) {
2026 fae = &spawn_data->sed_actions->fae[i];
2027 switch (fae->fae_action) {
2028 case FAE_OPEN:
2029 if (fd_getfile(fae->fae_fildes) != NULL) {
2030 error = fd_close(fae->fae_fildes);
2031 if (error)
2032 break;
2033 }
2034 error = fd_open(fae->fae_path, fae->fae_oflag,
2035 fae->fae_mode, &newfd);
2036 if (error)
2037 break;
2038 if (newfd != fae->fae_fildes) {
2039 error = dodup(l, newfd,
2040 fae->fae_fildes, 0, &retval);
2041 if (fd_getfile(newfd) != NULL)
2042 fd_close(newfd);
2043 }
2044 break;
2045 case FAE_DUP2:
2046 error = dodup(l, fae->fae_fildes,
2047 fae->fae_newfildes, 0, &retval);
2048 break;
2049 case FAE_CLOSE:
2050 if (fd_getfile(fae->fae_fildes) == NULL) {
2051 error = EBADF;
2052 break;
2053 }
2054 error = fd_close(fae->fae_fildes);
2055 break;
2056 }
2057 if (error)
2058 goto report_error;
2059 }
2060 }
2061
2062 /* handle posix_spawnattr */
2063 if (spawn_data->sed_attrs != NULL) {
2064 struct sigaction sigact;
2065 sigact._sa_u._sa_handler = SIG_DFL;
2066 sigact.sa_flags = 0;
2067
2068 /*
2069 * set state to SSTOP so that this proc can be found by pid.
2070 * see proc_enterprp, do_sched_setparam below
2071 */
2072 mutex_enter(proc_lock);
2073 /*
2074 * p_stat should be SACTIVE, so we need to adjust the
2075 * parent's p_nstopchild here. For safety, just make
2076 * we're on the good side of SDEAD before we adjust.
2077 */
2078 ostat = p->p_stat;
2079 KASSERT(ostat < SSTOP);
2080 p->p_stat = SSTOP;
2081 p->p_waited = 0;
2082 p->p_pptr->p_nstopchild++;
2083 mutex_exit(proc_lock);
2084
2085 /* Set process group */
2086 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2087 pid_t mypid = p->p_pid,
2088 pgrp = spawn_data->sed_attrs->sa_pgroup;
2089
2090 if (pgrp == 0)
2091 pgrp = mypid;
2092
2093 error = proc_enterpgrp(spawn_data->sed_parent,
2094 mypid, pgrp, false);
2095 if (error)
2096 goto report_error_stopped;
2097 }
2098
2099 /* Set scheduler policy */
2100 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2101 error = do_sched_setparam(p->p_pid, 0,
2102 spawn_data->sed_attrs->sa_schedpolicy,
2103 &spawn_data->sed_attrs->sa_schedparam);
2104 else if (spawn_data->sed_attrs->sa_flags
2105 & POSIX_SPAWN_SETSCHEDPARAM) {
2106 error = do_sched_setparam(ppid, 0,
2107 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2108 }
2109 if (error)
2110 goto report_error_stopped;
2111
2112 /* Reset user ID's */
2113 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2114 error = do_setresuid(l, -1,
2115 kauth_cred_getgid(l->l_cred), -1,
2116 ID_E_EQ_R | ID_E_EQ_S);
2117 if (error)
2118 goto report_error_stopped;
2119 error = do_setresuid(l, -1,
2120 kauth_cred_getuid(l->l_cred), -1,
2121 ID_E_EQ_R | ID_E_EQ_S);
2122 if (error)
2123 goto report_error_stopped;
2124 }
2125
2126 /* Set signal masks/defaults */
2127 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2128 mutex_enter(p->p_lock);
2129 error = sigprocmask1(l, SIG_SETMASK,
2130 &spawn_data->sed_attrs->sa_sigmask, NULL);
2131 mutex_exit(p->p_lock);
2132 if (error)
2133 goto report_error_stopped;
2134 }
2135
2136 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2137 /*
2138 * The following sigaction call is using a sigaction
2139 * version 0 trampoline which is in the compatibility
2140 * code only. This is not a problem because for SIG_DFL
2141 * and SIG_IGN, the trampolines are now ignored. If they
2142 * were not, this would be a problem because we are
2143 * holding the exec_lock, and the compat code needs
2144 * to do the same in order to replace the trampoline
2145 * code of the process.
2146 */
2147 for (i = 1; i <= NSIG; i++) {
2148 if (sigismember(
2149 &spawn_data->sed_attrs->sa_sigdefault, i))
2150 sigaction1(l, i, &sigact, NULL, NULL,
2151 0);
2152 }
2153 }
2154 mutex_enter(proc_lock);
2155 p->p_stat = ostat;
2156 p->p_pptr->p_nstopchild--;
2157 mutex_exit(proc_lock);
2158 }
2159
2160 /* now do the real exec */
2161 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2162 true);
2163 have_reflock = false;
2164 if (error == EJUSTRETURN)
2165 error = 0;
2166 else if (error)
2167 goto report_error;
2168
2169 if (parent_is_waiting) {
2170 mutex_enter(&spawn_data->sed_mtx_child);
2171 cv_signal(&spawn_data->sed_cv_child_ready);
2172 mutex_exit(&spawn_data->sed_mtx_child);
2173 }
2174
2175 /* release our refcount on the data */
2176 spawn_exec_data_release(spawn_data);
2177
2178 if (p->p_slflag & PSL_TRACED) {
2179 /* Paranoid check */
2180 mutex_enter(proc_lock);
2181 if (!(p->p_slflag & PSL_TRACED)) {
2182 mutex_exit(proc_lock);
2183 goto cpu_return;
2184 }
2185
2186 mutex_enter(p->p_lock);
2187 eventswitch(TRAP_CHLD);
2188 }
2189
2190 cpu_return:
2191 /* and finally: leave to userland for the first time */
2192 cpu_spawn_return(l);
2193
2194 /* NOTREACHED */
2195 return;
2196
2197 report_error_stopped:
2198 mutex_enter(proc_lock);
2199 p->p_stat = ostat;
2200 p->p_pptr->p_nstopchild--;
2201 mutex_exit(proc_lock);
2202 report_error:
2203 if (have_reflock) {
2204 /*
2205 * We have not passed through execve_runproc(),
2206 * which would have released the p_reflock and also
2207 * taken ownership of the sed_exec part of spawn_data,
2208 * so release/free both here.
2209 */
2210 rw_exit(&p->p_reflock);
2211 execve_free_data(&spawn_data->sed_exec);
2212 }
2213
2214 if (parent_is_waiting) {
2215 /* pass error to parent */
2216 mutex_enter(&spawn_data->sed_mtx_child);
2217 spawn_data->sed_error = error;
2218 cv_signal(&spawn_data->sed_cv_child_ready);
2219 mutex_exit(&spawn_data->sed_mtx_child);
2220 } else {
2221 rw_exit(&exec_lock);
2222 }
2223
2224 /* release our refcount on the data */
2225 spawn_exec_data_release(spawn_data);
2226
2227 /* done, exit */
2228 mutex_enter(p->p_lock);
2229 /*
2230 * Posix explicitly asks for an exit code of 127 if we report
2231 * errors from the child process - so, unfortunately, there
2232 * is no way to report a more exact error code.
2233 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2234 * flag bit in the attrp argument to posix_spawn(2), see above.
2235 */
2236 exit1(l, 127, 0);
2237 }
2238
2239 void
2240 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2241 {
2242
2243 for (size_t i = 0; i < len; i++) {
2244 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2245 if (fae->fae_action != FAE_OPEN)
2246 continue;
2247 kmem_strfree(fae->fae_path);
2248 }
2249 if (fa->len > 0)
2250 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2251 kmem_free(fa, sizeof(*fa));
2252 }
2253
2254 static int
2255 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2256 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2257 {
2258 struct posix_spawn_file_actions *fa;
2259 struct posix_spawn_file_actions_entry *fae;
2260 char *pbuf = NULL;
2261 int error;
2262 size_t i = 0;
2263
2264 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2265 error = copyin(ufa, fa, sizeof(*fa));
2266 if (error || fa->len == 0) {
2267 kmem_free(fa, sizeof(*fa));
2268 return error; /* 0 if not an error, and len == 0 */
2269 }
2270
2271 if (fa->len > lim) {
2272 kmem_free(fa, sizeof(*fa));
2273 return EINVAL;
2274 }
2275
2276 fa->size = fa->len;
2277 size_t fal = fa->len * sizeof(*fae);
2278 fae = fa->fae;
2279 fa->fae = kmem_alloc(fal, KM_SLEEP);
2280 error = copyin(fae, fa->fae, fal);
2281 if (error)
2282 goto out;
2283
2284 pbuf = PNBUF_GET();
2285 for (; i < fa->len; i++) {
2286 fae = &fa->fae[i];
2287 if (fae->fae_action != FAE_OPEN)
2288 continue;
2289 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2290 if (error)
2291 goto out;
2292 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2293 memcpy(fae->fae_path, pbuf, fal);
2294 }
2295 PNBUF_PUT(pbuf);
2296
2297 *fap = fa;
2298 return 0;
2299 out:
2300 if (pbuf)
2301 PNBUF_PUT(pbuf);
2302 posix_spawn_fa_free(fa, i);
2303 return error;
2304 }
2305
2306 int
2307 check_posix_spawn(struct lwp *l1)
2308 {
2309 int error, tnprocs, count;
2310 uid_t uid;
2311 struct proc *p1;
2312
2313 p1 = l1->l_proc;
2314 uid = kauth_cred_getuid(l1->l_cred);
2315 tnprocs = atomic_inc_uint_nv(&nprocs);
2316
2317 /*
2318 * Although process entries are dynamically created, we still keep
2319 * a global limit on the maximum number we will create.
2320 */
2321 if (__predict_false(tnprocs >= maxproc))
2322 error = -1;
2323 else
2324 error = kauth_authorize_process(l1->l_cred,
2325 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2326
2327 if (error) {
2328 atomic_dec_uint(&nprocs);
2329 return EAGAIN;
2330 }
2331
2332 /*
2333 * Enforce limits.
2334 */
2335 count = chgproccnt(uid, 1);
2336 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2337 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2338 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2339 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2340 (void)chgproccnt(uid, -1);
2341 atomic_dec_uint(&nprocs);
2342 return EAGAIN;
2343 }
2344
2345 return 0;
2346 }
2347
2348 int
2349 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2350 struct posix_spawn_file_actions *fa,
2351 struct posix_spawnattr *sa,
2352 char *const *argv, char *const *envp,
2353 execve_fetch_element_t fetch)
2354 {
2355
2356 struct proc *p1, *p2;
2357 struct lwp *l2;
2358 int error;
2359 struct spawn_exec_data *spawn_data;
2360 vaddr_t uaddr;
2361 pid_t pid;
2362 bool have_exec_lock = false;
2363
2364 p1 = l1->l_proc;
2365
2366 /* Allocate and init spawn_data */
2367 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2368 spawn_data->sed_refcnt = 1; /* only parent so far */
2369 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2370 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2371 mutex_enter(&spawn_data->sed_mtx_child);
2372
2373 /*
2374 * Do the first part of the exec now, collect state
2375 * in spawn_data.
2376 */
2377 error = execve_loadvm(l1, path, argv,
2378 envp, fetch, &spawn_data->sed_exec);
2379 if (error == EJUSTRETURN)
2380 error = 0;
2381 else if (error)
2382 goto error_exit;
2383
2384 have_exec_lock = true;
2385
2386 /*
2387 * Allocate virtual address space for the U-area now, while it
2388 * is still easy to abort the fork operation if we're out of
2389 * kernel virtual address space.
2390 */
2391 uaddr = uvm_uarea_alloc();
2392 if (__predict_false(uaddr == 0)) {
2393 error = ENOMEM;
2394 goto error_exit;
2395 }
2396
2397 /*
2398 * Allocate new proc. Borrow proc0 vmspace for it, we will
2399 * replace it with its own before returning to userland
2400 * in the child.
2401 * This is a point of no return, we will have to go through
2402 * the child proc to properly clean it up past this point.
2403 */
2404 p2 = proc_alloc();
2405 pid = p2->p_pid;
2406
2407 /*
2408 * Make a proc table entry for the new process.
2409 * Start by zeroing the section of proc that is zero-initialized,
2410 * then copy the section that is copied directly from the parent.
2411 */
2412 memset(&p2->p_startzero, 0,
2413 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2414 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2415 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2416 p2->p_vmspace = proc0.p_vmspace;
2417
2418 TAILQ_INIT(&p2->p_sigpend.sp_info);
2419
2420 LIST_INIT(&p2->p_lwps);
2421 LIST_INIT(&p2->p_sigwaiters);
2422
2423 /*
2424 * Duplicate sub-structures as needed.
2425 * Increase reference counts on shared objects.
2426 * Inherit flags we want to keep. The flags related to SIGCHLD
2427 * handling are important in order to keep a consistent behaviour
2428 * for the child after the fork. If we are a 32-bit process, the
2429 * child will be too.
2430 */
2431 p2->p_flag =
2432 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2433 p2->p_emul = p1->p_emul;
2434 p2->p_execsw = p1->p_execsw;
2435
2436 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2437 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2438 rw_init(&p2->p_reflock);
2439 cv_init(&p2->p_waitcv, "wait");
2440 cv_init(&p2->p_lwpcv, "lwpwait");
2441
2442 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2443
2444 kauth_proc_fork(p1, p2);
2445
2446 p2->p_raslist = NULL;
2447 p2->p_fd = fd_copy();
2448
2449 /* XXX racy */
2450 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2451
2452 p2->p_cwdi = cwdinit();
2453
2454 /*
2455 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2456 * we just need increase pl_refcnt.
2457 */
2458 if (!p1->p_limit->pl_writeable) {
2459 lim_addref(p1->p_limit);
2460 p2->p_limit = p1->p_limit;
2461 } else {
2462 p2->p_limit = lim_copy(p1->p_limit);
2463 }
2464
2465 p2->p_lflag = 0;
2466 p2->p_sflag = 0;
2467 p2->p_slflag = 0;
2468 p2->p_pptr = p1;
2469 p2->p_ppid = p1->p_pid;
2470 LIST_INIT(&p2->p_children);
2471
2472 p2->p_aio = NULL;
2473
2474 #ifdef KTRACE
2475 /*
2476 * Copy traceflag and tracefile if enabled.
2477 * If not inherited, these were zeroed above.
2478 */
2479 if (p1->p_traceflag & KTRFAC_INHERIT) {
2480 mutex_enter(&ktrace_lock);
2481 p2->p_traceflag = p1->p_traceflag;
2482 if ((p2->p_tracep = p1->p_tracep) != NULL)
2483 ktradref(p2);
2484 mutex_exit(&ktrace_lock);
2485 }
2486 #endif
2487
2488 /*
2489 * Create signal actions for the child process.
2490 */
2491 p2->p_sigacts = sigactsinit(p1, 0);
2492 mutex_enter(p1->p_lock);
2493 p2->p_sflag |=
2494 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2495 sched_proc_fork(p1, p2);
2496 mutex_exit(p1->p_lock);
2497
2498 p2->p_stflag = p1->p_stflag;
2499
2500 /*
2501 * p_stats.
2502 * Copy parts of p_stats, and zero out the rest.
2503 */
2504 p2->p_stats = pstatscopy(p1->p_stats);
2505
2506 /* copy over machdep flags to the new proc */
2507 cpu_proc_fork(p1, p2);
2508
2509 /*
2510 * Prepare remaining parts of spawn data
2511 */
2512 spawn_data->sed_actions = fa;
2513 spawn_data->sed_attrs = sa;
2514
2515 spawn_data->sed_parent = p1;
2516
2517 /* create LWP */
2518 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2519 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2520 l2->l_ctxlink = NULL; /* reset ucontext link */
2521
2522 /*
2523 * Copy the credential so other references don't see our changes.
2524 * Test to see if this is necessary first, since in the common case
2525 * we won't need a private reference.
2526 */
2527 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2528 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2529 l2->l_cred = kauth_cred_copy(l2->l_cred);
2530 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2531 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2532 }
2533
2534 /* Update the master credentials. */
2535 if (l2->l_cred != p2->p_cred) {
2536 kauth_cred_t ocred;
2537
2538 kauth_cred_hold(l2->l_cred);
2539 mutex_enter(p2->p_lock);
2540 ocred = p2->p_cred;
2541 p2->p_cred = l2->l_cred;
2542 mutex_exit(p2->p_lock);
2543 kauth_cred_free(ocred);
2544 }
2545
2546 *child_ok = true;
2547 spawn_data->sed_refcnt = 2; /* child gets it as well */
2548 #if 0
2549 l2->l_nopreempt = 1; /* start it non-preemptable */
2550 #endif
2551
2552 /*
2553 * It's now safe for the scheduler and other processes to see the
2554 * child process.
2555 */
2556 mutex_enter(proc_lock);
2557
2558 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2559 p2->p_lflag |= PL_CONTROLT;
2560
2561 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2562 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2563
2564 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2565 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2566 proc_changeparent(p2, p1->p_pptr);
2567 p1->p_pspid = p2->p_pid;
2568 p2->p_pspid = p1->p_pid;
2569 }
2570
2571 LIST_INSERT_AFTER(p1, p2, p_pglist);
2572 LIST_INSERT_HEAD(&allproc, p2, p_list);
2573
2574 p2->p_trace_enabled = trace_is_enabled(p2);
2575 #ifdef __HAVE_SYSCALL_INTERN
2576 (*p2->p_emul->e_syscall_intern)(p2);
2577 #endif
2578
2579 /*
2580 * Make child runnable, set start time, and add to run queue except
2581 * if the parent requested the child to start in SSTOP state.
2582 */
2583 mutex_enter(p2->p_lock);
2584
2585 getmicrotime(&p2->p_stats->p_start);
2586
2587 lwp_lock(l2);
2588 KASSERT(p2->p_nrlwps == 1);
2589 p2->p_nrlwps = 1;
2590 p2->p_stat = SACTIVE;
2591 l2->l_stat = LSRUN;
2592 sched_enqueue(l2, false);
2593 lwp_unlock(l2);
2594
2595 mutex_exit(p2->p_lock);
2596 mutex_exit(proc_lock);
2597
2598 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2599 error = spawn_data->sed_error;
2600 mutex_exit(&spawn_data->sed_mtx_child);
2601 spawn_exec_data_release(spawn_data);
2602
2603 rw_exit(&p1->p_reflock);
2604 rw_exit(&exec_lock);
2605 have_exec_lock = false;
2606
2607 *pid_res = pid;
2608
2609 if (error)
2610 return error;
2611
2612 if (p1->p_slflag & PSL_TRACED) {
2613 /* Paranoid check */
2614 mutex_enter(proc_lock);
2615 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2616 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2617 mutex_exit(proc_lock);
2618 return 0;
2619 }
2620
2621 mutex_enter(p1->p_lock);
2622 eventswitch(TRAP_CHLD);
2623 }
2624 return 0;
2625
2626 error_exit:
2627 if (have_exec_lock) {
2628 execve_free_data(&spawn_data->sed_exec);
2629 rw_exit(&p1->p_reflock);
2630 rw_exit(&exec_lock);
2631 }
2632 mutex_exit(&spawn_data->sed_mtx_child);
2633 spawn_exec_data_release(spawn_data);
2634
2635 return error;
2636 }
2637
2638 int
2639 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2640 register_t *retval)
2641 {
2642 /* {
2643 syscallarg(pid_t *) pid;
2644 syscallarg(const char *) path;
2645 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2646 syscallarg(const struct posix_spawnattr *) attrp;
2647 syscallarg(char *const *) argv;
2648 syscallarg(char *const *) envp;
2649 } */
2650
2651 int error;
2652 struct posix_spawn_file_actions *fa = NULL;
2653 struct posix_spawnattr *sa = NULL;
2654 pid_t pid;
2655 bool child_ok = false;
2656 rlim_t max_fileactions;
2657 proc_t *p = l1->l_proc;
2658
2659 error = check_posix_spawn(l1);
2660 if (error) {
2661 *retval = error;
2662 return 0;
2663 }
2664
2665 /* copy in file_actions struct */
2666 if (SCARG(uap, file_actions) != NULL) {
2667 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2668 maxfiles);
2669 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2670 max_fileactions);
2671 if (error)
2672 goto error_exit;
2673 }
2674
2675 /* copyin posix_spawnattr struct */
2676 if (SCARG(uap, attrp) != NULL) {
2677 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2678 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2679 if (error)
2680 goto error_exit;
2681 }
2682
2683 /*
2684 * Do the spawn
2685 */
2686 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2687 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2688 if (error)
2689 goto error_exit;
2690
2691 if (error == 0 && SCARG(uap, pid) != NULL)
2692 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2693
2694 *retval = error;
2695 return 0;
2696
2697 error_exit:
2698 if (!child_ok) {
2699 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2700 atomic_dec_uint(&nprocs);
2701
2702 if (sa)
2703 kmem_free(sa, sizeof(*sa));
2704 if (fa)
2705 posix_spawn_fa_free(fa, fa->len);
2706 }
2707
2708 *retval = error;
2709 return 0;
2710 }
2711
2712 void
2713 exec_free_emul_arg(struct exec_package *epp)
2714 {
2715 if (epp->ep_emul_arg_free != NULL) {
2716 KASSERT(epp->ep_emul_arg != NULL);
2717 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2718 epp->ep_emul_arg_free = NULL;
2719 epp->ep_emul_arg = NULL;
2720 } else {
2721 KASSERT(epp->ep_emul_arg == NULL);
2722 }
2723 }
2724
2725 #ifdef DEBUG_EXEC
2726 static void
2727 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2728 {
2729 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2730 size_t j;
2731
2732 if (error == 0)
2733 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2734 else
2735 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2736 epp->ep_vmcmds.evs_used, error));
2737
2738 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2739 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2740 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2741 PRIxVSIZE" prot=0%o flags=%d\n", j,
2742 vp[j].ev_proc == vmcmd_map_pagedvn ?
2743 "pagedvn" :
2744 vp[j].ev_proc == vmcmd_map_readvn ?
2745 "readvn" :
2746 vp[j].ev_proc == vmcmd_map_zero ?
2747 "zero" : "*unknown*",
2748 vp[j].ev_addr, vp[j].ev_len,
2749 vp[j].ev_offset, vp[j].ev_prot,
2750 vp[j].ev_flags));
2751 if (error != 0 && j == x)
2752 DPRINTF((" ^--- failed\n"));
2753 }
2754 }
2755 #endif
2756