Home | History | Annotate | Line # | Download | only in kern
kern_exec.c revision 1.467
      1 /*	$NetBSD: kern_exec.c,v 1.467 2019/06/13 20:20:18 kamil Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*-
     30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
     31  * Copyright (C) 1992 Wolfgang Solfrank.
     32  * Copyright (C) 1992 TooLs GmbH.
     33  * All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. All advertising materials mentioning features or use of this software
     44  *    must display the following acknowledgement:
     45  *	This product includes software developed by TooLs GmbH.
     46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.467 2019/06/13 20:20:18 kamil Exp $");
     63 
     64 #include "opt_exec.h"
     65 #include "opt_execfmt.h"
     66 #include "opt_ktrace.h"
     67 #include "opt_modular.h"
     68 #include "opt_syscall_debug.h"
     69 #include "veriexec.h"
     70 #include "opt_pax.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/filedesc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/proc.h>
     77 #include <sys/ptrace.h>
     78 #include <sys/mount.h>
     79 #include <sys/kmem.h>
     80 #include <sys/namei.h>
     81 #include <sys/vnode.h>
     82 #include <sys/file.h>
     83 #include <sys/filedesc.h>
     84 #include <sys/acct.h>
     85 #include <sys/atomic.h>
     86 #include <sys/exec.h>
     87 #include <sys/ktrace.h>
     88 #include <sys/uidinfo.h>
     89 #include <sys/wait.h>
     90 #include <sys/mman.h>
     91 #include <sys/ras.h>
     92 #include <sys/signalvar.h>
     93 #include <sys/stat.h>
     94 #include <sys/syscall.h>
     95 #include <sys/kauth.h>
     96 #include <sys/lwpctl.h>
     97 #include <sys/pax.h>
     98 #include <sys/cpu.h>
     99 #include <sys/module.h>
    100 #include <sys/syscallvar.h>
    101 #include <sys/syscallargs.h>
    102 #if NVERIEXEC > 0
    103 #include <sys/verified_exec.h>
    104 #endif /* NVERIEXEC > 0 */
    105 #include <sys/sdt.h>
    106 #include <sys/spawn.h>
    107 #include <sys/prot.h>
    108 #include <sys/cprng.h>
    109 
    110 #include <uvm/uvm_extern.h>
    111 
    112 #include <machine/reg.h>
    113 
    114 #include <compat/common/compat_util.h>
    115 
    116 #ifndef MD_TOPDOWN_INIT
    117 #ifdef __USE_TOPDOWN_VM
    118 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
    119 #else
    120 #define	MD_TOPDOWN_INIT(epp)
    121 #endif
    122 #endif
    123 
    124 struct execve_data;
    125 
    126 extern int user_va0_disable;
    127 
    128 static size_t calcargs(struct execve_data * restrict, const size_t);
    129 static size_t calcstack(struct execve_data * restrict, const size_t);
    130 static int copyoutargs(struct execve_data * restrict, struct lwp *,
    131     char * const);
    132 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
    133 static int copyinargs(struct execve_data * restrict, char * const *,
    134     char * const *, execve_fetch_element_t, char **);
    135 static int copyinargstrs(struct execve_data * restrict, char * const *,
    136     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
    137 static int exec_sigcode_map(struct proc *, const struct emul *);
    138 
    139 #if defined(DEBUG) && !defined(DEBUG_EXEC)
    140 #define DEBUG_EXEC
    141 #endif
    142 #ifdef DEBUG_EXEC
    143 #define DPRINTF(a) printf a
    144 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
    145     __LINE__, (s), (a), (b))
    146 static void dump_vmcmds(const struct exec_package * const, size_t, int);
    147 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
    148 #else
    149 #define DPRINTF(a)
    150 #define COPYPRINTF(s, a, b)
    151 #define DUMPVMCMDS(p, x, e) do {} while (0)
    152 #endif /* DEBUG_EXEC */
    153 
    154 /*
    155  * DTrace SDT provider definitions
    156  */
    157 SDT_PROVIDER_DECLARE(proc);
    158 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
    159 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
    160 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
    161 
    162 /*
    163  * Exec function switch:
    164  *
    165  * Note that each makecmds function is responsible for loading the
    166  * exec package with the necessary functions for any exec-type-specific
    167  * handling.
    168  *
    169  * Functions for specific exec types should be defined in their own
    170  * header file.
    171  */
    172 static const struct execsw	**execsw = NULL;
    173 static int			nexecs;
    174 
    175 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
    176 
    177 /* list of dynamically loaded execsw entries */
    178 static LIST_HEAD(execlist_head, exec_entry) ex_head =
    179     LIST_HEAD_INITIALIZER(ex_head);
    180 struct exec_entry {
    181 	LIST_ENTRY(exec_entry)	ex_list;
    182 	SLIST_ENTRY(exec_entry)	ex_slist;
    183 	const struct execsw	*ex_sw;
    184 };
    185 
    186 #ifndef __HAVE_SYSCALL_INTERN
    187 void	syscall(void);
    188 #endif
    189 
    190 /* NetBSD autoloadable syscalls */
    191 #ifdef MODULAR
    192 #include <kern/syscalls_autoload.c>
    193 #endif
    194 
    195 /* NetBSD emul struct */
    196 struct emul emul_netbsd = {
    197 	.e_name =		"netbsd",
    198 #ifdef EMUL_NATIVEROOT
    199 	.e_path =		EMUL_NATIVEROOT,
    200 #else
    201 	.e_path =		NULL,
    202 #endif
    203 #ifndef __HAVE_MINIMAL_EMUL
    204 	.e_flags =		EMUL_HAS_SYS___syscall,
    205 	.e_errno =		NULL,
    206 	.e_nosys =		SYS_syscall,
    207 	.e_nsysent =		SYS_NSYSENT,
    208 #endif
    209 #ifdef MODULAR
    210 	.e_sc_autoload =	netbsd_syscalls_autoload,
    211 #endif
    212 	.e_sysent =		sysent,
    213 	.e_nomodbits =		sysent_nomodbits,
    214 #ifdef SYSCALL_DEBUG
    215 	.e_syscallnames =	syscallnames,
    216 #else
    217 	.e_syscallnames =	NULL,
    218 #endif
    219 	.e_sendsig =		sendsig,
    220 	.e_trapsignal =		trapsignal,
    221 	.e_sigcode =		NULL,
    222 	.e_esigcode =		NULL,
    223 	.e_sigobject =		NULL,
    224 	.e_setregs =		setregs,
    225 	.e_proc_exec =		NULL,
    226 	.e_proc_fork =		NULL,
    227 	.e_proc_exit =		NULL,
    228 	.e_lwp_fork =		NULL,
    229 	.e_lwp_exit =		NULL,
    230 #ifdef __HAVE_SYSCALL_INTERN
    231 	.e_syscall_intern =	syscall_intern,
    232 #else
    233 	.e_syscall =		syscall,
    234 #endif
    235 	.e_sysctlovly =		NULL,
    236 	.e_vm_default_addr =	uvm_default_mapaddr,
    237 	.e_usertrap =		NULL,
    238 	.e_ucsize =		sizeof(ucontext_t),
    239 	.e_startlwp =		startlwp
    240 };
    241 
    242 /*
    243  * Exec lock. Used to control access to execsw[] structures.
    244  * This must not be static so that netbsd32 can access it, too.
    245  */
    246 krwlock_t exec_lock;
    247 
    248 static kmutex_t sigobject_lock;
    249 
    250 /*
    251  * Data used between a loadvm and execve part of an "exec" operation
    252  */
    253 struct execve_data {
    254 	struct exec_package	ed_pack;
    255 	struct pathbuf		*ed_pathbuf;
    256 	struct vattr		ed_attr;
    257 	struct ps_strings	ed_arginfo;
    258 	char			*ed_argp;
    259 	const char		*ed_pathstring;
    260 	char			*ed_resolvedpathbuf;
    261 	size_t			ed_ps_strings_sz;
    262 	int			ed_szsigcode;
    263 	size_t			ed_argslen;
    264 	long			ed_argc;
    265 	long			ed_envc;
    266 };
    267 
    268 /*
    269  * data passed from parent lwp to child during a posix_spawn()
    270  */
    271 struct spawn_exec_data {
    272 	struct execve_data	sed_exec;
    273 	struct posix_spawn_file_actions
    274 				*sed_actions;
    275 	struct posix_spawnattr	*sed_attrs;
    276 	struct proc		*sed_parent;
    277 	kcondvar_t		sed_cv_child_ready;
    278 	kmutex_t		sed_mtx_child;
    279 	int			sed_error;
    280 	volatile uint32_t	sed_refcnt;
    281 };
    282 
    283 static struct vm_map *exec_map;
    284 static struct pool exec_pool;
    285 
    286 static void *
    287 exec_pool_alloc(struct pool *pp, int flags)
    288 {
    289 
    290 	return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
    291 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
    292 }
    293 
    294 static void
    295 exec_pool_free(struct pool *pp, void *addr)
    296 {
    297 
    298 	uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
    299 }
    300 
    301 static struct pool_allocator exec_palloc = {
    302 	.pa_alloc = exec_pool_alloc,
    303 	.pa_free = exec_pool_free,
    304 	.pa_pagesz = NCARGS
    305 };
    306 
    307 /*
    308  * check exec:
    309  * given an "executable" described in the exec package's namei info,
    310  * see what we can do with it.
    311  *
    312  * ON ENTRY:
    313  *	exec package with appropriate namei info
    314  *	lwp pointer of exec'ing lwp
    315  *	NO SELF-LOCKED VNODES
    316  *
    317  * ON EXIT:
    318  *	error:	nothing held, etc.  exec header still allocated.
    319  *	ok:	filled exec package, executable's vnode (unlocked).
    320  *
    321  * EXEC SWITCH ENTRY:
    322  * 	Locked vnode to check, exec package, proc.
    323  *
    324  * EXEC SWITCH EXIT:
    325  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
    326  *	error:	destructive:
    327  *			everything deallocated execept exec header.
    328  *		non-destructive:
    329  *			error code, executable's vnode (unlocked),
    330  *			exec header unmodified.
    331  */
    332 int
    333 /*ARGSUSED*/
    334 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
    335 {
    336 	int		error, i;
    337 	struct vnode	*vp;
    338 	struct nameidata nd;
    339 	size_t		resid;
    340 
    341 #if 1
    342 	// grab the absolute pathbuf here before namei() trashes it.
    343 	pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
    344 #endif
    345 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    346 
    347 	/* first get the vnode */
    348 	if ((error = namei(&nd)) != 0)
    349 		return error;
    350 	epp->ep_vp = vp = nd.ni_vp;
    351 #if 0
    352 	/*
    353 	 * XXX: can't use nd.ni_pnbuf, because although pb contains an
    354 	 * absolute path, nd.ni_pnbuf does not if the path contains symlinks.
    355 	 */
    356 	/* normally this can't fail */
    357 	error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
    358 	KASSERT(error == 0);
    359 #endif
    360 
    361 #ifdef DIAGNOSTIC
    362 	/* paranoia (take this out once namei stuff stabilizes) */
    363 	memset(nd.ni_pnbuf, '~', PATH_MAX);
    364 #endif
    365 
    366 	/* check access and type */
    367 	if (vp->v_type != VREG) {
    368 		error = EACCES;
    369 		goto bad1;
    370 	}
    371 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
    372 		goto bad1;
    373 
    374 	/* get attributes */
    375 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
    376 		goto bad1;
    377 
    378 	/* Check mount point */
    379 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
    380 		error = EACCES;
    381 		goto bad1;
    382 	}
    383 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
    384 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
    385 
    386 	/* try to open it */
    387 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
    388 		goto bad1;
    389 
    390 	/* unlock vp, since we need it unlocked from here on out. */
    391 	VOP_UNLOCK(vp);
    392 
    393 #if NVERIEXEC > 0
    394 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
    395 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
    396 	    NULL);
    397 	if (error)
    398 		goto bad2;
    399 #endif /* NVERIEXEC > 0 */
    400 
    401 #ifdef PAX_SEGVGUARD
    402 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
    403 	if (error)
    404 		goto bad2;
    405 #endif /* PAX_SEGVGUARD */
    406 
    407 	/* now we have the file, get the exec header */
    408 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
    409 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
    410 	if (error)
    411 		goto bad2;
    412 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
    413 
    414 	/*
    415 	 * Set up default address space limits.  Can be overridden
    416 	 * by individual exec packages.
    417 	 */
    418 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
    419 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
    420 
    421 	/*
    422 	 * set up the vmcmds for creation of the process
    423 	 * address space
    424 	 */
    425 	error = ENOEXEC;
    426 	for (i = 0; i < nexecs; i++) {
    427 		int newerror;
    428 
    429 		epp->ep_esch = execsw[i];
    430 		newerror = (*execsw[i]->es_makecmds)(l, epp);
    431 
    432 		if (!newerror) {
    433 			/* Seems ok: check that entry point is not too high */
    434 			if (epp->ep_entry >= epp->ep_vm_maxaddr) {
    435 #ifdef DIAGNOSTIC
    436 				printf("%s: rejecting %p due to "
    437 				    "too high entry address (>= %p)\n",
    438 					 __func__, (void *)epp->ep_entry,
    439 					 (void *)epp->ep_vm_maxaddr);
    440 #endif
    441 				error = ENOEXEC;
    442 				break;
    443 			}
    444 			/* Seems ok: check that entry point is not too low */
    445 			if (epp->ep_entry < epp->ep_vm_minaddr) {
    446 #ifdef DIAGNOSTIC
    447 				printf("%s: rejecting %p due to "
    448 				    "too low entry address (< %p)\n",
    449 				     __func__, (void *)epp->ep_entry,
    450 				     (void *)epp->ep_vm_minaddr);
    451 #endif
    452 				error = ENOEXEC;
    453 				break;
    454 			}
    455 
    456 			/* check limits */
    457 			if ((epp->ep_tsize > MAXTSIZ) ||
    458 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
    459 						    [RLIMIT_DATA].rlim_cur)) {
    460 #ifdef DIAGNOSTIC
    461 				printf("%s: rejecting due to "
    462 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
    463 				    __func__,
    464 				    (unsigned long long)epp->ep_tsize,
    465 				    (unsigned long long)MAXTSIZ,
    466 				    (unsigned long long)epp->ep_dsize,
    467 				    (unsigned long long)
    468 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
    469 #endif
    470 				error = ENOMEM;
    471 				break;
    472 			}
    473 			return 0;
    474 		}
    475 
    476 		/*
    477 		 * Reset all the fields that may have been modified by the
    478 		 * loader.
    479 		 */
    480 		KASSERT(epp->ep_emul_arg == NULL);
    481 		if (epp->ep_emul_root != NULL) {
    482 			vrele(epp->ep_emul_root);
    483 			epp->ep_emul_root = NULL;
    484 		}
    485 		if (epp->ep_interp != NULL) {
    486 			vrele(epp->ep_interp);
    487 			epp->ep_interp = NULL;
    488 		}
    489 		epp->ep_pax_flags = 0;
    490 
    491 		/* make sure the first "interesting" error code is saved. */
    492 		if (error == ENOEXEC)
    493 			error = newerror;
    494 
    495 		if (epp->ep_flags & EXEC_DESTR)
    496 			/* Error from "#!" code, tidied up by recursive call */
    497 			return error;
    498 	}
    499 
    500 	/* not found, error */
    501 
    502 	/*
    503 	 * free any vmspace-creation commands,
    504 	 * and release their references
    505 	 */
    506 	kill_vmcmds(&epp->ep_vmcmds);
    507 
    508 bad2:
    509 	/*
    510 	 * close and release the vnode, restore the old one, free the
    511 	 * pathname buf, and punt.
    512 	 */
    513 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    514 	VOP_CLOSE(vp, FREAD, l->l_cred);
    515 	vput(vp);
    516 	return error;
    517 
    518 bad1:
    519 	/*
    520 	 * free the namei pathname buffer, and put the vnode
    521 	 * (which we don't yet have open).
    522 	 */
    523 	vput(vp);				/* was still locked */
    524 	return error;
    525 }
    526 
    527 #ifdef __MACHINE_STACK_GROWS_UP
    528 #define STACK_PTHREADSPACE NBPG
    529 #else
    530 #define STACK_PTHREADSPACE 0
    531 #endif
    532 
    533 static int
    534 execve_fetch_element(char * const *array, size_t index, char **value)
    535 {
    536 	return copyin(array + index, value, sizeof(*value));
    537 }
    538 
    539 /*
    540  * exec system call
    541  */
    542 int
    543 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
    544 {
    545 	/* {
    546 		syscallarg(const char *)	path;
    547 		syscallarg(char * const *)	argp;
    548 		syscallarg(char * const *)	envp;
    549 	} */
    550 
    551 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
    552 	    SCARG(uap, envp), execve_fetch_element);
    553 }
    554 
    555 int
    556 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
    557     register_t *retval)
    558 {
    559 	/* {
    560 		syscallarg(int)			fd;
    561 		syscallarg(char * const *)	argp;
    562 		syscallarg(char * const *)	envp;
    563 	} */
    564 
    565 	return ENOSYS;
    566 }
    567 
    568 /*
    569  * Load modules to try and execute an image that we do not understand.
    570  * If no execsw entries are present, we load those likely to be needed
    571  * in order to run native images only.  Otherwise, we autoload all
    572  * possible modules that could let us run the binary.  XXX lame
    573  */
    574 static void
    575 exec_autoload(void)
    576 {
    577 #ifdef MODULAR
    578 	static const char * const native[] = {
    579 		"exec_elf32",
    580 		"exec_elf64",
    581 		"exec_script",
    582 		NULL
    583 	};
    584 	static const char * const compat[] = {
    585 		"exec_elf32",
    586 		"exec_elf64",
    587 		"exec_script",
    588 		"exec_aout",
    589 		"exec_coff",
    590 		"exec_ecoff",
    591 		"compat_aoutm68k",
    592 		"compat_netbsd32",
    593 		"compat_sunos",
    594 		"compat_sunos32",
    595 		"compat_ultrix",
    596 		NULL
    597 	};
    598 	char const * const *list;
    599 	int i;
    600 
    601 	list = (nexecs == 0 ? native : compat);
    602 	for (i = 0; list[i] != NULL; i++) {
    603 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
    604 			continue;
    605 		}
    606 		yield();
    607 	}
    608 #endif
    609 }
    610 
    611 int
    612 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
    613     struct pathbuf **pbp, size_t *offs)
    614 {
    615 	char *path, *bp;
    616 	size_t len, tlen;
    617 	int error;
    618 	struct cwdinfo *cwdi;
    619 
    620 	path = PNBUF_GET();
    621 	if (seg == UIO_SYSSPACE) {
    622 		error = copystr(upath, path, MAXPATHLEN, &len);
    623 	} else {
    624 		error = copyinstr(upath, path, MAXPATHLEN, &len);
    625 	}
    626 	if (error) {
    627 		PNBUF_PUT(path);
    628 		DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
    629 		return error;
    630 	}
    631 
    632 	if (path[0] == '/') {
    633 		if (offs)
    634 			*offs = 0;
    635 		goto out;
    636 	}
    637 
    638 	len++;
    639 	if (len + 1 >= MAXPATHLEN)
    640 		goto out;
    641 	bp = path + MAXPATHLEN - len;
    642 	memmove(bp, path, len);
    643 	*(--bp) = '/';
    644 
    645 	cwdi = l->l_proc->p_cwdi;
    646 	rw_enter(&cwdi->cwdi_lock, RW_READER);
    647 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
    648 	    GETCWD_CHECK_ACCESS, l);
    649 	rw_exit(&cwdi->cwdi_lock);
    650 
    651 	if (error) {
    652 		DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
    653 		    error));
    654 		goto out;
    655 	}
    656 	tlen = path + MAXPATHLEN - bp;
    657 
    658 	memmove(path, bp, tlen);
    659 	path[tlen] = '\0';
    660 	if (offs)
    661 		*offs = tlen - len;
    662 out:
    663 	*pbp = pathbuf_assimilate(path);
    664 	return 0;
    665 }
    666 
    667 vaddr_t
    668 exec_vm_minaddr(vaddr_t va_min)
    669 {
    670 	/*
    671 	 * Increase va_min if we don't want NULL to be mappable by the
    672 	 * process.
    673 	 */
    674 #define VM_MIN_GUARD	PAGE_SIZE
    675 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
    676 		return VM_MIN_GUARD;
    677 	return va_min;
    678 }
    679 
    680 static int
    681 execve_loadvm(struct lwp *l, const char *path, char * const *args,
    682 	char * const *envs, execve_fetch_element_t fetch_element,
    683 	struct execve_data * restrict data)
    684 {
    685 	struct exec_package	* const epp = &data->ed_pack;
    686 	int			error;
    687 	struct proc		*p;
    688 	char			*dp;
    689 	u_int			modgen;
    690 	size_t			offs = 0;	// XXX: GCC
    691 
    692 	KASSERT(data != NULL);
    693 
    694 	p = l->l_proc;
    695 	modgen = 0;
    696 
    697 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
    698 
    699 	/*
    700 	 * Check if we have exceeded our number of processes limit.
    701 	 * This is so that we handle the case where a root daemon
    702 	 * forked, ran setuid to become the desired user and is trying
    703 	 * to exec. The obvious place to do the reference counting check
    704 	 * is setuid(), but we don't do the reference counting check there
    705 	 * like other OS's do because then all the programs that use setuid()
    706 	 * must be modified to check the return code of setuid() and exit().
    707 	 * It is dangerous to make setuid() fail, because it fails open and
    708 	 * the program will continue to run as root. If we make it succeed
    709 	 * and return an error code, again we are not enforcing the limit.
    710 	 * The best place to enforce the limit is here, when the process tries
    711 	 * to execute a new image, because eventually the process will need
    712 	 * to call exec in order to do something useful.
    713 	 */
    714  retry:
    715 	if (p->p_flag & PK_SUGID) {
    716 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
    717 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
    718 		     &p->p_rlimit[RLIMIT_NPROC],
    719 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
    720 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
    721 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
    722 		return EAGAIN;
    723 	}
    724 
    725 	/*
    726 	 * Drain existing references and forbid new ones.  The process
    727 	 * should be left alone until we're done here.  This is necessary
    728 	 * to avoid race conditions - e.g. in ptrace() - that might allow
    729 	 * a local user to illicitly obtain elevated privileges.
    730 	 */
    731 	rw_enter(&p->p_reflock, RW_WRITER);
    732 
    733 	/*
    734 	 * Init the namei data to point the file user's program name.
    735 	 * This is done here rather than in check_exec(), so that it's
    736 	 * possible to override this settings if any of makecmd/probe
    737 	 * functions call check_exec() recursively - for example,
    738 	 * see exec_script_makecmds().
    739 	 */
    740 	if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
    741 	    &data->ed_pathbuf, &offs)) != 0)
    742 		goto clrflg;
    743 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
    744 	data->ed_resolvedpathbuf = PNBUF_GET();
    745 
    746 	/*
    747 	 * initialize the fields of the exec package.
    748 	 */
    749 	epp->ep_kname = data->ed_pathstring + offs;
    750 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
    751 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
    752 	epp->ep_hdrlen = exec_maxhdrsz;
    753 	epp->ep_hdrvalid = 0;
    754 	epp->ep_emul_arg = NULL;
    755 	epp->ep_emul_arg_free = NULL;
    756 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
    757 	epp->ep_vap = &data->ed_attr;
    758 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
    759 	MD_TOPDOWN_INIT(epp);
    760 	epp->ep_emul_root = NULL;
    761 	epp->ep_interp = NULL;
    762 	epp->ep_esch = NULL;
    763 	epp->ep_pax_flags = 0;
    764 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
    765 
    766 	rw_enter(&exec_lock, RW_READER);
    767 
    768 	/* see if we can run it. */
    769 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
    770 		if (error != ENOENT && error != EACCES && error != ENOEXEC) {
    771 			DPRINTF(("%s: check exec failed for %s, error %d\n",
    772 			    __func__, epp->ep_kname, error));
    773 		}
    774 		goto freehdr;
    775 	}
    776 
    777 	/* allocate an argument buffer */
    778 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
    779 	KASSERT(data->ed_argp != NULL);
    780 	dp = data->ed_argp;
    781 
    782 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
    783 		goto bad;
    784 	}
    785 
    786 	/*
    787 	 * Calculate the new stack size.
    788 	 */
    789 
    790 #ifdef __MACHINE_STACK_GROWS_UP
    791 /*
    792  * copyargs() fills argc/argv/envp from the lower address even on
    793  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
    794  * so that _rtld() use it.
    795  */
    796 #define	RTLD_GAP	32
    797 #else
    798 #define	RTLD_GAP	0
    799 #endif
    800 
    801 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
    802 
    803 	data->ed_argslen = calcargs(data, argenvstrlen);
    804 
    805 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
    806 
    807 	if (len > epp->ep_ssize) {
    808 		/* in effect, compare to initial limit */
    809 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
    810 		error = ENOMEM;
    811 		goto bad;
    812 	}
    813 	/* adjust "active stack depth" for process VSZ */
    814 	epp->ep_ssize = len;
    815 
    816 	return 0;
    817 
    818  bad:
    819 	/* free the vmspace-creation commands, and release their references */
    820 	kill_vmcmds(&epp->ep_vmcmds);
    821 	/* kill any opened file descriptor, if necessary */
    822 	if (epp->ep_flags & EXEC_HASFD) {
    823 		epp->ep_flags &= ~EXEC_HASFD;
    824 		fd_close(epp->ep_fd);
    825 	}
    826 	/* close and put the exec'd file */
    827 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    828 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    829 	vput(epp->ep_vp);
    830 	pool_put(&exec_pool, data->ed_argp);
    831 
    832  freehdr:
    833 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    834 	if (epp->ep_emul_root != NULL)
    835 		vrele(epp->ep_emul_root);
    836 	if (epp->ep_interp != NULL)
    837 		vrele(epp->ep_interp);
    838 
    839 	rw_exit(&exec_lock);
    840 
    841 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    842 	pathbuf_destroy(data->ed_pathbuf);
    843 	PNBUF_PUT(data->ed_resolvedpathbuf);
    844 
    845  clrflg:
    846 	rw_exit(&p->p_reflock);
    847 
    848 	if (modgen != module_gen && error == ENOEXEC) {
    849 		modgen = module_gen;
    850 		exec_autoload();
    851 		goto retry;
    852 	}
    853 
    854 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
    855 	return error;
    856 }
    857 
    858 static int
    859 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
    860 {
    861 	struct exec_package	* const epp = &data->ed_pack;
    862 	struct proc		*p = l->l_proc;
    863 	struct exec_vmcmd	*base_vcp;
    864 	int			error = 0;
    865 	size_t			i;
    866 
    867 	/* record proc's vnode, for use by procfs and others */
    868 	if (p->p_textvp)
    869 		vrele(p->p_textvp);
    870 	vref(epp->ep_vp);
    871 	p->p_textvp = epp->ep_vp;
    872 
    873 	/* create the new process's VM space by running the vmcmds */
    874 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
    875 
    876 #ifdef TRACE_EXEC
    877 	DUMPVMCMDS(epp, 0, 0);
    878 #endif
    879 
    880 	base_vcp = NULL;
    881 
    882 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
    883 		struct exec_vmcmd *vcp;
    884 
    885 		vcp = &epp->ep_vmcmds.evs_cmds[i];
    886 		if (vcp->ev_flags & VMCMD_RELATIVE) {
    887 			KASSERTMSG(base_vcp != NULL,
    888 			    "%s: relative vmcmd with no base", __func__);
    889 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
    890 			    "%s: illegal base & relative vmcmd", __func__);
    891 			vcp->ev_addr += base_vcp->ev_addr;
    892 		}
    893 		error = (*vcp->ev_proc)(l, vcp);
    894 		if (error)
    895 			DUMPVMCMDS(epp, i, error);
    896 		if (vcp->ev_flags & VMCMD_BASE)
    897 			base_vcp = vcp;
    898 	}
    899 
    900 	/* free the vmspace-creation commands, and release their references */
    901 	kill_vmcmds(&epp->ep_vmcmds);
    902 
    903 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    904 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
    905 	vput(epp->ep_vp);
    906 
    907 	/* if an error happened, deallocate and punt */
    908 	if (error != 0) {
    909 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
    910 	}
    911 	return error;
    912 }
    913 
    914 static void
    915 execve_free_data(struct execve_data *data)
    916 {
    917 	struct exec_package	* const epp = &data->ed_pack;
    918 
    919 	/* free the vmspace-creation commands, and release their references */
    920 	kill_vmcmds(&epp->ep_vmcmds);
    921 	/* kill any opened file descriptor, if necessary */
    922 	if (epp->ep_flags & EXEC_HASFD) {
    923 		epp->ep_flags &= ~EXEC_HASFD;
    924 		fd_close(epp->ep_fd);
    925 	}
    926 
    927 	/* close and put the exec'd file */
    928 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
    929 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
    930 	vput(epp->ep_vp);
    931 	pool_put(&exec_pool, data->ed_argp);
    932 
    933 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
    934 	if (epp->ep_emul_root != NULL)
    935 		vrele(epp->ep_emul_root);
    936 	if (epp->ep_interp != NULL)
    937 		vrele(epp->ep_interp);
    938 
    939 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
    940 	pathbuf_destroy(data->ed_pathbuf);
    941 	PNBUF_PUT(data->ed_resolvedpathbuf);
    942 }
    943 
    944 static void
    945 pathexec(struct proc *p, const char *resolvedname)
    946 {
    947 	KASSERT(resolvedname[0] == '/');
    948 
    949 	/* set command name & other accounting info */
    950 	strlcpy(p->p_comm, strrchr(resolvedname, '/') + 1, sizeof(p->p_comm));
    951 
    952 	kmem_strfree(p->p_path);
    953 	p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
    954 }
    955 
    956 /* XXX elsewhere */
    957 static int
    958 credexec(struct lwp *l, struct vattr *attr)
    959 {
    960 	struct proc *p = l->l_proc;
    961 	int error;
    962 
    963 	/*
    964 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
    965 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
    966 	 * out additional references on the process for the moment.
    967 	 */
    968 	if ((p->p_slflag & PSL_TRACED) == 0 &&
    969 
    970 	    (((attr->va_mode & S_ISUID) != 0 &&
    971 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
    972 
    973 	     ((attr->va_mode & S_ISGID) != 0 &&
    974 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
    975 		/*
    976 		 * Mark the process as SUGID before we do
    977 		 * anything that might block.
    978 		 */
    979 		proc_crmod_enter();
    980 		proc_crmod_leave(NULL, NULL, true);
    981 
    982 		/* Make sure file descriptors 0..2 are in use. */
    983 		if ((error = fd_checkstd()) != 0) {
    984 			DPRINTF(("%s: fdcheckstd failed %d\n",
    985 			    __func__, error));
    986 			return error;
    987 		}
    988 
    989 		/*
    990 		 * Copy the credential so other references don't see our
    991 		 * changes.
    992 		 */
    993 		l->l_cred = kauth_cred_copy(l->l_cred);
    994 #ifdef KTRACE
    995 		/*
    996 		 * If the persistent trace flag isn't set, turn off.
    997 		 */
    998 		if (p->p_tracep) {
    999 			mutex_enter(&ktrace_lock);
   1000 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
   1001 				ktrderef(p);
   1002 			mutex_exit(&ktrace_lock);
   1003 		}
   1004 #endif
   1005 		if (attr->va_mode & S_ISUID)
   1006 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
   1007 		if (attr->va_mode & S_ISGID)
   1008 			kauth_cred_setegid(l->l_cred, attr->va_gid);
   1009 	} else {
   1010 		if (kauth_cred_geteuid(l->l_cred) ==
   1011 		    kauth_cred_getuid(l->l_cred) &&
   1012 		    kauth_cred_getegid(l->l_cred) ==
   1013 		    kauth_cred_getgid(l->l_cred))
   1014 			p->p_flag &= ~PK_SUGID;
   1015 	}
   1016 
   1017 	/*
   1018 	 * Copy the credential so other references don't see our changes.
   1019 	 * Test to see if this is necessary first, since in the common case
   1020 	 * we won't need a private reference.
   1021 	 */
   1022 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
   1023 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
   1024 		l->l_cred = kauth_cred_copy(l->l_cred);
   1025 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
   1026 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
   1027 	}
   1028 
   1029 	/* Update the master credentials. */
   1030 	if (l->l_cred != p->p_cred) {
   1031 		kauth_cred_t ocred;
   1032 
   1033 		kauth_cred_hold(l->l_cred);
   1034 		mutex_enter(p->p_lock);
   1035 		ocred = p->p_cred;
   1036 		p->p_cred = l->l_cred;
   1037 		mutex_exit(p->p_lock);
   1038 		kauth_cred_free(ocred);
   1039 	}
   1040 
   1041 	return 0;
   1042 }
   1043 
   1044 static void
   1045 emulexec(struct lwp *l, struct exec_package *epp)
   1046 {
   1047 	struct proc		*p = l->l_proc;
   1048 
   1049 	/* The emulation root will usually have been found when we looked
   1050 	 * for the elf interpreter (or similar), if not look now. */
   1051 	if (epp->ep_esch->es_emul->e_path != NULL &&
   1052 	    epp->ep_emul_root == NULL)
   1053 		emul_find_root(l, epp);
   1054 
   1055 	/* Any old emulation root got removed by fdcloseexec */
   1056 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
   1057 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
   1058 	rw_exit(&p->p_cwdi->cwdi_lock);
   1059 	epp->ep_emul_root = NULL;
   1060 	if (epp->ep_interp != NULL)
   1061 		vrele(epp->ep_interp);
   1062 
   1063 	/*
   1064 	 * Call emulation specific exec hook. This can setup per-process
   1065 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
   1066 	 *
   1067 	 * If we are executing process of different emulation than the
   1068 	 * original forked process, call e_proc_exit() of the old emulation
   1069 	 * first, then e_proc_exec() of new emulation. If the emulation is
   1070 	 * same, the exec hook code should deallocate any old emulation
   1071 	 * resources held previously by this process.
   1072 	 */
   1073 	if (p->p_emul && p->p_emul->e_proc_exit
   1074 	    && p->p_emul != epp->ep_esch->es_emul)
   1075 		(*p->p_emul->e_proc_exit)(p);
   1076 
   1077 	/*
   1078 	 * This is now LWP 1.
   1079 	 */
   1080 	/* XXX elsewhere */
   1081 	mutex_enter(p->p_lock);
   1082 	p->p_nlwpid = 1;
   1083 	l->l_lid = 1;
   1084 	mutex_exit(p->p_lock);
   1085 
   1086 	/*
   1087 	 * Call exec hook. Emulation code may NOT store reference to anything
   1088 	 * from &pack.
   1089 	 */
   1090 	if (epp->ep_esch->es_emul->e_proc_exec)
   1091 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
   1092 
   1093 	/* update p_emul, the old value is no longer needed */
   1094 	p->p_emul = epp->ep_esch->es_emul;
   1095 
   1096 	/* ...and the same for p_execsw */
   1097 	p->p_execsw = epp->ep_esch;
   1098 
   1099 #ifdef __HAVE_SYSCALL_INTERN
   1100 	(*p->p_emul->e_syscall_intern)(p);
   1101 #endif
   1102 	ktremul();
   1103 }
   1104 
   1105 static int
   1106 execve_runproc(struct lwp *l, struct execve_data * restrict data,
   1107 	bool no_local_exec_lock, bool is_spawn)
   1108 {
   1109 	struct exec_package	* const epp = &data->ed_pack;
   1110 	int error = 0;
   1111 	struct proc		*p;
   1112 
   1113 	/*
   1114 	 * In case of a posix_spawn operation, the child doing the exec
   1115 	 * might not hold the reader lock on exec_lock, but the parent
   1116 	 * will do this instead.
   1117 	 */
   1118 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
   1119 	KASSERT(!no_local_exec_lock || is_spawn);
   1120 	KASSERT(data != NULL);
   1121 
   1122 	p = l->l_proc;
   1123 
   1124 	/* Get rid of other LWPs. */
   1125 	if (p->p_nlwps > 1) {
   1126 		mutex_enter(p->p_lock);
   1127 		exit_lwps(l);
   1128 		mutex_exit(p->p_lock);
   1129 	}
   1130 	KDASSERT(p->p_nlwps == 1);
   1131 
   1132 	/* Destroy any lwpctl info. */
   1133 	if (p->p_lwpctl != NULL)
   1134 		lwp_ctl_exit();
   1135 
   1136 	/* Remove POSIX timers */
   1137 	timers_free(p, TIMERS_POSIX);
   1138 
   1139 	/* Set the PaX flags. */
   1140 	pax_set_flags(epp, p);
   1141 
   1142 	/*
   1143 	 * Do whatever is necessary to prepare the address space
   1144 	 * for remapping.  Note that this might replace the current
   1145 	 * vmspace with another!
   1146 	 */
   1147 	if (is_spawn)
   1148 		uvmspace_spawn(l, epp->ep_vm_minaddr,
   1149 		    epp->ep_vm_maxaddr,
   1150 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1151 	else
   1152 		uvmspace_exec(l, epp->ep_vm_minaddr,
   1153 		    epp->ep_vm_maxaddr,
   1154 		    epp->ep_flags & EXEC_TOPDOWN_VM);
   1155 
   1156 	struct vmspace		*vm;
   1157 	vm = p->p_vmspace;
   1158 	vm->vm_taddr = (void *)epp->ep_taddr;
   1159 	vm->vm_tsize = btoc(epp->ep_tsize);
   1160 	vm->vm_daddr = (void*)epp->ep_daddr;
   1161 	vm->vm_dsize = btoc(epp->ep_dsize);
   1162 	vm->vm_ssize = btoc(epp->ep_ssize);
   1163 	vm->vm_issize = 0;
   1164 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
   1165 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
   1166 
   1167 	pax_aslr_init_vm(l, vm, epp);
   1168 
   1169 	/* Now map address space. */
   1170 	error = execve_dovmcmds(l, data);
   1171 	if (error != 0)
   1172 		goto exec_abort;
   1173 
   1174 	pathexec(p, epp->ep_resolvedname);
   1175 
   1176 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
   1177 
   1178 	error = copyoutargs(data, l, newstack);
   1179 	if (error != 0)
   1180 		goto exec_abort;
   1181 
   1182 	cwdexec(p);
   1183 	fd_closeexec();		/* handle close on exec */
   1184 
   1185 	if (__predict_false(ktrace_on))
   1186 		fd_ktrexecfd();
   1187 
   1188 	execsigs(p);		/* reset caught signals */
   1189 
   1190 	mutex_enter(p->p_lock);
   1191 	l->l_ctxlink = NULL;	/* reset ucontext link */
   1192 	p->p_acflag &= ~AFORK;
   1193 	p->p_flag |= PK_EXEC;
   1194 	mutex_exit(p->p_lock);
   1195 
   1196 	/*
   1197 	 * Stop profiling.
   1198 	 */
   1199 	if ((p->p_stflag & PST_PROFIL) != 0) {
   1200 		mutex_spin_enter(&p->p_stmutex);
   1201 		stopprofclock(p);
   1202 		mutex_spin_exit(&p->p_stmutex);
   1203 	}
   1204 
   1205 	/*
   1206 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
   1207 	 * exited and exec()/exit() are the only places it will be cleared.
   1208 	 */
   1209 	if ((p->p_lflag & PL_PPWAIT) != 0) {
   1210 		lwp_t *lp;
   1211 
   1212 		mutex_enter(proc_lock);
   1213 		lp = p->p_vforklwp;
   1214 		p->p_vforklwp = NULL;
   1215 
   1216 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
   1217 		p->p_lflag &= ~PL_PPWAIT;
   1218 		lp->l_vforkwaiting = false;
   1219 
   1220 		cv_broadcast(&lp->l_waitcv);
   1221 		mutex_exit(proc_lock);
   1222 	}
   1223 
   1224 	error = credexec(l, &data->ed_attr);
   1225 	if (error)
   1226 		goto exec_abort;
   1227 
   1228 #if defined(__HAVE_RAS)
   1229 	/*
   1230 	 * Remove all RASs from the address space.
   1231 	 */
   1232 	ras_purgeall();
   1233 #endif
   1234 
   1235 	doexechooks(p);
   1236 
   1237 	/*
   1238 	 * Set initial SP at the top of the stack.
   1239 	 *
   1240 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
   1241 	 * the end of arg/env strings.  Userland guesses the address of argc
   1242 	 * via ps_strings::ps_argvstr.
   1243 	 */
   1244 
   1245 	/* Setup new registers and do misc. setup. */
   1246 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
   1247 	if (epp->ep_esch->es_setregs)
   1248 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
   1249 
   1250 	/* Provide a consistent LWP private setting */
   1251 	(void)lwp_setprivate(l, NULL);
   1252 
   1253 	/* Discard all PCU state; need to start fresh */
   1254 	pcu_discard_all(l);
   1255 
   1256 	/* map the process's signal trampoline code */
   1257 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
   1258 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
   1259 		goto exec_abort;
   1260 	}
   1261 
   1262 	pool_put(&exec_pool, data->ed_argp);
   1263 
   1264 	/* notify others that we exec'd */
   1265 	KNOTE(&p->p_klist, NOTE_EXEC);
   1266 
   1267 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1268 
   1269 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
   1270 
   1271 	emulexec(l, epp);
   1272 
   1273 	/* Allow new references from the debugger/procfs. */
   1274 	rw_exit(&p->p_reflock);
   1275 	if (!no_local_exec_lock)
   1276 		rw_exit(&exec_lock);
   1277 
   1278 	mutex_enter(proc_lock);
   1279 
   1280 	/* posix_spawn(3) reports a single event with implied exec(3) */
   1281 	if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
   1282 		mutex_enter(p->p_lock);
   1283 		eventswitch(TRAP_EXEC);
   1284 		mutex_enter(proc_lock);
   1285 	}
   1286 
   1287 	if (p->p_sflag & PS_STOPEXEC) {
   1288 		ksiginfoq_t kq;
   1289 
   1290 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
   1291 		p->p_pptr->p_nstopchild++;
   1292 		p->p_waited = 0;
   1293 		mutex_enter(p->p_lock);
   1294 		ksiginfo_queue_init(&kq);
   1295 		sigclearall(p, &contsigmask, &kq);
   1296 		lwp_lock(l);
   1297 		l->l_stat = LSSTOP;
   1298 		p->p_stat = SSTOP;
   1299 		p->p_nrlwps--;
   1300 		lwp_unlock(l);
   1301 		mutex_exit(p->p_lock);
   1302 		mutex_exit(proc_lock);
   1303 		lwp_lock(l);
   1304 		mi_switch(l);
   1305 		ksiginfo_queue_drain(&kq);
   1306 		KERNEL_LOCK(l->l_biglocks, l);
   1307 	} else {
   1308 		mutex_exit(proc_lock);
   1309 	}
   1310 
   1311 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1312 	pathbuf_destroy(data->ed_pathbuf);
   1313 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1314 #ifdef TRACE_EXEC
   1315 	DPRINTF(("%s finished\n", __func__));
   1316 #endif
   1317 	return EJUSTRETURN;
   1318 
   1319  exec_abort:
   1320 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
   1321 	rw_exit(&p->p_reflock);
   1322 	if (!no_local_exec_lock)
   1323 		rw_exit(&exec_lock);
   1324 
   1325 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
   1326 	pathbuf_destroy(data->ed_pathbuf);
   1327 	PNBUF_PUT(data->ed_resolvedpathbuf);
   1328 
   1329 	/*
   1330 	 * the old process doesn't exist anymore.  exit gracefully.
   1331 	 * get rid of the (new) address space we have created, if any, get rid
   1332 	 * of our namei data and vnode, and exit noting failure
   1333 	 */
   1334 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
   1335 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
   1336 
   1337 	exec_free_emul_arg(epp);
   1338 	pool_put(&exec_pool, data->ed_argp);
   1339 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
   1340 	if (epp->ep_emul_root != NULL)
   1341 		vrele(epp->ep_emul_root);
   1342 	if (epp->ep_interp != NULL)
   1343 		vrele(epp->ep_interp);
   1344 
   1345 	/* Acquire the sched-state mutex (exit1() will release it). */
   1346 	if (!is_spawn) {
   1347 		mutex_enter(p->p_lock);
   1348 		exit1(l, error, SIGABRT);
   1349 	}
   1350 
   1351 	return error;
   1352 }
   1353 
   1354 int
   1355 execve1(struct lwp *l, const char *path, char * const *args,
   1356     char * const *envs, execve_fetch_element_t fetch_element)
   1357 {
   1358 	struct execve_data data;
   1359 	int error;
   1360 
   1361 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
   1362 	if (error)
   1363 		return error;
   1364 	error = execve_runproc(l, &data, false, false);
   1365 	return error;
   1366 }
   1367 
   1368 static size_t
   1369 fromptrsz(const struct exec_package *epp)
   1370 {
   1371 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
   1372 }
   1373 
   1374 static size_t
   1375 ptrsz(const struct exec_package *epp)
   1376 {
   1377 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
   1378 }
   1379 
   1380 static size_t
   1381 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
   1382 {
   1383 	struct exec_package	* const epp = &data->ed_pack;
   1384 
   1385 	const size_t nargenvptrs =
   1386 	    1 +				/* long argc */
   1387 	    data->ed_argc +		/* char *argv[] */
   1388 	    1 +				/* \0 */
   1389 	    data->ed_envc +		/* char *env[] */
   1390 	    1;				/* \0 */
   1391 
   1392 	return (nargenvptrs * ptrsz(epp))	/* pointers */
   1393 	    + argenvstrlen			/* strings */
   1394 	    + epp->ep_esch->es_arglen;		/* auxinfo */
   1395 }
   1396 
   1397 static size_t
   1398 calcstack(struct execve_data * restrict data, const size_t gaplen)
   1399 {
   1400 	struct exec_package	* const epp = &data->ed_pack;
   1401 
   1402 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
   1403 	    epp->ep_esch->es_emul->e_sigcode;
   1404 
   1405 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
   1406 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
   1407 
   1408 	const size_t sigcode_psstr_sz =
   1409 	    data->ed_szsigcode +	/* sigcode */
   1410 	    data->ed_ps_strings_sz +	/* ps_strings */
   1411 	    STACK_PTHREADSPACE;		/* pthread space */
   1412 
   1413 	const size_t stacklen =
   1414 	    data->ed_argslen +
   1415 	    gaplen +
   1416 	    sigcode_psstr_sz;
   1417 
   1418 	/* make the stack "safely" aligned */
   1419 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
   1420 }
   1421 
   1422 static int
   1423 copyoutargs(struct execve_data * restrict data, struct lwp *l,
   1424     char * const newstack)
   1425 {
   1426 	struct exec_package	* const epp = &data->ed_pack;
   1427 	struct proc		*p = l->l_proc;
   1428 	int			error;
   1429 
   1430 	memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
   1431 
   1432 	/* remember information about the process */
   1433 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
   1434 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
   1435 
   1436 	/*
   1437 	 * Allocate the stack address passed to the newly execve()'ed process.
   1438 	 *
   1439 	 * The new stack address will be set to the SP (stack pointer) register
   1440 	 * in setregs().
   1441 	 */
   1442 
   1443 	char *newargs = STACK_ALLOC(
   1444 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
   1445 
   1446 	error = (*epp->ep_esch->es_copyargs)(l, epp,
   1447 	    &data->ed_arginfo, &newargs, data->ed_argp);
   1448 
   1449 	if (error) {
   1450 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
   1451 		return error;
   1452 	}
   1453 
   1454 	error = copyoutpsstrs(data, p);
   1455 	if (error != 0)
   1456 		return error;
   1457 
   1458 	return 0;
   1459 }
   1460 
   1461 static int
   1462 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
   1463 {
   1464 	struct exec_package	* const epp = &data->ed_pack;
   1465 	struct ps_strings32	arginfo32;
   1466 	void			*aip;
   1467 	int			error;
   1468 
   1469 	/* fill process ps_strings info */
   1470 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
   1471 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
   1472 
   1473 	if (epp->ep_flags & EXEC_32) {
   1474 		aip = &arginfo32;
   1475 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
   1476 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
   1477 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
   1478 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
   1479 	} else
   1480 		aip = &data->ed_arginfo;
   1481 
   1482 	/* copy out the process's ps_strings structure */
   1483 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
   1484 	    != 0) {
   1485 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
   1486 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
   1487 		return error;
   1488 	}
   1489 
   1490 	return 0;
   1491 }
   1492 
   1493 static int
   1494 copyinargs(struct execve_data * restrict data, char * const *args,
   1495     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
   1496 {
   1497 	struct exec_package	* const epp = &data->ed_pack;
   1498 	char			*dp;
   1499 	size_t			i;
   1500 	int			error;
   1501 
   1502 	dp = *dpp;
   1503 
   1504 	data->ed_argc = 0;
   1505 
   1506 	/* copy the fake args list, if there's one, freeing it as we go */
   1507 	if (epp->ep_flags & EXEC_HASARGL) {
   1508 		struct exec_fakearg	*fa = epp->ep_fa;
   1509 
   1510 		while (fa->fa_arg != NULL) {
   1511 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1512 			size_t len;
   1513 
   1514 			len = strlcpy(dp, fa->fa_arg, maxlen);
   1515 			/* Count NUL into len. */
   1516 			if (len < maxlen)
   1517 				len++;
   1518 			else {
   1519 				while (fa->fa_arg != NULL) {
   1520 					kmem_free(fa->fa_arg, fa->fa_len);
   1521 					fa++;
   1522 				}
   1523 				kmem_free(epp->ep_fa, epp->ep_fa_len);
   1524 				epp->ep_flags &= ~EXEC_HASARGL;
   1525 				return E2BIG;
   1526 			}
   1527 			ktrexecarg(fa->fa_arg, len - 1);
   1528 			dp += len;
   1529 
   1530 			kmem_free(fa->fa_arg, fa->fa_len);
   1531 			fa++;
   1532 			data->ed_argc++;
   1533 		}
   1534 		kmem_free(epp->ep_fa, epp->ep_fa_len);
   1535 		epp->ep_flags &= ~EXEC_HASARGL;
   1536 	}
   1537 
   1538 	/*
   1539 	 * Read and count argument strings from user.
   1540 	 */
   1541 
   1542 	if (args == NULL) {
   1543 		DPRINTF(("%s: null args\n", __func__));
   1544 		return EINVAL;
   1545 	}
   1546 	if (epp->ep_flags & EXEC_SKIPARG)
   1547 		args = (const void *)((const char *)args + fromptrsz(epp));
   1548 	i = 0;
   1549 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
   1550 	if (error != 0) {
   1551 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
   1552 		return error;
   1553 	}
   1554 	data->ed_argc += i;
   1555 
   1556 	/*
   1557 	 * Read and count environment strings from user.
   1558 	 */
   1559 
   1560 	data->ed_envc = 0;
   1561 	/* environment need not be there */
   1562 	if (envs == NULL)
   1563 		goto done;
   1564 	i = 0;
   1565 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
   1566 	if (error != 0) {
   1567 		DPRINTF(("%s: copyin env %d\n", __func__, error));
   1568 		return error;
   1569 	}
   1570 	data->ed_envc += i;
   1571 
   1572 done:
   1573 	*dpp = dp;
   1574 
   1575 	return 0;
   1576 }
   1577 
   1578 static int
   1579 copyinargstrs(struct execve_data * restrict data, char * const *strs,
   1580     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
   1581     void (*ktr)(const void *, size_t))
   1582 {
   1583 	char			*dp, *sp;
   1584 	size_t			i;
   1585 	int			error;
   1586 
   1587 	dp = *dpp;
   1588 
   1589 	i = 0;
   1590 	while (1) {
   1591 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
   1592 		size_t len;
   1593 
   1594 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
   1595 			return error;
   1596 		}
   1597 		if (!sp)
   1598 			break;
   1599 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
   1600 			if (error == ENAMETOOLONG)
   1601 				error = E2BIG;
   1602 			return error;
   1603 		}
   1604 		if (__predict_false(ktrace_on))
   1605 			(*ktr)(dp, len - 1);
   1606 		dp += len;
   1607 		i++;
   1608 	}
   1609 
   1610 	*dpp = dp;
   1611 	*ip = i;
   1612 
   1613 	return 0;
   1614 }
   1615 
   1616 /*
   1617  * Copy argv and env strings from kernel buffer (argp) to the new stack.
   1618  * Those strings are located just after auxinfo.
   1619  */
   1620 int
   1621 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
   1622     char **stackp, void *argp)
   1623 {
   1624 	char	**cpp, *dp, *sp;
   1625 	size_t	len;
   1626 	void	*nullp;
   1627 	long	argc, envc;
   1628 	int	error;
   1629 
   1630 	cpp = (char **)*stackp;
   1631 	nullp = NULL;
   1632 	argc = arginfo->ps_nargvstr;
   1633 	envc = arginfo->ps_nenvstr;
   1634 
   1635 	/* argc on stack is long */
   1636 	CTASSERT(sizeof(*cpp) == sizeof(argc));
   1637 
   1638 	dp = (char *)(cpp +
   1639 	    1 +				/* long argc */
   1640 	    argc +			/* char *argv[] */
   1641 	    1 +				/* \0 */
   1642 	    envc +			/* char *env[] */
   1643 	    1) +			/* \0 */
   1644 	    pack->ep_esch->es_arglen;	/* auxinfo */
   1645 	sp = argp;
   1646 
   1647 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
   1648 		COPYPRINTF("", cpp - 1, sizeof(argc));
   1649 		return error;
   1650 	}
   1651 
   1652 	/* XXX don't copy them out, remap them! */
   1653 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
   1654 
   1655 	for (; --argc >= 0; sp += len, dp += len) {
   1656 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1657 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1658 			return error;
   1659 		}
   1660 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1661 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1662 			return error;
   1663 		}
   1664 	}
   1665 
   1666 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1667 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1668 		return error;
   1669 	}
   1670 
   1671 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
   1672 
   1673 	for (; --envc >= 0; sp += len, dp += len) {
   1674 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
   1675 			COPYPRINTF("", cpp - 1, sizeof(dp));
   1676 			return error;
   1677 		}
   1678 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
   1679 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
   1680 			return error;
   1681 		}
   1682 
   1683 	}
   1684 
   1685 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
   1686 		COPYPRINTF("", cpp - 1, sizeof(nullp));
   1687 		return error;
   1688 	}
   1689 
   1690 	*stackp = (char *)cpp;
   1691 	return 0;
   1692 }
   1693 
   1694 
   1695 /*
   1696  * Add execsw[] entries.
   1697  */
   1698 int
   1699 exec_add(struct execsw *esp, int count)
   1700 {
   1701 	struct exec_entry	*it;
   1702 	int			i;
   1703 
   1704 	if (count == 0) {
   1705 		return 0;
   1706 	}
   1707 
   1708 	/* Check for duplicates. */
   1709 	rw_enter(&exec_lock, RW_WRITER);
   1710 	for (i = 0; i < count; i++) {
   1711 		LIST_FOREACH(it, &ex_head, ex_list) {
   1712 			/* assume unique (makecmds, probe_func, emulation) */
   1713 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
   1714 			    it->ex_sw->u.elf_probe_func ==
   1715 			    esp[i].u.elf_probe_func &&
   1716 			    it->ex_sw->es_emul == esp[i].es_emul) {
   1717 				rw_exit(&exec_lock);
   1718 				return EEXIST;
   1719 			}
   1720 		}
   1721 	}
   1722 
   1723 	/* Allocate new entries. */
   1724 	for (i = 0; i < count; i++) {
   1725 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
   1726 		it->ex_sw = &esp[i];
   1727 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
   1728 	}
   1729 
   1730 	/* update execsw[] */
   1731 	exec_init(0);
   1732 	rw_exit(&exec_lock);
   1733 	return 0;
   1734 }
   1735 
   1736 /*
   1737  * Remove execsw[] entry.
   1738  */
   1739 int
   1740 exec_remove(struct execsw *esp, int count)
   1741 {
   1742 	struct exec_entry	*it, *next;
   1743 	int			i;
   1744 	const struct proclist_desc *pd;
   1745 	proc_t			*p;
   1746 
   1747 	if (count == 0) {
   1748 		return 0;
   1749 	}
   1750 
   1751 	/* Abort if any are busy. */
   1752 	rw_enter(&exec_lock, RW_WRITER);
   1753 	for (i = 0; i < count; i++) {
   1754 		mutex_enter(proc_lock);
   1755 		for (pd = proclists; pd->pd_list != NULL; pd++) {
   1756 			PROCLIST_FOREACH(p, pd->pd_list) {
   1757 				if (p->p_execsw == &esp[i]) {
   1758 					mutex_exit(proc_lock);
   1759 					rw_exit(&exec_lock);
   1760 					return EBUSY;
   1761 				}
   1762 			}
   1763 		}
   1764 		mutex_exit(proc_lock);
   1765 	}
   1766 
   1767 	/* None are busy, so remove them all. */
   1768 	for (i = 0; i < count; i++) {
   1769 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
   1770 			next = LIST_NEXT(it, ex_list);
   1771 			if (it->ex_sw == &esp[i]) {
   1772 				LIST_REMOVE(it, ex_list);
   1773 				kmem_free(it, sizeof(*it));
   1774 				break;
   1775 			}
   1776 		}
   1777 	}
   1778 
   1779 	/* update execsw[] */
   1780 	exec_init(0);
   1781 	rw_exit(&exec_lock);
   1782 	return 0;
   1783 }
   1784 
   1785 /*
   1786  * Initialize exec structures. If init_boot is true, also does necessary
   1787  * one-time initialization (it's called from main() that way).
   1788  * Once system is multiuser, this should be called with exec_lock held,
   1789  * i.e. via exec_{add|remove}().
   1790  */
   1791 int
   1792 exec_init(int init_boot)
   1793 {
   1794 	const struct execsw 	**sw;
   1795 	struct exec_entry	*ex;
   1796 	SLIST_HEAD(,exec_entry)	first;
   1797 	SLIST_HEAD(,exec_entry)	any;
   1798 	SLIST_HEAD(,exec_entry)	last;
   1799 	int			i, sz;
   1800 
   1801 	if (init_boot) {
   1802 		/* do one-time initializations */
   1803 		vaddr_t vmin = 0, vmax;
   1804 
   1805 		rw_init(&exec_lock);
   1806 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
   1807 		exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
   1808 		    maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
   1809 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
   1810 		    "execargs", &exec_palloc, IPL_NONE);
   1811 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
   1812 	} else {
   1813 		KASSERT(rw_write_held(&exec_lock));
   1814 	}
   1815 
   1816 	/* Sort each entry onto the appropriate queue. */
   1817 	SLIST_INIT(&first);
   1818 	SLIST_INIT(&any);
   1819 	SLIST_INIT(&last);
   1820 	sz = 0;
   1821 	LIST_FOREACH(ex, &ex_head, ex_list) {
   1822 		switch(ex->ex_sw->es_prio) {
   1823 		case EXECSW_PRIO_FIRST:
   1824 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
   1825 			break;
   1826 		case EXECSW_PRIO_ANY:
   1827 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
   1828 			break;
   1829 		case EXECSW_PRIO_LAST:
   1830 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
   1831 			break;
   1832 		default:
   1833 			panic("%s", __func__);
   1834 			break;
   1835 		}
   1836 		sz++;
   1837 	}
   1838 
   1839 	/*
   1840 	 * Create new execsw[].  Ensure we do not try a zero-sized
   1841 	 * allocation.
   1842 	 */
   1843 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
   1844 	i = 0;
   1845 	SLIST_FOREACH(ex, &first, ex_slist) {
   1846 		sw[i++] = ex->ex_sw;
   1847 	}
   1848 	SLIST_FOREACH(ex, &any, ex_slist) {
   1849 		sw[i++] = ex->ex_sw;
   1850 	}
   1851 	SLIST_FOREACH(ex, &last, ex_slist) {
   1852 		sw[i++] = ex->ex_sw;
   1853 	}
   1854 
   1855 	/* Replace old execsw[] and free used memory. */
   1856 	if (execsw != NULL) {
   1857 		kmem_free(__UNCONST(execsw),
   1858 		    nexecs * sizeof(struct execsw *) + 1);
   1859 	}
   1860 	execsw = sw;
   1861 	nexecs = sz;
   1862 
   1863 	/* Figure out the maximum size of an exec header. */
   1864 	exec_maxhdrsz = sizeof(int);
   1865 	for (i = 0; i < nexecs; i++) {
   1866 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
   1867 			exec_maxhdrsz = execsw[i]->es_hdrsz;
   1868 	}
   1869 
   1870 	return 0;
   1871 }
   1872 
   1873 static int
   1874 exec_sigcode_map(struct proc *p, const struct emul *e)
   1875 {
   1876 	vaddr_t va;
   1877 	vsize_t sz;
   1878 	int error;
   1879 	struct uvm_object *uobj;
   1880 
   1881 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
   1882 
   1883 	if (e->e_sigobject == NULL || sz == 0) {
   1884 		return 0;
   1885 	}
   1886 
   1887 	/*
   1888 	 * If we don't have a sigobject for this emulation, create one.
   1889 	 *
   1890 	 * sigobject is an anonymous memory object (just like SYSV shared
   1891 	 * memory) that we keep a permanent reference to and that we map
   1892 	 * in all processes that need this sigcode. The creation is simple,
   1893 	 * we create an object, add a permanent reference to it, map it in
   1894 	 * kernel space, copy out the sigcode to it and unmap it.
   1895 	 * We map it with PROT_READ|PROT_EXEC into the process just
   1896 	 * the way sys_mmap() would map it.
   1897 	 */
   1898 
   1899 	uobj = *e->e_sigobject;
   1900 	if (uobj == NULL) {
   1901 		mutex_enter(&sigobject_lock);
   1902 		if ((uobj = *e->e_sigobject) == NULL) {
   1903 			uobj = uao_create(sz, 0);
   1904 			(*uobj->pgops->pgo_reference)(uobj);
   1905 			va = vm_map_min(kernel_map);
   1906 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
   1907 			    uobj, 0, 0,
   1908 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1909 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
   1910 				printf("kernel mapping failed %d\n", error);
   1911 				(*uobj->pgops->pgo_detach)(uobj);
   1912 				mutex_exit(&sigobject_lock);
   1913 				return error;
   1914 			}
   1915 			memcpy((void *)va, e->e_sigcode, sz);
   1916 #ifdef PMAP_NEED_PROCWR
   1917 			pmap_procwr(&proc0, va, sz);
   1918 #endif
   1919 			uvm_unmap(kernel_map, va, va + round_page(sz));
   1920 			*e->e_sigobject = uobj;
   1921 		}
   1922 		mutex_exit(&sigobject_lock);
   1923 	}
   1924 
   1925 	/* Just a hint to uvm_map where to put it. */
   1926 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
   1927 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
   1928 
   1929 #ifdef __alpha__
   1930 	/*
   1931 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
   1932 	 * which causes the above calculation to put the sigcode at
   1933 	 * an invalid address.  Put it just below the text instead.
   1934 	 */
   1935 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
   1936 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
   1937 	}
   1938 #endif
   1939 
   1940 	(*uobj->pgops->pgo_reference)(uobj);
   1941 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
   1942 			uobj, 0, 0,
   1943 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
   1944 				    UVM_ADV_RANDOM, 0));
   1945 	if (error) {
   1946 		DPRINTF(("%s, %d: map %p "
   1947 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
   1948 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
   1949 		    va, error));
   1950 		(*uobj->pgops->pgo_detach)(uobj);
   1951 		return error;
   1952 	}
   1953 	p->p_sigctx.ps_sigcode = (void *)va;
   1954 	return 0;
   1955 }
   1956 
   1957 /*
   1958  * Release a refcount on spawn_exec_data and destroy memory, if this
   1959  * was the last one.
   1960  */
   1961 static void
   1962 spawn_exec_data_release(struct spawn_exec_data *data)
   1963 {
   1964 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
   1965 		return;
   1966 
   1967 	cv_destroy(&data->sed_cv_child_ready);
   1968 	mutex_destroy(&data->sed_mtx_child);
   1969 
   1970 	if (data->sed_actions)
   1971 		posix_spawn_fa_free(data->sed_actions,
   1972 		    data->sed_actions->len);
   1973 	if (data->sed_attrs)
   1974 		kmem_free(data->sed_attrs,
   1975 		    sizeof(*data->sed_attrs));
   1976 	kmem_free(data, sizeof(*data));
   1977 }
   1978 
   1979 /*
   1980  * A child lwp of a posix_spawn operation starts here and ends up in
   1981  * cpu_spawn_return, dealing with all filedescriptor and scheduler
   1982  * manipulations in between.
   1983  * The parent waits for the child, as it is not clear whether the child
   1984  * will be able to acquire its own exec_lock. If it can, the parent can
   1985  * be released early and continue running in parallel. If not (or if the
   1986  * magic debug flag is passed in the scheduler attribute struct), the
   1987  * child rides on the parent's exec lock until it is ready to return to
   1988  * to userland - and only then releases the parent. This method loses
   1989  * concurrency, but improves error reporting.
   1990  */
   1991 static void
   1992 spawn_return(void *arg)
   1993 {
   1994 	struct spawn_exec_data *spawn_data = arg;
   1995 	struct lwp *l = curlwp;
   1996 	struct proc *p = l->l_proc;
   1997 	int error, newfd;
   1998 	int ostat;
   1999 	size_t i;
   2000 	const struct posix_spawn_file_actions_entry *fae;
   2001 	pid_t ppid;
   2002 	register_t retval;
   2003 	bool have_reflock;
   2004 	bool parent_is_waiting = true;
   2005 
   2006 	/*
   2007 	 * Check if we can release parent early.
   2008 	 * We either need to have no sed_attrs, or sed_attrs does not
   2009 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
   2010 	 * safe access to the parent proc (passed in sed_parent).
   2011 	 * We then try to get the exec_lock, and only if that works, we can
   2012 	 * release the parent here already.
   2013 	 */
   2014 	ppid = spawn_data->sed_parent->p_pid;
   2015 	if ((!spawn_data->sed_attrs
   2016 	    || (spawn_data->sed_attrs->sa_flags
   2017 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
   2018 	    && rw_tryenter(&exec_lock, RW_READER)) {
   2019 		parent_is_waiting = false;
   2020 		mutex_enter(&spawn_data->sed_mtx_child);
   2021 		cv_signal(&spawn_data->sed_cv_child_ready);
   2022 		mutex_exit(&spawn_data->sed_mtx_child);
   2023 	}
   2024 
   2025 	/* don't allow debugger access yet */
   2026 	rw_enter(&p->p_reflock, RW_WRITER);
   2027 	have_reflock = true;
   2028 
   2029 	error = 0;
   2030 	/* handle posix_spawn_file_actions */
   2031 	if (spawn_data->sed_actions != NULL) {
   2032 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
   2033 			fae = &spawn_data->sed_actions->fae[i];
   2034 			switch (fae->fae_action) {
   2035 			case FAE_OPEN:
   2036 				if (fd_getfile(fae->fae_fildes) != NULL) {
   2037 					error = fd_close(fae->fae_fildes);
   2038 					if (error)
   2039 						break;
   2040 				}
   2041 				error = fd_open(fae->fae_path, fae->fae_oflag,
   2042 				    fae->fae_mode, &newfd);
   2043 				if (error)
   2044 					break;
   2045 				if (newfd != fae->fae_fildes) {
   2046 					error = dodup(l, newfd,
   2047 					    fae->fae_fildes, 0, &retval);
   2048 					if (fd_getfile(newfd) != NULL)
   2049 						fd_close(newfd);
   2050 				}
   2051 				break;
   2052 			case FAE_DUP2:
   2053 				error = dodup(l, fae->fae_fildes,
   2054 				    fae->fae_newfildes, 0, &retval);
   2055 				break;
   2056 			case FAE_CLOSE:
   2057 				if (fd_getfile(fae->fae_fildes) == NULL) {
   2058 					error = EBADF;
   2059 					break;
   2060 				}
   2061 				error = fd_close(fae->fae_fildes);
   2062 				break;
   2063 			}
   2064 			if (error)
   2065 				goto report_error;
   2066 		}
   2067 	}
   2068 
   2069 	/* handle posix_spawnattr */
   2070 	if (spawn_data->sed_attrs != NULL) {
   2071 		struct sigaction sigact;
   2072 		sigact._sa_u._sa_handler = SIG_DFL;
   2073 		sigact.sa_flags = 0;
   2074 
   2075 		/*
   2076 		 * set state to SSTOP so that this proc can be found by pid.
   2077 		 * see proc_enterprp, do_sched_setparam below
   2078 		 */
   2079 		mutex_enter(proc_lock);
   2080 		/*
   2081 		 * p_stat should be SACTIVE, so we need to adjust the
   2082 		 * parent's p_nstopchild here.  For safety, just make
   2083 		 * we're on the good side of SDEAD before we adjust.
   2084 		 */
   2085 		ostat = p->p_stat;
   2086 		KASSERT(ostat < SSTOP);
   2087 		p->p_stat = SSTOP;
   2088 		p->p_waited = 0;
   2089 		p->p_pptr->p_nstopchild++;
   2090 		mutex_exit(proc_lock);
   2091 
   2092 		/* Set process group */
   2093 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
   2094 			pid_t mypid = p->p_pid,
   2095 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
   2096 
   2097 			if (pgrp == 0)
   2098 				pgrp = mypid;
   2099 
   2100 			error = proc_enterpgrp(spawn_data->sed_parent,
   2101 			    mypid, pgrp, false);
   2102 			if (error)
   2103 				goto report_error_stopped;
   2104 		}
   2105 
   2106 		/* Set scheduler policy */
   2107 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
   2108 			error = do_sched_setparam(p->p_pid, 0,
   2109 			    spawn_data->sed_attrs->sa_schedpolicy,
   2110 			    &spawn_data->sed_attrs->sa_schedparam);
   2111 		else if (spawn_data->sed_attrs->sa_flags
   2112 		    & POSIX_SPAWN_SETSCHEDPARAM) {
   2113 			error = do_sched_setparam(ppid, 0,
   2114 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
   2115 		}
   2116 		if (error)
   2117 			goto report_error_stopped;
   2118 
   2119 		/* Reset user ID's */
   2120 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
   2121 			error = do_setresuid(l, -1,
   2122 			     kauth_cred_getgid(l->l_cred), -1,
   2123 			     ID_E_EQ_R | ID_E_EQ_S);
   2124 			if (error)
   2125 				goto report_error_stopped;
   2126 			error = do_setresuid(l, -1,
   2127 			    kauth_cred_getuid(l->l_cred), -1,
   2128 			    ID_E_EQ_R | ID_E_EQ_S);
   2129 			if (error)
   2130 				goto report_error_stopped;
   2131 		}
   2132 
   2133 		/* Set signal masks/defaults */
   2134 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
   2135 			mutex_enter(p->p_lock);
   2136 			error = sigprocmask1(l, SIG_SETMASK,
   2137 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
   2138 			mutex_exit(p->p_lock);
   2139 			if (error)
   2140 				goto report_error_stopped;
   2141 		}
   2142 
   2143 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
   2144 			/*
   2145 			 * The following sigaction call is using a sigaction
   2146 			 * version 0 trampoline which is in the compatibility
   2147 			 * code only. This is not a problem because for SIG_DFL
   2148 			 * and SIG_IGN, the trampolines are now ignored. If they
   2149 			 * were not, this would be a problem because we are
   2150 			 * holding the exec_lock, and the compat code needs
   2151 			 * to do the same in order to replace the trampoline
   2152 			 * code of the process.
   2153 			 */
   2154 			for (i = 1; i <= NSIG; i++) {
   2155 				if (sigismember(
   2156 				    &spawn_data->sed_attrs->sa_sigdefault, i))
   2157 					sigaction1(l, i, &sigact, NULL, NULL,
   2158 					    0);
   2159 			}
   2160 		}
   2161 		mutex_enter(proc_lock);
   2162 		p->p_stat = ostat;
   2163 		p->p_pptr->p_nstopchild--;
   2164 		mutex_exit(proc_lock);
   2165 	}
   2166 
   2167 	/* now do the real exec */
   2168 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
   2169 	    true);
   2170 	have_reflock = false;
   2171 	if (error == EJUSTRETURN)
   2172 		error = 0;
   2173 	else if (error)
   2174 		goto report_error;
   2175 
   2176 	if (parent_is_waiting) {
   2177 		mutex_enter(&spawn_data->sed_mtx_child);
   2178 		cv_signal(&spawn_data->sed_cv_child_ready);
   2179 		mutex_exit(&spawn_data->sed_mtx_child);
   2180 	}
   2181 
   2182 	/* release our refcount on the data */
   2183 	spawn_exec_data_release(spawn_data);
   2184 
   2185 	if (p->p_slflag & PSL_TRACED) {
   2186 		/* Paranoid check */
   2187 		mutex_enter(proc_lock);
   2188 		if (!(p->p_slflag & PSL_TRACED)) {
   2189 			mutex_exit(proc_lock);
   2190 			goto cpu_return;
   2191 		}
   2192 
   2193 		mutex_enter(p->p_lock);
   2194 		eventswitch(TRAP_CHLD);
   2195 	}
   2196 
   2197  cpu_return:
   2198 	/* and finally: leave to userland for the first time */
   2199 	cpu_spawn_return(l);
   2200 
   2201 	/* NOTREACHED */
   2202 	return;
   2203 
   2204  report_error_stopped:
   2205 	mutex_enter(proc_lock);
   2206 	p->p_stat = ostat;
   2207 	p->p_pptr->p_nstopchild--;
   2208 	mutex_exit(proc_lock);
   2209  report_error:
   2210 	if (have_reflock) {
   2211 		/*
   2212 		 * We have not passed through execve_runproc(),
   2213 		 * which would have released the p_reflock and also
   2214 		 * taken ownership of the sed_exec part of spawn_data,
   2215 		 * so release/free both here.
   2216 		 */
   2217 		rw_exit(&p->p_reflock);
   2218 		execve_free_data(&spawn_data->sed_exec);
   2219 	}
   2220 
   2221 	if (parent_is_waiting) {
   2222 		/* pass error to parent */
   2223 		mutex_enter(&spawn_data->sed_mtx_child);
   2224 		spawn_data->sed_error = error;
   2225 		cv_signal(&spawn_data->sed_cv_child_ready);
   2226 		mutex_exit(&spawn_data->sed_mtx_child);
   2227 	} else {
   2228 		rw_exit(&exec_lock);
   2229 	}
   2230 
   2231 	/* release our refcount on the data */
   2232 	spawn_exec_data_release(spawn_data);
   2233 
   2234 	/* done, exit */
   2235 	mutex_enter(p->p_lock);
   2236 	/*
   2237 	 * Posix explicitly asks for an exit code of 127 if we report
   2238 	 * errors from the child process - so, unfortunately, there
   2239 	 * is no way to report a more exact error code.
   2240 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
   2241 	 * flag bit in the attrp argument to posix_spawn(2), see above.
   2242 	 */
   2243 	exit1(l, 127, 0);
   2244 }
   2245 
   2246 void
   2247 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
   2248 {
   2249 
   2250 	for (size_t i = 0; i < len; i++) {
   2251 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
   2252 		if (fae->fae_action != FAE_OPEN)
   2253 			continue;
   2254 		kmem_strfree(fae->fae_path);
   2255 	}
   2256 	if (fa->len > 0)
   2257 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
   2258 	kmem_free(fa, sizeof(*fa));
   2259 }
   2260 
   2261 static int
   2262 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
   2263     const struct posix_spawn_file_actions *ufa, rlim_t lim)
   2264 {
   2265 	struct posix_spawn_file_actions *fa;
   2266 	struct posix_spawn_file_actions_entry *fae;
   2267 	char *pbuf = NULL;
   2268 	int error;
   2269 	size_t i = 0;
   2270 
   2271 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
   2272 	error = copyin(ufa, fa, sizeof(*fa));
   2273 	if (error || fa->len == 0) {
   2274 		kmem_free(fa, sizeof(*fa));
   2275 		return error;	/* 0 if not an error, and len == 0 */
   2276 	}
   2277 
   2278 	if (fa->len > lim) {
   2279 		kmem_free(fa, sizeof(*fa));
   2280 		return EINVAL;
   2281 	}
   2282 
   2283 	fa->size = fa->len;
   2284 	size_t fal = fa->len * sizeof(*fae);
   2285 	fae = fa->fae;
   2286 	fa->fae = kmem_alloc(fal, KM_SLEEP);
   2287 	error = copyin(fae, fa->fae, fal);
   2288 	if (error)
   2289 		goto out;
   2290 
   2291 	pbuf = PNBUF_GET();
   2292 	for (; i < fa->len; i++) {
   2293 		fae = &fa->fae[i];
   2294 		if (fae->fae_action != FAE_OPEN)
   2295 			continue;
   2296 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
   2297 		if (error)
   2298 			goto out;
   2299 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
   2300 		memcpy(fae->fae_path, pbuf, fal);
   2301 	}
   2302 	PNBUF_PUT(pbuf);
   2303 
   2304 	*fap = fa;
   2305 	return 0;
   2306 out:
   2307 	if (pbuf)
   2308 		PNBUF_PUT(pbuf);
   2309 	posix_spawn_fa_free(fa, i);
   2310 	return error;
   2311 }
   2312 
   2313 int
   2314 check_posix_spawn(struct lwp *l1)
   2315 {
   2316 	int error, tnprocs, count;
   2317 	uid_t uid;
   2318 	struct proc *p1;
   2319 
   2320 	p1 = l1->l_proc;
   2321 	uid = kauth_cred_getuid(l1->l_cred);
   2322 	tnprocs = atomic_inc_uint_nv(&nprocs);
   2323 
   2324 	/*
   2325 	 * Although process entries are dynamically created, we still keep
   2326 	 * a global limit on the maximum number we will create.
   2327 	 */
   2328 	if (__predict_false(tnprocs >= maxproc))
   2329 		error = -1;
   2330 	else
   2331 		error = kauth_authorize_process(l1->l_cred,
   2332 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
   2333 
   2334 	if (error) {
   2335 		atomic_dec_uint(&nprocs);
   2336 		return EAGAIN;
   2337 	}
   2338 
   2339 	/*
   2340 	 * Enforce limits.
   2341 	 */
   2342 	count = chgproccnt(uid, 1);
   2343 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
   2344 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
   2345 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
   2346 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
   2347 		(void)chgproccnt(uid, -1);
   2348 		atomic_dec_uint(&nprocs);
   2349 		return EAGAIN;
   2350 	}
   2351 
   2352 	return 0;
   2353 }
   2354 
   2355 int
   2356 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
   2357 	struct posix_spawn_file_actions *fa,
   2358 	struct posix_spawnattr *sa,
   2359 	char *const *argv, char *const *envp,
   2360 	execve_fetch_element_t fetch)
   2361 {
   2362 
   2363 	struct proc *p1, *p2;
   2364 	struct lwp *l2;
   2365 	int error;
   2366 	struct spawn_exec_data *spawn_data;
   2367 	vaddr_t uaddr;
   2368 	pid_t pid;
   2369 	bool have_exec_lock = false;
   2370 
   2371 	p1 = l1->l_proc;
   2372 
   2373 	/* Allocate and init spawn_data */
   2374 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
   2375 	spawn_data->sed_refcnt = 1; /* only parent so far */
   2376 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
   2377 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
   2378 	mutex_enter(&spawn_data->sed_mtx_child);
   2379 
   2380 	/*
   2381 	 * Do the first part of the exec now, collect state
   2382 	 * in spawn_data.
   2383 	 */
   2384 	error = execve_loadvm(l1, path, argv,
   2385 	    envp, fetch, &spawn_data->sed_exec);
   2386 	if (error == EJUSTRETURN)
   2387 		error = 0;
   2388 	else if (error)
   2389 		goto error_exit;
   2390 
   2391 	have_exec_lock = true;
   2392 
   2393 	/*
   2394 	 * Allocate virtual address space for the U-area now, while it
   2395 	 * is still easy to abort the fork operation if we're out of
   2396 	 * kernel virtual address space.
   2397 	 */
   2398 	uaddr = uvm_uarea_alloc();
   2399 	if (__predict_false(uaddr == 0)) {
   2400 		error = ENOMEM;
   2401 		goto error_exit;
   2402 	}
   2403 
   2404 	/*
   2405 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
   2406 	 * replace it with its own before returning to userland
   2407 	 * in the child.
   2408 	 * This is a point of no return, we will have to go through
   2409 	 * the child proc to properly clean it up past this point.
   2410 	 */
   2411 	p2 = proc_alloc();
   2412 	pid = p2->p_pid;
   2413 
   2414 	/*
   2415 	 * Make a proc table entry for the new process.
   2416 	 * Start by zeroing the section of proc that is zero-initialized,
   2417 	 * then copy the section that is copied directly from the parent.
   2418 	 */
   2419 	memset(&p2->p_startzero, 0,
   2420 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
   2421 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
   2422 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
   2423 	p2->p_vmspace = proc0.p_vmspace;
   2424 
   2425 	TAILQ_INIT(&p2->p_sigpend.sp_info);
   2426 
   2427 	LIST_INIT(&p2->p_lwps);
   2428 	LIST_INIT(&p2->p_sigwaiters);
   2429 
   2430 	/*
   2431 	 * Duplicate sub-structures as needed.
   2432 	 * Increase reference counts on shared objects.
   2433 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
   2434 	 * handling are important in order to keep a consistent behaviour
   2435 	 * for the child after the fork.  If we are a 32-bit process, the
   2436 	 * child will be too.
   2437 	 */
   2438 	p2->p_flag =
   2439 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
   2440 	p2->p_emul = p1->p_emul;
   2441 	p2->p_execsw = p1->p_execsw;
   2442 
   2443 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
   2444 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
   2445 	rw_init(&p2->p_reflock);
   2446 	cv_init(&p2->p_waitcv, "wait");
   2447 	cv_init(&p2->p_lwpcv, "lwpwait");
   2448 
   2449 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2450 
   2451 	kauth_proc_fork(p1, p2);
   2452 
   2453 	p2->p_raslist = NULL;
   2454 	p2->p_fd = fd_copy();
   2455 
   2456 	/* XXX racy */
   2457 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
   2458 
   2459 	p2->p_cwdi = cwdinit();
   2460 
   2461 	/*
   2462 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
   2463 	 * we just need increase pl_refcnt.
   2464 	 */
   2465 	if (!p1->p_limit->pl_writeable) {
   2466 		lim_addref(p1->p_limit);
   2467 		p2->p_limit = p1->p_limit;
   2468 	} else {
   2469 		p2->p_limit = lim_copy(p1->p_limit);
   2470 	}
   2471 
   2472 	p2->p_lflag = 0;
   2473 	p2->p_sflag = 0;
   2474 	p2->p_slflag = 0;
   2475 	p2->p_pptr = p1;
   2476 	p2->p_ppid = p1->p_pid;
   2477 	LIST_INIT(&p2->p_children);
   2478 
   2479 	p2->p_aio = NULL;
   2480 
   2481 #ifdef KTRACE
   2482 	/*
   2483 	 * Copy traceflag and tracefile if enabled.
   2484 	 * If not inherited, these were zeroed above.
   2485 	 */
   2486 	if (p1->p_traceflag & KTRFAC_INHERIT) {
   2487 		mutex_enter(&ktrace_lock);
   2488 		p2->p_traceflag = p1->p_traceflag;
   2489 		if ((p2->p_tracep = p1->p_tracep) != NULL)
   2490 			ktradref(p2);
   2491 		mutex_exit(&ktrace_lock);
   2492 	}
   2493 #endif
   2494 
   2495 	/*
   2496 	 * Create signal actions for the child process.
   2497 	 */
   2498 	p2->p_sigacts = sigactsinit(p1, 0);
   2499 	mutex_enter(p1->p_lock);
   2500 	p2->p_sflag |=
   2501 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
   2502 	sched_proc_fork(p1, p2);
   2503 	mutex_exit(p1->p_lock);
   2504 
   2505 	p2->p_stflag = p1->p_stflag;
   2506 
   2507 	/*
   2508 	 * p_stats.
   2509 	 * Copy parts of p_stats, and zero out the rest.
   2510 	 */
   2511 	p2->p_stats = pstatscopy(p1->p_stats);
   2512 
   2513 	/* copy over machdep flags to the new proc */
   2514 	cpu_proc_fork(p1, p2);
   2515 
   2516 	/*
   2517 	 * Prepare remaining parts of spawn data
   2518 	 */
   2519 	spawn_data->sed_actions = fa;
   2520 	spawn_data->sed_attrs = sa;
   2521 
   2522 	spawn_data->sed_parent = p1;
   2523 
   2524 	/* create LWP */
   2525 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
   2526 	    &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
   2527 	l2->l_ctxlink = NULL;	/* reset ucontext link */
   2528 
   2529 	/*
   2530 	 * Copy the credential so other references don't see our changes.
   2531 	 * Test to see if this is necessary first, since in the common case
   2532 	 * we won't need a private reference.
   2533 	 */
   2534 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
   2535 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
   2536 		l2->l_cred = kauth_cred_copy(l2->l_cred);
   2537 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
   2538 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
   2539 	}
   2540 
   2541 	/* Update the master credentials. */
   2542 	if (l2->l_cred != p2->p_cred) {
   2543 		kauth_cred_t ocred;
   2544 
   2545 		kauth_cred_hold(l2->l_cred);
   2546 		mutex_enter(p2->p_lock);
   2547 		ocred = p2->p_cred;
   2548 		p2->p_cred = l2->l_cred;
   2549 		mutex_exit(p2->p_lock);
   2550 		kauth_cred_free(ocred);
   2551 	}
   2552 
   2553 	*child_ok = true;
   2554 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
   2555 #if 0
   2556 	l2->l_nopreempt = 1; /* start it non-preemptable */
   2557 #endif
   2558 
   2559 	/*
   2560 	 * It's now safe for the scheduler and other processes to see the
   2561 	 * child process.
   2562 	 */
   2563 	mutex_enter(proc_lock);
   2564 
   2565 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
   2566 		p2->p_lflag |= PL_CONTROLT;
   2567 
   2568 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
   2569 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
   2570 
   2571 	if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
   2572 	    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
   2573 		proc_changeparent(p2, p1->p_pptr);
   2574 		p1->p_pspid = p2->p_pid;
   2575 		p2->p_pspid = p1->p_pid;
   2576 	}
   2577 
   2578 	LIST_INSERT_AFTER(p1, p2, p_pglist);
   2579 	LIST_INSERT_HEAD(&allproc, p2, p_list);
   2580 
   2581 	p2->p_trace_enabled = trace_is_enabled(p2);
   2582 #ifdef __HAVE_SYSCALL_INTERN
   2583 	(*p2->p_emul->e_syscall_intern)(p2);
   2584 #endif
   2585 
   2586 	/*
   2587 	 * Make child runnable, set start time, and add to run queue except
   2588 	 * if the parent requested the child to start in SSTOP state.
   2589 	 */
   2590 	mutex_enter(p2->p_lock);
   2591 
   2592 	getmicrotime(&p2->p_stats->p_start);
   2593 
   2594 	lwp_lock(l2);
   2595 	KASSERT(p2->p_nrlwps == 1);
   2596 	p2->p_nrlwps = 1;
   2597 	p2->p_stat = SACTIVE;
   2598 	l2->l_stat = LSRUN;
   2599 	sched_enqueue(l2, false);
   2600 	lwp_unlock(l2);
   2601 
   2602 	mutex_exit(p2->p_lock);
   2603 	mutex_exit(proc_lock);
   2604 
   2605 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
   2606 	error = spawn_data->sed_error;
   2607 	mutex_exit(&spawn_data->sed_mtx_child);
   2608 	spawn_exec_data_release(spawn_data);
   2609 
   2610 	rw_exit(&p1->p_reflock);
   2611 	rw_exit(&exec_lock);
   2612 	have_exec_lock = false;
   2613 
   2614 	*pid_res = pid;
   2615 
   2616 	if (error)
   2617 		return error;
   2618 
   2619 	if (p1->p_slflag & PSL_TRACED) {
   2620 		/* Paranoid check */
   2621 		mutex_enter(proc_lock);
   2622 		if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
   2623 		    (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
   2624 			mutex_exit(proc_lock);
   2625 			return 0;
   2626 		}
   2627 
   2628 		mutex_enter(p1->p_lock);
   2629 		eventswitch(TRAP_CHLD);
   2630 	}
   2631 	return 0;
   2632 
   2633  error_exit:
   2634 	if (have_exec_lock) {
   2635 		execve_free_data(&spawn_data->sed_exec);
   2636 		rw_exit(&p1->p_reflock);
   2637 		rw_exit(&exec_lock);
   2638 	}
   2639 	mutex_exit(&spawn_data->sed_mtx_child);
   2640 	spawn_exec_data_release(spawn_data);
   2641 
   2642 	return error;
   2643 }
   2644 
   2645 int
   2646 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
   2647     register_t *retval)
   2648 {
   2649 	/* {
   2650 		syscallarg(pid_t *) pid;
   2651 		syscallarg(const char *) path;
   2652 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
   2653 		syscallarg(const struct posix_spawnattr *) attrp;
   2654 		syscallarg(char *const *) argv;
   2655 		syscallarg(char *const *) envp;
   2656 	} */
   2657 
   2658 	int error;
   2659 	struct posix_spawn_file_actions *fa = NULL;
   2660 	struct posix_spawnattr *sa = NULL;
   2661 	pid_t pid;
   2662 	bool child_ok = false;
   2663 	rlim_t max_fileactions;
   2664 	proc_t *p = l1->l_proc;
   2665 
   2666 	error = check_posix_spawn(l1);
   2667 	if (error) {
   2668 		*retval = error;
   2669 		return 0;
   2670 	}
   2671 
   2672 	/* copy in file_actions struct */
   2673 	if (SCARG(uap, file_actions) != NULL) {
   2674 		max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
   2675 		    maxfiles);
   2676 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
   2677 		    max_fileactions);
   2678 		if (error)
   2679 			goto error_exit;
   2680 	}
   2681 
   2682 	/* copyin posix_spawnattr struct */
   2683 	if (SCARG(uap, attrp) != NULL) {
   2684 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
   2685 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
   2686 		if (error)
   2687 			goto error_exit;
   2688 	}
   2689 
   2690 	/*
   2691 	 * Do the spawn
   2692 	 */
   2693 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
   2694 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
   2695 	if (error)
   2696 		goto error_exit;
   2697 
   2698 	if (error == 0 && SCARG(uap, pid) != NULL)
   2699 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
   2700 
   2701 	*retval = error;
   2702 	return 0;
   2703 
   2704  error_exit:
   2705 	if (!child_ok) {
   2706 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
   2707 		atomic_dec_uint(&nprocs);
   2708 
   2709 		if (sa)
   2710 			kmem_free(sa, sizeof(*sa));
   2711 		if (fa)
   2712 			posix_spawn_fa_free(fa, fa->len);
   2713 	}
   2714 
   2715 	*retval = error;
   2716 	return 0;
   2717 }
   2718 
   2719 void
   2720 exec_free_emul_arg(struct exec_package *epp)
   2721 {
   2722 	if (epp->ep_emul_arg_free != NULL) {
   2723 		KASSERT(epp->ep_emul_arg != NULL);
   2724 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
   2725 		epp->ep_emul_arg_free = NULL;
   2726 		epp->ep_emul_arg = NULL;
   2727 	} else {
   2728 		KASSERT(epp->ep_emul_arg == NULL);
   2729 	}
   2730 }
   2731 
   2732 #ifdef DEBUG_EXEC
   2733 static void
   2734 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
   2735 {
   2736 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
   2737 	size_t j;
   2738 
   2739 	if (error == 0)
   2740 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
   2741 	else
   2742 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
   2743 		    epp->ep_vmcmds.evs_used, error));
   2744 
   2745 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
   2746 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
   2747 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
   2748 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
   2749 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
   2750 		    "pagedvn" :
   2751 		    vp[j].ev_proc == vmcmd_map_readvn ?
   2752 		    "readvn" :
   2753 		    vp[j].ev_proc == vmcmd_map_zero ?
   2754 		    "zero" : "*unknown*",
   2755 		    vp[j].ev_addr, vp[j].ev_len,
   2756 		    vp[j].ev_offset, vp[j].ev_prot,
   2757 		    vp[j].ev_flags));
   2758 		if (error != 0 && j == x)
   2759 			DPRINTF(("     ^--- failed\n"));
   2760 	}
   2761 }
   2762 #endif
   2763