kern_exec.c revision 1.472 1 /* $NetBSD: kern_exec.c,v 1.472 2019/06/25 21:32:58 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.472 2019/06/25 21:32:58 christos Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/ptrace.h>
78 #include <sys/mount.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/filedesc.h>
84 #include <sys/acct.h>
85 #include <sys/atomic.h>
86 #include <sys/exec.h>
87 #include <sys/ktrace.h>
88 #include <sys/uidinfo.h>
89 #include <sys/wait.h>
90 #include <sys/mman.h>
91 #include <sys/ras.h>
92 #include <sys/signalvar.h>
93 #include <sys/stat.h>
94 #include <sys/syscall.h>
95 #include <sys/kauth.h>
96 #include <sys/lwpctl.h>
97 #include <sys/pax.h>
98 #include <sys/cpu.h>
99 #include <sys/module.h>
100 #include <sys/syscallvar.h>
101 #include <sys/syscallargs.h>
102 #if NVERIEXEC > 0
103 #include <sys/verified_exec.h>
104 #endif /* NVERIEXEC > 0 */
105 #include <sys/sdt.h>
106 #include <sys/spawn.h>
107 #include <sys/prot.h>
108 #include <sys/cprng.h>
109
110 #include <uvm/uvm_extern.h>
111
112 #include <machine/reg.h>
113
114 #include <compat/common/compat_util.h>
115
116 #ifndef MD_TOPDOWN_INIT
117 #ifdef __USE_TOPDOWN_VM
118 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
119 #else
120 #define MD_TOPDOWN_INIT(epp)
121 #endif
122 #endif
123
124 struct execve_data;
125
126 extern int user_va0_disable;
127
128 static size_t calcargs(struct execve_data * restrict, const size_t);
129 static size_t calcstack(struct execve_data * restrict, const size_t);
130 static int copyoutargs(struct execve_data * restrict, struct lwp *,
131 char * const);
132 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
133 static int copyinargs(struct execve_data * restrict, char * const *,
134 char * const *, execve_fetch_element_t, char **);
135 static int copyinargstrs(struct execve_data * restrict, char * const *,
136 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
137 static int exec_sigcode_map(struct proc *, const struct emul *);
138
139 #if defined(DEBUG) && !defined(DEBUG_EXEC)
140 #define DEBUG_EXEC
141 #endif
142 #ifdef DEBUG_EXEC
143 #define DPRINTF(a) printf a
144 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
145 __LINE__, (s), (a), (b))
146 static void dump_vmcmds(const struct exec_package * const, size_t, int);
147 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
148 #else
149 #define DPRINTF(a)
150 #define COPYPRINTF(s, a, b)
151 #define DUMPVMCMDS(p, x, e) do {} while (0)
152 #endif /* DEBUG_EXEC */
153
154 /*
155 * DTrace SDT provider definitions
156 */
157 SDT_PROVIDER_DECLARE(proc);
158 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
159 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
160 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
161
162 /*
163 * Exec function switch:
164 *
165 * Note that each makecmds function is responsible for loading the
166 * exec package with the necessary functions for any exec-type-specific
167 * handling.
168 *
169 * Functions for specific exec types should be defined in their own
170 * header file.
171 */
172 static const struct execsw **execsw = NULL;
173 static int nexecs;
174
175 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
176
177 /* list of dynamically loaded execsw entries */
178 static LIST_HEAD(execlist_head, exec_entry) ex_head =
179 LIST_HEAD_INITIALIZER(ex_head);
180 struct exec_entry {
181 LIST_ENTRY(exec_entry) ex_list;
182 SLIST_ENTRY(exec_entry) ex_slist;
183 const struct execsw *ex_sw;
184 };
185
186 #ifndef __HAVE_SYSCALL_INTERN
187 void syscall(void);
188 #endif
189
190 /* NetBSD autoloadable syscalls */
191 #ifdef MODULAR
192 #include <kern/syscalls_autoload.c>
193 #endif
194
195 /* NetBSD emul struct */
196 struct emul emul_netbsd = {
197 .e_name = "netbsd",
198 #ifdef EMUL_NATIVEROOT
199 .e_path = EMUL_NATIVEROOT,
200 #else
201 .e_path = NULL,
202 #endif
203 #ifndef __HAVE_MINIMAL_EMUL
204 .e_flags = EMUL_HAS_SYS___syscall,
205 .e_errno = NULL,
206 .e_nosys = SYS_syscall,
207 .e_nsysent = SYS_NSYSENT,
208 #endif
209 #ifdef MODULAR
210 .e_sc_autoload = netbsd_syscalls_autoload,
211 #endif
212 .e_sysent = sysent,
213 .e_nomodbits = sysent_nomodbits,
214 #ifdef SYSCALL_DEBUG
215 .e_syscallnames = syscallnames,
216 #else
217 .e_syscallnames = NULL,
218 #endif
219 .e_sendsig = sendsig,
220 .e_trapsignal = trapsignal,
221 .e_sigcode = NULL,
222 .e_esigcode = NULL,
223 .e_sigobject = NULL,
224 .e_setregs = setregs,
225 .e_proc_exec = NULL,
226 .e_proc_fork = NULL,
227 .e_proc_exit = NULL,
228 .e_lwp_fork = NULL,
229 .e_lwp_exit = NULL,
230 #ifdef __HAVE_SYSCALL_INTERN
231 .e_syscall_intern = syscall_intern,
232 #else
233 .e_syscall = syscall,
234 #endif
235 .e_sysctlovly = NULL,
236 .e_vm_default_addr = uvm_default_mapaddr,
237 .e_usertrap = NULL,
238 .e_ucsize = sizeof(ucontext_t),
239 .e_startlwp = startlwp
240 };
241
242 /*
243 * Exec lock. Used to control access to execsw[] structures.
244 * This must not be static so that netbsd32 can access it, too.
245 */
246 krwlock_t exec_lock;
247
248 static kmutex_t sigobject_lock;
249
250 /*
251 * Data used between a loadvm and execve part of an "exec" operation
252 */
253 struct execve_data {
254 struct exec_package ed_pack;
255 struct pathbuf *ed_pathbuf;
256 struct vattr ed_attr;
257 struct ps_strings ed_arginfo;
258 char *ed_argp;
259 const char *ed_pathstring;
260 char *ed_resolvedpathbuf;
261 size_t ed_ps_strings_sz;
262 int ed_szsigcode;
263 size_t ed_argslen;
264 long ed_argc;
265 long ed_envc;
266 };
267
268 /*
269 * data passed from parent lwp to child during a posix_spawn()
270 */
271 struct spawn_exec_data {
272 struct execve_data sed_exec;
273 struct posix_spawn_file_actions
274 *sed_actions;
275 struct posix_spawnattr *sed_attrs;
276 struct proc *sed_parent;
277 kcondvar_t sed_cv_child_ready;
278 kmutex_t sed_mtx_child;
279 int sed_error;
280 volatile uint32_t sed_refcnt;
281 };
282
283 static struct vm_map *exec_map;
284 static struct pool exec_pool;
285
286 static void *
287 exec_pool_alloc(struct pool *pp, int flags)
288 {
289
290 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
291 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
292 }
293
294 static void
295 exec_pool_free(struct pool *pp, void *addr)
296 {
297
298 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
299 }
300
301 static struct pool_allocator exec_palloc = {
302 .pa_alloc = exec_pool_alloc,
303 .pa_free = exec_pool_free,
304 .pa_pagesz = NCARGS
305 };
306
307 /*
308 * check exec:
309 * given an "executable" described in the exec package's namei info,
310 * see what we can do with it.
311 *
312 * ON ENTRY:
313 * exec package with appropriate namei info
314 * lwp pointer of exec'ing lwp
315 * NO SELF-LOCKED VNODES
316 *
317 * ON EXIT:
318 * error: nothing held, etc. exec header still allocated.
319 * ok: filled exec package, executable's vnode (unlocked).
320 *
321 * EXEC SWITCH ENTRY:
322 * Locked vnode to check, exec package, proc.
323 *
324 * EXEC SWITCH EXIT:
325 * ok: return 0, filled exec package, executable's vnode (unlocked).
326 * error: destructive:
327 * everything deallocated execept exec header.
328 * non-destructive:
329 * error code, executable's vnode (unlocked),
330 * exec header unmodified.
331 */
332 int
333 /*ARGSUSED*/
334 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
335 {
336 int error, i;
337 struct vnode *vp;
338 struct nameidata nd;
339 size_t resid;
340
341 #if 1
342 // grab the absolute pathbuf here before namei() trashes it.
343 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
344 #endif
345 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
346
347 /* first get the vnode */
348 if ((error = namei(&nd)) != 0)
349 return error;
350 epp->ep_vp = vp = nd.ni_vp;
351 #if 0
352 /*
353 * XXX: can't use nd.ni_pnbuf, because although pb contains an
354 * absolute path, nd.ni_pnbuf does not if the path contains symlinks.
355 */
356 /* normally this can't fail */
357 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
358 KASSERT(error == 0);
359 #endif
360
361 #ifdef DIAGNOSTIC
362 /* paranoia (take this out once namei stuff stabilizes) */
363 memset(nd.ni_pnbuf, '~', PATH_MAX);
364 #endif
365
366 /* check access and type */
367 if (vp->v_type != VREG) {
368 error = EACCES;
369 goto bad1;
370 }
371 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
372 goto bad1;
373
374 /* get attributes */
375 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
376 goto bad1;
377
378 /* Check mount point */
379 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
380 error = EACCES;
381 goto bad1;
382 }
383 if (vp->v_mount->mnt_flag & MNT_NOSUID)
384 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
385
386 /* try to open it */
387 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
388 goto bad1;
389
390 /* unlock vp, since we need it unlocked from here on out. */
391 VOP_UNLOCK(vp);
392
393 #if NVERIEXEC > 0
394 error = veriexec_verify(l, vp, epp->ep_resolvedname,
395 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
396 NULL);
397 if (error)
398 goto bad2;
399 #endif /* NVERIEXEC > 0 */
400
401 #ifdef PAX_SEGVGUARD
402 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
403 if (error)
404 goto bad2;
405 #endif /* PAX_SEGVGUARD */
406
407 /* now we have the file, get the exec header */
408 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
409 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
410 if (error)
411 goto bad2;
412 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
413
414 /*
415 * Set up default address space limits. Can be overridden
416 * by individual exec packages.
417 */
418 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
419 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
420
421 /*
422 * set up the vmcmds for creation of the process
423 * address space
424 */
425 error = ENOEXEC;
426 for (i = 0; i < nexecs; i++) {
427 int newerror;
428
429 epp->ep_esch = execsw[i];
430 newerror = (*execsw[i]->es_makecmds)(l, epp);
431
432 if (!newerror) {
433 /* Seems ok: check that entry point is not too high */
434 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
435 #ifdef DIAGNOSTIC
436 printf("%s: rejecting %p due to "
437 "too high entry address (>= %p)\n",
438 __func__, (void *)epp->ep_entry,
439 (void *)epp->ep_vm_maxaddr);
440 #endif
441 error = ENOEXEC;
442 break;
443 }
444 /* Seems ok: check that entry point is not too low */
445 if (epp->ep_entry < epp->ep_vm_minaddr) {
446 #ifdef DIAGNOSTIC
447 printf("%s: rejecting %p due to "
448 "too low entry address (< %p)\n",
449 __func__, (void *)epp->ep_entry,
450 (void *)epp->ep_vm_minaddr);
451 #endif
452 error = ENOEXEC;
453 break;
454 }
455
456 /* check limits */
457 if ((epp->ep_tsize > MAXTSIZ) ||
458 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
459 [RLIMIT_DATA].rlim_cur)) {
460 #ifdef DIAGNOSTIC
461 printf("%s: rejecting due to "
462 "limits (t=%llu > %llu || d=%llu > %llu)\n",
463 __func__,
464 (unsigned long long)epp->ep_tsize,
465 (unsigned long long)MAXTSIZ,
466 (unsigned long long)epp->ep_dsize,
467 (unsigned long long)
468 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
469 #endif
470 error = ENOMEM;
471 break;
472 }
473 return 0;
474 }
475
476 /*
477 * Reset all the fields that may have been modified by the
478 * loader.
479 */
480 KASSERT(epp->ep_emul_arg == NULL);
481 if (epp->ep_emul_root != NULL) {
482 vrele(epp->ep_emul_root);
483 epp->ep_emul_root = NULL;
484 }
485 if (epp->ep_interp != NULL) {
486 vrele(epp->ep_interp);
487 epp->ep_interp = NULL;
488 }
489 epp->ep_pax_flags = 0;
490
491 /* make sure the first "interesting" error code is saved. */
492 if (error == ENOEXEC)
493 error = newerror;
494
495 if (epp->ep_flags & EXEC_DESTR)
496 /* Error from "#!" code, tidied up by recursive call */
497 return error;
498 }
499
500 /* not found, error */
501
502 /*
503 * free any vmspace-creation commands,
504 * and release their references
505 */
506 kill_vmcmds(&epp->ep_vmcmds);
507
508 bad2:
509 /*
510 * close and release the vnode, restore the old one, free the
511 * pathname buf, and punt.
512 */
513 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
514 VOP_CLOSE(vp, FREAD, l->l_cred);
515 vput(vp);
516 return error;
517
518 bad1:
519 /*
520 * free the namei pathname buffer, and put the vnode
521 * (which we don't yet have open).
522 */
523 vput(vp); /* was still locked */
524 return error;
525 }
526
527 #ifdef __MACHINE_STACK_GROWS_UP
528 #define STACK_PTHREADSPACE NBPG
529 #else
530 #define STACK_PTHREADSPACE 0
531 #endif
532
533 static int
534 execve_fetch_element(char * const *array, size_t index, char **value)
535 {
536 return copyin(array + index, value, sizeof(*value));
537 }
538
539 /*
540 * exec system call
541 */
542 int
543 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
544 {
545 /* {
546 syscallarg(const char *) path;
547 syscallarg(char * const *) argp;
548 syscallarg(char * const *) envp;
549 } */
550
551 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
552 SCARG(uap, envp), execve_fetch_element);
553 }
554
555 int
556 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
557 register_t *retval)
558 {
559 /* {
560 syscallarg(int) fd;
561 syscallarg(char * const *) argp;
562 syscallarg(char * const *) envp;
563 } */
564
565 return ENOSYS;
566 }
567
568 /*
569 * Load modules to try and execute an image that we do not understand.
570 * If no execsw entries are present, we load those likely to be needed
571 * in order to run native images only. Otherwise, we autoload all
572 * possible modules that could let us run the binary. XXX lame
573 */
574 static void
575 exec_autoload(void)
576 {
577 #ifdef MODULAR
578 static const char * const native[] = {
579 "exec_elf32",
580 "exec_elf64",
581 "exec_script",
582 NULL
583 };
584 static const char * const compat[] = {
585 "exec_elf32",
586 "exec_elf64",
587 "exec_script",
588 "exec_aout",
589 "exec_coff",
590 "exec_ecoff",
591 "compat_aoutm68k",
592 "compat_netbsd32",
593 "compat_sunos",
594 "compat_sunos32",
595 "compat_ultrix",
596 NULL
597 };
598 char const * const *list;
599 int i;
600
601 list = (nexecs == 0 ? native : compat);
602 for (i = 0; list[i] != NULL; i++) {
603 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
604 continue;
605 }
606 yield();
607 }
608 #endif
609 }
610
611 /*
612 * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
613 * making it absolute in the process, by prepending the current working
614 * directory if it is not. If offs is supplied it will contain the offset
615 * where the original supplied copy of upath starts.
616 */
617 int
618 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
619 struct pathbuf **pbp, size_t *offs)
620 {
621 char *path, *bp;
622 size_t len, tlen;
623 int error;
624 struct cwdinfo *cwdi;
625
626 path = PNBUF_GET();
627 if (seg == UIO_SYSSPACE) {
628 error = copystr(upath, path, MAXPATHLEN, &len);
629 } else {
630 error = copyinstr(upath, path, MAXPATHLEN, &len);
631 }
632 if (error) {
633 DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
634 goto err;
635 }
636
637 if (path[0] == '/') {
638 if (offs)
639 *offs = 0;
640 goto out;
641 }
642
643 len++;
644 if (len + 1 >= MAXPATHLEN)
645 goto out;
646 bp = path + MAXPATHLEN - len;
647 memmove(bp, path, len);
648 *(--bp) = '/';
649
650 cwdi = l->l_proc->p_cwdi;
651 rw_enter(&cwdi->cwdi_lock, RW_READER);
652 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
653 GETCWD_CHECK_ACCESS, l);
654 rw_exit(&cwdi->cwdi_lock);
655
656 if (error) {
657 DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
658 error));
659 goto err;
660 }
661 tlen = path + MAXPATHLEN - bp;
662
663 memmove(path, bp, tlen);
664 path[tlen-1] = '\0';
665 if (offs)
666 *offs = tlen - len;
667 out:
668 *pbp = pathbuf_assimilate(path);
669 return 0;
670 err:
671 PNBUF_PUT(path);
672 return error;
673 }
674
675 vaddr_t
676 exec_vm_minaddr(vaddr_t va_min)
677 {
678 /*
679 * Increase va_min if we don't want NULL to be mappable by the
680 * process.
681 */
682 #define VM_MIN_GUARD PAGE_SIZE
683 if (user_va0_disable && (va_min < VM_MIN_GUARD))
684 return VM_MIN_GUARD;
685 return va_min;
686 }
687
688 static int
689 execve_loadvm(struct lwp *l, const char *path, char * const *args,
690 char * const *envs, execve_fetch_element_t fetch_element,
691 struct execve_data * restrict data)
692 {
693 struct exec_package * const epp = &data->ed_pack;
694 int error;
695 struct proc *p;
696 char *dp;
697 u_int modgen;
698 size_t offs = 0; // XXX: GCC
699
700 KASSERT(data != NULL);
701
702 p = l->l_proc;
703 modgen = 0;
704
705 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
706
707 /*
708 * Check if we have exceeded our number of processes limit.
709 * This is so that we handle the case where a root daemon
710 * forked, ran setuid to become the desired user and is trying
711 * to exec. The obvious place to do the reference counting check
712 * is setuid(), but we don't do the reference counting check there
713 * like other OS's do because then all the programs that use setuid()
714 * must be modified to check the return code of setuid() and exit().
715 * It is dangerous to make setuid() fail, because it fails open and
716 * the program will continue to run as root. If we make it succeed
717 * and return an error code, again we are not enforcing the limit.
718 * The best place to enforce the limit is here, when the process tries
719 * to execute a new image, because eventually the process will need
720 * to call exec in order to do something useful.
721 */
722 retry:
723 if (p->p_flag & PK_SUGID) {
724 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
725 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
726 &p->p_rlimit[RLIMIT_NPROC],
727 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
728 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
729 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
730 return EAGAIN;
731 }
732
733 /*
734 * Drain existing references and forbid new ones. The process
735 * should be left alone until we're done here. This is necessary
736 * to avoid race conditions - e.g. in ptrace() - that might allow
737 * a local user to illicitly obtain elevated privileges.
738 */
739 rw_enter(&p->p_reflock, RW_WRITER);
740
741 /*
742 * Init the namei data to point the file user's program name.
743 * This is done here rather than in check_exec(), so that it's
744 * possible to override this settings if any of makecmd/probe
745 * functions call check_exec() recursively - for example,
746 * see exec_script_makecmds().
747 */
748 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
749 &data->ed_pathbuf, &offs)) != 0)
750 goto clrflg;
751 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
752 data->ed_resolvedpathbuf = PNBUF_GET();
753
754 /*
755 * initialize the fields of the exec package.
756 */
757 epp->ep_kname = data->ed_pathstring + offs;
758 epp->ep_resolvedname = data->ed_resolvedpathbuf;
759 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
760 epp->ep_hdrlen = exec_maxhdrsz;
761 epp->ep_hdrvalid = 0;
762 epp->ep_emul_arg = NULL;
763 epp->ep_emul_arg_free = NULL;
764 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
765 epp->ep_vap = &data->ed_attr;
766 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
767 MD_TOPDOWN_INIT(epp);
768 epp->ep_emul_root = NULL;
769 epp->ep_interp = NULL;
770 epp->ep_esch = NULL;
771 epp->ep_pax_flags = 0;
772 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
773
774 rw_enter(&exec_lock, RW_READER);
775
776 /* see if we can run it. */
777 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
778 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
779 DPRINTF(("%s: check exec failed for %s, error %d\n",
780 __func__, epp->ep_kname, error));
781 }
782 goto freehdr;
783 }
784
785 /* allocate an argument buffer */
786 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
787 KASSERT(data->ed_argp != NULL);
788 dp = data->ed_argp;
789
790 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
791 goto bad;
792 }
793
794 /*
795 * Calculate the new stack size.
796 */
797
798 #ifdef __MACHINE_STACK_GROWS_UP
799 /*
800 * copyargs() fills argc/argv/envp from the lower address even on
801 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
802 * so that _rtld() use it.
803 */
804 #define RTLD_GAP 32
805 #else
806 #define RTLD_GAP 0
807 #endif
808
809 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
810
811 data->ed_argslen = calcargs(data, argenvstrlen);
812
813 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
814
815 if (len > epp->ep_ssize) {
816 /* in effect, compare to initial limit */
817 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
818 error = ENOMEM;
819 goto bad;
820 }
821 /* adjust "active stack depth" for process VSZ */
822 epp->ep_ssize = len;
823
824 return 0;
825
826 bad:
827 /* free the vmspace-creation commands, and release their references */
828 kill_vmcmds(&epp->ep_vmcmds);
829 /* kill any opened file descriptor, if necessary */
830 if (epp->ep_flags & EXEC_HASFD) {
831 epp->ep_flags &= ~EXEC_HASFD;
832 fd_close(epp->ep_fd);
833 }
834 /* close and put the exec'd file */
835 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
836 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
837 vput(epp->ep_vp);
838 pool_put(&exec_pool, data->ed_argp);
839
840 freehdr:
841 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
842 if (epp->ep_emul_root != NULL)
843 vrele(epp->ep_emul_root);
844 if (epp->ep_interp != NULL)
845 vrele(epp->ep_interp);
846
847 rw_exit(&exec_lock);
848
849 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
850 pathbuf_destroy(data->ed_pathbuf);
851 PNBUF_PUT(data->ed_resolvedpathbuf);
852
853 clrflg:
854 rw_exit(&p->p_reflock);
855
856 if (modgen != module_gen && error == ENOEXEC) {
857 modgen = module_gen;
858 exec_autoload();
859 goto retry;
860 }
861
862 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
863 return error;
864 }
865
866 static int
867 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
868 {
869 struct exec_package * const epp = &data->ed_pack;
870 struct proc *p = l->l_proc;
871 struct exec_vmcmd *base_vcp;
872 int error = 0;
873 size_t i;
874
875 /* record proc's vnode, for use by procfs and others */
876 if (p->p_textvp)
877 vrele(p->p_textvp);
878 vref(epp->ep_vp);
879 p->p_textvp = epp->ep_vp;
880
881 /* create the new process's VM space by running the vmcmds */
882 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
883
884 #ifdef TRACE_EXEC
885 DUMPVMCMDS(epp, 0, 0);
886 #endif
887
888 base_vcp = NULL;
889
890 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
891 struct exec_vmcmd *vcp;
892
893 vcp = &epp->ep_vmcmds.evs_cmds[i];
894 if (vcp->ev_flags & VMCMD_RELATIVE) {
895 KASSERTMSG(base_vcp != NULL,
896 "%s: relative vmcmd with no base", __func__);
897 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
898 "%s: illegal base & relative vmcmd", __func__);
899 vcp->ev_addr += base_vcp->ev_addr;
900 }
901 error = (*vcp->ev_proc)(l, vcp);
902 if (error)
903 DUMPVMCMDS(epp, i, error);
904 if (vcp->ev_flags & VMCMD_BASE)
905 base_vcp = vcp;
906 }
907
908 /* free the vmspace-creation commands, and release their references */
909 kill_vmcmds(&epp->ep_vmcmds);
910
911 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
912 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
913 vput(epp->ep_vp);
914
915 /* if an error happened, deallocate and punt */
916 if (error != 0) {
917 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
918 }
919 return error;
920 }
921
922 static void
923 execve_free_data(struct execve_data *data)
924 {
925 struct exec_package * const epp = &data->ed_pack;
926
927 /* free the vmspace-creation commands, and release their references */
928 kill_vmcmds(&epp->ep_vmcmds);
929 /* kill any opened file descriptor, if necessary */
930 if (epp->ep_flags & EXEC_HASFD) {
931 epp->ep_flags &= ~EXEC_HASFD;
932 fd_close(epp->ep_fd);
933 }
934
935 /* close and put the exec'd file */
936 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
937 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
938 vput(epp->ep_vp);
939 pool_put(&exec_pool, data->ed_argp);
940
941 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
942 if (epp->ep_emul_root != NULL)
943 vrele(epp->ep_emul_root);
944 if (epp->ep_interp != NULL)
945 vrele(epp->ep_interp);
946
947 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
948 pathbuf_destroy(data->ed_pathbuf);
949 PNBUF_PUT(data->ed_resolvedpathbuf);
950 }
951
952 static void
953 pathexec(struct proc *p, const char *resolvedname)
954 {
955 KASSERT(resolvedname[0] == '/');
956
957 /* set command name & other accounting info */
958 strlcpy(p->p_comm, strrchr(resolvedname, '/') + 1, sizeof(p->p_comm));
959
960 kmem_strfree(p->p_path);
961 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
962 }
963
964 /* XXX elsewhere */
965 static int
966 credexec(struct lwp *l, struct vattr *attr)
967 {
968 struct proc *p = l->l_proc;
969 int error;
970
971 /*
972 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
973 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
974 * out additional references on the process for the moment.
975 */
976 if ((p->p_slflag & PSL_TRACED) == 0 &&
977
978 (((attr->va_mode & S_ISUID) != 0 &&
979 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
980
981 ((attr->va_mode & S_ISGID) != 0 &&
982 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
983 /*
984 * Mark the process as SUGID before we do
985 * anything that might block.
986 */
987 proc_crmod_enter();
988 proc_crmod_leave(NULL, NULL, true);
989
990 /* Make sure file descriptors 0..2 are in use. */
991 if ((error = fd_checkstd()) != 0) {
992 DPRINTF(("%s: fdcheckstd failed %d\n",
993 __func__, error));
994 return error;
995 }
996
997 /*
998 * Copy the credential so other references don't see our
999 * changes.
1000 */
1001 l->l_cred = kauth_cred_copy(l->l_cred);
1002 #ifdef KTRACE
1003 /*
1004 * If the persistent trace flag isn't set, turn off.
1005 */
1006 if (p->p_tracep) {
1007 mutex_enter(&ktrace_lock);
1008 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1009 ktrderef(p);
1010 mutex_exit(&ktrace_lock);
1011 }
1012 #endif
1013 if (attr->va_mode & S_ISUID)
1014 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1015 if (attr->va_mode & S_ISGID)
1016 kauth_cred_setegid(l->l_cred, attr->va_gid);
1017 } else {
1018 if (kauth_cred_geteuid(l->l_cred) ==
1019 kauth_cred_getuid(l->l_cred) &&
1020 kauth_cred_getegid(l->l_cred) ==
1021 kauth_cred_getgid(l->l_cred))
1022 p->p_flag &= ~PK_SUGID;
1023 }
1024
1025 /*
1026 * Copy the credential so other references don't see our changes.
1027 * Test to see if this is necessary first, since in the common case
1028 * we won't need a private reference.
1029 */
1030 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1031 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1032 l->l_cred = kauth_cred_copy(l->l_cred);
1033 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1034 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1035 }
1036
1037 /* Update the master credentials. */
1038 if (l->l_cred != p->p_cred) {
1039 kauth_cred_t ocred;
1040
1041 kauth_cred_hold(l->l_cred);
1042 mutex_enter(p->p_lock);
1043 ocred = p->p_cred;
1044 p->p_cred = l->l_cred;
1045 mutex_exit(p->p_lock);
1046 kauth_cred_free(ocred);
1047 }
1048
1049 return 0;
1050 }
1051
1052 static void
1053 emulexec(struct lwp *l, struct exec_package *epp)
1054 {
1055 struct proc *p = l->l_proc;
1056
1057 /* The emulation root will usually have been found when we looked
1058 * for the elf interpreter (or similar), if not look now. */
1059 if (epp->ep_esch->es_emul->e_path != NULL &&
1060 epp->ep_emul_root == NULL)
1061 emul_find_root(l, epp);
1062
1063 /* Any old emulation root got removed by fdcloseexec */
1064 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1065 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1066 rw_exit(&p->p_cwdi->cwdi_lock);
1067 epp->ep_emul_root = NULL;
1068 if (epp->ep_interp != NULL)
1069 vrele(epp->ep_interp);
1070
1071 /*
1072 * Call emulation specific exec hook. This can setup per-process
1073 * p->p_emuldata or do any other per-process stuff an emulation needs.
1074 *
1075 * If we are executing process of different emulation than the
1076 * original forked process, call e_proc_exit() of the old emulation
1077 * first, then e_proc_exec() of new emulation. If the emulation is
1078 * same, the exec hook code should deallocate any old emulation
1079 * resources held previously by this process.
1080 */
1081 if (p->p_emul && p->p_emul->e_proc_exit
1082 && p->p_emul != epp->ep_esch->es_emul)
1083 (*p->p_emul->e_proc_exit)(p);
1084
1085 /*
1086 * This is now LWP 1.
1087 */
1088 /* XXX elsewhere */
1089 mutex_enter(p->p_lock);
1090 p->p_nlwpid = 1;
1091 l->l_lid = 1;
1092 mutex_exit(p->p_lock);
1093
1094 /*
1095 * Call exec hook. Emulation code may NOT store reference to anything
1096 * from &pack.
1097 */
1098 if (epp->ep_esch->es_emul->e_proc_exec)
1099 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1100
1101 /* update p_emul, the old value is no longer needed */
1102 p->p_emul = epp->ep_esch->es_emul;
1103
1104 /* ...and the same for p_execsw */
1105 p->p_execsw = epp->ep_esch;
1106
1107 #ifdef __HAVE_SYSCALL_INTERN
1108 (*p->p_emul->e_syscall_intern)(p);
1109 #endif
1110 ktremul();
1111 }
1112
1113 static int
1114 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1115 bool no_local_exec_lock, bool is_spawn)
1116 {
1117 struct exec_package * const epp = &data->ed_pack;
1118 int error = 0;
1119 struct proc *p;
1120
1121 /*
1122 * In case of a posix_spawn operation, the child doing the exec
1123 * might not hold the reader lock on exec_lock, but the parent
1124 * will do this instead.
1125 */
1126 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1127 KASSERT(!no_local_exec_lock || is_spawn);
1128 KASSERT(data != NULL);
1129
1130 p = l->l_proc;
1131
1132 /* Get rid of other LWPs. */
1133 if (p->p_nlwps > 1) {
1134 mutex_enter(p->p_lock);
1135 exit_lwps(l);
1136 mutex_exit(p->p_lock);
1137 }
1138 KDASSERT(p->p_nlwps == 1);
1139
1140 /* Destroy any lwpctl info. */
1141 if (p->p_lwpctl != NULL)
1142 lwp_ctl_exit();
1143
1144 /* Remove POSIX timers */
1145 timers_free(p, TIMERS_POSIX);
1146
1147 /* Set the PaX flags. */
1148 pax_set_flags(epp, p);
1149
1150 /*
1151 * Do whatever is necessary to prepare the address space
1152 * for remapping. Note that this might replace the current
1153 * vmspace with another!
1154 */
1155 if (is_spawn)
1156 uvmspace_spawn(l, epp->ep_vm_minaddr,
1157 epp->ep_vm_maxaddr,
1158 epp->ep_flags & EXEC_TOPDOWN_VM);
1159 else
1160 uvmspace_exec(l, epp->ep_vm_minaddr,
1161 epp->ep_vm_maxaddr,
1162 epp->ep_flags & EXEC_TOPDOWN_VM);
1163
1164 struct vmspace *vm;
1165 vm = p->p_vmspace;
1166 vm->vm_taddr = (void *)epp->ep_taddr;
1167 vm->vm_tsize = btoc(epp->ep_tsize);
1168 vm->vm_daddr = (void*)epp->ep_daddr;
1169 vm->vm_dsize = btoc(epp->ep_dsize);
1170 vm->vm_ssize = btoc(epp->ep_ssize);
1171 vm->vm_issize = 0;
1172 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1173 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1174
1175 pax_aslr_init_vm(l, vm, epp);
1176
1177 /* Now map address space. */
1178 error = execve_dovmcmds(l, data);
1179 if (error != 0)
1180 goto exec_abort;
1181
1182 pathexec(p, epp->ep_resolvedname);
1183
1184 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1185
1186 error = copyoutargs(data, l, newstack);
1187 if (error != 0)
1188 goto exec_abort;
1189
1190 cwdexec(p);
1191 fd_closeexec(); /* handle close on exec */
1192
1193 if (__predict_false(ktrace_on))
1194 fd_ktrexecfd();
1195
1196 execsigs(p); /* reset caught signals */
1197
1198 mutex_enter(p->p_lock);
1199 l->l_ctxlink = NULL; /* reset ucontext link */
1200 p->p_acflag &= ~AFORK;
1201 p->p_flag |= PK_EXEC;
1202 mutex_exit(p->p_lock);
1203
1204 /*
1205 * Stop profiling.
1206 */
1207 if ((p->p_stflag & PST_PROFIL) != 0) {
1208 mutex_spin_enter(&p->p_stmutex);
1209 stopprofclock(p);
1210 mutex_spin_exit(&p->p_stmutex);
1211 }
1212
1213 /*
1214 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1215 * exited and exec()/exit() are the only places it will be cleared.
1216 */
1217 if ((p->p_lflag & PL_PPWAIT) != 0) {
1218 lwp_t *lp;
1219
1220 mutex_enter(proc_lock);
1221 lp = p->p_vforklwp;
1222 p->p_vforklwp = NULL;
1223
1224 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1225 p->p_lflag &= ~PL_PPWAIT;
1226 lp->l_vforkwaiting = false;
1227
1228 cv_broadcast(&lp->l_waitcv);
1229 mutex_exit(proc_lock);
1230 }
1231
1232 error = credexec(l, &data->ed_attr);
1233 if (error)
1234 goto exec_abort;
1235
1236 #if defined(__HAVE_RAS)
1237 /*
1238 * Remove all RASs from the address space.
1239 */
1240 ras_purgeall();
1241 #endif
1242
1243 doexechooks(p);
1244
1245 /*
1246 * Set initial SP at the top of the stack.
1247 *
1248 * Note that on machines where stack grows up (e.g. hppa), SP points to
1249 * the end of arg/env strings. Userland guesses the address of argc
1250 * via ps_strings::ps_argvstr.
1251 */
1252
1253 /* Setup new registers and do misc. setup. */
1254 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1255 if (epp->ep_esch->es_setregs)
1256 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1257
1258 /* Provide a consistent LWP private setting */
1259 (void)lwp_setprivate(l, NULL);
1260
1261 /* Discard all PCU state; need to start fresh */
1262 pcu_discard_all(l);
1263
1264 /* map the process's signal trampoline code */
1265 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1266 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1267 goto exec_abort;
1268 }
1269
1270 pool_put(&exec_pool, data->ed_argp);
1271
1272 /* notify others that we exec'd */
1273 KNOTE(&p->p_klist, NOTE_EXEC);
1274
1275 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1276
1277 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1278
1279 emulexec(l, epp);
1280
1281 /* Allow new references from the debugger/procfs. */
1282 rw_exit(&p->p_reflock);
1283 if (!no_local_exec_lock)
1284 rw_exit(&exec_lock);
1285
1286 mutex_enter(proc_lock);
1287
1288 /* posix_spawn(3) reports a single event with implied exec(3) */
1289 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1290 mutex_enter(p->p_lock);
1291 eventswitch(TRAP_EXEC);
1292 mutex_enter(proc_lock);
1293 }
1294
1295 if (p->p_sflag & PS_STOPEXEC) {
1296 ksiginfoq_t kq;
1297
1298 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1299 p->p_pptr->p_nstopchild++;
1300 p->p_waited = 0;
1301 mutex_enter(p->p_lock);
1302 ksiginfo_queue_init(&kq);
1303 sigclearall(p, &contsigmask, &kq);
1304 lwp_lock(l);
1305 l->l_stat = LSSTOP;
1306 p->p_stat = SSTOP;
1307 p->p_nrlwps--;
1308 lwp_unlock(l);
1309 mutex_exit(p->p_lock);
1310 mutex_exit(proc_lock);
1311 lwp_lock(l);
1312 mi_switch(l);
1313 ksiginfo_queue_drain(&kq);
1314 KERNEL_LOCK(l->l_biglocks, l);
1315 } else {
1316 mutex_exit(proc_lock);
1317 }
1318
1319 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1320 pathbuf_destroy(data->ed_pathbuf);
1321 PNBUF_PUT(data->ed_resolvedpathbuf);
1322 #ifdef TRACE_EXEC
1323 DPRINTF(("%s finished\n", __func__));
1324 #endif
1325 return EJUSTRETURN;
1326
1327 exec_abort:
1328 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1329 rw_exit(&p->p_reflock);
1330 if (!no_local_exec_lock)
1331 rw_exit(&exec_lock);
1332
1333 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1334 pathbuf_destroy(data->ed_pathbuf);
1335 PNBUF_PUT(data->ed_resolvedpathbuf);
1336
1337 /*
1338 * the old process doesn't exist anymore. exit gracefully.
1339 * get rid of the (new) address space we have created, if any, get rid
1340 * of our namei data and vnode, and exit noting failure
1341 */
1342 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1343 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1344
1345 exec_free_emul_arg(epp);
1346 pool_put(&exec_pool, data->ed_argp);
1347 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1348 if (epp->ep_emul_root != NULL)
1349 vrele(epp->ep_emul_root);
1350 if (epp->ep_interp != NULL)
1351 vrele(epp->ep_interp);
1352
1353 /* Acquire the sched-state mutex (exit1() will release it). */
1354 if (!is_spawn) {
1355 mutex_enter(p->p_lock);
1356 exit1(l, error, SIGABRT);
1357 }
1358
1359 return error;
1360 }
1361
1362 int
1363 execve1(struct lwp *l, const char *path, char * const *args,
1364 char * const *envs, execve_fetch_element_t fetch_element)
1365 {
1366 struct execve_data data;
1367 int error;
1368
1369 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1370 if (error)
1371 return error;
1372 error = execve_runproc(l, &data, false, false);
1373 return error;
1374 }
1375
1376 static size_t
1377 fromptrsz(const struct exec_package *epp)
1378 {
1379 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1380 }
1381
1382 static size_t
1383 ptrsz(const struct exec_package *epp)
1384 {
1385 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1386 }
1387
1388 static size_t
1389 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1390 {
1391 struct exec_package * const epp = &data->ed_pack;
1392
1393 const size_t nargenvptrs =
1394 1 + /* long argc */
1395 data->ed_argc + /* char *argv[] */
1396 1 + /* \0 */
1397 data->ed_envc + /* char *env[] */
1398 1; /* \0 */
1399
1400 return (nargenvptrs * ptrsz(epp)) /* pointers */
1401 + argenvstrlen /* strings */
1402 + epp->ep_esch->es_arglen; /* auxinfo */
1403 }
1404
1405 static size_t
1406 calcstack(struct execve_data * restrict data, const size_t gaplen)
1407 {
1408 struct exec_package * const epp = &data->ed_pack;
1409
1410 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1411 epp->ep_esch->es_emul->e_sigcode;
1412
1413 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1414 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1415
1416 const size_t sigcode_psstr_sz =
1417 data->ed_szsigcode + /* sigcode */
1418 data->ed_ps_strings_sz + /* ps_strings */
1419 STACK_PTHREADSPACE; /* pthread space */
1420
1421 const size_t stacklen =
1422 data->ed_argslen +
1423 gaplen +
1424 sigcode_psstr_sz;
1425
1426 /* make the stack "safely" aligned */
1427 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1428 }
1429
1430 static int
1431 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1432 char * const newstack)
1433 {
1434 struct exec_package * const epp = &data->ed_pack;
1435 struct proc *p = l->l_proc;
1436 int error;
1437
1438 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1439
1440 /* remember information about the process */
1441 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1442 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1443
1444 /*
1445 * Allocate the stack address passed to the newly execve()'ed process.
1446 *
1447 * The new stack address will be set to the SP (stack pointer) register
1448 * in setregs().
1449 */
1450
1451 char *newargs = STACK_ALLOC(
1452 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1453
1454 error = (*epp->ep_esch->es_copyargs)(l, epp,
1455 &data->ed_arginfo, &newargs, data->ed_argp);
1456
1457 if (error) {
1458 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1459 return error;
1460 }
1461
1462 error = copyoutpsstrs(data, p);
1463 if (error != 0)
1464 return error;
1465
1466 return 0;
1467 }
1468
1469 static int
1470 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1471 {
1472 struct exec_package * const epp = &data->ed_pack;
1473 struct ps_strings32 arginfo32;
1474 void *aip;
1475 int error;
1476
1477 /* fill process ps_strings info */
1478 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1479 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1480
1481 if (epp->ep_flags & EXEC_32) {
1482 aip = &arginfo32;
1483 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1484 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1485 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1486 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1487 } else
1488 aip = &data->ed_arginfo;
1489
1490 /* copy out the process's ps_strings structure */
1491 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1492 != 0) {
1493 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1494 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1495 return error;
1496 }
1497
1498 return 0;
1499 }
1500
1501 static int
1502 copyinargs(struct execve_data * restrict data, char * const *args,
1503 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1504 {
1505 struct exec_package * const epp = &data->ed_pack;
1506 char *dp;
1507 size_t i;
1508 int error;
1509
1510 dp = *dpp;
1511
1512 data->ed_argc = 0;
1513
1514 /* copy the fake args list, if there's one, freeing it as we go */
1515 if (epp->ep_flags & EXEC_HASARGL) {
1516 struct exec_fakearg *fa = epp->ep_fa;
1517
1518 while (fa->fa_arg != NULL) {
1519 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1520 size_t len;
1521
1522 len = strlcpy(dp, fa->fa_arg, maxlen);
1523 /* Count NUL into len. */
1524 if (len < maxlen)
1525 len++;
1526 else {
1527 while (fa->fa_arg != NULL) {
1528 kmem_free(fa->fa_arg, fa->fa_len);
1529 fa++;
1530 }
1531 kmem_free(epp->ep_fa, epp->ep_fa_len);
1532 epp->ep_flags &= ~EXEC_HASARGL;
1533 return E2BIG;
1534 }
1535 ktrexecarg(fa->fa_arg, len - 1);
1536 dp += len;
1537
1538 kmem_free(fa->fa_arg, fa->fa_len);
1539 fa++;
1540 data->ed_argc++;
1541 }
1542 kmem_free(epp->ep_fa, epp->ep_fa_len);
1543 epp->ep_flags &= ~EXEC_HASARGL;
1544 }
1545
1546 /*
1547 * Read and count argument strings from user.
1548 */
1549
1550 if (args == NULL) {
1551 DPRINTF(("%s: null args\n", __func__));
1552 return EINVAL;
1553 }
1554 if (epp->ep_flags & EXEC_SKIPARG)
1555 args = (const void *)((const char *)args + fromptrsz(epp));
1556 i = 0;
1557 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1558 if (error != 0) {
1559 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1560 return error;
1561 }
1562 data->ed_argc += i;
1563
1564 /*
1565 * Read and count environment strings from user.
1566 */
1567
1568 data->ed_envc = 0;
1569 /* environment need not be there */
1570 if (envs == NULL)
1571 goto done;
1572 i = 0;
1573 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1574 if (error != 0) {
1575 DPRINTF(("%s: copyin env %d\n", __func__, error));
1576 return error;
1577 }
1578 data->ed_envc += i;
1579
1580 done:
1581 *dpp = dp;
1582
1583 return 0;
1584 }
1585
1586 static int
1587 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1588 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1589 void (*ktr)(const void *, size_t))
1590 {
1591 char *dp, *sp;
1592 size_t i;
1593 int error;
1594
1595 dp = *dpp;
1596
1597 i = 0;
1598 while (1) {
1599 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1600 size_t len;
1601
1602 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1603 return error;
1604 }
1605 if (!sp)
1606 break;
1607 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1608 if (error == ENAMETOOLONG)
1609 error = E2BIG;
1610 return error;
1611 }
1612 if (__predict_false(ktrace_on))
1613 (*ktr)(dp, len - 1);
1614 dp += len;
1615 i++;
1616 }
1617
1618 *dpp = dp;
1619 *ip = i;
1620
1621 return 0;
1622 }
1623
1624 /*
1625 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1626 * Those strings are located just after auxinfo.
1627 */
1628 int
1629 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1630 char **stackp, void *argp)
1631 {
1632 char **cpp, *dp, *sp;
1633 size_t len;
1634 void *nullp;
1635 long argc, envc;
1636 int error;
1637
1638 cpp = (char **)*stackp;
1639 nullp = NULL;
1640 argc = arginfo->ps_nargvstr;
1641 envc = arginfo->ps_nenvstr;
1642
1643 /* argc on stack is long */
1644 CTASSERT(sizeof(*cpp) == sizeof(argc));
1645
1646 dp = (char *)(cpp +
1647 1 + /* long argc */
1648 argc + /* char *argv[] */
1649 1 + /* \0 */
1650 envc + /* char *env[] */
1651 1) + /* \0 */
1652 pack->ep_esch->es_arglen; /* auxinfo */
1653 sp = argp;
1654
1655 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1656 COPYPRINTF("", cpp - 1, sizeof(argc));
1657 return error;
1658 }
1659
1660 /* XXX don't copy them out, remap them! */
1661 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1662
1663 for (; --argc >= 0; sp += len, dp += len) {
1664 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1665 COPYPRINTF("", cpp - 1, sizeof(dp));
1666 return error;
1667 }
1668 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1669 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1670 return error;
1671 }
1672 }
1673
1674 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1675 COPYPRINTF("", cpp - 1, sizeof(nullp));
1676 return error;
1677 }
1678
1679 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1680
1681 for (; --envc >= 0; sp += len, dp += len) {
1682 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1683 COPYPRINTF("", cpp - 1, sizeof(dp));
1684 return error;
1685 }
1686 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1687 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1688 return error;
1689 }
1690
1691 }
1692
1693 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1694 COPYPRINTF("", cpp - 1, sizeof(nullp));
1695 return error;
1696 }
1697
1698 *stackp = (char *)cpp;
1699 return 0;
1700 }
1701
1702
1703 /*
1704 * Add execsw[] entries.
1705 */
1706 int
1707 exec_add(struct execsw *esp, int count)
1708 {
1709 struct exec_entry *it;
1710 int i;
1711
1712 if (count == 0) {
1713 return 0;
1714 }
1715
1716 /* Check for duplicates. */
1717 rw_enter(&exec_lock, RW_WRITER);
1718 for (i = 0; i < count; i++) {
1719 LIST_FOREACH(it, &ex_head, ex_list) {
1720 /* assume unique (makecmds, probe_func, emulation) */
1721 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1722 it->ex_sw->u.elf_probe_func ==
1723 esp[i].u.elf_probe_func &&
1724 it->ex_sw->es_emul == esp[i].es_emul) {
1725 rw_exit(&exec_lock);
1726 return EEXIST;
1727 }
1728 }
1729 }
1730
1731 /* Allocate new entries. */
1732 for (i = 0; i < count; i++) {
1733 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1734 it->ex_sw = &esp[i];
1735 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1736 }
1737
1738 /* update execsw[] */
1739 exec_init(0);
1740 rw_exit(&exec_lock);
1741 return 0;
1742 }
1743
1744 /*
1745 * Remove execsw[] entry.
1746 */
1747 int
1748 exec_remove(struct execsw *esp, int count)
1749 {
1750 struct exec_entry *it, *next;
1751 int i;
1752 const struct proclist_desc *pd;
1753 proc_t *p;
1754
1755 if (count == 0) {
1756 return 0;
1757 }
1758
1759 /* Abort if any are busy. */
1760 rw_enter(&exec_lock, RW_WRITER);
1761 for (i = 0; i < count; i++) {
1762 mutex_enter(proc_lock);
1763 for (pd = proclists; pd->pd_list != NULL; pd++) {
1764 PROCLIST_FOREACH(p, pd->pd_list) {
1765 if (p->p_execsw == &esp[i]) {
1766 mutex_exit(proc_lock);
1767 rw_exit(&exec_lock);
1768 return EBUSY;
1769 }
1770 }
1771 }
1772 mutex_exit(proc_lock);
1773 }
1774
1775 /* None are busy, so remove them all. */
1776 for (i = 0; i < count; i++) {
1777 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1778 next = LIST_NEXT(it, ex_list);
1779 if (it->ex_sw == &esp[i]) {
1780 LIST_REMOVE(it, ex_list);
1781 kmem_free(it, sizeof(*it));
1782 break;
1783 }
1784 }
1785 }
1786
1787 /* update execsw[] */
1788 exec_init(0);
1789 rw_exit(&exec_lock);
1790 return 0;
1791 }
1792
1793 /*
1794 * Initialize exec structures. If init_boot is true, also does necessary
1795 * one-time initialization (it's called from main() that way).
1796 * Once system is multiuser, this should be called with exec_lock held,
1797 * i.e. via exec_{add|remove}().
1798 */
1799 int
1800 exec_init(int init_boot)
1801 {
1802 const struct execsw **sw;
1803 struct exec_entry *ex;
1804 SLIST_HEAD(,exec_entry) first;
1805 SLIST_HEAD(,exec_entry) any;
1806 SLIST_HEAD(,exec_entry) last;
1807 int i, sz;
1808
1809 if (init_boot) {
1810 /* do one-time initializations */
1811 vaddr_t vmin = 0, vmax;
1812
1813 rw_init(&exec_lock);
1814 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1815 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1816 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1817 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1818 "execargs", &exec_palloc, IPL_NONE);
1819 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1820 } else {
1821 KASSERT(rw_write_held(&exec_lock));
1822 }
1823
1824 /* Sort each entry onto the appropriate queue. */
1825 SLIST_INIT(&first);
1826 SLIST_INIT(&any);
1827 SLIST_INIT(&last);
1828 sz = 0;
1829 LIST_FOREACH(ex, &ex_head, ex_list) {
1830 switch(ex->ex_sw->es_prio) {
1831 case EXECSW_PRIO_FIRST:
1832 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1833 break;
1834 case EXECSW_PRIO_ANY:
1835 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1836 break;
1837 case EXECSW_PRIO_LAST:
1838 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1839 break;
1840 default:
1841 panic("%s", __func__);
1842 break;
1843 }
1844 sz++;
1845 }
1846
1847 /*
1848 * Create new execsw[]. Ensure we do not try a zero-sized
1849 * allocation.
1850 */
1851 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1852 i = 0;
1853 SLIST_FOREACH(ex, &first, ex_slist) {
1854 sw[i++] = ex->ex_sw;
1855 }
1856 SLIST_FOREACH(ex, &any, ex_slist) {
1857 sw[i++] = ex->ex_sw;
1858 }
1859 SLIST_FOREACH(ex, &last, ex_slist) {
1860 sw[i++] = ex->ex_sw;
1861 }
1862
1863 /* Replace old execsw[] and free used memory. */
1864 if (execsw != NULL) {
1865 kmem_free(__UNCONST(execsw),
1866 nexecs * sizeof(struct execsw *) + 1);
1867 }
1868 execsw = sw;
1869 nexecs = sz;
1870
1871 /* Figure out the maximum size of an exec header. */
1872 exec_maxhdrsz = sizeof(int);
1873 for (i = 0; i < nexecs; i++) {
1874 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1875 exec_maxhdrsz = execsw[i]->es_hdrsz;
1876 }
1877
1878 return 0;
1879 }
1880
1881 static int
1882 exec_sigcode_map(struct proc *p, const struct emul *e)
1883 {
1884 vaddr_t va;
1885 vsize_t sz;
1886 int error;
1887 struct uvm_object *uobj;
1888
1889 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1890
1891 if (e->e_sigobject == NULL || sz == 0) {
1892 return 0;
1893 }
1894
1895 /*
1896 * If we don't have a sigobject for this emulation, create one.
1897 *
1898 * sigobject is an anonymous memory object (just like SYSV shared
1899 * memory) that we keep a permanent reference to and that we map
1900 * in all processes that need this sigcode. The creation is simple,
1901 * we create an object, add a permanent reference to it, map it in
1902 * kernel space, copy out the sigcode to it and unmap it.
1903 * We map it with PROT_READ|PROT_EXEC into the process just
1904 * the way sys_mmap() would map it.
1905 */
1906
1907 uobj = *e->e_sigobject;
1908 if (uobj == NULL) {
1909 mutex_enter(&sigobject_lock);
1910 if ((uobj = *e->e_sigobject) == NULL) {
1911 uobj = uao_create(sz, 0);
1912 (*uobj->pgops->pgo_reference)(uobj);
1913 va = vm_map_min(kernel_map);
1914 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1915 uobj, 0, 0,
1916 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1917 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1918 printf("kernel mapping failed %d\n", error);
1919 (*uobj->pgops->pgo_detach)(uobj);
1920 mutex_exit(&sigobject_lock);
1921 return error;
1922 }
1923 memcpy((void *)va, e->e_sigcode, sz);
1924 #ifdef PMAP_NEED_PROCWR
1925 pmap_procwr(&proc0, va, sz);
1926 #endif
1927 uvm_unmap(kernel_map, va, va + round_page(sz));
1928 *e->e_sigobject = uobj;
1929 }
1930 mutex_exit(&sigobject_lock);
1931 }
1932
1933 /* Just a hint to uvm_map where to put it. */
1934 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1935 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1936
1937 #ifdef __alpha__
1938 /*
1939 * Tru64 puts /sbin/loader at the end of user virtual memory,
1940 * which causes the above calculation to put the sigcode at
1941 * an invalid address. Put it just below the text instead.
1942 */
1943 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1944 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1945 }
1946 #endif
1947
1948 (*uobj->pgops->pgo_reference)(uobj);
1949 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1950 uobj, 0, 0,
1951 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1952 UVM_ADV_RANDOM, 0));
1953 if (error) {
1954 DPRINTF(("%s, %d: map %p "
1955 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1956 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1957 va, error));
1958 (*uobj->pgops->pgo_detach)(uobj);
1959 return error;
1960 }
1961 p->p_sigctx.ps_sigcode = (void *)va;
1962 return 0;
1963 }
1964
1965 /*
1966 * Release a refcount on spawn_exec_data and destroy memory, if this
1967 * was the last one.
1968 */
1969 static void
1970 spawn_exec_data_release(struct spawn_exec_data *data)
1971 {
1972 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1973 return;
1974
1975 cv_destroy(&data->sed_cv_child_ready);
1976 mutex_destroy(&data->sed_mtx_child);
1977
1978 if (data->sed_actions)
1979 posix_spawn_fa_free(data->sed_actions,
1980 data->sed_actions->len);
1981 if (data->sed_attrs)
1982 kmem_free(data->sed_attrs,
1983 sizeof(*data->sed_attrs));
1984 kmem_free(data, sizeof(*data));
1985 }
1986
1987 /*
1988 * A child lwp of a posix_spawn operation starts here and ends up in
1989 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1990 * manipulations in between.
1991 * The parent waits for the child, as it is not clear whether the child
1992 * will be able to acquire its own exec_lock. If it can, the parent can
1993 * be released early and continue running in parallel. If not (or if the
1994 * magic debug flag is passed in the scheduler attribute struct), the
1995 * child rides on the parent's exec lock until it is ready to return to
1996 * to userland - and only then releases the parent. This method loses
1997 * concurrency, but improves error reporting.
1998 */
1999 static void
2000 spawn_return(void *arg)
2001 {
2002 struct spawn_exec_data *spawn_data = arg;
2003 struct lwp *l = curlwp;
2004 struct proc *p = l->l_proc;
2005 int error, newfd;
2006 int ostat;
2007 size_t i;
2008 const struct posix_spawn_file_actions_entry *fae;
2009 pid_t ppid;
2010 register_t retval;
2011 bool have_reflock;
2012 bool parent_is_waiting = true;
2013
2014 /*
2015 * Check if we can release parent early.
2016 * We either need to have no sed_attrs, or sed_attrs does not
2017 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2018 * safe access to the parent proc (passed in sed_parent).
2019 * We then try to get the exec_lock, and only if that works, we can
2020 * release the parent here already.
2021 */
2022 ppid = spawn_data->sed_parent->p_pid;
2023 if ((!spawn_data->sed_attrs
2024 || (spawn_data->sed_attrs->sa_flags
2025 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2026 && rw_tryenter(&exec_lock, RW_READER)) {
2027 parent_is_waiting = false;
2028 mutex_enter(&spawn_data->sed_mtx_child);
2029 cv_signal(&spawn_data->sed_cv_child_ready);
2030 mutex_exit(&spawn_data->sed_mtx_child);
2031 }
2032
2033 /* don't allow debugger access yet */
2034 rw_enter(&p->p_reflock, RW_WRITER);
2035 have_reflock = true;
2036
2037 error = 0;
2038 /* handle posix_spawn_file_actions */
2039 if (spawn_data->sed_actions != NULL) {
2040 for (i = 0; i < spawn_data->sed_actions->len; i++) {
2041 fae = &spawn_data->sed_actions->fae[i];
2042 switch (fae->fae_action) {
2043 case FAE_OPEN:
2044 if (fd_getfile(fae->fae_fildes) != NULL) {
2045 error = fd_close(fae->fae_fildes);
2046 if (error)
2047 break;
2048 }
2049 error = fd_open(fae->fae_path, fae->fae_oflag,
2050 fae->fae_mode, &newfd);
2051 if (error)
2052 break;
2053 if (newfd != fae->fae_fildes) {
2054 error = dodup(l, newfd,
2055 fae->fae_fildes, 0, &retval);
2056 if (fd_getfile(newfd) != NULL)
2057 fd_close(newfd);
2058 }
2059 break;
2060 case FAE_DUP2:
2061 error = dodup(l, fae->fae_fildes,
2062 fae->fae_newfildes, 0, &retval);
2063 break;
2064 case FAE_CLOSE:
2065 if (fd_getfile(fae->fae_fildes) == NULL) {
2066 error = EBADF;
2067 break;
2068 }
2069 error = fd_close(fae->fae_fildes);
2070 break;
2071 }
2072 if (error)
2073 goto report_error;
2074 }
2075 }
2076
2077 /* handle posix_spawnattr */
2078 if (spawn_data->sed_attrs != NULL) {
2079 struct sigaction sigact;
2080 sigact._sa_u._sa_handler = SIG_DFL;
2081 sigact.sa_flags = 0;
2082
2083 /*
2084 * set state to SSTOP so that this proc can be found by pid.
2085 * see proc_enterprp, do_sched_setparam below
2086 */
2087 mutex_enter(proc_lock);
2088 /*
2089 * p_stat should be SACTIVE, so we need to adjust the
2090 * parent's p_nstopchild here. For safety, just make
2091 * we're on the good side of SDEAD before we adjust.
2092 */
2093 ostat = p->p_stat;
2094 KASSERT(ostat < SSTOP);
2095 p->p_stat = SSTOP;
2096 p->p_waited = 0;
2097 p->p_pptr->p_nstopchild++;
2098 mutex_exit(proc_lock);
2099
2100 /* Set process group */
2101 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2102 pid_t mypid = p->p_pid,
2103 pgrp = spawn_data->sed_attrs->sa_pgroup;
2104
2105 if (pgrp == 0)
2106 pgrp = mypid;
2107
2108 error = proc_enterpgrp(spawn_data->sed_parent,
2109 mypid, pgrp, false);
2110 if (error)
2111 goto report_error_stopped;
2112 }
2113
2114 /* Set scheduler policy */
2115 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2116 error = do_sched_setparam(p->p_pid, 0,
2117 spawn_data->sed_attrs->sa_schedpolicy,
2118 &spawn_data->sed_attrs->sa_schedparam);
2119 else if (spawn_data->sed_attrs->sa_flags
2120 & POSIX_SPAWN_SETSCHEDPARAM) {
2121 error = do_sched_setparam(ppid, 0,
2122 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2123 }
2124 if (error)
2125 goto report_error_stopped;
2126
2127 /* Reset user ID's */
2128 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2129 error = do_setresuid(l, -1,
2130 kauth_cred_getgid(l->l_cred), -1,
2131 ID_E_EQ_R | ID_E_EQ_S);
2132 if (error)
2133 goto report_error_stopped;
2134 error = do_setresuid(l, -1,
2135 kauth_cred_getuid(l->l_cred), -1,
2136 ID_E_EQ_R | ID_E_EQ_S);
2137 if (error)
2138 goto report_error_stopped;
2139 }
2140
2141 /* Set signal masks/defaults */
2142 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2143 mutex_enter(p->p_lock);
2144 error = sigprocmask1(l, SIG_SETMASK,
2145 &spawn_data->sed_attrs->sa_sigmask, NULL);
2146 mutex_exit(p->p_lock);
2147 if (error)
2148 goto report_error_stopped;
2149 }
2150
2151 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2152 /*
2153 * The following sigaction call is using a sigaction
2154 * version 0 trampoline which is in the compatibility
2155 * code only. This is not a problem because for SIG_DFL
2156 * and SIG_IGN, the trampolines are now ignored. If they
2157 * were not, this would be a problem because we are
2158 * holding the exec_lock, and the compat code needs
2159 * to do the same in order to replace the trampoline
2160 * code of the process.
2161 */
2162 for (i = 1; i <= NSIG; i++) {
2163 if (sigismember(
2164 &spawn_data->sed_attrs->sa_sigdefault, i))
2165 sigaction1(l, i, &sigact, NULL, NULL,
2166 0);
2167 }
2168 }
2169 mutex_enter(proc_lock);
2170 p->p_stat = ostat;
2171 p->p_pptr->p_nstopchild--;
2172 mutex_exit(proc_lock);
2173 }
2174
2175 /* now do the real exec */
2176 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2177 true);
2178 have_reflock = false;
2179 if (error == EJUSTRETURN)
2180 error = 0;
2181 else if (error)
2182 goto report_error;
2183
2184 if (parent_is_waiting) {
2185 mutex_enter(&spawn_data->sed_mtx_child);
2186 cv_signal(&spawn_data->sed_cv_child_ready);
2187 mutex_exit(&spawn_data->sed_mtx_child);
2188 }
2189
2190 /* release our refcount on the data */
2191 spawn_exec_data_release(spawn_data);
2192
2193 if (p->p_slflag & PSL_TRACED) {
2194 /* Paranoid check */
2195 mutex_enter(proc_lock);
2196 if (!(p->p_slflag & PSL_TRACED)) {
2197 mutex_exit(proc_lock);
2198 goto cpu_return;
2199 }
2200
2201 mutex_enter(p->p_lock);
2202 eventswitch(TRAP_CHLD);
2203 }
2204
2205 cpu_return:
2206 /* and finally: leave to userland for the first time */
2207 cpu_spawn_return(l);
2208
2209 /* NOTREACHED */
2210 return;
2211
2212 report_error_stopped:
2213 mutex_enter(proc_lock);
2214 p->p_stat = ostat;
2215 p->p_pptr->p_nstopchild--;
2216 mutex_exit(proc_lock);
2217 report_error:
2218 if (have_reflock) {
2219 /*
2220 * We have not passed through execve_runproc(),
2221 * which would have released the p_reflock and also
2222 * taken ownership of the sed_exec part of spawn_data,
2223 * so release/free both here.
2224 */
2225 rw_exit(&p->p_reflock);
2226 execve_free_data(&spawn_data->sed_exec);
2227 }
2228
2229 if (parent_is_waiting) {
2230 /* pass error to parent */
2231 mutex_enter(&spawn_data->sed_mtx_child);
2232 spawn_data->sed_error = error;
2233 cv_signal(&spawn_data->sed_cv_child_ready);
2234 mutex_exit(&spawn_data->sed_mtx_child);
2235 } else {
2236 rw_exit(&exec_lock);
2237 }
2238
2239 /* release our refcount on the data */
2240 spawn_exec_data_release(spawn_data);
2241
2242 /* done, exit */
2243 mutex_enter(p->p_lock);
2244 /*
2245 * Posix explicitly asks for an exit code of 127 if we report
2246 * errors from the child process - so, unfortunately, there
2247 * is no way to report a more exact error code.
2248 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2249 * flag bit in the attrp argument to posix_spawn(2), see above.
2250 */
2251 exit1(l, 127, 0);
2252 }
2253
2254 void
2255 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2256 {
2257
2258 for (size_t i = 0; i < len; i++) {
2259 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2260 if (fae->fae_action != FAE_OPEN)
2261 continue;
2262 kmem_strfree(fae->fae_path);
2263 }
2264 if (fa->len > 0)
2265 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2266 kmem_free(fa, sizeof(*fa));
2267 }
2268
2269 static int
2270 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2271 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2272 {
2273 struct posix_spawn_file_actions *fa;
2274 struct posix_spawn_file_actions_entry *fae;
2275 char *pbuf = NULL;
2276 int error;
2277 size_t i = 0;
2278
2279 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2280 error = copyin(ufa, fa, sizeof(*fa));
2281 if (error || fa->len == 0) {
2282 kmem_free(fa, sizeof(*fa));
2283 return error; /* 0 if not an error, and len == 0 */
2284 }
2285
2286 if (fa->len > lim) {
2287 kmem_free(fa, sizeof(*fa));
2288 return EINVAL;
2289 }
2290
2291 fa->size = fa->len;
2292 size_t fal = fa->len * sizeof(*fae);
2293 fae = fa->fae;
2294 fa->fae = kmem_alloc(fal, KM_SLEEP);
2295 error = copyin(fae, fa->fae, fal);
2296 if (error)
2297 goto out;
2298
2299 pbuf = PNBUF_GET();
2300 for (; i < fa->len; i++) {
2301 fae = &fa->fae[i];
2302 if (fae->fae_action != FAE_OPEN)
2303 continue;
2304 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2305 if (error)
2306 goto out;
2307 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2308 memcpy(fae->fae_path, pbuf, fal);
2309 }
2310 PNBUF_PUT(pbuf);
2311
2312 *fap = fa;
2313 return 0;
2314 out:
2315 if (pbuf)
2316 PNBUF_PUT(pbuf);
2317 posix_spawn_fa_free(fa, i);
2318 return error;
2319 }
2320
2321 int
2322 check_posix_spawn(struct lwp *l1)
2323 {
2324 int error, tnprocs, count;
2325 uid_t uid;
2326 struct proc *p1;
2327
2328 p1 = l1->l_proc;
2329 uid = kauth_cred_getuid(l1->l_cred);
2330 tnprocs = atomic_inc_uint_nv(&nprocs);
2331
2332 /*
2333 * Although process entries are dynamically created, we still keep
2334 * a global limit on the maximum number we will create.
2335 */
2336 if (__predict_false(tnprocs >= maxproc))
2337 error = -1;
2338 else
2339 error = kauth_authorize_process(l1->l_cred,
2340 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2341
2342 if (error) {
2343 atomic_dec_uint(&nprocs);
2344 return EAGAIN;
2345 }
2346
2347 /*
2348 * Enforce limits.
2349 */
2350 count = chgproccnt(uid, 1);
2351 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2352 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2353 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2354 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2355 (void)chgproccnt(uid, -1);
2356 atomic_dec_uint(&nprocs);
2357 return EAGAIN;
2358 }
2359
2360 return 0;
2361 }
2362
2363 int
2364 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2365 struct posix_spawn_file_actions *fa,
2366 struct posix_spawnattr *sa,
2367 char *const *argv, char *const *envp,
2368 execve_fetch_element_t fetch)
2369 {
2370
2371 struct proc *p1, *p2;
2372 struct lwp *l2;
2373 int error;
2374 struct spawn_exec_data *spawn_data;
2375 vaddr_t uaddr;
2376 pid_t pid;
2377 bool have_exec_lock = false;
2378
2379 p1 = l1->l_proc;
2380
2381 /* Allocate and init spawn_data */
2382 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2383 spawn_data->sed_refcnt = 1; /* only parent so far */
2384 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2385 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2386 mutex_enter(&spawn_data->sed_mtx_child);
2387
2388 /*
2389 * Do the first part of the exec now, collect state
2390 * in spawn_data.
2391 */
2392 error = execve_loadvm(l1, path, argv,
2393 envp, fetch, &spawn_data->sed_exec);
2394 if (error == EJUSTRETURN)
2395 error = 0;
2396 else if (error)
2397 goto error_exit;
2398
2399 have_exec_lock = true;
2400
2401 /*
2402 * Allocate virtual address space for the U-area now, while it
2403 * is still easy to abort the fork operation if we're out of
2404 * kernel virtual address space.
2405 */
2406 uaddr = uvm_uarea_alloc();
2407 if (__predict_false(uaddr == 0)) {
2408 error = ENOMEM;
2409 goto error_exit;
2410 }
2411
2412 /*
2413 * Allocate new proc. Borrow proc0 vmspace for it, we will
2414 * replace it with its own before returning to userland
2415 * in the child.
2416 * This is a point of no return, we will have to go through
2417 * the child proc to properly clean it up past this point.
2418 */
2419 p2 = proc_alloc();
2420 pid = p2->p_pid;
2421
2422 /*
2423 * Make a proc table entry for the new process.
2424 * Start by zeroing the section of proc that is zero-initialized,
2425 * then copy the section that is copied directly from the parent.
2426 */
2427 memset(&p2->p_startzero, 0,
2428 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2429 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2430 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2431 p2->p_vmspace = proc0.p_vmspace;
2432
2433 TAILQ_INIT(&p2->p_sigpend.sp_info);
2434
2435 LIST_INIT(&p2->p_lwps);
2436 LIST_INIT(&p2->p_sigwaiters);
2437
2438 /*
2439 * Duplicate sub-structures as needed.
2440 * Increase reference counts on shared objects.
2441 * Inherit flags we want to keep. The flags related to SIGCHLD
2442 * handling are important in order to keep a consistent behaviour
2443 * for the child after the fork. If we are a 32-bit process, the
2444 * child will be too.
2445 */
2446 p2->p_flag =
2447 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2448 p2->p_emul = p1->p_emul;
2449 p2->p_execsw = p1->p_execsw;
2450
2451 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2452 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2453 rw_init(&p2->p_reflock);
2454 cv_init(&p2->p_waitcv, "wait");
2455 cv_init(&p2->p_lwpcv, "lwpwait");
2456
2457 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2458
2459 kauth_proc_fork(p1, p2);
2460
2461 p2->p_raslist = NULL;
2462 p2->p_fd = fd_copy();
2463
2464 /* XXX racy */
2465 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2466
2467 p2->p_cwdi = cwdinit();
2468
2469 /*
2470 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2471 * we just need increase pl_refcnt.
2472 */
2473 if (!p1->p_limit->pl_writeable) {
2474 lim_addref(p1->p_limit);
2475 p2->p_limit = p1->p_limit;
2476 } else {
2477 p2->p_limit = lim_copy(p1->p_limit);
2478 }
2479
2480 p2->p_lflag = 0;
2481 l1->l_vforkwaiting = false;
2482 p2->p_sflag = 0;
2483 p2->p_slflag = 0;
2484 p2->p_pptr = p1;
2485 p2->p_ppid = p1->p_pid;
2486 LIST_INIT(&p2->p_children);
2487
2488 p2->p_aio = NULL;
2489
2490 #ifdef KTRACE
2491 /*
2492 * Copy traceflag and tracefile if enabled.
2493 * If not inherited, these were zeroed above.
2494 */
2495 if (p1->p_traceflag & KTRFAC_INHERIT) {
2496 mutex_enter(&ktrace_lock);
2497 p2->p_traceflag = p1->p_traceflag;
2498 if ((p2->p_tracep = p1->p_tracep) != NULL)
2499 ktradref(p2);
2500 mutex_exit(&ktrace_lock);
2501 }
2502 #endif
2503
2504 /*
2505 * Create signal actions for the child process.
2506 */
2507 p2->p_sigacts = sigactsinit(p1, 0);
2508 mutex_enter(p1->p_lock);
2509 p2->p_sflag |=
2510 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2511 sched_proc_fork(p1, p2);
2512 mutex_exit(p1->p_lock);
2513
2514 p2->p_stflag = p1->p_stflag;
2515
2516 /*
2517 * p_stats.
2518 * Copy parts of p_stats, and zero out the rest.
2519 */
2520 p2->p_stats = pstatscopy(p1->p_stats);
2521
2522 /* copy over machdep flags to the new proc */
2523 cpu_proc_fork(p1, p2);
2524
2525 /*
2526 * Prepare remaining parts of spawn data
2527 */
2528 spawn_data->sed_actions = fa;
2529 spawn_data->sed_attrs = sa;
2530
2531 spawn_data->sed_parent = p1;
2532
2533 /* create LWP */
2534 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2535 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2536 l2->l_ctxlink = NULL; /* reset ucontext link */
2537
2538 /*
2539 * Copy the credential so other references don't see our changes.
2540 * Test to see if this is necessary first, since in the common case
2541 * we won't need a private reference.
2542 */
2543 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2544 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2545 l2->l_cred = kauth_cred_copy(l2->l_cred);
2546 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2547 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2548 }
2549
2550 /* Update the master credentials. */
2551 if (l2->l_cred != p2->p_cred) {
2552 kauth_cred_t ocred;
2553
2554 kauth_cred_hold(l2->l_cred);
2555 mutex_enter(p2->p_lock);
2556 ocred = p2->p_cred;
2557 p2->p_cred = l2->l_cred;
2558 mutex_exit(p2->p_lock);
2559 kauth_cred_free(ocred);
2560 }
2561
2562 *child_ok = true;
2563 spawn_data->sed_refcnt = 2; /* child gets it as well */
2564 #if 0
2565 l2->l_nopreempt = 1; /* start it non-preemptable */
2566 #endif
2567
2568 /*
2569 * It's now safe for the scheduler and other processes to see the
2570 * child process.
2571 */
2572 mutex_enter(proc_lock);
2573
2574 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2575 p2->p_lflag |= PL_CONTROLT;
2576
2577 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2578 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2579
2580 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2581 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2582 proc_changeparent(p2, p1->p_pptr);
2583 p1->p_pspid = p2->p_pid;
2584 p2->p_pspid = p1->p_pid;
2585 }
2586
2587 LIST_INSERT_AFTER(p1, p2, p_pglist);
2588 LIST_INSERT_HEAD(&allproc, p2, p_list);
2589
2590 p2->p_trace_enabled = trace_is_enabled(p2);
2591 #ifdef __HAVE_SYSCALL_INTERN
2592 (*p2->p_emul->e_syscall_intern)(p2);
2593 #endif
2594
2595 /*
2596 * Make child runnable, set start time, and add to run queue except
2597 * if the parent requested the child to start in SSTOP state.
2598 */
2599 mutex_enter(p2->p_lock);
2600
2601 getmicrotime(&p2->p_stats->p_start);
2602
2603 lwp_lock(l2);
2604 KASSERT(p2->p_nrlwps == 1);
2605 p2->p_nrlwps = 1;
2606 p2->p_stat = SACTIVE;
2607 l2->l_stat = LSRUN;
2608 sched_enqueue(l2, false);
2609 lwp_unlock(l2);
2610
2611 mutex_exit(p2->p_lock);
2612 mutex_exit(proc_lock);
2613
2614 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2615 error = spawn_data->sed_error;
2616 mutex_exit(&spawn_data->sed_mtx_child);
2617 spawn_exec_data_release(spawn_data);
2618
2619 rw_exit(&p1->p_reflock);
2620 rw_exit(&exec_lock);
2621 have_exec_lock = false;
2622
2623 *pid_res = pid;
2624
2625 if (error)
2626 return error;
2627
2628 if (p1->p_slflag & PSL_TRACED) {
2629 /* Paranoid check */
2630 mutex_enter(proc_lock);
2631 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2632 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2633 mutex_exit(proc_lock);
2634 return 0;
2635 }
2636
2637 mutex_enter(p1->p_lock);
2638 eventswitch(TRAP_CHLD);
2639 }
2640 return 0;
2641
2642 error_exit:
2643 if (have_exec_lock) {
2644 execve_free_data(&spawn_data->sed_exec);
2645 rw_exit(&p1->p_reflock);
2646 rw_exit(&exec_lock);
2647 }
2648 mutex_exit(&spawn_data->sed_mtx_child);
2649 spawn_exec_data_release(spawn_data);
2650
2651 return error;
2652 }
2653
2654 int
2655 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2656 register_t *retval)
2657 {
2658 /* {
2659 syscallarg(pid_t *) pid;
2660 syscallarg(const char *) path;
2661 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2662 syscallarg(const struct posix_spawnattr *) attrp;
2663 syscallarg(char *const *) argv;
2664 syscallarg(char *const *) envp;
2665 } */
2666
2667 int error;
2668 struct posix_spawn_file_actions *fa = NULL;
2669 struct posix_spawnattr *sa = NULL;
2670 pid_t pid;
2671 bool child_ok = false;
2672 rlim_t max_fileactions;
2673 proc_t *p = l1->l_proc;
2674
2675 error = check_posix_spawn(l1);
2676 if (error) {
2677 *retval = error;
2678 return 0;
2679 }
2680
2681 /* copy in file_actions struct */
2682 if (SCARG(uap, file_actions) != NULL) {
2683 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2684 maxfiles);
2685 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2686 max_fileactions);
2687 if (error)
2688 goto error_exit;
2689 }
2690
2691 /* copyin posix_spawnattr struct */
2692 if (SCARG(uap, attrp) != NULL) {
2693 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2694 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2695 if (error)
2696 goto error_exit;
2697 }
2698
2699 /*
2700 * Do the spawn
2701 */
2702 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2703 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2704 if (error)
2705 goto error_exit;
2706
2707 if (error == 0 && SCARG(uap, pid) != NULL)
2708 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2709
2710 *retval = error;
2711 return 0;
2712
2713 error_exit:
2714 if (!child_ok) {
2715 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2716 atomic_dec_uint(&nprocs);
2717
2718 if (sa)
2719 kmem_free(sa, sizeof(*sa));
2720 if (fa)
2721 posix_spawn_fa_free(fa, fa->len);
2722 }
2723
2724 *retval = error;
2725 return 0;
2726 }
2727
2728 void
2729 exec_free_emul_arg(struct exec_package *epp)
2730 {
2731 if (epp->ep_emul_arg_free != NULL) {
2732 KASSERT(epp->ep_emul_arg != NULL);
2733 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2734 epp->ep_emul_arg_free = NULL;
2735 epp->ep_emul_arg = NULL;
2736 } else {
2737 KASSERT(epp->ep_emul_arg == NULL);
2738 }
2739 }
2740
2741 #ifdef DEBUG_EXEC
2742 static void
2743 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2744 {
2745 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2746 size_t j;
2747
2748 if (error == 0)
2749 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2750 else
2751 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2752 epp->ep_vmcmds.evs_used, error));
2753
2754 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2755 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2756 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2757 PRIxVSIZE" prot=0%o flags=%d\n", j,
2758 vp[j].ev_proc == vmcmd_map_pagedvn ?
2759 "pagedvn" :
2760 vp[j].ev_proc == vmcmd_map_readvn ?
2761 "readvn" :
2762 vp[j].ev_proc == vmcmd_map_zero ?
2763 "zero" : "*unknown*",
2764 vp[j].ev_addr, vp[j].ev_len,
2765 vp[j].ev_offset, vp[j].ev_prot,
2766 vp[j].ev_flags));
2767 if (error != 0 && j == x)
2768 DPRINTF((" ^--- failed\n"));
2769 }
2770 }
2771 #endif
2772