kern_exec.c revision 1.474 1 /* $NetBSD: kern_exec.c,v 1.474 2019/06/26 20:28:59 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.474 2019/06/26 20:28:59 maxv Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/ptrace.h>
78 #include <sys/mount.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/filedesc.h>
84 #include <sys/acct.h>
85 #include <sys/atomic.h>
86 #include <sys/exec.h>
87 #include <sys/ktrace.h>
88 #include <sys/uidinfo.h>
89 #include <sys/wait.h>
90 #include <sys/mman.h>
91 #include <sys/ras.h>
92 #include <sys/signalvar.h>
93 #include <sys/stat.h>
94 #include <sys/syscall.h>
95 #include <sys/kauth.h>
96 #include <sys/lwpctl.h>
97 #include <sys/pax.h>
98 #include <sys/cpu.h>
99 #include <sys/module.h>
100 #include <sys/syscallvar.h>
101 #include <sys/syscallargs.h>
102 #if NVERIEXEC > 0
103 #include <sys/verified_exec.h>
104 #endif /* NVERIEXEC > 0 */
105 #include <sys/sdt.h>
106 #include <sys/spawn.h>
107 #include <sys/prot.h>
108 #include <sys/cprng.h>
109
110 #include <uvm/uvm_extern.h>
111
112 #include <machine/reg.h>
113
114 #include <compat/common/compat_util.h>
115
116 #ifndef MD_TOPDOWN_INIT
117 #ifdef __USE_TOPDOWN_VM
118 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
119 #else
120 #define MD_TOPDOWN_INIT(epp)
121 #endif
122 #endif
123
124 struct execve_data;
125
126 extern int user_va0_disable;
127
128 static size_t calcargs(struct execve_data * restrict, const size_t);
129 static size_t calcstack(struct execve_data * restrict, const size_t);
130 static int copyoutargs(struct execve_data * restrict, struct lwp *,
131 char * const);
132 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
133 static int copyinargs(struct execve_data * restrict, char * const *,
134 char * const *, execve_fetch_element_t, char **);
135 static int copyinargstrs(struct execve_data * restrict, char * const *,
136 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
137 static int exec_sigcode_map(struct proc *, const struct emul *);
138
139 #if defined(DEBUG) && !defined(DEBUG_EXEC)
140 #define DEBUG_EXEC
141 #endif
142 #ifdef DEBUG_EXEC
143 #define DPRINTF(a) printf a
144 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
145 __LINE__, (s), (a), (b))
146 static void dump_vmcmds(const struct exec_package * const, size_t, int);
147 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
148 #else
149 #define DPRINTF(a)
150 #define COPYPRINTF(s, a, b)
151 #define DUMPVMCMDS(p, x, e) do {} while (0)
152 #endif /* DEBUG_EXEC */
153
154 /*
155 * DTrace SDT provider definitions
156 */
157 SDT_PROVIDER_DECLARE(proc);
158 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
159 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
160 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
161
162 /*
163 * Exec function switch:
164 *
165 * Note that each makecmds function is responsible for loading the
166 * exec package with the necessary functions for any exec-type-specific
167 * handling.
168 *
169 * Functions for specific exec types should be defined in their own
170 * header file.
171 */
172 static const struct execsw **execsw = NULL;
173 static int nexecs;
174
175 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
176
177 /* list of dynamically loaded execsw entries */
178 static LIST_HEAD(execlist_head, exec_entry) ex_head =
179 LIST_HEAD_INITIALIZER(ex_head);
180 struct exec_entry {
181 LIST_ENTRY(exec_entry) ex_list;
182 SLIST_ENTRY(exec_entry) ex_slist;
183 const struct execsw *ex_sw;
184 };
185
186 #ifndef __HAVE_SYSCALL_INTERN
187 void syscall(void);
188 #endif
189
190 /* NetBSD autoloadable syscalls */
191 #ifdef MODULAR
192 #include <kern/syscalls_autoload.c>
193 #endif
194
195 /* NetBSD emul struct */
196 struct emul emul_netbsd = {
197 .e_name = "netbsd",
198 #ifdef EMUL_NATIVEROOT
199 .e_path = EMUL_NATIVEROOT,
200 #else
201 .e_path = NULL,
202 #endif
203 #ifndef __HAVE_MINIMAL_EMUL
204 .e_flags = EMUL_HAS_SYS___syscall,
205 .e_errno = NULL,
206 .e_nosys = SYS_syscall,
207 .e_nsysent = SYS_NSYSENT,
208 #endif
209 #ifdef MODULAR
210 .e_sc_autoload = netbsd_syscalls_autoload,
211 #endif
212 .e_sysent = sysent,
213 .e_nomodbits = sysent_nomodbits,
214 #ifdef SYSCALL_DEBUG
215 .e_syscallnames = syscallnames,
216 #else
217 .e_syscallnames = NULL,
218 #endif
219 .e_sendsig = sendsig,
220 .e_trapsignal = trapsignal,
221 .e_sigcode = NULL,
222 .e_esigcode = NULL,
223 .e_sigobject = NULL,
224 .e_setregs = setregs,
225 .e_proc_exec = NULL,
226 .e_proc_fork = NULL,
227 .e_proc_exit = NULL,
228 .e_lwp_fork = NULL,
229 .e_lwp_exit = NULL,
230 #ifdef __HAVE_SYSCALL_INTERN
231 .e_syscall_intern = syscall_intern,
232 #else
233 .e_syscall = syscall,
234 #endif
235 .e_sysctlovly = NULL,
236 .e_vm_default_addr = uvm_default_mapaddr,
237 .e_usertrap = NULL,
238 .e_ucsize = sizeof(ucontext_t),
239 .e_startlwp = startlwp
240 };
241
242 /*
243 * Exec lock. Used to control access to execsw[] structures.
244 * This must not be static so that netbsd32 can access it, too.
245 */
246 krwlock_t exec_lock;
247
248 static kmutex_t sigobject_lock;
249
250 /*
251 * Data used between a loadvm and execve part of an "exec" operation
252 */
253 struct execve_data {
254 struct exec_package ed_pack;
255 struct pathbuf *ed_pathbuf;
256 struct vattr ed_attr;
257 struct ps_strings ed_arginfo;
258 char *ed_argp;
259 const char *ed_pathstring;
260 char *ed_resolvedpathbuf;
261 size_t ed_ps_strings_sz;
262 int ed_szsigcode;
263 size_t ed_argslen;
264 long ed_argc;
265 long ed_envc;
266 };
267
268 /*
269 * data passed from parent lwp to child during a posix_spawn()
270 */
271 struct spawn_exec_data {
272 struct execve_data sed_exec;
273 struct posix_spawn_file_actions
274 *sed_actions;
275 struct posix_spawnattr *sed_attrs;
276 struct proc *sed_parent;
277 kcondvar_t sed_cv_child_ready;
278 kmutex_t sed_mtx_child;
279 int sed_error;
280 volatile uint32_t sed_refcnt;
281 };
282
283 static struct vm_map *exec_map;
284 static struct pool exec_pool;
285
286 static void *
287 exec_pool_alloc(struct pool *pp, int flags)
288 {
289
290 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
291 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
292 }
293
294 static void
295 exec_pool_free(struct pool *pp, void *addr)
296 {
297
298 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
299 }
300
301 static struct pool_allocator exec_palloc = {
302 .pa_alloc = exec_pool_alloc,
303 .pa_free = exec_pool_free,
304 .pa_pagesz = NCARGS
305 };
306
307 /*
308 * check exec:
309 * given an "executable" described in the exec package's namei info,
310 * see what we can do with it.
311 *
312 * ON ENTRY:
313 * exec package with appropriate namei info
314 * lwp pointer of exec'ing lwp
315 * NO SELF-LOCKED VNODES
316 *
317 * ON EXIT:
318 * error: nothing held, etc. exec header still allocated.
319 * ok: filled exec package, executable's vnode (unlocked).
320 *
321 * EXEC SWITCH ENTRY:
322 * Locked vnode to check, exec package, proc.
323 *
324 * EXEC SWITCH EXIT:
325 * ok: return 0, filled exec package, executable's vnode (unlocked).
326 * error: destructive:
327 * everything deallocated execept exec header.
328 * non-destructive:
329 * error code, executable's vnode (unlocked),
330 * exec header unmodified.
331 */
332 int
333 /*ARGSUSED*/
334 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
335 {
336 int error, i;
337 struct vnode *vp;
338 struct nameidata nd;
339 size_t resid;
340
341 #if 1
342 // grab the absolute pathbuf here before namei() trashes it.
343 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
344 #endif
345 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
346
347 /* first get the vnode */
348 if ((error = namei(&nd)) != 0)
349 return error;
350 epp->ep_vp = vp = nd.ni_vp;
351 #if 0
352 /*
353 * XXX: can't use nd.ni_pnbuf, because although pb contains an
354 * absolute path, nd.ni_pnbuf does not if the path contains symlinks.
355 */
356 /* normally this can't fail */
357 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
358 KASSERT(error == 0);
359 #endif
360
361 #ifdef DIAGNOSTIC
362 /* paranoia (take this out once namei stuff stabilizes) */
363 memset(nd.ni_pnbuf, '~', PATH_MAX);
364 #endif
365
366 /* check access and type */
367 if (vp->v_type != VREG) {
368 error = EACCES;
369 goto bad1;
370 }
371 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
372 goto bad1;
373
374 /* get attributes */
375 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
376 goto bad1;
377
378 /* Check mount point */
379 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
380 error = EACCES;
381 goto bad1;
382 }
383 if (vp->v_mount->mnt_flag & MNT_NOSUID)
384 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
385
386 /* try to open it */
387 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
388 goto bad1;
389
390 /* unlock vp, since we need it unlocked from here on out. */
391 VOP_UNLOCK(vp);
392
393 #if NVERIEXEC > 0
394 error = veriexec_verify(l, vp, epp->ep_resolvedname,
395 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
396 NULL);
397 if (error)
398 goto bad2;
399 #endif /* NVERIEXEC > 0 */
400
401 #ifdef PAX_SEGVGUARD
402 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
403 if (error)
404 goto bad2;
405 #endif /* PAX_SEGVGUARD */
406
407 /* now we have the file, get the exec header */
408 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
409 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
410 if (error)
411 goto bad2;
412 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
413
414 /*
415 * Set up default address space limits. Can be overridden
416 * by individual exec packages.
417 */
418 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
419 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
420
421 /*
422 * set up the vmcmds for creation of the process
423 * address space
424 */
425 error = ENOEXEC;
426 for (i = 0; i < nexecs; i++) {
427 int newerror;
428
429 epp->ep_esch = execsw[i];
430 newerror = (*execsw[i]->es_makecmds)(l, epp);
431
432 if (!newerror) {
433 /* Seems ok: check that entry point is not too high */
434 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
435 #ifdef DIAGNOSTIC
436 printf("%s: rejecting %p due to "
437 "too high entry address (>= %p)\n",
438 __func__, (void *)epp->ep_entry,
439 (void *)epp->ep_vm_maxaddr);
440 #endif
441 error = ENOEXEC;
442 break;
443 }
444 /* Seems ok: check that entry point is not too low */
445 if (epp->ep_entry < epp->ep_vm_minaddr) {
446 #ifdef DIAGNOSTIC
447 printf("%s: rejecting %p due to "
448 "too low entry address (< %p)\n",
449 __func__, (void *)epp->ep_entry,
450 (void *)epp->ep_vm_minaddr);
451 #endif
452 error = ENOEXEC;
453 break;
454 }
455
456 /* check limits */
457 if ((epp->ep_tsize > MAXTSIZ) ||
458 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
459 [RLIMIT_DATA].rlim_cur)) {
460 #ifdef DIAGNOSTIC
461 printf("%s: rejecting due to "
462 "limits (t=%llu > %llu || d=%llu > %llu)\n",
463 __func__,
464 (unsigned long long)epp->ep_tsize,
465 (unsigned long long)MAXTSIZ,
466 (unsigned long long)epp->ep_dsize,
467 (unsigned long long)
468 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
469 #endif
470 error = ENOMEM;
471 break;
472 }
473 return 0;
474 }
475
476 /*
477 * Reset all the fields that may have been modified by the
478 * loader.
479 */
480 KASSERT(epp->ep_emul_arg == NULL);
481 if (epp->ep_emul_root != NULL) {
482 vrele(epp->ep_emul_root);
483 epp->ep_emul_root = NULL;
484 }
485 if (epp->ep_interp != NULL) {
486 vrele(epp->ep_interp);
487 epp->ep_interp = NULL;
488 }
489 epp->ep_pax_flags = 0;
490
491 /* make sure the first "interesting" error code is saved. */
492 if (error == ENOEXEC)
493 error = newerror;
494
495 if (epp->ep_flags & EXEC_DESTR)
496 /* Error from "#!" code, tidied up by recursive call */
497 return error;
498 }
499
500 /* not found, error */
501
502 /*
503 * free any vmspace-creation commands,
504 * and release their references
505 */
506 kill_vmcmds(&epp->ep_vmcmds);
507
508 bad2:
509 /*
510 * close and release the vnode, restore the old one, free the
511 * pathname buf, and punt.
512 */
513 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
514 VOP_CLOSE(vp, FREAD, l->l_cred);
515 vput(vp);
516 return error;
517
518 bad1:
519 /*
520 * free the namei pathname buffer, and put the vnode
521 * (which we don't yet have open).
522 */
523 vput(vp); /* was still locked */
524 return error;
525 }
526
527 #ifdef __MACHINE_STACK_GROWS_UP
528 #define STACK_PTHREADSPACE NBPG
529 #else
530 #define STACK_PTHREADSPACE 0
531 #endif
532
533 static int
534 execve_fetch_element(char * const *array, size_t index, char **value)
535 {
536 return copyin(array + index, value, sizeof(*value));
537 }
538
539 /*
540 * exec system call
541 */
542 int
543 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
544 {
545 /* {
546 syscallarg(const char *) path;
547 syscallarg(char * const *) argp;
548 syscallarg(char * const *) envp;
549 } */
550
551 return execve1(l, SCARG(uap, path), SCARG(uap, argp),
552 SCARG(uap, envp), execve_fetch_element);
553 }
554
555 int
556 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
557 register_t *retval)
558 {
559 /* {
560 syscallarg(int) fd;
561 syscallarg(char * const *) argp;
562 syscallarg(char * const *) envp;
563 } */
564
565 return ENOSYS;
566 }
567
568 /*
569 * Load modules to try and execute an image that we do not understand.
570 * If no execsw entries are present, we load those likely to be needed
571 * in order to run native images only. Otherwise, we autoload all
572 * possible modules that could let us run the binary. XXX lame
573 */
574 static void
575 exec_autoload(void)
576 {
577 #ifdef MODULAR
578 static const char * const native[] = {
579 "exec_elf32",
580 "exec_elf64",
581 "exec_script",
582 NULL
583 };
584 static const char * const compat[] = {
585 "exec_elf32",
586 "exec_elf64",
587 "exec_script",
588 "exec_aout",
589 "exec_coff",
590 "exec_ecoff",
591 "compat_aoutm68k",
592 "compat_netbsd32",
593 "compat_sunos",
594 "compat_sunos32",
595 "compat_ultrix",
596 NULL
597 };
598 char const * const *list;
599 int i;
600
601 list = (nexecs == 0 ? native : compat);
602 for (i = 0; list[i] != NULL; i++) {
603 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
604 continue;
605 }
606 yield();
607 }
608 #endif
609 }
610
611 /*
612 * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
613 * making it absolute in the process, by prepending the current working
614 * directory if it is not. If offs is supplied it will contain the offset
615 * where the original supplied copy of upath starts.
616 */
617 int
618 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
619 struct pathbuf **pbp, size_t *offs)
620 {
621 char *path, *bp;
622 size_t len, tlen;
623 int error;
624 struct cwdinfo *cwdi;
625
626 path = PNBUF_GET();
627 if (seg == UIO_SYSSPACE) {
628 error = copystr(upath, path, MAXPATHLEN, &len);
629 } else {
630 error = copyinstr(upath, path, MAXPATHLEN, &len);
631 }
632 if (error)
633 goto err;
634
635 if (path[0] == '/') {
636 if (offs)
637 *offs = 0;
638 goto out;
639 }
640
641 len++;
642 if (len + 1 >= MAXPATHLEN)
643 goto out;
644 bp = path + MAXPATHLEN - len;
645 memmove(bp, path, len);
646 *(--bp) = '/';
647
648 cwdi = l->l_proc->p_cwdi;
649 rw_enter(&cwdi->cwdi_lock, RW_READER);
650 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
651 GETCWD_CHECK_ACCESS, l);
652 rw_exit(&cwdi->cwdi_lock);
653
654 if (error)
655 goto err;
656 tlen = path + MAXPATHLEN - bp;
657
658 memmove(path, bp, tlen);
659 path[tlen - 1] = '\0';
660 if (offs)
661 *offs = tlen - len;
662 out:
663 *pbp = pathbuf_assimilate(path);
664 return 0;
665 err:
666 PNBUF_PUT(path);
667 return error;
668 }
669
670 vaddr_t
671 exec_vm_minaddr(vaddr_t va_min)
672 {
673 /*
674 * Increase va_min if we don't want NULL to be mappable by the
675 * process.
676 */
677 #define VM_MIN_GUARD PAGE_SIZE
678 if (user_va0_disable && (va_min < VM_MIN_GUARD))
679 return VM_MIN_GUARD;
680 return va_min;
681 }
682
683 static int
684 execve_loadvm(struct lwp *l, const char *path, char * const *args,
685 char * const *envs, execve_fetch_element_t fetch_element,
686 struct execve_data * restrict data)
687 {
688 struct exec_package * const epp = &data->ed_pack;
689 int error;
690 struct proc *p;
691 char *dp;
692 u_int modgen;
693 size_t offs = 0; // XXX: GCC
694
695 KASSERT(data != NULL);
696
697 p = l->l_proc;
698 modgen = 0;
699
700 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
701
702 /*
703 * Check if we have exceeded our number of processes limit.
704 * This is so that we handle the case where a root daemon
705 * forked, ran setuid to become the desired user and is trying
706 * to exec. The obvious place to do the reference counting check
707 * is setuid(), but we don't do the reference counting check there
708 * like other OS's do because then all the programs that use setuid()
709 * must be modified to check the return code of setuid() and exit().
710 * It is dangerous to make setuid() fail, because it fails open and
711 * the program will continue to run as root. If we make it succeed
712 * and return an error code, again we are not enforcing the limit.
713 * The best place to enforce the limit is here, when the process tries
714 * to execute a new image, because eventually the process will need
715 * to call exec in order to do something useful.
716 */
717 retry:
718 if (p->p_flag & PK_SUGID) {
719 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
720 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
721 &p->p_rlimit[RLIMIT_NPROC],
722 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
723 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
724 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
725 return EAGAIN;
726 }
727
728 /*
729 * Drain existing references and forbid new ones. The process
730 * should be left alone until we're done here. This is necessary
731 * to avoid race conditions - e.g. in ptrace() - that might allow
732 * a local user to illicitly obtain elevated privileges.
733 */
734 rw_enter(&p->p_reflock, RW_WRITER);
735
736 /*
737 * Init the namei data to point the file user's program name.
738 * This is done here rather than in check_exec(), so that it's
739 * possible to override this settings if any of makecmd/probe
740 * functions call check_exec() recursively - for example,
741 * see exec_script_makecmds().
742 */
743 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
744 &data->ed_pathbuf, &offs)) != 0)
745 goto clrflg;
746 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
747 data->ed_resolvedpathbuf = PNBUF_GET();
748
749 /*
750 * initialize the fields of the exec package.
751 */
752 epp->ep_kname = data->ed_pathstring + offs;
753 epp->ep_resolvedname = data->ed_resolvedpathbuf;
754 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
755 epp->ep_hdrlen = exec_maxhdrsz;
756 epp->ep_hdrvalid = 0;
757 epp->ep_emul_arg = NULL;
758 epp->ep_emul_arg_free = NULL;
759 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
760 epp->ep_vap = &data->ed_attr;
761 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
762 MD_TOPDOWN_INIT(epp);
763 epp->ep_emul_root = NULL;
764 epp->ep_interp = NULL;
765 epp->ep_esch = NULL;
766 epp->ep_pax_flags = 0;
767 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
768
769 rw_enter(&exec_lock, RW_READER);
770
771 /* see if we can run it. */
772 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
773 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
774 DPRINTF(("%s: check exec failed for %s, error %d\n",
775 __func__, epp->ep_kname, error));
776 }
777 goto freehdr;
778 }
779
780 /* allocate an argument buffer */
781 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
782 KASSERT(data->ed_argp != NULL);
783 dp = data->ed_argp;
784
785 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
786 goto bad;
787 }
788
789 /*
790 * Calculate the new stack size.
791 */
792
793 #ifdef __MACHINE_STACK_GROWS_UP
794 /*
795 * copyargs() fills argc/argv/envp from the lower address even on
796 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
797 * so that _rtld() use it.
798 */
799 #define RTLD_GAP 32
800 #else
801 #define RTLD_GAP 0
802 #endif
803
804 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
805
806 data->ed_argslen = calcargs(data, argenvstrlen);
807
808 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
809
810 if (len > epp->ep_ssize) {
811 /* in effect, compare to initial limit */
812 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
813 error = ENOMEM;
814 goto bad;
815 }
816 /* adjust "active stack depth" for process VSZ */
817 epp->ep_ssize = len;
818
819 return 0;
820
821 bad:
822 /* free the vmspace-creation commands, and release their references */
823 kill_vmcmds(&epp->ep_vmcmds);
824 /* kill any opened file descriptor, if necessary */
825 if (epp->ep_flags & EXEC_HASFD) {
826 epp->ep_flags &= ~EXEC_HASFD;
827 fd_close(epp->ep_fd);
828 }
829 /* close and put the exec'd file */
830 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
831 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
832 vput(epp->ep_vp);
833 pool_put(&exec_pool, data->ed_argp);
834
835 freehdr:
836 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
837 if (epp->ep_emul_root != NULL)
838 vrele(epp->ep_emul_root);
839 if (epp->ep_interp != NULL)
840 vrele(epp->ep_interp);
841
842 rw_exit(&exec_lock);
843
844 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
845 pathbuf_destroy(data->ed_pathbuf);
846 PNBUF_PUT(data->ed_resolvedpathbuf);
847
848 clrflg:
849 rw_exit(&p->p_reflock);
850
851 if (modgen != module_gen && error == ENOEXEC) {
852 modgen = module_gen;
853 exec_autoload();
854 goto retry;
855 }
856
857 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
858 return error;
859 }
860
861 static int
862 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
863 {
864 struct exec_package * const epp = &data->ed_pack;
865 struct proc *p = l->l_proc;
866 struct exec_vmcmd *base_vcp;
867 int error = 0;
868 size_t i;
869
870 /* record proc's vnode, for use by procfs and others */
871 if (p->p_textvp)
872 vrele(p->p_textvp);
873 vref(epp->ep_vp);
874 p->p_textvp = epp->ep_vp;
875
876 /* create the new process's VM space by running the vmcmds */
877 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
878
879 #ifdef TRACE_EXEC
880 DUMPVMCMDS(epp, 0, 0);
881 #endif
882
883 base_vcp = NULL;
884
885 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
886 struct exec_vmcmd *vcp;
887
888 vcp = &epp->ep_vmcmds.evs_cmds[i];
889 if (vcp->ev_flags & VMCMD_RELATIVE) {
890 KASSERTMSG(base_vcp != NULL,
891 "%s: relative vmcmd with no base", __func__);
892 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
893 "%s: illegal base & relative vmcmd", __func__);
894 vcp->ev_addr += base_vcp->ev_addr;
895 }
896 error = (*vcp->ev_proc)(l, vcp);
897 if (error)
898 DUMPVMCMDS(epp, i, error);
899 if (vcp->ev_flags & VMCMD_BASE)
900 base_vcp = vcp;
901 }
902
903 /* free the vmspace-creation commands, and release their references */
904 kill_vmcmds(&epp->ep_vmcmds);
905
906 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
907 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
908 vput(epp->ep_vp);
909
910 /* if an error happened, deallocate and punt */
911 if (error != 0) {
912 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
913 }
914 return error;
915 }
916
917 static void
918 execve_free_data(struct execve_data *data)
919 {
920 struct exec_package * const epp = &data->ed_pack;
921
922 /* free the vmspace-creation commands, and release their references */
923 kill_vmcmds(&epp->ep_vmcmds);
924 /* kill any opened file descriptor, if necessary */
925 if (epp->ep_flags & EXEC_HASFD) {
926 epp->ep_flags &= ~EXEC_HASFD;
927 fd_close(epp->ep_fd);
928 }
929
930 /* close and put the exec'd file */
931 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
932 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
933 vput(epp->ep_vp);
934 pool_put(&exec_pool, data->ed_argp);
935
936 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
937 if (epp->ep_emul_root != NULL)
938 vrele(epp->ep_emul_root);
939 if (epp->ep_interp != NULL)
940 vrele(epp->ep_interp);
941
942 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
943 pathbuf_destroy(data->ed_pathbuf);
944 PNBUF_PUT(data->ed_resolvedpathbuf);
945 }
946
947 static void
948 pathexec(struct proc *p, const char *resolvedname)
949 {
950 KASSERT(resolvedname[0] == '/');
951
952 /* set command name & other accounting info */
953 strlcpy(p->p_comm, strrchr(resolvedname, '/') + 1, sizeof(p->p_comm));
954
955 kmem_strfree(p->p_path);
956 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
957 }
958
959 /* XXX elsewhere */
960 static int
961 credexec(struct lwp *l, struct vattr *attr)
962 {
963 struct proc *p = l->l_proc;
964 int error;
965
966 /*
967 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
968 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
969 * out additional references on the process for the moment.
970 */
971 if ((p->p_slflag & PSL_TRACED) == 0 &&
972
973 (((attr->va_mode & S_ISUID) != 0 &&
974 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
975
976 ((attr->va_mode & S_ISGID) != 0 &&
977 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
978 /*
979 * Mark the process as SUGID before we do
980 * anything that might block.
981 */
982 proc_crmod_enter();
983 proc_crmod_leave(NULL, NULL, true);
984
985 /* Make sure file descriptors 0..2 are in use. */
986 if ((error = fd_checkstd()) != 0) {
987 DPRINTF(("%s: fdcheckstd failed %d\n",
988 __func__, error));
989 return error;
990 }
991
992 /*
993 * Copy the credential so other references don't see our
994 * changes.
995 */
996 l->l_cred = kauth_cred_copy(l->l_cred);
997 #ifdef KTRACE
998 /*
999 * If the persistent trace flag isn't set, turn off.
1000 */
1001 if (p->p_tracep) {
1002 mutex_enter(&ktrace_lock);
1003 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1004 ktrderef(p);
1005 mutex_exit(&ktrace_lock);
1006 }
1007 #endif
1008 if (attr->va_mode & S_ISUID)
1009 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1010 if (attr->va_mode & S_ISGID)
1011 kauth_cred_setegid(l->l_cred, attr->va_gid);
1012 } else {
1013 if (kauth_cred_geteuid(l->l_cred) ==
1014 kauth_cred_getuid(l->l_cred) &&
1015 kauth_cred_getegid(l->l_cred) ==
1016 kauth_cred_getgid(l->l_cred))
1017 p->p_flag &= ~PK_SUGID;
1018 }
1019
1020 /*
1021 * Copy the credential so other references don't see our changes.
1022 * Test to see if this is necessary first, since in the common case
1023 * we won't need a private reference.
1024 */
1025 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1026 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1027 l->l_cred = kauth_cred_copy(l->l_cred);
1028 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1029 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1030 }
1031
1032 /* Update the master credentials. */
1033 if (l->l_cred != p->p_cred) {
1034 kauth_cred_t ocred;
1035
1036 kauth_cred_hold(l->l_cred);
1037 mutex_enter(p->p_lock);
1038 ocred = p->p_cred;
1039 p->p_cred = l->l_cred;
1040 mutex_exit(p->p_lock);
1041 kauth_cred_free(ocred);
1042 }
1043
1044 return 0;
1045 }
1046
1047 static void
1048 emulexec(struct lwp *l, struct exec_package *epp)
1049 {
1050 struct proc *p = l->l_proc;
1051
1052 /* The emulation root will usually have been found when we looked
1053 * for the elf interpreter (or similar), if not look now. */
1054 if (epp->ep_esch->es_emul->e_path != NULL &&
1055 epp->ep_emul_root == NULL)
1056 emul_find_root(l, epp);
1057
1058 /* Any old emulation root got removed by fdcloseexec */
1059 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1060 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1061 rw_exit(&p->p_cwdi->cwdi_lock);
1062 epp->ep_emul_root = NULL;
1063 if (epp->ep_interp != NULL)
1064 vrele(epp->ep_interp);
1065
1066 /*
1067 * Call emulation specific exec hook. This can setup per-process
1068 * p->p_emuldata or do any other per-process stuff an emulation needs.
1069 *
1070 * If we are executing process of different emulation than the
1071 * original forked process, call e_proc_exit() of the old emulation
1072 * first, then e_proc_exec() of new emulation. If the emulation is
1073 * same, the exec hook code should deallocate any old emulation
1074 * resources held previously by this process.
1075 */
1076 if (p->p_emul && p->p_emul->e_proc_exit
1077 && p->p_emul != epp->ep_esch->es_emul)
1078 (*p->p_emul->e_proc_exit)(p);
1079
1080 /*
1081 * This is now LWP 1.
1082 */
1083 /* XXX elsewhere */
1084 mutex_enter(p->p_lock);
1085 p->p_nlwpid = 1;
1086 l->l_lid = 1;
1087 mutex_exit(p->p_lock);
1088
1089 /*
1090 * Call exec hook. Emulation code may NOT store reference to anything
1091 * from &pack.
1092 */
1093 if (epp->ep_esch->es_emul->e_proc_exec)
1094 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1095
1096 /* update p_emul, the old value is no longer needed */
1097 p->p_emul = epp->ep_esch->es_emul;
1098
1099 /* ...and the same for p_execsw */
1100 p->p_execsw = epp->ep_esch;
1101
1102 #ifdef __HAVE_SYSCALL_INTERN
1103 (*p->p_emul->e_syscall_intern)(p);
1104 #endif
1105 ktremul();
1106 }
1107
1108 static int
1109 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1110 bool no_local_exec_lock, bool is_spawn)
1111 {
1112 struct exec_package * const epp = &data->ed_pack;
1113 int error = 0;
1114 struct proc *p;
1115
1116 /*
1117 * In case of a posix_spawn operation, the child doing the exec
1118 * might not hold the reader lock on exec_lock, but the parent
1119 * will do this instead.
1120 */
1121 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1122 KASSERT(!no_local_exec_lock || is_spawn);
1123 KASSERT(data != NULL);
1124
1125 p = l->l_proc;
1126
1127 /* Get rid of other LWPs. */
1128 if (p->p_nlwps > 1) {
1129 mutex_enter(p->p_lock);
1130 exit_lwps(l);
1131 mutex_exit(p->p_lock);
1132 }
1133 KDASSERT(p->p_nlwps == 1);
1134
1135 /* Destroy any lwpctl info. */
1136 if (p->p_lwpctl != NULL)
1137 lwp_ctl_exit();
1138
1139 /* Remove POSIX timers */
1140 timers_free(p, TIMERS_POSIX);
1141
1142 /* Set the PaX flags. */
1143 pax_set_flags(epp, p);
1144
1145 /*
1146 * Do whatever is necessary to prepare the address space
1147 * for remapping. Note that this might replace the current
1148 * vmspace with another!
1149 */
1150 if (is_spawn)
1151 uvmspace_spawn(l, epp->ep_vm_minaddr,
1152 epp->ep_vm_maxaddr,
1153 epp->ep_flags & EXEC_TOPDOWN_VM);
1154 else
1155 uvmspace_exec(l, epp->ep_vm_minaddr,
1156 epp->ep_vm_maxaddr,
1157 epp->ep_flags & EXEC_TOPDOWN_VM);
1158
1159 struct vmspace *vm;
1160 vm = p->p_vmspace;
1161 vm->vm_taddr = (void *)epp->ep_taddr;
1162 vm->vm_tsize = btoc(epp->ep_tsize);
1163 vm->vm_daddr = (void*)epp->ep_daddr;
1164 vm->vm_dsize = btoc(epp->ep_dsize);
1165 vm->vm_ssize = btoc(epp->ep_ssize);
1166 vm->vm_issize = 0;
1167 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1168 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1169
1170 pax_aslr_init_vm(l, vm, epp);
1171
1172 /* Now map address space. */
1173 error = execve_dovmcmds(l, data);
1174 if (error != 0)
1175 goto exec_abort;
1176
1177 pathexec(p, epp->ep_resolvedname);
1178
1179 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1180
1181 error = copyoutargs(data, l, newstack);
1182 if (error != 0)
1183 goto exec_abort;
1184
1185 cwdexec(p);
1186 fd_closeexec(); /* handle close on exec */
1187
1188 if (__predict_false(ktrace_on))
1189 fd_ktrexecfd();
1190
1191 execsigs(p); /* reset caught signals */
1192
1193 mutex_enter(p->p_lock);
1194 l->l_ctxlink = NULL; /* reset ucontext link */
1195 p->p_acflag &= ~AFORK;
1196 p->p_flag |= PK_EXEC;
1197 mutex_exit(p->p_lock);
1198
1199 /*
1200 * Stop profiling.
1201 */
1202 if ((p->p_stflag & PST_PROFIL) != 0) {
1203 mutex_spin_enter(&p->p_stmutex);
1204 stopprofclock(p);
1205 mutex_spin_exit(&p->p_stmutex);
1206 }
1207
1208 /*
1209 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1210 * exited and exec()/exit() are the only places it will be cleared.
1211 */
1212 if ((p->p_lflag & PL_PPWAIT) != 0) {
1213 lwp_t *lp;
1214
1215 mutex_enter(proc_lock);
1216 lp = p->p_vforklwp;
1217 p->p_vforklwp = NULL;
1218
1219 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1220 p->p_lflag &= ~PL_PPWAIT;
1221 lp->l_vforkwaiting = false;
1222
1223 cv_broadcast(&lp->l_waitcv);
1224 mutex_exit(proc_lock);
1225 }
1226
1227 error = credexec(l, &data->ed_attr);
1228 if (error)
1229 goto exec_abort;
1230
1231 #if defined(__HAVE_RAS)
1232 /*
1233 * Remove all RASs from the address space.
1234 */
1235 ras_purgeall();
1236 #endif
1237
1238 doexechooks(p);
1239
1240 /*
1241 * Set initial SP at the top of the stack.
1242 *
1243 * Note that on machines where stack grows up (e.g. hppa), SP points to
1244 * the end of arg/env strings. Userland guesses the address of argc
1245 * via ps_strings::ps_argvstr.
1246 */
1247
1248 /* Setup new registers and do misc. setup. */
1249 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1250 if (epp->ep_esch->es_setregs)
1251 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1252
1253 /* Provide a consistent LWP private setting */
1254 (void)lwp_setprivate(l, NULL);
1255
1256 /* Discard all PCU state; need to start fresh */
1257 pcu_discard_all(l);
1258
1259 /* map the process's signal trampoline code */
1260 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1261 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1262 goto exec_abort;
1263 }
1264
1265 pool_put(&exec_pool, data->ed_argp);
1266
1267 /* notify others that we exec'd */
1268 KNOTE(&p->p_klist, NOTE_EXEC);
1269
1270 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1271
1272 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1273
1274 emulexec(l, epp);
1275
1276 /* Allow new references from the debugger/procfs. */
1277 rw_exit(&p->p_reflock);
1278 if (!no_local_exec_lock)
1279 rw_exit(&exec_lock);
1280
1281 mutex_enter(proc_lock);
1282
1283 /* posix_spawn(3) reports a single event with implied exec(3) */
1284 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1285 mutex_enter(p->p_lock);
1286 eventswitch(TRAP_EXEC);
1287 mutex_enter(proc_lock);
1288 }
1289
1290 if (p->p_sflag & PS_STOPEXEC) {
1291 ksiginfoq_t kq;
1292
1293 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1294 p->p_pptr->p_nstopchild++;
1295 p->p_waited = 0;
1296 mutex_enter(p->p_lock);
1297 ksiginfo_queue_init(&kq);
1298 sigclearall(p, &contsigmask, &kq);
1299 lwp_lock(l);
1300 l->l_stat = LSSTOP;
1301 p->p_stat = SSTOP;
1302 p->p_nrlwps--;
1303 lwp_unlock(l);
1304 mutex_exit(p->p_lock);
1305 mutex_exit(proc_lock);
1306 lwp_lock(l);
1307 mi_switch(l);
1308 ksiginfo_queue_drain(&kq);
1309 KERNEL_LOCK(l->l_biglocks, l);
1310 } else {
1311 mutex_exit(proc_lock);
1312 }
1313
1314 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1315 pathbuf_destroy(data->ed_pathbuf);
1316 PNBUF_PUT(data->ed_resolvedpathbuf);
1317 #ifdef TRACE_EXEC
1318 DPRINTF(("%s finished\n", __func__));
1319 #endif
1320 return EJUSTRETURN;
1321
1322 exec_abort:
1323 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1324 rw_exit(&p->p_reflock);
1325 if (!no_local_exec_lock)
1326 rw_exit(&exec_lock);
1327
1328 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1329 pathbuf_destroy(data->ed_pathbuf);
1330 PNBUF_PUT(data->ed_resolvedpathbuf);
1331
1332 /*
1333 * the old process doesn't exist anymore. exit gracefully.
1334 * get rid of the (new) address space we have created, if any, get rid
1335 * of our namei data and vnode, and exit noting failure
1336 */
1337 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1338 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1339
1340 exec_free_emul_arg(epp);
1341 pool_put(&exec_pool, data->ed_argp);
1342 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1343 if (epp->ep_emul_root != NULL)
1344 vrele(epp->ep_emul_root);
1345 if (epp->ep_interp != NULL)
1346 vrele(epp->ep_interp);
1347
1348 /* Acquire the sched-state mutex (exit1() will release it). */
1349 if (!is_spawn) {
1350 mutex_enter(p->p_lock);
1351 exit1(l, error, SIGABRT);
1352 }
1353
1354 return error;
1355 }
1356
1357 int
1358 execve1(struct lwp *l, const char *path, char * const *args,
1359 char * const *envs, execve_fetch_element_t fetch_element)
1360 {
1361 struct execve_data data;
1362 int error;
1363
1364 error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1365 if (error)
1366 return error;
1367 error = execve_runproc(l, &data, false, false);
1368 return error;
1369 }
1370
1371 static size_t
1372 fromptrsz(const struct exec_package *epp)
1373 {
1374 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1375 }
1376
1377 static size_t
1378 ptrsz(const struct exec_package *epp)
1379 {
1380 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1381 }
1382
1383 static size_t
1384 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1385 {
1386 struct exec_package * const epp = &data->ed_pack;
1387
1388 const size_t nargenvptrs =
1389 1 + /* long argc */
1390 data->ed_argc + /* char *argv[] */
1391 1 + /* \0 */
1392 data->ed_envc + /* char *env[] */
1393 1; /* \0 */
1394
1395 return (nargenvptrs * ptrsz(epp)) /* pointers */
1396 + argenvstrlen /* strings */
1397 + epp->ep_esch->es_arglen; /* auxinfo */
1398 }
1399
1400 static size_t
1401 calcstack(struct execve_data * restrict data, const size_t gaplen)
1402 {
1403 struct exec_package * const epp = &data->ed_pack;
1404
1405 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1406 epp->ep_esch->es_emul->e_sigcode;
1407
1408 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1409 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1410
1411 const size_t sigcode_psstr_sz =
1412 data->ed_szsigcode + /* sigcode */
1413 data->ed_ps_strings_sz + /* ps_strings */
1414 STACK_PTHREADSPACE; /* pthread space */
1415
1416 const size_t stacklen =
1417 data->ed_argslen +
1418 gaplen +
1419 sigcode_psstr_sz;
1420
1421 /* make the stack "safely" aligned */
1422 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1423 }
1424
1425 static int
1426 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1427 char * const newstack)
1428 {
1429 struct exec_package * const epp = &data->ed_pack;
1430 struct proc *p = l->l_proc;
1431 int error;
1432
1433 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1434
1435 /* remember information about the process */
1436 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1437 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1438
1439 /*
1440 * Allocate the stack address passed to the newly execve()'ed process.
1441 *
1442 * The new stack address will be set to the SP (stack pointer) register
1443 * in setregs().
1444 */
1445
1446 char *newargs = STACK_ALLOC(
1447 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1448
1449 error = (*epp->ep_esch->es_copyargs)(l, epp,
1450 &data->ed_arginfo, &newargs, data->ed_argp);
1451
1452 if (error) {
1453 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1454 return error;
1455 }
1456
1457 error = copyoutpsstrs(data, p);
1458 if (error != 0)
1459 return error;
1460
1461 return 0;
1462 }
1463
1464 static int
1465 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1466 {
1467 struct exec_package * const epp = &data->ed_pack;
1468 struct ps_strings32 arginfo32;
1469 void *aip;
1470 int error;
1471
1472 /* fill process ps_strings info */
1473 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1474 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1475
1476 if (epp->ep_flags & EXEC_32) {
1477 aip = &arginfo32;
1478 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1479 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1480 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1481 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1482 } else
1483 aip = &data->ed_arginfo;
1484
1485 /* copy out the process's ps_strings structure */
1486 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1487 != 0) {
1488 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1489 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1490 return error;
1491 }
1492
1493 return 0;
1494 }
1495
1496 static int
1497 copyinargs(struct execve_data * restrict data, char * const *args,
1498 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1499 {
1500 struct exec_package * const epp = &data->ed_pack;
1501 char *dp;
1502 size_t i;
1503 int error;
1504
1505 dp = *dpp;
1506
1507 data->ed_argc = 0;
1508
1509 /* copy the fake args list, if there's one, freeing it as we go */
1510 if (epp->ep_flags & EXEC_HASARGL) {
1511 struct exec_fakearg *fa = epp->ep_fa;
1512
1513 while (fa->fa_arg != NULL) {
1514 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1515 size_t len;
1516
1517 len = strlcpy(dp, fa->fa_arg, maxlen);
1518 /* Count NUL into len. */
1519 if (len < maxlen)
1520 len++;
1521 else {
1522 while (fa->fa_arg != NULL) {
1523 kmem_free(fa->fa_arg, fa->fa_len);
1524 fa++;
1525 }
1526 kmem_free(epp->ep_fa, epp->ep_fa_len);
1527 epp->ep_flags &= ~EXEC_HASARGL;
1528 return E2BIG;
1529 }
1530 ktrexecarg(fa->fa_arg, len - 1);
1531 dp += len;
1532
1533 kmem_free(fa->fa_arg, fa->fa_len);
1534 fa++;
1535 data->ed_argc++;
1536 }
1537 kmem_free(epp->ep_fa, epp->ep_fa_len);
1538 epp->ep_flags &= ~EXEC_HASARGL;
1539 }
1540
1541 /*
1542 * Read and count argument strings from user.
1543 */
1544
1545 if (args == NULL) {
1546 DPRINTF(("%s: null args\n", __func__));
1547 return EINVAL;
1548 }
1549 if (epp->ep_flags & EXEC_SKIPARG)
1550 args = (const void *)((const char *)args + fromptrsz(epp));
1551 i = 0;
1552 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1553 if (error != 0) {
1554 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1555 return error;
1556 }
1557 data->ed_argc += i;
1558
1559 /*
1560 * Read and count environment strings from user.
1561 */
1562
1563 data->ed_envc = 0;
1564 /* environment need not be there */
1565 if (envs == NULL)
1566 goto done;
1567 i = 0;
1568 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1569 if (error != 0) {
1570 DPRINTF(("%s: copyin env %d\n", __func__, error));
1571 return error;
1572 }
1573 data->ed_envc += i;
1574
1575 done:
1576 *dpp = dp;
1577
1578 return 0;
1579 }
1580
1581 static int
1582 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1583 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1584 void (*ktr)(const void *, size_t))
1585 {
1586 char *dp, *sp;
1587 size_t i;
1588 int error;
1589
1590 dp = *dpp;
1591
1592 i = 0;
1593 while (1) {
1594 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1595 size_t len;
1596
1597 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1598 return error;
1599 }
1600 if (!sp)
1601 break;
1602 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1603 if (error == ENAMETOOLONG)
1604 error = E2BIG;
1605 return error;
1606 }
1607 if (__predict_false(ktrace_on))
1608 (*ktr)(dp, len - 1);
1609 dp += len;
1610 i++;
1611 }
1612
1613 *dpp = dp;
1614 *ip = i;
1615
1616 return 0;
1617 }
1618
1619 /*
1620 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1621 * Those strings are located just after auxinfo.
1622 */
1623 int
1624 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1625 char **stackp, void *argp)
1626 {
1627 char **cpp, *dp, *sp;
1628 size_t len;
1629 void *nullp;
1630 long argc, envc;
1631 int error;
1632
1633 cpp = (char **)*stackp;
1634 nullp = NULL;
1635 argc = arginfo->ps_nargvstr;
1636 envc = arginfo->ps_nenvstr;
1637
1638 /* argc on stack is long */
1639 CTASSERT(sizeof(*cpp) == sizeof(argc));
1640
1641 dp = (char *)(cpp +
1642 1 + /* long argc */
1643 argc + /* char *argv[] */
1644 1 + /* \0 */
1645 envc + /* char *env[] */
1646 1) + /* \0 */
1647 pack->ep_esch->es_arglen; /* auxinfo */
1648 sp = argp;
1649
1650 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1651 COPYPRINTF("", cpp - 1, sizeof(argc));
1652 return error;
1653 }
1654
1655 /* XXX don't copy them out, remap them! */
1656 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1657
1658 for (; --argc >= 0; sp += len, dp += len) {
1659 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1660 COPYPRINTF("", cpp - 1, sizeof(dp));
1661 return error;
1662 }
1663 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1664 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1665 return error;
1666 }
1667 }
1668
1669 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1670 COPYPRINTF("", cpp - 1, sizeof(nullp));
1671 return error;
1672 }
1673
1674 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1675
1676 for (; --envc >= 0; sp += len, dp += len) {
1677 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1678 COPYPRINTF("", cpp - 1, sizeof(dp));
1679 return error;
1680 }
1681 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1682 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1683 return error;
1684 }
1685
1686 }
1687
1688 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1689 COPYPRINTF("", cpp - 1, sizeof(nullp));
1690 return error;
1691 }
1692
1693 *stackp = (char *)cpp;
1694 return 0;
1695 }
1696
1697
1698 /*
1699 * Add execsw[] entries.
1700 */
1701 int
1702 exec_add(struct execsw *esp, int count)
1703 {
1704 struct exec_entry *it;
1705 int i;
1706
1707 if (count == 0) {
1708 return 0;
1709 }
1710
1711 /* Check for duplicates. */
1712 rw_enter(&exec_lock, RW_WRITER);
1713 for (i = 0; i < count; i++) {
1714 LIST_FOREACH(it, &ex_head, ex_list) {
1715 /* assume unique (makecmds, probe_func, emulation) */
1716 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1717 it->ex_sw->u.elf_probe_func ==
1718 esp[i].u.elf_probe_func &&
1719 it->ex_sw->es_emul == esp[i].es_emul) {
1720 rw_exit(&exec_lock);
1721 return EEXIST;
1722 }
1723 }
1724 }
1725
1726 /* Allocate new entries. */
1727 for (i = 0; i < count; i++) {
1728 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1729 it->ex_sw = &esp[i];
1730 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1731 }
1732
1733 /* update execsw[] */
1734 exec_init(0);
1735 rw_exit(&exec_lock);
1736 return 0;
1737 }
1738
1739 /*
1740 * Remove execsw[] entry.
1741 */
1742 int
1743 exec_remove(struct execsw *esp, int count)
1744 {
1745 struct exec_entry *it, *next;
1746 int i;
1747 const struct proclist_desc *pd;
1748 proc_t *p;
1749
1750 if (count == 0) {
1751 return 0;
1752 }
1753
1754 /* Abort if any are busy. */
1755 rw_enter(&exec_lock, RW_WRITER);
1756 for (i = 0; i < count; i++) {
1757 mutex_enter(proc_lock);
1758 for (pd = proclists; pd->pd_list != NULL; pd++) {
1759 PROCLIST_FOREACH(p, pd->pd_list) {
1760 if (p->p_execsw == &esp[i]) {
1761 mutex_exit(proc_lock);
1762 rw_exit(&exec_lock);
1763 return EBUSY;
1764 }
1765 }
1766 }
1767 mutex_exit(proc_lock);
1768 }
1769
1770 /* None are busy, so remove them all. */
1771 for (i = 0; i < count; i++) {
1772 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1773 next = LIST_NEXT(it, ex_list);
1774 if (it->ex_sw == &esp[i]) {
1775 LIST_REMOVE(it, ex_list);
1776 kmem_free(it, sizeof(*it));
1777 break;
1778 }
1779 }
1780 }
1781
1782 /* update execsw[] */
1783 exec_init(0);
1784 rw_exit(&exec_lock);
1785 return 0;
1786 }
1787
1788 /*
1789 * Initialize exec structures. If init_boot is true, also does necessary
1790 * one-time initialization (it's called from main() that way).
1791 * Once system is multiuser, this should be called with exec_lock held,
1792 * i.e. via exec_{add|remove}().
1793 */
1794 int
1795 exec_init(int init_boot)
1796 {
1797 const struct execsw **sw;
1798 struct exec_entry *ex;
1799 SLIST_HEAD(,exec_entry) first;
1800 SLIST_HEAD(,exec_entry) any;
1801 SLIST_HEAD(,exec_entry) last;
1802 int i, sz;
1803
1804 if (init_boot) {
1805 /* do one-time initializations */
1806 vaddr_t vmin = 0, vmax;
1807
1808 rw_init(&exec_lock);
1809 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1810 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1811 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1812 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1813 "execargs", &exec_palloc, IPL_NONE);
1814 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1815 } else {
1816 KASSERT(rw_write_held(&exec_lock));
1817 }
1818
1819 /* Sort each entry onto the appropriate queue. */
1820 SLIST_INIT(&first);
1821 SLIST_INIT(&any);
1822 SLIST_INIT(&last);
1823 sz = 0;
1824 LIST_FOREACH(ex, &ex_head, ex_list) {
1825 switch(ex->ex_sw->es_prio) {
1826 case EXECSW_PRIO_FIRST:
1827 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1828 break;
1829 case EXECSW_PRIO_ANY:
1830 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1831 break;
1832 case EXECSW_PRIO_LAST:
1833 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1834 break;
1835 default:
1836 panic("%s", __func__);
1837 break;
1838 }
1839 sz++;
1840 }
1841
1842 /*
1843 * Create new execsw[]. Ensure we do not try a zero-sized
1844 * allocation.
1845 */
1846 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1847 i = 0;
1848 SLIST_FOREACH(ex, &first, ex_slist) {
1849 sw[i++] = ex->ex_sw;
1850 }
1851 SLIST_FOREACH(ex, &any, ex_slist) {
1852 sw[i++] = ex->ex_sw;
1853 }
1854 SLIST_FOREACH(ex, &last, ex_slist) {
1855 sw[i++] = ex->ex_sw;
1856 }
1857
1858 /* Replace old execsw[] and free used memory. */
1859 if (execsw != NULL) {
1860 kmem_free(__UNCONST(execsw),
1861 nexecs * sizeof(struct execsw *) + 1);
1862 }
1863 execsw = sw;
1864 nexecs = sz;
1865
1866 /* Figure out the maximum size of an exec header. */
1867 exec_maxhdrsz = sizeof(int);
1868 for (i = 0; i < nexecs; i++) {
1869 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1870 exec_maxhdrsz = execsw[i]->es_hdrsz;
1871 }
1872
1873 return 0;
1874 }
1875
1876 static int
1877 exec_sigcode_map(struct proc *p, const struct emul *e)
1878 {
1879 vaddr_t va;
1880 vsize_t sz;
1881 int error;
1882 struct uvm_object *uobj;
1883
1884 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1885
1886 if (e->e_sigobject == NULL || sz == 0) {
1887 return 0;
1888 }
1889
1890 /*
1891 * If we don't have a sigobject for this emulation, create one.
1892 *
1893 * sigobject is an anonymous memory object (just like SYSV shared
1894 * memory) that we keep a permanent reference to and that we map
1895 * in all processes that need this sigcode. The creation is simple,
1896 * we create an object, add a permanent reference to it, map it in
1897 * kernel space, copy out the sigcode to it and unmap it.
1898 * We map it with PROT_READ|PROT_EXEC into the process just
1899 * the way sys_mmap() would map it.
1900 */
1901
1902 uobj = *e->e_sigobject;
1903 if (uobj == NULL) {
1904 mutex_enter(&sigobject_lock);
1905 if ((uobj = *e->e_sigobject) == NULL) {
1906 uobj = uao_create(sz, 0);
1907 (*uobj->pgops->pgo_reference)(uobj);
1908 va = vm_map_min(kernel_map);
1909 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1910 uobj, 0, 0,
1911 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1912 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1913 printf("kernel mapping failed %d\n", error);
1914 (*uobj->pgops->pgo_detach)(uobj);
1915 mutex_exit(&sigobject_lock);
1916 return error;
1917 }
1918 memcpy((void *)va, e->e_sigcode, sz);
1919 #ifdef PMAP_NEED_PROCWR
1920 pmap_procwr(&proc0, va, sz);
1921 #endif
1922 uvm_unmap(kernel_map, va, va + round_page(sz));
1923 *e->e_sigobject = uobj;
1924 }
1925 mutex_exit(&sigobject_lock);
1926 }
1927
1928 /* Just a hint to uvm_map where to put it. */
1929 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1930 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1931
1932 #ifdef __alpha__
1933 /*
1934 * Tru64 puts /sbin/loader at the end of user virtual memory,
1935 * which causes the above calculation to put the sigcode at
1936 * an invalid address. Put it just below the text instead.
1937 */
1938 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1939 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1940 }
1941 #endif
1942
1943 (*uobj->pgops->pgo_reference)(uobj);
1944 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1945 uobj, 0, 0,
1946 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1947 UVM_ADV_RANDOM, 0));
1948 if (error) {
1949 DPRINTF(("%s, %d: map %p "
1950 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1951 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1952 va, error));
1953 (*uobj->pgops->pgo_detach)(uobj);
1954 return error;
1955 }
1956 p->p_sigctx.ps_sigcode = (void *)va;
1957 return 0;
1958 }
1959
1960 /*
1961 * Release a refcount on spawn_exec_data and destroy memory, if this
1962 * was the last one.
1963 */
1964 static void
1965 spawn_exec_data_release(struct spawn_exec_data *data)
1966 {
1967 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1968 return;
1969
1970 cv_destroy(&data->sed_cv_child_ready);
1971 mutex_destroy(&data->sed_mtx_child);
1972
1973 if (data->sed_actions)
1974 posix_spawn_fa_free(data->sed_actions,
1975 data->sed_actions->len);
1976 if (data->sed_attrs)
1977 kmem_free(data->sed_attrs,
1978 sizeof(*data->sed_attrs));
1979 kmem_free(data, sizeof(*data));
1980 }
1981
1982 /*
1983 * A child lwp of a posix_spawn operation starts here and ends up in
1984 * cpu_spawn_return, dealing with all filedescriptor and scheduler
1985 * manipulations in between.
1986 * The parent waits for the child, as it is not clear whether the child
1987 * will be able to acquire its own exec_lock. If it can, the parent can
1988 * be released early and continue running in parallel. If not (or if the
1989 * magic debug flag is passed in the scheduler attribute struct), the
1990 * child rides on the parent's exec lock until it is ready to return to
1991 * to userland - and only then releases the parent. This method loses
1992 * concurrency, but improves error reporting.
1993 */
1994 static void
1995 spawn_return(void *arg)
1996 {
1997 struct spawn_exec_data *spawn_data = arg;
1998 struct lwp *l = curlwp;
1999 struct proc *p = l->l_proc;
2000 int error, newfd;
2001 int ostat;
2002 size_t i;
2003 const struct posix_spawn_file_actions_entry *fae;
2004 pid_t ppid;
2005 register_t retval;
2006 bool have_reflock;
2007 bool parent_is_waiting = true;
2008
2009 /*
2010 * Check if we can release parent early.
2011 * We either need to have no sed_attrs, or sed_attrs does not
2012 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2013 * safe access to the parent proc (passed in sed_parent).
2014 * We then try to get the exec_lock, and only if that works, we can
2015 * release the parent here already.
2016 */
2017 ppid = spawn_data->sed_parent->p_pid;
2018 if ((!spawn_data->sed_attrs
2019 || (spawn_data->sed_attrs->sa_flags
2020 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2021 && rw_tryenter(&exec_lock, RW_READER)) {
2022 parent_is_waiting = false;
2023 mutex_enter(&spawn_data->sed_mtx_child);
2024 cv_signal(&spawn_data->sed_cv_child_ready);
2025 mutex_exit(&spawn_data->sed_mtx_child);
2026 }
2027
2028 /* don't allow debugger access yet */
2029 rw_enter(&p->p_reflock, RW_WRITER);
2030 have_reflock = true;
2031
2032 error = 0;
2033 /* handle posix_spawn_file_actions */
2034 if (spawn_data->sed_actions != NULL) {
2035 for (i = 0; i < spawn_data->sed_actions->len; i++) {
2036 fae = &spawn_data->sed_actions->fae[i];
2037 switch (fae->fae_action) {
2038 case FAE_OPEN:
2039 if (fd_getfile(fae->fae_fildes) != NULL) {
2040 error = fd_close(fae->fae_fildes);
2041 if (error)
2042 break;
2043 }
2044 error = fd_open(fae->fae_path, fae->fae_oflag,
2045 fae->fae_mode, &newfd);
2046 if (error)
2047 break;
2048 if (newfd != fae->fae_fildes) {
2049 error = dodup(l, newfd,
2050 fae->fae_fildes, 0, &retval);
2051 if (fd_getfile(newfd) != NULL)
2052 fd_close(newfd);
2053 }
2054 break;
2055 case FAE_DUP2:
2056 error = dodup(l, fae->fae_fildes,
2057 fae->fae_newfildes, 0, &retval);
2058 break;
2059 case FAE_CLOSE:
2060 if (fd_getfile(fae->fae_fildes) == NULL) {
2061 error = EBADF;
2062 break;
2063 }
2064 error = fd_close(fae->fae_fildes);
2065 break;
2066 }
2067 if (error)
2068 goto report_error;
2069 }
2070 }
2071
2072 /* handle posix_spawnattr */
2073 if (spawn_data->sed_attrs != NULL) {
2074 struct sigaction sigact;
2075 sigact._sa_u._sa_handler = SIG_DFL;
2076 sigact.sa_flags = 0;
2077
2078 /*
2079 * set state to SSTOP so that this proc can be found by pid.
2080 * see proc_enterprp, do_sched_setparam below
2081 */
2082 mutex_enter(proc_lock);
2083 /*
2084 * p_stat should be SACTIVE, so we need to adjust the
2085 * parent's p_nstopchild here. For safety, just make
2086 * we're on the good side of SDEAD before we adjust.
2087 */
2088 ostat = p->p_stat;
2089 KASSERT(ostat < SSTOP);
2090 p->p_stat = SSTOP;
2091 p->p_waited = 0;
2092 p->p_pptr->p_nstopchild++;
2093 mutex_exit(proc_lock);
2094
2095 /* Set process group */
2096 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2097 pid_t mypid = p->p_pid,
2098 pgrp = spawn_data->sed_attrs->sa_pgroup;
2099
2100 if (pgrp == 0)
2101 pgrp = mypid;
2102
2103 error = proc_enterpgrp(spawn_data->sed_parent,
2104 mypid, pgrp, false);
2105 if (error)
2106 goto report_error_stopped;
2107 }
2108
2109 /* Set scheduler policy */
2110 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2111 error = do_sched_setparam(p->p_pid, 0,
2112 spawn_data->sed_attrs->sa_schedpolicy,
2113 &spawn_data->sed_attrs->sa_schedparam);
2114 else if (spawn_data->sed_attrs->sa_flags
2115 & POSIX_SPAWN_SETSCHEDPARAM) {
2116 error = do_sched_setparam(ppid, 0,
2117 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2118 }
2119 if (error)
2120 goto report_error_stopped;
2121
2122 /* Reset user ID's */
2123 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2124 error = do_setresuid(l, -1,
2125 kauth_cred_getgid(l->l_cred), -1,
2126 ID_E_EQ_R | ID_E_EQ_S);
2127 if (error)
2128 goto report_error_stopped;
2129 error = do_setresuid(l, -1,
2130 kauth_cred_getuid(l->l_cred), -1,
2131 ID_E_EQ_R | ID_E_EQ_S);
2132 if (error)
2133 goto report_error_stopped;
2134 }
2135
2136 /* Set signal masks/defaults */
2137 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2138 mutex_enter(p->p_lock);
2139 error = sigprocmask1(l, SIG_SETMASK,
2140 &spawn_data->sed_attrs->sa_sigmask, NULL);
2141 mutex_exit(p->p_lock);
2142 if (error)
2143 goto report_error_stopped;
2144 }
2145
2146 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2147 /*
2148 * The following sigaction call is using a sigaction
2149 * version 0 trampoline which is in the compatibility
2150 * code only. This is not a problem because for SIG_DFL
2151 * and SIG_IGN, the trampolines are now ignored. If they
2152 * were not, this would be a problem because we are
2153 * holding the exec_lock, and the compat code needs
2154 * to do the same in order to replace the trampoline
2155 * code of the process.
2156 */
2157 for (i = 1; i <= NSIG; i++) {
2158 if (sigismember(
2159 &spawn_data->sed_attrs->sa_sigdefault, i))
2160 sigaction1(l, i, &sigact, NULL, NULL,
2161 0);
2162 }
2163 }
2164 mutex_enter(proc_lock);
2165 p->p_stat = ostat;
2166 p->p_pptr->p_nstopchild--;
2167 mutex_exit(proc_lock);
2168 }
2169
2170 /* now do the real exec */
2171 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2172 true);
2173 have_reflock = false;
2174 if (error == EJUSTRETURN)
2175 error = 0;
2176 else if (error)
2177 goto report_error;
2178
2179 if (parent_is_waiting) {
2180 mutex_enter(&spawn_data->sed_mtx_child);
2181 cv_signal(&spawn_data->sed_cv_child_ready);
2182 mutex_exit(&spawn_data->sed_mtx_child);
2183 }
2184
2185 /* release our refcount on the data */
2186 spawn_exec_data_release(spawn_data);
2187
2188 if (p->p_slflag & PSL_TRACED) {
2189 /* Paranoid check */
2190 mutex_enter(proc_lock);
2191 if (!(p->p_slflag & PSL_TRACED)) {
2192 mutex_exit(proc_lock);
2193 goto cpu_return;
2194 }
2195
2196 mutex_enter(p->p_lock);
2197 eventswitch(TRAP_CHLD);
2198 }
2199
2200 cpu_return:
2201 /* and finally: leave to userland for the first time */
2202 cpu_spawn_return(l);
2203
2204 /* NOTREACHED */
2205 return;
2206
2207 report_error_stopped:
2208 mutex_enter(proc_lock);
2209 p->p_stat = ostat;
2210 p->p_pptr->p_nstopchild--;
2211 mutex_exit(proc_lock);
2212 report_error:
2213 if (have_reflock) {
2214 /*
2215 * We have not passed through execve_runproc(),
2216 * which would have released the p_reflock and also
2217 * taken ownership of the sed_exec part of spawn_data,
2218 * so release/free both here.
2219 */
2220 rw_exit(&p->p_reflock);
2221 execve_free_data(&spawn_data->sed_exec);
2222 }
2223
2224 if (parent_is_waiting) {
2225 /* pass error to parent */
2226 mutex_enter(&spawn_data->sed_mtx_child);
2227 spawn_data->sed_error = error;
2228 cv_signal(&spawn_data->sed_cv_child_ready);
2229 mutex_exit(&spawn_data->sed_mtx_child);
2230 } else {
2231 rw_exit(&exec_lock);
2232 }
2233
2234 /* release our refcount on the data */
2235 spawn_exec_data_release(spawn_data);
2236
2237 /* done, exit */
2238 mutex_enter(p->p_lock);
2239 /*
2240 * Posix explicitly asks for an exit code of 127 if we report
2241 * errors from the child process - so, unfortunately, there
2242 * is no way to report a more exact error code.
2243 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2244 * flag bit in the attrp argument to posix_spawn(2), see above.
2245 */
2246 exit1(l, 127, 0);
2247 }
2248
2249 void
2250 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2251 {
2252
2253 for (size_t i = 0; i < len; i++) {
2254 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2255 if (fae->fae_action != FAE_OPEN)
2256 continue;
2257 kmem_strfree(fae->fae_path);
2258 }
2259 if (fa->len > 0)
2260 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2261 kmem_free(fa, sizeof(*fa));
2262 }
2263
2264 static int
2265 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2266 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2267 {
2268 struct posix_spawn_file_actions *fa;
2269 struct posix_spawn_file_actions_entry *fae;
2270 char *pbuf = NULL;
2271 int error;
2272 size_t i = 0;
2273
2274 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2275 error = copyin(ufa, fa, sizeof(*fa));
2276 if (error || fa->len == 0) {
2277 kmem_free(fa, sizeof(*fa));
2278 return error; /* 0 if not an error, and len == 0 */
2279 }
2280
2281 if (fa->len > lim) {
2282 kmem_free(fa, sizeof(*fa));
2283 return EINVAL;
2284 }
2285
2286 fa->size = fa->len;
2287 size_t fal = fa->len * sizeof(*fae);
2288 fae = fa->fae;
2289 fa->fae = kmem_alloc(fal, KM_SLEEP);
2290 error = copyin(fae, fa->fae, fal);
2291 if (error)
2292 goto out;
2293
2294 pbuf = PNBUF_GET();
2295 for (; i < fa->len; i++) {
2296 fae = &fa->fae[i];
2297 if (fae->fae_action != FAE_OPEN)
2298 continue;
2299 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2300 if (error)
2301 goto out;
2302 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2303 memcpy(fae->fae_path, pbuf, fal);
2304 }
2305 PNBUF_PUT(pbuf);
2306
2307 *fap = fa;
2308 return 0;
2309 out:
2310 if (pbuf)
2311 PNBUF_PUT(pbuf);
2312 posix_spawn_fa_free(fa, i);
2313 return error;
2314 }
2315
2316 int
2317 check_posix_spawn(struct lwp *l1)
2318 {
2319 int error, tnprocs, count;
2320 uid_t uid;
2321 struct proc *p1;
2322
2323 p1 = l1->l_proc;
2324 uid = kauth_cred_getuid(l1->l_cred);
2325 tnprocs = atomic_inc_uint_nv(&nprocs);
2326
2327 /*
2328 * Although process entries are dynamically created, we still keep
2329 * a global limit on the maximum number we will create.
2330 */
2331 if (__predict_false(tnprocs >= maxproc))
2332 error = -1;
2333 else
2334 error = kauth_authorize_process(l1->l_cred,
2335 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2336
2337 if (error) {
2338 atomic_dec_uint(&nprocs);
2339 return EAGAIN;
2340 }
2341
2342 /*
2343 * Enforce limits.
2344 */
2345 count = chgproccnt(uid, 1);
2346 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2347 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2348 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2349 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2350 (void)chgproccnt(uid, -1);
2351 atomic_dec_uint(&nprocs);
2352 return EAGAIN;
2353 }
2354
2355 return 0;
2356 }
2357
2358 int
2359 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2360 struct posix_spawn_file_actions *fa,
2361 struct posix_spawnattr *sa,
2362 char *const *argv, char *const *envp,
2363 execve_fetch_element_t fetch)
2364 {
2365
2366 struct proc *p1, *p2;
2367 struct lwp *l2;
2368 int error;
2369 struct spawn_exec_data *spawn_data;
2370 vaddr_t uaddr;
2371 pid_t pid;
2372 bool have_exec_lock = false;
2373
2374 p1 = l1->l_proc;
2375
2376 /* Allocate and init spawn_data */
2377 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2378 spawn_data->sed_refcnt = 1; /* only parent so far */
2379 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2380 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2381 mutex_enter(&spawn_data->sed_mtx_child);
2382
2383 /*
2384 * Do the first part of the exec now, collect state
2385 * in spawn_data.
2386 */
2387 error = execve_loadvm(l1, path, argv,
2388 envp, fetch, &spawn_data->sed_exec);
2389 if (error == EJUSTRETURN)
2390 error = 0;
2391 else if (error)
2392 goto error_exit;
2393
2394 have_exec_lock = true;
2395
2396 /*
2397 * Allocate virtual address space for the U-area now, while it
2398 * is still easy to abort the fork operation if we're out of
2399 * kernel virtual address space.
2400 */
2401 uaddr = uvm_uarea_alloc();
2402 if (__predict_false(uaddr == 0)) {
2403 error = ENOMEM;
2404 goto error_exit;
2405 }
2406
2407 /*
2408 * Allocate new proc. Borrow proc0 vmspace for it, we will
2409 * replace it with its own before returning to userland
2410 * in the child.
2411 * This is a point of no return, we will have to go through
2412 * the child proc to properly clean it up past this point.
2413 */
2414 p2 = proc_alloc();
2415 pid = p2->p_pid;
2416
2417 /*
2418 * Make a proc table entry for the new process.
2419 * Start by zeroing the section of proc that is zero-initialized,
2420 * then copy the section that is copied directly from the parent.
2421 */
2422 memset(&p2->p_startzero, 0,
2423 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2424 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2425 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2426 p2->p_vmspace = proc0.p_vmspace;
2427
2428 TAILQ_INIT(&p2->p_sigpend.sp_info);
2429
2430 LIST_INIT(&p2->p_lwps);
2431 LIST_INIT(&p2->p_sigwaiters);
2432
2433 /*
2434 * Duplicate sub-structures as needed.
2435 * Increase reference counts on shared objects.
2436 * Inherit flags we want to keep. The flags related to SIGCHLD
2437 * handling are important in order to keep a consistent behaviour
2438 * for the child after the fork. If we are a 32-bit process, the
2439 * child will be too.
2440 */
2441 p2->p_flag =
2442 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2443 p2->p_emul = p1->p_emul;
2444 p2->p_execsw = p1->p_execsw;
2445
2446 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2447 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2448 rw_init(&p2->p_reflock);
2449 cv_init(&p2->p_waitcv, "wait");
2450 cv_init(&p2->p_lwpcv, "lwpwait");
2451
2452 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2453
2454 kauth_proc_fork(p1, p2);
2455
2456 p2->p_raslist = NULL;
2457 p2->p_fd = fd_copy();
2458
2459 /* XXX racy */
2460 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2461
2462 p2->p_cwdi = cwdinit();
2463
2464 /*
2465 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2466 * we just need increase pl_refcnt.
2467 */
2468 if (!p1->p_limit->pl_writeable) {
2469 lim_addref(p1->p_limit);
2470 p2->p_limit = p1->p_limit;
2471 } else {
2472 p2->p_limit = lim_copy(p1->p_limit);
2473 }
2474
2475 p2->p_lflag = 0;
2476 l1->l_vforkwaiting = false;
2477 p2->p_sflag = 0;
2478 p2->p_slflag = 0;
2479 p2->p_pptr = p1;
2480 p2->p_ppid = p1->p_pid;
2481 LIST_INIT(&p2->p_children);
2482
2483 p2->p_aio = NULL;
2484
2485 #ifdef KTRACE
2486 /*
2487 * Copy traceflag and tracefile if enabled.
2488 * If not inherited, these were zeroed above.
2489 */
2490 if (p1->p_traceflag & KTRFAC_INHERIT) {
2491 mutex_enter(&ktrace_lock);
2492 p2->p_traceflag = p1->p_traceflag;
2493 if ((p2->p_tracep = p1->p_tracep) != NULL)
2494 ktradref(p2);
2495 mutex_exit(&ktrace_lock);
2496 }
2497 #endif
2498
2499 /*
2500 * Create signal actions for the child process.
2501 */
2502 p2->p_sigacts = sigactsinit(p1, 0);
2503 mutex_enter(p1->p_lock);
2504 p2->p_sflag |=
2505 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2506 sched_proc_fork(p1, p2);
2507 mutex_exit(p1->p_lock);
2508
2509 p2->p_stflag = p1->p_stflag;
2510
2511 /*
2512 * p_stats.
2513 * Copy parts of p_stats, and zero out the rest.
2514 */
2515 p2->p_stats = pstatscopy(p1->p_stats);
2516
2517 /* copy over machdep flags to the new proc */
2518 cpu_proc_fork(p1, p2);
2519
2520 /*
2521 * Prepare remaining parts of spawn data
2522 */
2523 spawn_data->sed_actions = fa;
2524 spawn_data->sed_attrs = sa;
2525
2526 spawn_data->sed_parent = p1;
2527
2528 /* create LWP */
2529 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2530 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2531 l2->l_ctxlink = NULL; /* reset ucontext link */
2532
2533 /*
2534 * Copy the credential so other references don't see our changes.
2535 * Test to see if this is necessary first, since in the common case
2536 * we won't need a private reference.
2537 */
2538 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2539 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2540 l2->l_cred = kauth_cred_copy(l2->l_cred);
2541 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2542 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2543 }
2544
2545 /* Update the master credentials. */
2546 if (l2->l_cred != p2->p_cred) {
2547 kauth_cred_t ocred;
2548
2549 kauth_cred_hold(l2->l_cred);
2550 mutex_enter(p2->p_lock);
2551 ocred = p2->p_cred;
2552 p2->p_cred = l2->l_cred;
2553 mutex_exit(p2->p_lock);
2554 kauth_cred_free(ocred);
2555 }
2556
2557 *child_ok = true;
2558 spawn_data->sed_refcnt = 2; /* child gets it as well */
2559 #if 0
2560 l2->l_nopreempt = 1; /* start it non-preemptable */
2561 #endif
2562
2563 /*
2564 * It's now safe for the scheduler and other processes to see the
2565 * child process.
2566 */
2567 mutex_enter(proc_lock);
2568
2569 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2570 p2->p_lflag |= PL_CONTROLT;
2571
2572 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2573 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2574
2575 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2576 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2577 proc_changeparent(p2, p1->p_pptr);
2578 p1->p_pspid = p2->p_pid;
2579 p2->p_pspid = p1->p_pid;
2580 }
2581
2582 LIST_INSERT_AFTER(p1, p2, p_pglist);
2583 LIST_INSERT_HEAD(&allproc, p2, p_list);
2584
2585 p2->p_trace_enabled = trace_is_enabled(p2);
2586 #ifdef __HAVE_SYSCALL_INTERN
2587 (*p2->p_emul->e_syscall_intern)(p2);
2588 #endif
2589
2590 /*
2591 * Make child runnable, set start time, and add to run queue except
2592 * if the parent requested the child to start in SSTOP state.
2593 */
2594 mutex_enter(p2->p_lock);
2595
2596 getmicrotime(&p2->p_stats->p_start);
2597
2598 lwp_lock(l2);
2599 KASSERT(p2->p_nrlwps == 1);
2600 p2->p_nrlwps = 1;
2601 p2->p_stat = SACTIVE;
2602 l2->l_stat = LSRUN;
2603 sched_enqueue(l2, false);
2604 lwp_unlock(l2);
2605
2606 mutex_exit(p2->p_lock);
2607 mutex_exit(proc_lock);
2608
2609 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2610 error = spawn_data->sed_error;
2611 mutex_exit(&spawn_data->sed_mtx_child);
2612 spawn_exec_data_release(spawn_data);
2613
2614 rw_exit(&p1->p_reflock);
2615 rw_exit(&exec_lock);
2616 have_exec_lock = false;
2617
2618 *pid_res = pid;
2619
2620 if (error)
2621 return error;
2622
2623 if (p1->p_slflag & PSL_TRACED) {
2624 /* Paranoid check */
2625 mutex_enter(proc_lock);
2626 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2627 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2628 mutex_exit(proc_lock);
2629 return 0;
2630 }
2631
2632 mutex_enter(p1->p_lock);
2633 eventswitch(TRAP_CHLD);
2634 }
2635 return 0;
2636
2637 error_exit:
2638 if (have_exec_lock) {
2639 execve_free_data(&spawn_data->sed_exec);
2640 rw_exit(&p1->p_reflock);
2641 rw_exit(&exec_lock);
2642 }
2643 mutex_exit(&spawn_data->sed_mtx_child);
2644 spawn_exec_data_release(spawn_data);
2645
2646 return error;
2647 }
2648
2649 int
2650 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2651 register_t *retval)
2652 {
2653 /* {
2654 syscallarg(pid_t *) pid;
2655 syscallarg(const char *) path;
2656 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2657 syscallarg(const struct posix_spawnattr *) attrp;
2658 syscallarg(char *const *) argv;
2659 syscallarg(char *const *) envp;
2660 } */
2661
2662 int error;
2663 struct posix_spawn_file_actions *fa = NULL;
2664 struct posix_spawnattr *sa = NULL;
2665 pid_t pid;
2666 bool child_ok = false;
2667 rlim_t max_fileactions;
2668 proc_t *p = l1->l_proc;
2669
2670 error = check_posix_spawn(l1);
2671 if (error) {
2672 *retval = error;
2673 return 0;
2674 }
2675
2676 /* copy in file_actions struct */
2677 if (SCARG(uap, file_actions) != NULL) {
2678 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2679 maxfiles);
2680 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2681 max_fileactions);
2682 if (error)
2683 goto error_exit;
2684 }
2685
2686 /* copyin posix_spawnattr struct */
2687 if (SCARG(uap, attrp) != NULL) {
2688 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2689 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2690 if (error)
2691 goto error_exit;
2692 }
2693
2694 /*
2695 * Do the spawn
2696 */
2697 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2698 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2699 if (error)
2700 goto error_exit;
2701
2702 if (error == 0 && SCARG(uap, pid) != NULL)
2703 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2704
2705 *retval = error;
2706 return 0;
2707
2708 error_exit:
2709 if (!child_ok) {
2710 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2711 atomic_dec_uint(&nprocs);
2712
2713 if (sa)
2714 kmem_free(sa, sizeof(*sa));
2715 if (fa)
2716 posix_spawn_fa_free(fa, fa->len);
2717 }
2718
2719 *retval = error;
2720 return 0;
2721 }
2722
2723 void
2724 exec_free_emul_arg(struct exec_package *epp)
2725 {
2726 if (epp->ep_emul_arg_free != NULL) {
2727 KASSERT(epp->ep_emul_arg != NULL);
2728 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2729 epp->ep_emul_arg_free = NULL;
2730 epp->ep_emul_arg = NULL;
2731 } else {
2732 KASSERT(epp->ep_emul_arg == NULL);
2733 }
2734 }
2735
2736 #ifdef DEBUG_EXEC
2737 static void
2738 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2739 {
2740 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2741 size_t j;
2742
2743 if (error == 0)
2744 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2745 else
2746 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2747 epp->ep_vmcmds.evs_used, error));
2748
2749 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2750 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2751 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2752 PRIxVSIZE" prot=0%o flags=%d\n", j,
2753 vp[j].ev_proc == vmcmd_map_pagedvn ?
2754 "pagedvn" :
2755 vp[j].ev_proc == vmcmd_map_readvn ?
2756 "readvn" :
2757 vp[j].ev_proc == vmcmd_map_zero ?
2758 "zero" : "*unknown*",
2759 vp[j].ev_addr, vp[j].ev_len,
2760 vp[j].ev_offset, vp[j].ev_prot,
2761 vp[j].ev_flags));
2762 if (error != 0 && j == x)
2763 DPRINTF((" ^--- failed\n"));
2764 }
2765 }
2766 #endif
2767