kern_exec.c revision 1.480 1 /* $NetBSD: kern_exec.c,v 1.480 2019/09/15 20:23:50 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*-
30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31 * Copyright (C) 1992 Wolfgang Solfrank.
32 * Copyright (C) 1992 TooLs GmbH.
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by TooLs GmbH.
46 * 4. The name of TooLs GmbH may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.480 2019/09/15 20:23:50 christos Exp $");
63
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/ptrace.h>
78 #include <sys/mount.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/filedesc.h>
84 #include <sys/acct.h>
85 #include <sys/atomic.h>
86 #include <sys/exec.h>
87 #include <sys/ktrace.h>
88 #include <sys/uidinfo.h>
89 #include <sys/wait.h>
90 #include <sys/mman.h>
91 #include <sys/ras.h>
92 #include <sys/signalvar.h>
93 #include <sys/stat.h>
94 #include <sys/syscall.h>
95 #include <sys/kauth.h>
96 #include <sys/lwpctl.h>
97 #include <sys/pax.h>
98 #include <sys/cpu.h>
99 #include <sys/module.h>
100 #include <sys/syscallvar.h>
101 #include <sys/syscallargs.h>
102 #if NVERIEXEC > 0
103 #include <sys/verified_exec.h>
104 #endif /* NVERIEXEC > 0 */
105 #include <sys/sdt.h>
106 #include <sys/spawn.h>
107 #include <sys/prot.h>
108 #include <sys/cprng.h>
109
110 #include <uvm/uvm_extern.h>
111
112 #include <machine/reg.h>
113
114 #include <compat/common/compat_util.h>
115
116 #ifndef MD_TOPDOWN_INIT
117 #ifdef __USE_TOPDOWN_VM
118 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
119 #else
120 #define MD_TOPDOWN_INIT(epp)
121 #endif
122 #endif
123
124 struct execve_data;
125
126 extern int user_va0_disable;
127
128 static size_t calcargs(struct execve_data * restrict, const size_t);
129 static size_t calcstack(struct execve_data * restrict, const size_t);
130 static int copyoutargs(struct execve_data * restrict, struct lwp *,
131 char * const);
132 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
133 static int copyinargs(struct execve_data * restrict, char * const *,
134 char * const *, execve_fetch_element_t, char **);
135 static int copyinargstrs(struct execve_data * restrict, char * const *,
136 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
137 static int exec_sigcode_map(struct proc *, const struct emul *);
138
139 #if defined(DEBUG) && !defined(DEBUG_EXEC)
140 #define DEBUG_EXEC
141 #endif
142 #ifdef DEBUG_EXEC
143 #define DPRINTF(a) printf a
144 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
145 __LINE__, (s), (a), (b))
146 static void dump_vmcmds(const struct exec_package * const, size_t, int);
147 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
148 #else
149 #define DPRINTF(a)
150 #define COPYPRINTF(s, a, b)
151 #define DUMPVMCMDS(p, x, e) do {} while (0)
152 #endif /* DEBUG_EXEC */
153
154 /*
155 * DTrace SDT provider definitions
156 */
157 SDT_PROVIDER_DECLARE(proc);
158 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
159 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
160 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
161
162 /*
163 * Exec function switch:
164 *
165 * Note that each makecmds function is responsible for loading the
166 * exec package with the necessary functions for any exec-type-specific
167 * handling.
168 *
169 * Functions for specific exec types should be defined in their own
170 * header file.
171 */
172 static const struct execsw **execsw = NULL;
173 static int nexecs;
174
175 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
176
177 /* list of dynamically loaded execsw entries */
178 static LIST_HEAD(execlist_head, exec_entry) ex_head =
179 LIST_HEAD_INITIALIZER(ex_head);
180 struct exec_entry {
181 LIST_ENTRY(exec_entry) ex_list;
182 SLIST_ENTRY(exec_entry) ex_slist;
183 const struct execsw *ex_sw;
184 };
185
186 #ifndef __HAVE_SYSCALL_INTERN
187 void syscall(void);
188 #endif
189
190 /* NetBSD autoloadable syscalls */
191 #ifdef MODULAR
192 #include <kern/syscalls_autoload.c>
193 #endif
194
195 /* NetBSD emul struct */
196 struct emul emul_netbsd = {
197 .e_name = "netbsd",
198 #ifdef EMUL_NATIVEROOT
199 .e_path = EMUL_NATIVEROOT,
200 #else
201 .e_path = NULL,
202 #endif
203 #ifndef __HAVE_MINIMAL_EMUL
204 .e_flags = EMUL_HAS_SYS___syscall,
205 .e_errno = NULL,
206 .e_nosys = SYS_syscall,
207 .e_nsysent = SYS_NSYSENT,
208 #endif
209 #ifdef MODULAR
210 .e_sc_autoload = netbsd_syscalls_autoload,
211 #endif
212 .e_sysent = sysent,
213 .e_nomodbits = sysent_nomodbits,
214 #ifdef SYSCALL_DEBUG
215 .e_syscallnames = syscallnames,
216 #else
217 .e_syscallnames = NULL,
218 #endif
219 .e_sendsig = sendsig,
220 .e_trapsignal = trapsignal,
221 .e_sigcode = NULL,
222 .e_esigcode = NULL,
223 .e_sigobject = NULL,
224 .e_setregs = setregs,
225 .e_proc_exec = NULL,
226 .e_proc_fork = NULL,
227 .e_proc_exit = NULL,
228 .e_lwp_fork = NULL,
229 .e_lwp_exit = NULL,
230 #ifdef __HAVE_SYSCALL_INTERN
231 .e_syscall_intern = syscall_intern,
232 #else
233 .e_syscall = syscall,
234 #endif
235 .e_sysctlovly = NULL,
236 .e_vm_default_addr = uvm_default_mapaddr,
237 .e_usertrap = NULL,
238 .e_ucsize = sizeof(ucontext_t),
239 .e_startlwp = startlwp
240 };
241
242 /*
243 * Exec lock. Used to control access to execsw[] structures.
244 * This must not be static so that netbsd32 can access it, too.
245 */
246 krwlock_t exec_lock;
247
248 static kmutex_t sigobject_lock;
249
250 /*
251 * Data used between a loadvm and execve part of an "exec" operation
252 */
253 struct execve_data {
254 struct exec_package ed_pack;
255 struct pathbuf *ed_pathbuf;
256 struct vattr ed_attr;
257 struct ps_strings ed_arginfo;
258 char *ed_argp;
259 const char *ed_pathstring;
260 char *ed_resolvedname;
261 size_t ed_ps_strings_sz;
262 int ed_szsigcode;
263 size_t ed_argslen;
264 long ed_argc;
265 long ed_envc;
266 };
267
268 /*
269 * data passed from parent lwp to child during a posix_spawn()
270 */
271 struct spawn_exec_data {
272 struct execve_data sed_exec;
273 struct posix_spawn_file_actions
274 *sed_actions;
275 struct posix_spawnattr *sed_attrs;
276 struct proc *sed_parent;
277 kcondvar_t sed_cv_child_ready;
278 kmutex_t sed_mtx_child;
279 int sed_error;
280 volatile uint32_t sed_refcnt;
281 };
282
283 static struct vm_map *exec_map;
284 static struct pool exec_pool;
285
286 static void *
287 exec_pool_alloc(struct pool *pp, int flags)
288 {
289
290 return (void *)uvm_km_alloc(exec_map, NCARGS, 0,
291 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
292 }
293
294 static void
295 exec_pool_free(struct pool *pp, void *addr)
296 {
297
298 uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
299 }
300
301 static struct pool_allocator exec_palloc = {
302 .pa_alloc = exec_pool_alloc,
303 .pa_free = exec_pool_free,
304 .pa_pagesz = NCARGS
305 };
306
307 static void
308 exec_path_free(struct execve_data *data)
309 {
310 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
311 pathbuf_destroy(data->ed_pathbuf);
312 if (data->ed_resolvedname)
313 PNBUF_PUT(data->ed_resolvedname);
314 }
315
316 static void
317 exec_resolvename(struct lwp *l, struct exec_package *epp, struct vnode *vp,
318 char **rpath)
319 {
320 int error;
321 char *p;
322
323 KASSERT(rpath != NULL);
324
325 *rpath = PNBUF_GET();
326 error = vnode_to_path(*rpath, MAXPATHLEN, vp, l, l->l_proc);
327 if (error) {
328 PNBUF_PUT(*rpath);
329 *rpath = NULL;
330 return;
331 }
332 epp->ep_resolvedname = *rpath;
333 if ((p = strrchr(*rpath, '/')) != NULL)
334 epp->ep_kname = p + 1;
335 }
336
337
338 /*
339 * check exec:
340 * given an "executable" described in the exec package's namei info,
341 * see what we can do with it.
342 *
343 * ON ENTRY:
344 * exec package with appropriate namei info
345 * lwp pointer of exec'ing lwp
346 * NO SELF-LOCKED VNODES
347 *
348 * ON EXIT:
349 * error: nothing held, etc. exec header still allocated.
350 * ok: filled exec package, executable's vnode (unlocked).
351 *
352 * EXEC SWITCH ENTRY:
353 * Locked vnode to check, exec package, proc.
354 *
355 * EXEC SWITCH EXIT:
356 * ok: return 0, filled exec package, executable's vnode (unlocked).
357 * error: destructive:
358 * everything deallocated execept exec header.
359 * non-destructive:
360 * error code, executable's vnode (unlocked),
361 * exec header unmodified.
362 */
363 int
364 /*ARGSUSED*/
365 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb,
366 char **rpath)
367 {
368 int error, i;
369 struct vnode *vp;
370 size_t resid;
371
372 if (epp->ep_resolvedname) {
373 struct nameidata nd;
374
375 // grab the absolute pathbuf here before namei() trashes it.
376 pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX);
377 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
378
379 /* first get the vnode */
380 if ((error = namei(&nd)) != 0)
381 return error;
382
383 epp->ep_vp = vp = nd.ni_vp;
384 #ifdef DIAGNOSTIC
385 /* paranoia (take this out once namei stuff stabilizes) */
386 memset(nd.ni_pnbuf, '~', PATH_MAX);
387 #endif
388 } else {
389 struct file *fp;
390
391 if ((error = fd_getvnode(epp->ep_xfd, &fp)) != 0)
392 return error;
393 epp->ep_vp = vp = fp->f_vnode;
394 vref(vp);
395 fd_putfile(epp->ep_xfd);
396 exec_resolvename(l, epp, vp, rpath);
397 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
398 }
399
400 /* check access and type */
401 if (vp->v_type != VREG) {
402 error = EACCES;
403 goto bad1;
404 }
405 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
406 goto bad1;
407
408 /* get attributes */
409 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
410 goto bad1;
411
412 /* Check mount point */
413 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
414 error = EACCES;
415 goto bad1;
416 }
417 if (vp->v_mount->mnt_flag & MNT_NOSUID)
418 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
419
420 /* try to open it */
421 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
422 goto bad1;
423
424 /* unlock vp, since we need it unlocked from here on out. */
425 VOP_UNLOCK(vp);
426
427 #if NVERIEXEC > 0
428 error = veriexec_verify(l, vp,
429 epp->ep_resolvedname ? epp->ep_resolvedname : epp->ep_kname,
430 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
431 NULL);
432 if (error)
433 goto bad2;
434 #endif /* NVERIEXEC > 0 */
435
436 #ifdef PAX_SEGVGUARD
437 error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
438 if (error)
439 goto bad2;
440 #endif /* PAX_SEGVGUARD */
441
442 /* now we have the file, get the exec header */
443 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
444 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
445 if (error)
446 goto bad2;
447 epp->ep_hdrvalid = epp->ep_hdrlen - resid;
448
449 /*
450 * Set up default address space limits. Can be overridden
451 * by individual exec packages.
452 */
453 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
454 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
455
456 /*
457 * set up the vmcmds for creation of the process
458 * address space
459 */
460 error = ENOEXEC;
461 for (i = 0; i < nexecs; i++) {
462 int newerror;
463
464 epp->ep_esch = execsw[i];
465 newerror = (*execsw[i]->es_makecmds)(l, epp);
466
467 if (!newerror) {
468 /* Seems ok: check that entry point is not too high */
469 if (epp->ep_entry >= epp->ep_vm_maxaddr) {
470 #ifdef DIAGNOSTIC
471 printf("%s: rejecting %p due to "
472 "too high entry address (>= %p)\n",
473 __func__, (void *)epp->ep_entry,
474 (void *)epp->ep_vm_maxaddr);
475 #endif
476 error = ENOEXEC;
477 break;
478 }
479 /* Seems ok: check that entry point is not too low */
480 if (epp->ep_entry < epp->ep_vm_minaddr) {
481 #ifdef DIAGNOSTIC
482 printf("%s: rejecting %p due to "
483 "too low entry address (< %p)\n",
484 __func__, (void *)epp->ep_entry,
485 (void *)epp->ep_vm_minaddr);
486 #endif
487 error = ENOEXEC;
488 break;
489 }
490
491 /* check limits */
492 if ((epp->ep_tsize > MAXTSIZ) ||
493 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
494 [RLIMIT_DATA].rlim_cur)) {
495 #ifdef DIAGNOSTIC
496 printf("%s: rejecting due to "
497 "limits (t=%llu > %llu || d=%llu > %llu)\n",
498 __func__,
499 (unsigned long long)epp->ep_tsize,
500 (unsigned long long)MAXTSIZ,
501 (unsigned long long)epp->ep_dsize,
502 (unsigned long long)
503 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
504 #endif
505 error = ENOMEM;
506 break;
507 }
508 return 0;
509 }
510
511 /*
512 * Reset all the fields that may have been modified by the
513 * loader.
514 */
515 KASSERT(epp->ep_emul_arg == NULL);
516 if (epp->ep_emul_root != NULL) {
517 vrele(epp->ep_emul_root);
518 epp->ep_emul_root = NULL;
519 }
520 if (epp->ep_interp != NULL) {
521 vrele(epp->ep_interp);
522 epp->ep_interp = NULL;
523 }
524 epp->ep_pax_flags = 0;
525
526 /* make sure the first "interesting" error code is saved. */
527 if (error == ENOEXEC)
528 error = newerror;
529
530 if (epp->ep_flags & EXEC_DESTR)
531 /* Error from "#!" code, tidied up by recursive call */
532 return error;
533 }
534
535 /* not found, error */
536
537 /*
538 * free any vmspace-creation commands,
539 * and release their references
540 */
541 kill_vmcmds(&epp->ep_vmcmds);
542
543 bad2:
544 /*
545 * close and release the vnode, restore the old one, free the
546 * pathname buf, and punt.
547 */
548 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
549 VOP_CLOSE(vp, FREAD, l->l_cred);
550 vput(vp);
551 return error;
552
553 bad1:
554 /*
555 * free the namei pathname buffer, and put the vnode
556 * (which we don't yet have open).
557 */
558 vput(vp); /* was still locked */
559 return error;
560 }
561
562 #ifdef __MACHINE_STACK_GROWS_UP
563 #define STACK_PTHREADSPACE NBPG
564 #else
565 #define STACK_PTHREADSPACE 0
566 #endif
567
568 static int
569 execve_fetch_element(char * const *array, size_t index, char **value)
570 {
571 return copyin(array + index, value, sizeof(*value));
572 }
573
574 /*
575 * exec system call
576 */
577 int
578 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
579 {
580 /* {
581 syscallarg(const char *) path;
582 syscallarg(char * const *) argp;
583 syscallarg(char * const *) envp;
584 } */
585
586 return execve1(l, SCARG(uap, path), -1, SCARG(uap, argp),
587 SCARG(uap, envp), execve_fetch_element);
588 }
589
590 int
591 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
592 register_t *retval)
593 {
594 /* {
595 syscallarg(int) fd;
596 syscallarg(char * const *) argp;
597 syscallarg(char * const *) envp;
598 } */
599
600 return execve1(l, NULL, SCARG(uap, fd), SCARG(uap, argp),
601 SCARG(uap, envp), execve_fetch_element);
602 }
603
604 /*
605 * Load modules to try and execute an image that we do not understand.
606 * If no execsw entries are present, we load those likely to be needed
607 * in order to run native images only. Otherwise, we autoload all
608 * possible modules that could let us run the binary. XXX lame
609 */
610 static void
611 exec_autoload(void)
612 {
613 #ifdef MODULAR
614 static const char * const native[] = {
615 "exec_elf32",
616 "exec_elf64",
617 "exec_script",
618 NULL
619 };
620 static const char * const compat[] = {
621 "exec_elf32",
622 "exec_elf64",
623 "exec_script",
624 "exec_aout",
625 "exec_coff",
626 "exec_ecoff",
627 "compat_aoutm68k",
628 "compat_netbsd32",
629 "compat_sunos",
630 "compat_sunos32",
631 "compat_ultrix",
632 NULL
633 };
634 char const * const *list;
635 int i;
636
637 list = (nexecs == 0 ? native : compat);
638 for (i = 0; list[i] != NULL; i++) {
639 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
640 continue;
641 }
642 yield();
643 }
644 #endif
645 }
646
647 /*
648 * Copy the user or kernel supplied upath to the allocated pathbuffer pbp
649 * making it absolute in the process, by prepending the current working
650 * directory if it is not. If offs is supplied it will contain the offset
651 * where the original supplied copy of upath starts.
652 */
653 int
654 exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg,
655 struct pathbuf **pbp, size_t *offs)
656 {
657 char *path, *bp;
658 size_t len, tlen;
659 int error;
660 struct cwdinfo *cwdi;
661
662 path = PNBUF_GET();
663 if (seg == UIO_SYSSPACE) {
664 error = copystr(upath, path, MAXPATHLEN, &len);
665 } else {
666 error = copyinstr(upath, path, MAXPATHLEN, &len);
667 }
668 if (error)
669 goto err;
670
671 if (path[0] == '/') {
672 if (offs)
673 *offs = 0;
674 goto out;
675 }
676
677 len++;
678 if (len + 1 >= MAXPATHLEN) {
679 error = ENAMETOOLONG;
680 goto err;
681 }
682 bp = path + MAXPATHLEN - len;
683 memmove(bp, path, len);
684 *(--bp) = '/';
685
686 cwdi = l->l_proc->p_cwdi;
687 rw_enter(&cwdi->cwdi_lock, RW_READER);
688 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
689 GETCWD_CHECK_ACCESS, l);
690 rw_exit(&cwdi->cwdi_lock);
691
692 if (error)
693 goto err;
694 tlen = path + MAXPATHLEN - bp;
695
696 memmove(path, bp, tlen);
697 path[tlen - 1] = '\0';
698 if (offs)
699 *offs = tlen - len;
700 out:
701 *pbp = pathbuf_assimilate(path);
702 return 0;
703 err:
704 PNBUF_PUT(path);
705 return error;
706 }
707
708 vaddr_t
709 exec_vm_minaddr(vaddr_t va_min)
710 {
711 /*
712 * Increase va_min if we don't want NULL to be mappable by the
713 * process.
714 */
715 #define VM_MIN_GUARD PAGE_SIZE
716 if (user_va0_disable && (va_min < VM_MIN_GUARD))
717 return VM_MIN_GUARD;
718 return va_min;
719 }
720
721 static int
722 execve_loadvm(struct lwp *l, const char *path, int fd, char * const *args,
723 char * const *envs, execve_fetch_element_t fetch_element,
724 struct execve_data * restrict data)
725 {
726 struct exec_package * const epp = &data->ed_pack;
727 int error;
728 struct proc *p;
729 char *dp;
730 u_int modgen;
731
732 KASSERT(data != NULL);
733
734 p = l->l_proc;
735 modgen = 0;
736
737 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
738
739 /*
740 * Check if we have exceeded our number of processes limit.
741 * This is so that we handle the case where a root daemon
742 * forked, ran setuid to become the desired user and is trying
743 * to exec. The obvious place to do the reference counting check
744 * is setuid(), but we don't do the reference counting check there
745 * like other OS's do because then all the programs that use setuid()
746 * must be modified to check the return code of setuid() and exit().
747 * It is dangerous to make setuid() fail, because it fails open and
748 * the program will continue to run as root. If we make it succeed
749 * and return an error code, again we are not enforcing the limit.
750 * The best place to enforce the limit is here, when the process tries
751 * to execute a new image, because eventually the process will need
752 * to call exec in order to do something useful.
753 */
754 retry:
755 if (p->p_flag & PK_SUGID) {
756 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
757 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
758 &p->p_rlimit[RLIMIT_NPROC],
759 KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
760 chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
761 p->p_rlimit[RLIMIT_NPROC].rlim_cur)
762 return EAGAIN;
763 }
764
765 /*
766 * Drain existing references and forbid new ones. The process
767 * should be left alone until we're done here. This is necessary
768 * to avoid race conditions - e.g. in ptrace() - that might allow
769 * a local user to illicitly obtain elevated privileges.
770 */
771 rw_enter(&p->p_reflock, RW_WRITER);
772
773 if (path == NULL) {
774 data->ed_pathbuf = pathbuf_assimilate(strcpy(PNBUF_GET(), "/"));
775 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
776 epp->ep_kname = "*fexecve*";
777 data->ed_resolvedname = NULL;
778 epp->ep_resolvedname = NULL;
779 epp->ep_xfd = fd;
780 } else {
781 size_t offs;
782 /*
783 * Init the namei data to point the file user's program name.
784 * This is done here rather than in check_exec(), so that it's
785 * possible to override this settings if any of makecmd/probe
786 * functions call check_exec() recursively - for example,
787 * see exec_script_makecmds().
788 */
789 if ((error = exec_makepathbuf(l, path, UIO_USERSPACE,
790 &data->ed_pathbuf, &offs)) != 0)
791 goto clrflg;
792 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
793 epp->ep_kname = data->ed_pathstring + offs;
794 data->ed_resolvedname = PNBUF_GET();
795 epp->ep_resolvedname = data->ed_resolvedname;
796 epp->ep_xfd = -1;
797 }
798
799
800 /*
801 * initialize the fields of the exec package.
802 */
803 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
804 epp->ep_hdrlen = exec_maxhdrsz;
805 epp->ep_hdrvalid = 0;
806 epp->ep_emul_arg = NULL;
807 epp->ep_emul_arg_free = NULL;
808 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
809 epp->ep_vap = &data->ed_attr;
810 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
811 MD_TOPDOWN_INIT(epp);
812 epp->ep_emul_root = NULL;
813 epp->ep_interp = NULL;
814 epp->ep_esch = NULL;
815 epp->ep_pax_flags = 0;
816 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
817
818 rw_enter(&exec_lock, RW_READER);
819
820 /* see if we can run it. */
821 if ((error = check_exec(l, epp, data->ed_pathbuf,
822 &data->ed_resolvedname)) != 0) {
823 if (error != ENOENT && error != EACCES && error != ENOEXEC) {
824 DPRINTF(("%s: check exec failed for %s, error %d\n",
825 __func__, epp->ep_kname, error));
826 }
827 goto freehdr;
828 }
829
830 /* allocate an argument buffer */
831 data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
832 KASSERT(data->ed_argp != NULL);
833 dp = data->ed_argp;
834
835 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
836 goto bad;
837 }
838
839 /*
840 * Calculate the new stack size.
841 */
842
843 #ifdef __MACHINE_STACK_GROWS_UP
844 /*
845 * copyargs() fills argc/argv/envp from the lower address even on
846 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
847 * so that _rtld() use it.
848 */
849 #define RTLD_GAP 32
850 #else
851 #define RTLD_GAP 0
852 #endif
853
854 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
855
856 data->ed_argslen = calcargs(data, argenvstrlen);
857
858 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
859
860 if (len > epp->ep_ssize) {
861 /* in effect, compare to initial limit */
862 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
863 error = ENOMEM;
864 goto bad;
865 }
866 /* adjust "active stack depth" for process VSZ */
867 epp->ep_ssize = len;
868
869 return 0;
870
871 bad:
872 /* free the vmspace-creation commands, and release their references */
873 kill_vmcmds(&epp->ep_vmcmds);
874 /* kill any opened file descriptor, if necessary */
875 if (epp->ep_flags & EXEC_HASFD) {
876 epp->ep_flags &= ~EXEC_HASFD;
877 fd_close(epp->ep_fd);
878 }
879 /* close and put the exec'd file */
880 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
881 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
882 vput(epp->ep_vp);
883 pool_put(&exec_pool, data->ed_argp);
884
885 freehdr:
886 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
887 if (epp->ep_emul_root != NULL)
888 vrele(epp->ep_emul_root);
889 if (epp->ep_interp != NULL)
890 vrele(epp->ep_interp);
891
892 rw_exit(&exec_lock);
893
894 exec_path_free(data);
895
896 clrflg:
897 rw_exit(&p->p_reflock);
898
899 if (modgen != module_gen && error == ENOEXEC) {
900 modgen = module_gen;
901 exec_autoload();
902 goto retry;
903 }
904
905 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
906 return error;
907 }
908
909 static int
910 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
911 {
912 struct exec_package * const epp = &data->ed_pack;
913 struct proc *p = l->l_proc;
914 struct exec_vmcmd *base_vcp;
915 int error = 0;
916 size_t i;
917
918 /* record proc's vnode, for use by procfs and others */
919 if (p->p_textvp)
920 vrele(p->p_textvp);
921 vref(epp->ep_vp);
922 p->p_textvp = epp->ep_vp;
923
924 /* create the new process's VM space by running the vmcmds */
925 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
926
927 #ifdef TRACE_EXEC
928 DUMPVMCMDS(epp, 0, 0);
929 #endif
930
931 base_vcp = NULL;
932
933 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
934 struct exec_vmcmd *vcp;
935
936 vcp = &epp->ep_vmcmds.evs_cmds[i];
937 if (vcp->ev_flags & VMCMD_RELATIVE) {
938 KASSERTMSG(base_vcp != NULL,
939 "%s: relative vmcmd with no base", __func__);
940 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
941 "%s: illegal base & relative vmcmd", __func__);
942 vcp->ev_addr += base_vcp->ev_addr;
943 }
944 error = (*vcp->ev_proc)(l, vcp);
945 if (error)
946 DUMPVMCMDS(epp, i, error);
947 if (vcp->ev_flags & VMCMD_BASE)
948 base_vcp = vcp;
949 }
950
951 /* free the vmspace-creation commands, and release their references */
952 kill_vmcmds(&epp->ep_vmcmds);
953
954 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
955 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
956 vput(epp->ep_vp);
957
958 /* if an error happened, deallocate and punt */
959 if (error != 0) {
960 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
961 }
962 return error;
963 }
964
965 static void
966 execve_free_data(struct execve_data *data)
967 {
968 struct exec_package * const epp = &data->ed_pack;
969
970 /* free the vmspace-creation commands, and release their references */
971 kill_vmcmds(&epp->ep_vmcmds);
972 /* kill any opened file descriptor, if necessary */
973 if (epp->ep_flags & EXEC_HASFD) {
974 epp->ep_flags &= ~EXEC_HASFD;
975 fd_close(epp->ep_fd);
976 }
977
978 /* close and put the exec'd file */
979 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
980 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
981 vput(epp->ep_vp);
982 pool_put(&exec_pool, data->ed_argp);
983
984 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
985 if (epp->ep_emul_root != NULL)
986 vrele(epp->ep_emul_root);
987 if (epp->ep_interp != NULL)
988 vrele(epp->ep_interp);
989
990 exec_path_free(data);
991 }
992
993 static void
994 pathexec(struct proc *p, const char *resolvedname)
995 {
996 /* set command name & other accounting info */
997 const char *cmdname;
998
999 if (resolvedname == NULL) {
1000 cmdname = "*fexecve*";
1001 resolvedname = "/";
1002 } else {
1003 cmdname = strrchr(resolvedname, '/') + 1;
1004 }
1005 KASSERTMSG(resolvedname[0] == '/', "bad resolvedname `%s'",
1006 resolvedname);
1007
1008 strlcpy(p->p_comm, cmdname, sizeof(p->p_comm));
1009
1010 kmem_strfree(p->p_path);
1011 p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP);
1012 }
1013
1014 /* XXX elsewhere */
1015 static int
1016 credexec(struct lwp *l, struct vattr *attr)
1017 {
1018 struct proc *p = l->l_proc;
1019 int error;
1020
1021 /*
1022 * Deal with set[ug]id. MNT_NOSUID has already been used to disable
1023 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
1024 * out additional references on the process for the moment.
1025 */
1026 if ((p->p_slflag & PSL_TRACED) == 0 &&
1027
1028 (((attr->va_mode & S_ISUID) != 0 &&
1029 kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1030
1031 ((attr->va_mode & S_ISGID) != 0 &&
1032 kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1033 /*
1034 * Mark the process as SUGID before we do
1035 * anything that might block.
1036 */
1037 proc_crmod_enter();
1038 proc_crmod_leave(NULL, NULL, true);
1039
1040 /* Make sure file descriptors 0..2 are in use. */
1041 if ((error = fd_checkstd()) != 0) {
1042 DPRINTF(("%s: fdcheckstd failed %d\n",
1043 __func__, error));
1044 return error;
1045 }
1046
1047 /*
1048 * Copy the credential so other references don't see our
1049 * changes.
1050 */
1051 l->l_cred = kauth_cred_copy(l->l_cred);
1052 #ifdef KTRACE
1053 /*
1054 * If the persistent trace flag isn't set, turn off.
1055 */
1056 if (p->p_tracep) {
1057 mutex_enter(&ktrace_lock);
1058 if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1059 ktrderef(p);
1060 mutex_exit(&ktrace_lock);
1061 }
1062 #endif
1063 if (attr->va_mode & S_ISUID)
1064 kauth_cred_seteuid(l->l_cred, attr->va_uid);
1065 if (attr->va_mode & S_ISGID)
1066 kauth_cred_setegid(l->l_cred, attr->va_gid);
1067 } else {
1068 if (kauth_cred_geteuid(l->l_cred) ==
1069 kauth_cred_getuid(l->l_cred) &&
1070 kauth_cred_getegid(l->l_cred) ==
1071 kauth_cred_getgid(l->l_cred))
1072 p->p_flag &= ~PK_SUGID;
1073 }
1074
1075 /*
1076 * Copy the credential so other references don't see our changes.
1077 * Test to see if this is necessary first, since in the common case
1078 * we won't need a private reference.
1079 */
1080 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1081 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1082 l->l_cred = kauth_cred_copy(l->l_cred);
1083 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1084 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1085 }
1086
1087 /* Update the master credentials. */
1088 if (l->l_cred != p->p_cred) {
1089 kauth_cred_t ocred;
1090
1091 kauth_cred_hold(l->l_cred);
1092 mutex_enter(p->p_lock);
1093 ocred = p->p_cred;
1094 p->p_cred = l->l_cred;
1095 mutex_exit(p->p_lock);
1096 kauth_cred_free(ocred);
1097 }
1098
1099 return 0;
1100 }
1101
1102 static void
1103 emulexec(struct lwp *l, struct exec_package *epp)
1104 {
1105 struct proc *p = l->l_proc;
1106
1107 /* The emulation root will usually have been found when we looked
1108 * for the elf interpreter (or similar), if not look now. */
1109 if (epp->ep_esch->es_emul->e_path != NULL &&
1110 epp->ep_emul_root == NULL)
1111 emul_find_root(l, epp);
1112
1113 /* Any old emulation root got removed by fdcloseexec */
1114 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1115 p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1116 rw_exit(&p->p_cwdi->cwdi_lock);
1117 epp->ep_emul_root = NULL;
1118 if (epp->ep_interp != NULL)
1119 vrele(epp->ep_interp);
1120
1121 /*
1122 * Call emulation specific exec hook. This can setup per-process
1123 * p->p_emuldata or do any other per-process stuff an emulation needs.
1124 *
1125 * If we are executing process of different emulation than the
1126 * original forked process, call e_proc_exit() of the old emulation
1127 * first, then e_proc_exec() of new emulation. If the emulation is
1128 * same, the exec hook code should deallocate any old emulation
1129 * resources held previously by this process.
1130 */
1131 if (p->p_emul && p->p_emul->e_proc_exit
1132 && p->p_emul != epp->ep_esch->es_emul)
1133 (*p->p_emul->e_proc_exit)(p);
1134
1135 /*
1136 * This is now LWP 1.
1137 */
1138 /* XXX elsewhere */
1139 mutex_enter(p->p_lock);
1140 p->p_nlwpid = 1;
1141 l->l_lid = 1;
1142 mutex_exit(p->p_lock);
1143
1144 /*
1145 * Call exec hook. Emulation code may NOT store reference to anything
1146 * from &pack.
1147 */
1148 if (epp->ep_esch->es_emul->e_proc_exec)
1149 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1150
1151 /* update p_emul, the old value is no longer needed */
1152 p->p_emul = epp->ep_esch->es_emul;
1153
1154 /* ...and the same for p_execsw */
1155 p->p_execsw = epp->ep_esch;
1156
1157 #ifdef __HAVE_SYSCALL_INTERN
1158 (*p->p_emul->e_syscall_intern)(p);
1159 #endif
1160 ktremul();
1161 }
1162
1163 static int
1164 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1165 bool no_local_exec_lock, bool is_spawn)
1166 {
1167 struct exec_package * const epp = &data->ed_pack;
1168 int error = 0;
1169 struct proc *p;
1170
1171 /*
1172 * In case of a posix_spawn operation, the child doing the exec
1173 * might not hold the reader lock on exec_lock, but the parent
1174 * will do this instead.
1175 */
1176 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1177 KASSERT(!no_local_exec_lock || is_spawn);
1178 KASSERT(data != NULL);
1179
1180 p = l->l_proc;
1181
1182 /* Get rid of other LWPs. */
1183 if (p->p_nlwps > 1) {
1184 mutex_enter(p->p_lock);
1185 exit_lwps(l);
1186 mutex_exit(p->p_lock);
1187 }
1188 KDASSERT(p->p_nlwps == 1);
1189
1190 /* Destroy any lwpctl info. */
1191 if (p->p_lwpctl != NULL)
1192 lwp_ctl_exit();
1193
1194 /* Remove POSIX timers */
1195 timers_free(p, TIMERS_POSIX);
1196
1197 /* Set the PaX flags. */
1198 pax_set_flags(epp, p);
1199
1200 /*
1201 * Do whatever is necessary to prepare the address space
1202 * for remapping. Note that this might replace the current
1203 * vmspace with another!
1204 */
1205 if (is_spawn)
1206 uvmspace_spawn(l, epp->ep_vm_minaddr,
1207 epp->ep_vm_maxaddr,
1208 epp->ep_flags & EXEC_TOPDOWN_VM);
1209 else
1210 uvmspace_exec(l, epp->ep_vm_minaddr,
1211 epp->ep_vm_maxaddr,
1212 epp->ep_flags & EXEC_TOPDOWN_VM);
1213
1214 struct vmspace *vm;
1215 vm = p->p_vmspace;
1216 vm->vm_taddr = (void *)epp->ep_taddr;
1217 vm->vm_tsize = btoc(epp->ep_tsize);
1218 vm->vm_daddr = (void*)epp->ep_daddr;
1219 vm->vm_dsize = btoc(epp->ep_dsize);
1220 vm->vm_ssize = btoc(epp->ep_ssize);
1221 vm->vm_issize = 0;
1222 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1223 vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1224
1225 pax_aslr_init_vm(l, vm, epp);
1226
1227 /* Now map address space. */
1228 error = execve_dovmcmds(l, data);
1229 if (error != 0)
1230 goto exec_abort;
1231
1232 pathexec(p, epp->ep_resolvedname);
1233
1234 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1235
1236 error = copyoutargs(data, l, newstack);
1237 if (error != 0)
1238 goto exec_abort;
1239
1240 cwdexec(p);
1241 fd_closeexec(); /* handle close on exec */
1242
1243 if (__predict_false(ktrace_on))
1244 fd_ktrexecfd();
1245
1246 execsigs(p); /* reset caught signals */
1247
1248 mutex_enter(p->p_lock);
1249 l->l_ctxlink = NULL; /* reset ucontext link */
1250 p->p_acflag &= ~AFORK;
1251 p->p_flag |= PK_EXEC;
1252 mutex_exit(p->p_lock);
1253
1254 /*
1255 * Stop profiling.
1256 */
1257 if ((p->p_stflag & PST_PROFIL) != 0) {
1258 mutex_spin_enter(&p->p_stmutex);
1259 stopprofclock(p);
1260 mutex_spin_exit(&p->p_stmutex);
1261 }
1262
1263 /*
1264 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1265 * exited and exec()/exit() are the only places it will be cleared.
1266 */
1267 if ((p->p_lflag & PL_PPWAIT) != 0) {
1268 lwp_t *lp;
1269
1270 mutex_enter(proc_lock);
1271 lp = p->p_vforklwp;
1272 p->p_vforklwp = NULL;
1273
1274 l->l_lwpctl = NULL; /* was on loan from blocked parent */
1275 p->p_lflag &= ~PL_PPWAIT;
1276 lp->l_vforkwaiting = false;
1277
1278 cv_broadcast(&lp->l_waitcv);
1279 mutex_exit(proc_lock);
1280 }
1281
1282 error = credexec(l, &data->ed_attr);
1283 if (error)
1284 goto exec_abort;
1285
1286 #if defined(__HAVE_RAS)
1287 /*
1288 * Remove all RASs from the address space.
1289 */
1290 ras_purgeall();
1291 #endif
1292
1293 doexechooks(p);
1294
1295 /*
1296 * Set initial SP at the top of the stack.
1297 *
1298 * Note that on machines where stack grows up (e.g. hppa), SP points to
1299 * the end of arg/env strings. Userland guesses the address of argc
1300 * via ps_strings::ps_argvstr.
1301 */
1302
1303 /* Setup new registers and do misc. setup. */
1304 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1305 if (epp->ep_esch->es_setregs)
1306 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1307
1308 /* Provide a consistent LWP private setting */
1309 (void)lwp_setprivate(l, NULL);
1310
1311 /* Discard all PCU state; need to start fresh */
1312 pcu_discard_all(l);
1313
1314 /* map the process's signal trampoline code */
1315 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1316 DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1317 goto exec_abort;
1318 }
1319
1320 pool_put(&exec_pool, data->ed_argp);
1321
1322 /* notify others that we exec'd */
1323 KNOTE(&p->p_klist, NOTE_EXEC);
1324
1325 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1326
1327 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1328
1329 emulexec(l, epp);
1330
1331 /* Allow new references from the debugger/procfs. */
1332 rw_exit(&p->p_reflock);
1333 if (!no_local_exec_lock)
1334 rw_exit(&exec_lock);
1335
1336 mutex_enter(proc_lock);
1337
1338 /* posix_spawn(3) reports a single event with implied exec(3) */
1339 if ((p->p_slflag & PSL_TRACED) && !is_spawn) {
1340 mutex_enter(p->p_lock);
1341 eventswitch(TRAP_EXEC);
1342 mutex_enter(proc_lock);
1343 }
1344
1345 if (p->p_sflag & PS_STOPEXEC) {
1346 ksiginfoq_t kq;
1347
1348 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1349 p->p_pptr->p_nstopchild++;
1350 p->p_waited = 0;
1351 mutex_enter(p->p_lock);
1352 ksiginfo_queue_init(&kq);
1353 sigclearall(p, &contsigmask, &kq);
1354 lwp_lock(l);
1355 l->l_stat = LSSTOP;
1356 p->p_stat = SSTOP;
1357 p->p_nrlwps--;
1358 lwp_unlock(l);
1359 mutex_exit(p->p_lock);
1360 mutex_exit(proc_lock);
1361 lwp_lock(l);
1362 mi_switch(l);
1363 ksiginfo_queue_drain(&kq);
1364 KERNEL_LOCK(l->l_biglocks, l);
1365 } else {
1366 mutex_exit(proc_lock);
1367 }
1368
1369 exec_path_free(data);
1370 #ifdef TRACE_EXEC
1371 DPRINTF(("%s finished\n", __func__));
1372 #endif
1373 return EJUSTRETURN;
1374
1375 exec_abort:
1376 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1377 rw_exit(&p->p_reflock);
1378 if (!no_local_exec_lock)
1379 rw_exit(&exec_lock);
1380
1381 exec_path_free(data);
1382
1383 /*
1384 * the old process doesn't exist anymore. exit gracefully.
1385 * get rid of the (new) address space we have created, if any, get rid
1386 * of our namei data and vnode, and exit noting failure
1387 */
1388 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1389 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1390
1391 exec_free_emul_arg(epp);
1392 pool_put(&exec_pool, data->ed_argp);
1393 kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1394 if (epp->ep_emul_root != NULL)
1395 vrele(epp->ep_emul_root);
1396 if (epp->ep_interp != NULL)
1397 vrele(epp->ep_interp);
1398
1399 /* Acquire the sched-state mutex (exit1() will release it). */
1400 if (!is_spawn) {
1401 mutex_enter(p->p_lock);
1402 exit1(l, error, SIGABRT);
1403 }
1404
1405 return error;
1406 }
1407
1408 int
1409 execve1(struct lwp *l, const char *path, int fd, char * const *args,
1410 char * const *envs, execve_fetch_element_t fetch_element)
1411 {
1412 struct execve_data data;
1413 int error;
1414
1415 error = execve_loadvm(l, path, fd, args, envs, fetch_element, &data);
1416 if (error)
1417 return error;
1418 error = execve_runproc(l, &data, false, false);
1419 return error;
1420 }
1421
1422 static size_t
1423 fromptrsz(const struct exec_package *epp)
1424 {
1425 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1426 }
1427
1428 static size_t
1429 ptrsz(const struct exec_package *epp)
1430 {
1431 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1432 }
1433
1434 static size_t
1435 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1436 {
1437 struct exec_package * const epp = &data->ed_pack;
1438
1439 const size_t nargenvptrs =
1440 1 + /* long argc */
1441 data->ed_argc + /* char *argv[] */
1442 1 + /* \0 */
1443 data->ed_envc + /* char *env[] */
1444 1; /* \0 */
1445
1446 return (nargenvptrs * ptrsz(epp)) /* pointers */
1447 + argenvstrlen /* strings */
1448 + epp->ep_esch->es_arglen; /* auxinfo */
1449 }
1450
1451 static size_t
1452 calcstack(struct execve_data * restrict data, const size_t gaplen)
1453 {
1454 struct exec_package * const epp = &data->ed_pack;
1455
1456 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1457 epp->ep_esch->es_emul->e_sigcode;
1458
1459 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1460 sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1461
1462 const size_t sigcode_psstr_sz =
1463 data->ed_szsigcode + /* sigcode */
1464 data->ed_ps_strings_sz + /* ps_strings */
1465 STACK_PTHREADSPACE; /* pthread space */
1466
1467 const size_t stacklen =
1468 data->ed_argslen +
1469 gaplen +
1470 sigcode_psstr_sz;
1471
1472 /* make the stack "safely" aligned */
1473 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1474 }
1475
1476 static int
1477 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1478 char * const newstack)
1479 {
1480 struct exec_package * const epp = &data->ed_pack;
1481 struct proc *p = l->l_proc;
1482 int error;
1483
1484 memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo));
1485
1486 /* remember information about the process */
1487 data->ed_arginfo.ps_nargvstr = data->ed_argc;
1488 data->ed_arginfo.ps_nenvstr = data->ed_envc;
1489
1490 /*
1491 * Allocate the stack address passed to the newly execve()'ed process.
1492 *
1493 * The new stack address will be set to the SP (stack pointer) register
1494 * in setregs().
1495 */
1496
1497 char *newargs = STACK_ALLOC(
1498 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1499
1500 error = (*epp->ep_esch->es_copyargs)(l, epp,
1501 &data->ed_arginfo, &newargs, data->ed_argp);
1502
1503 if (error) {
1504 DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1505 return error;
1506 }
1507
1508 error = copyoutpsstrs(data, p);
1509 if (error != 0)
1510 return error;
1511
1512 return 0;
1513 }
1514
1515 static int
1516 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1517 {
1518 struct exec_package * const epp = &data->ed_pack;
1519 struct ps_strings32 arginfo32;
1520 void *aip;
1521 int error;
1522
1523 /* fill process ps_strings info */
1524 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1525 STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1526
1527 if (epp->ep_flags & EXEC_32) {
1528 aip = &arginfo32;
1529 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1530 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1531 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1532 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1533 } else
1534 aip = &data->ed_arginfo;
1535
1536 /* copy out the process's ps_strings structure */
1537 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1538 != 0) {
1539 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1540 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1541 return error;
1542 }
1543
1544 return 0;
1545 }
1546
1547 static int
1548 copyinargs(struct execve_data * restrict data, char * const *args,
1549 char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1550 {
1551 struct exec_package * const epp = &data->ed_pack;
1552 char *dp;
1553 size_t i;
1554 int error;
1555
1556 dp = *dpp;
1557
1558 data->ed_argc = 0;
1559
1560 /* copy the fake args list, if there's one, freeing it as we go */
1561 if (epp->ep_flags & EXEC_HASARGL) {
1562 struct exec_fakearg *fa = epp->ep_fa;
1563
1564 while (fa->fa_arg != NULL) {
1565 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1566 size_t len;
1567
1568 len = strlcpy(dp, fa->fa_arg, maxlen);
1569 /* Count NUL into len. */
1570 if (len < maxlen)
1571 len++;
1572 else {
1573 while (fa->fa_arg != NULL) {
1574 kmem_free(fa->fa_arg, fa->fa_len);
1575 fa++;
1576 }
1577 kmem_free(epp->ep_fa, epp->ep_fa_len);
1578 epp->ep_flags &= ~EXEC_HASARGL;
1579 return E2BIG;
1580 }
1581 ktrexecarg(fa->fa_arg, len - 1);
1582 dp += len;
1583
1584 kmem_free(fa->fa_arg, fa->fa_len);
1585 fa++;
1586 data->ed_argc++;
1587 }
1588 kmem_free(epp->ep_fa, epp->ep_fa_len);
1589 epp->ep_flags &= ~EXEC_HASARGL;
1590 }
1591
1592 /*
1593 * Read and count argument strings from user.
1594 */
1595
1596 if (args == NULL) {
1597 DPRINTF(("%s: null args\n", __func__));
1598 return EINVAL;
1599 }
1600 if (epp->ep_flags & EXEC_SKIPARG)
1601 args = (const void *)((const char *)args + fromptrsz(epp));
1602 i = 0;
1603 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1604 if (error != 0) {
1605 DPRINTF(("%s: copyin arg %d\n", __func__, error));
1606 return error;
1607 }
1608 data->ed_argc += i;
1609
1610 /*
1611 * Read and count environment strings from user.
1612 */
1613
1614 data->ed_envc = 0;
1615 /* environment need not be there */
1616 if (envs == NULL)
1617 goto done;
1618 i = 0;
1619 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1620 if (error != 0) {
1621 DPRINTF(("%s: copyin env %d\n", __func__, error));
1622 return error;
1623 }
1624 data->ed_envc += i;
1625
1626 done:
1627 *dpp = dp;
1628
1629 return 0;
1630 }
1631
1632 static int
1633 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1634 execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1635 void (*ktr)(const void *, size_t))
1636 {
1637 char *dp, *sp;
1638 size_t i;
1639 int error;
1640
1641 dp = *dpp;
1642
1643 i = 0;
1644 while (1) {
1645 const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1646 size_t len;
1647
1648 if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1649 return error;
1650 }
1651 if (!sp)
1652 break;
1653 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1654 if (error == ENAMETOOLONG)
1655 error = E2BIG;
1656 return error;
1657 }
1658 if (__predict_false(ktrace_on))
1659 (*ktr)(dp, len - 1);
1660 dp += len;
1661 i++;
1662 }
1663
1664 *dpp = dp;
1665 *ip = i;
1666
1667 return 0;
1668 }
1669
1670 /*
1671 * Copy argv and env strings from kernel buffer (argp) to the new stack.
1672 * Those strings are located just after auxinfo.
1673 */
1674 int
1675 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1676 char **stackp, void *argp)
1677 {
1678 char **cpp, *dp, *sp;
1679 size_t len;
1680 void *nullp;
1681 long argc, envc;
1682 int error;
1683
1684 cpp = (char **)*stackp;
1685 nullp = NULL;
1686 argc = arginfo->ps_nargvstr;
1687 envc = arginfo->ps_nenvstr;
1688
1689 /* argc on stack is long */
1690 CTASSERT(sizeof(*cpp) == sizeof(argc));
1691
1692 dp = (char *)(cpp +
1693 1 + /* long argc */
1694 argc + /* char *argv[] */
1695 1 + /* \0 */
1696 envc + /* char *env[] */
1697 1) + /* \0 */
1698 pack->ep_esch->es_arglen; /* auxinfo */
1699 sp = argp;
1700
1701 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1702 COPYPRINTF("", cpp - 1, sizeof(argc));
1703 return error;
1704 }
1705
1706 /* XXX don't copy them out, remap them! */
1707 arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1708
1709 for (; --argc >= 0; sp += len, dp += len) {
1710 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1711 COPYPRINTF("", cpp - 1, sizeof(dp));
1712 return error;
1713 }
1714 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1715 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1716 return error;
1717 }
1718 }
1719
1720 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1721 COPYPRINTF("", cpp - 1, sizeof(nullp));
1722 return error;
1723 }
1724
1725 arginfo->ps_envstr = cpp; /* remember location of envp for later */
1726
1727 for (; --envc >= 0; sp += len, dp += len) {
1728 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1729 COPYPRINTF("", cpp - 1, sizeof(dp));
1730 return error;
1731 }
1732 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1733 COPYPRINTF("str", dp, (size_t)ARG_MAX);
1734 return error;
1735 }
1736
1737 }
1738
1739 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1740 COPYPRINTF("", cpp - 1, sizeof(nullp));
1741 return error;
1742 }
1743
1744 *stackp = (char *)cpp;
1745 return 0;
1746 }
1747
1748
1749 /*
1750 * Add execsw[] entries.
1751 */
1752 int
1753 exec_add(struct execsw *esp, int count)
1754 {
1755 struct exec_entry *it;
1756 int i;
1757
1758 if (count == 0) {
1759 return 0;
1760 }
1761
1762 /* Check for duplicates. */
1763 rw_enter(&exec_lock, RW_WRITER);
1764 for (i = 0; i < count; i++) {
1765 LIST_FOREACH(it, &ex_head, ex_list) {
1766 /* assume unique (makecmds, probe_func, emulation) */
1767 if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1768 it->ex_sw->u.elf_probe_func ==
1769 esp[i].u.elf_probe_func &&
1770 it->ex_sw->es_emul == esp[i].es_emul) {
1771 rw_exit(&exec_lock);
1772 return EEXIST;
1773 }
1774 }
1775 }
1776
1777 /* Allocate new entries. */
1778 for (i = 0; i < count; i++) {
1779 it = kmem_alloc(sizeof(*it), KM_SLEEP);
1780 it->ex_sw = &esp[i];
1781 LIST_INSERT_HEAD(&ex_head, it, ex_list);
1782 }
1783
1784 /* update execsw[] */
1785 exec_init(0);
1786 rw_exit(&exec_lock);
1787 return 0;
1788 }
1789
1790 /*
1791 * Remove execsw[] entry.
1792 */
1793 int
1794 exec_remove(struct execsw *esp, int count)
1795 {
1796 struct exec_entry *it, *next;
1797 int i;
1798 const struct proclist_desc *pd;
1799 proc_t *p;
1800
1801 if (count == 0) {
1802 return 0;
1803 }
1804
1805 /* Abort if any are busy. */
1806 rw_enter(&exec_lock, RW_WRITER);
1807 for (i = 0; i < count; i++) {
1808 mutex_enter(proc_lock);
1809 for (pd = proclists; pd->pd_list != NULL; pd++) {
1810 PROCLIST_FOREACH(p, pd->pd_list) {
1811 if (p->p_execsw == &esp[i]) {
1812 mutex_exit(proc_lock);
1813 rw_exit(&exec_lock);
1814 return EBUSY;
1815 }
1816 }
1817 }
1818 mutex_exit(proc_lock);
1819 }
1820
1821 /* None are busy, so remove them all. */
1822 for (i = 0; i < count; i++) {
1823 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1824 next = LIST_NEXT(it, ex_list);
1825 if (it->ex_sw == &esp[i]) {
1826 LIST_REMOVE(it, ex_list);
1827 kmem_free(it, sizeof(*it));
1828 break;
1829 }
1830 }
1831 }
1832
1833 /* update execsw[] */
1834 exec_init(0);
1835 rw_exit(&exec_lock);
1836 return 0;
1837 }
1838
1839 /*
1840 * Initialize exec structures. If init_boot is true, also does necessary
1841 * one-time initialization (it's called from main() that way).
1842 * Once system is multiuser, this should be called with exec_lock held,
1843 * i.e. via exec_{add|remove}().
1844 */
1845 int
1846 exec_init(int init_boot)
1847 {
1848 const struct execsw **sw;
1849 struct exec_entry *ex;
1850 SLIST_HEAD(,exec_entry) first;
1851 SLIST_HEAD(,exec_entry) any;
1852 SLIST_HEAD(,exec_entry) last;
1853 int i, sz;
1854
1855 if (init_boot) {
1856 /* do one-time initializations */
1857 vaddr_t vmin = 0, vmax;
1858
1859 rw_init(&exec_lock);
1860 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1861 exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax,
1862 maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL);
1863 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1864 "execargs", &exec_palloc, IPL_NONE);
1865 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1866 } else {
1867 KASSERT(rw_write_held(&exec_lock));
1868 }
1869
1870 /* Sort each entry onto the appropriate queue. */
1871 SLIST_INIT(&first);
1872 SLIST_INIT(&any);
1873 SLIST_INIT(&last);
1874 sz = 0;
1875 LIST_FOREACH(ex, &ex_head, ex_list) {
1876 switch(ex->ex_sw->es_prio) {
1877 case EXECSW_PRIO_FIRST:
1878 SLIST_INSERT_HEAD(&first, ex, ex_slist);
1879 break;
1880 case EXECSW_PRIO_ANY:
1881 SLIST_INSERT_HEAD(&any, ex, ex_slist);
1882 break;
1883 case EXECSW_PRIO_LAST:
1884 SLIST_INSERT_HEAD(&last, ex, ex_slist);
1885 break;
1886 default:
1887 panic("%s", __func__);
1888 break;
1889 }
1890 sz++;
1891 }
1892
1893 /*
1894 * Create new execsw[]. Ensure we do not try a zero-sized
1895 * allocation.
1896 */
1897 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1898 i = 0;
1899 SLIST_FOREACH(ex, &first, ex_slist) {
1900 sw[i++] = ex->ex_sw;
1901 }
1902 SLIST_FOREACH(ex, &any, ex_slist) {
1903 sw[i++] = ex->ex_sw;
1904 }
1905 SLIST_FOREACH(ex, &last, ex_slist) {
1906 sw[i++] = ex->ex_sw;
1907 }
1908
1909 /* Replace old execsw[] and free used memory. */
1910 if (execsw != NULL) {
1911 kmem_free(__UNCONST(execsw),
1912 nexecs * sizeof(struct execsw *) + 1);
1913 }
1914 execsw = sw;
1915 nexecs = sz;
1916
1917 /* Figure out the maximum size of an exec header. */
1918 exec_maxhdrsz = sizeof(int);
1919 for (i = 0; i < nexecs; i++) {
1920 if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1921 exec_maxhdrsz = execsw[i]->es_hdrsz;
1922 }
1923
1924 return 0;
1925 }
1926
1927 static int
1928 exec_sigcode_map(struct proc *p, const struct emul *e)
1929 {
1930 vaddr_t va;
1931 vsize_t sz;
1932 int error;
1933 struct uvm_object *uobj;
1934
1935 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1936
1937 if (e->e_sigobject == NULL || sz == 0) {
1938 return 0;
1939 }
1940
1941 /*
1942 * If we don't have a sigobject for this emulation, create one.
1943 *
1944 * sigobject is an anonymous memory object (just like SYSV shared
1945 * memory) that we keep a permanent reference to and that we map
1946 * in all processes that need this sigcode. The creation is simple,
1947 * we create an object, add a permanent reference to it, map it in
1948 * kernel space, copy out the sigcode to it and unmap it.
1949 * We map it with PROT_READ|PROT_EXEC into the process just
1950 * the way sys_mmap() would map it.
1951 */
1952
1953 uobj = *e->e_sigobject;
1954 if (uobj == NULL) {
1955 mutex_enter(&sigobject_lock);
1956 if ((uobj = *e->e_sigobject) == NULL) {
1957 uobj = uao_create(sz, 0);
1958 (*uobj->pgops->pgo_reference)(uobj);
1959 va = vm_map_min(kernel_map);
1960 if ((error = uvm_map(kernel_map, &va, round_page(sz),
1961 uobj, 0, 0,
1962 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1963 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1964 printf("kernel mapping failed %d\n", error);
1965 (*uobj->pgops->pgo_detach)(uobj);
1966 mutex_exit(&sigobject_lock);
1967 return error;
1968 }
1969 memcpy((void *)va, e->e_sigcode, sz);
1970 #ifdef PMAP_NEED_PROCWR
1971 pmap_procwr(&proc0, va, sz);
1972 #endif
1973 uvm_unmap(kernel_map, va, va + round_page(sz));
1974 *e->e_sigobject = uobj;
1975 }
1976 mutex_exit(&sigobject_lock);
1977 }
1978
1979 /* Just a hint to uvm_map where to put it. */
1980 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1981 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1982
1983 #ifdef __alpha__
1984 /*
1985 * Tru64 puts /sbin/loader at the end of user virtual memory,
1986 * which causes the above calculation to put the sigcode at
1987 * an invalid address. Put it just below the text instead.
1988 */
1989 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1990 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1991 }
1992 #endif
1993
1994 (*uobj->pgops->pgo_reference)(uobj);
1995 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1996 uobj, 0, 0,
1997 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1998 UVM_ADV_RANDOM, 0));
1999 if (error) {
2000 DPRINTF(("%s, %d: map %p "
2001 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
2002 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
2003 va, error));
2004 (*uobj->pgops->pgo_detach)(uobj);
2005 return error;
2006 }
2007 p->p_sigctx.ps_sigcode = (void *)va;
2008 return 0;
2009 }
2010
2011 /*
2012 * Release a refcount on spawn_exec_data and destroy memory, if this
2013 * was the last one.
2014 */
2015 static void
2016 spawn_exec_data_release(struct spawn_exec_data *data)
2017 {
2018 if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2019 return;
2020
2021 cv_destroy(&data->sed_cv_child_ready);
2022 mutex_destroy(&data->sed_mtx_child);
2023
2024 if (data->sed_actions)
2025 posix_spawn_fa_free(data->sed_actions,
2026 data->sed_actions->len);
2027 if (data->sed_attrs)
2028 kmem_free(data->sed_attrs,
2029 sizeof(*data->sed_attrs));
2030 kmem_free(data, sizeof(*data));
2031 }
2032
2033 /*
2034 * A child lwp of a posix_spawn operation starts here and ends up in
2035 * cpu_spawn_return, dealing with all filedescriptor and scheduler
2036 * manipulations in between.
2037 * The parent waits for the child, as it is not clear whether the child
2038 * will be able to acquire its own exec_lock. If it can, the parent can
2039 * be released early and continue running in parallel. If not (or if the
2040 * magic debug flag is passed in the scheduler attribute struct), the
2041 * child rides on the parent's exec lock until it is ready to return to
2042 * to userland - and only then releases the parent. This method loses
2043 * concurrency, but improves error reporting.
2044 */
2045 static void
2046 spawn_return(void *arg)
2047 {
2048 struct spawn_exec_data *spawn_data = arg;
2049 struct lwp *l = curlwp;
2050 struct proc *p = l->l_proc;
2051 int error, newfd;
2052 int ostat;
2053 size_t i;
2054 const struct posix_spawn_file_actions_entry *fae;
2055 pid_t ppid;
2056 register_t retval;
2057 bool have_reflock;
2058 bool parent_is_waiting = true;
2059
2060 /*
2061 * Check if we can release parent early.
2062 * We either need to have no sed_attrs, or sed_attrs does not
2063 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2064 * safe access to the parent proc (passed in sed_parent).
2065 * We then try to get the exec_lock, and only if that works, we can
2066 * release the parent here already.
2067 */
2068 ppid = spawn_data->sed_parent->p_pid;
2069 if ((!spawn_data->sed_attrs
2070 || (spawn_data->sed_attrs->sa_flags
2071 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2072 && rw_tryenter(&exec_lock, RW_READER)) {
2073 parent_is_waiting = false;
2074 mutex_enter(&spawn_data->sed_mtx_child);
2075 cv_signal(&spawn_data->sed_cv_child_ready);
2076 mutex_exit(&spawn_data->sed_mtx_child);
2077 }
2078
2079 /* don't allow debugger access yet */
2080 rw_enter(&p->p_reflock, RW_WRITER);
2081 have_reflock = true;
2082
2083 error = 0;
2084 /* handle posix_spawn_file_actions */
2085 if (spawn_data->sed_actions != NULL) {
2086 for (i = 0; i < spawn_data->sed_actions->len; i++) {
2087 fae = &spawn_data->sed_actions->fae[i];
2088 switch (fae->fae_action) {
2089 case FAE_OPEN:
2090 if (fd_getfile(fae->fae_fildes) != NULL) {
2091 error = fd_close(fae->fae_fildes);
2092 if (error)
2093 break;
2094 }
2095 error = fd_open(fae->fae_path, fae->fae_oflag,
2096 fae->fae_mode, &newfd);
2097 if (error)
2098 break;
2099 if (newfd != fae->fae_fildes) {
2100 error = dodup(l, newfd,
2101 fae->fae_fildes, 0, &retval);
2102 if (fd_getfile(newfd) != NULL)
2103 fd_close(newfd);
2104 }
2105 break;
2106 case FAE_DUP2:
2107 error = dodup(l, fae->fae_fildes,
2108 fae->fae_newfildes, 0, &retval);
2109 break;
2110 case FAE_CLOSE:
2111 if (fd_getfile(fae->fae_fildes) == NULL) {
2112 error = EBADF;
2113 break;
2114 }
2115 error = fd_close(fae->fae_fildes);
2116 break;
2117 }
2118 if (error)
2119 goto report_error;
2120 }
2121 }
2122
2123 /* handle posix_spawnattr */
2124 if (spawn_data->sed_attrs != NULL) {
2125 struct sigaction sigact;
2126 memset(&sigact, 0, sizeof(sigact));
2127 sigact._sa_u._sa_handler = SIG_DFL;
2128 sigact.sa_flags = 0;
2129
2130 /*
2131 * set state to SSTOP so that this proc can be found by pid.
2132 * see proc_enterprp, do_sched_setparam below
2133 */
2134 mutex_enter(proc_lock);
2135 /*
2136 * p_stat should be SACTIVE, so we need to adjust the
2137 * parent's p_nstopchild here. For safety, just make
2138 * we're on the good side of SDEAD before we adjust.
2139 */
2140 ostat = p->p_stat;
2141 KASSERT(ostat < SSTOP);
2142 p->p_stat = SSTOP;
2143 p->p_waited = 0;
2144 p->p_pptr->p_nstopchild++;
2145 mutex_exit(proc_lock);
2146
2147 /* Set process group */
2148 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2149 pid_t mypid = p->p_pid,
2150 pgrp = spawn_data->sed_attrs->sa_pgroup;
2151
2152 if (pgrp == 0)
2153 pgrp = mypid;
2154
2155 error = proc_enterpgrp(spawn_data->sed_parent,
2156 mypid, pgrp, false);
2157 if (error)
2158 goto report_error_stopped;
2159 }
2160
2161 /* Set scheduler policy */
2162 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2163 error = do_sched_setparam(p->p_pid, 0,
2164 spawn_data->sed_attrs->sa_schedpolicy,
2165 &spawn_data->sed_attrs->sa_schedparam);
2166 else if (spawn_data->sed_attrs->sa_flags
2167 & POSIX_SPAWN_SETSCHEDPARAM) {
2168 error = do_sched_setparam(ppid, 0,
2169 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2170 }
2171 if (error)
2172 goto report_error_stopped;
2173
2174 /* Reset user ID's */
2175 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2176 error = do_setresuid(l, -1,
2177 kauth_cred_getgid(l->l_cred), -1,
2178 ID_E_EQ_R | ID_E_EQ_S);
2179 if (error)
2180 goto report_error_stopped;
2181 error = do_setresuid(l, -1,
2182 kauth_cred_getuid(l->l_cred), -1,
2183 ID_E_EQ_R | ID_E_EQ_S);
2184 if (error)
2185 goto report_error_stopped;
2186 }
2187
2188 /* Set signal masks/defaults */
2189 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2190 mutex_enter(p->p_lock);
2191 error = sigprocmask1(l, SIG_SETMASK,
2192 &spawn_data->sed_attrs->sa_sigmask, NULL);
2193 mutex_exit(p->p_lock);
2194 if (error)
2195 goto report_error_stopped;
2196 }
2197
2198 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2199 /*
2200 * The following sigaction call is using a sigaction
2201 * version 0 trampoline which is in the compatibility
2202 * code only. This is not a problem because for SIG_DFL
2203 * and SIG_IGN, the trampolines are now ignored. If they
2204 * were not, this would be a problem because we are
2205 * holding the exec_lock, and the compat code needs
2206 * to do the same in order to replace the trampoline
2207 * code of the process.
2208 */
2209 for (i = 1; i <= NSIG; i++) {
2210 if (sigismember(
2211 &spawn_data->sed_attrs->sa_sigdefault, i))
2212 sigaction1(l, i, &sigact, NULL, NULL,
2213 0);
2214 }
2215 }
2216 mutex_enter(proc_lock);
2217 p->p_stat = ostat;
2218 p->p_pptr->p_nstopchild--;
2219 mutex_exit(proc_lock);
2220 }
2221
2222 /* now do the real exec */
2223 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2224 true);
2225 have_reflock = false;
2226 if (error == EJUSTRETURN)
2227 error = 0;
2228 else if (error)
2229 goto report_error;
2230
2231 if (parent_is_waiting) {
2232 mutex_enter(&spawn_data->sed_mtx_child);
2233 cv_signal(&spawn_data->sed_cv_child_ready);
2234 mutex_exit(&spawn_data->sed_mtx_child);
2235 }
2236
2237 /* release our refcount on the data */
2238 spawn_exec_data_release(spawn_data);
2239
2240 if (p->p_slflag & PSL_TRACED) {
2241 /* Paranoid check */
2242 mutex_enter(proc_lock);
2243 if (!(p->p_slflag & PSL_TRACED)) {
2244 mutex_exit(proc_lock);
2245 goto cpu_return;
2246 }
2247
2248 mutex_enter(p->p_lock);
2249 eventswitch(TRAP_CHLD);
2250 }
2251
2252 cpu_return:
2253 /* and finally: leave to userland for the first time */
2254 cpu_spawn_return(l);
2255
2256 /* NOTREACHED */
2257 return;
2258
2259 report_error_stopped:
2260 mutex_enter(proc_lock);
2261 p->p_stat = ostat;
2262 p->p_pptr->p_nstopchild--;
2263 mutex_exit(proc_lock);
2264 report_error:
2265 if (have_reflock) {
2266 /*
2267 * We have not passed through execve_runproc(),
2268 * which would have released the p_reflock and also
2269 * taken ownership of the sed_exec part of spawn_data,
2270 * so release/free both here.
2271 */
2272 rw_exit(&p->p_reflock);
2273 execve_free_data(&spawn_data->sed_exec);
2274 }
2275
2276 if (parent_is_waiting) {
2277 /* pass error to parent */
2278 mutex_enter(&spawn_data->sed_mtx_child);
2279 spawn_data->sed_error = error;
2280 cv_signal(&spawn_data->sed_cv_child_ready);
2281 mutex_exit(&spawn_data->sed_mtx_child);
2282 } else {
2283 rw_exit(&exec_lock);
2284 }
2285
2286 /* release our refcount on the data */
2287 spawn_exec_data_release(spawn_data);
2288
2289 /* done, exit */
2290 mutex_enter(p->p_lock);
2291 /*
2292 * Posix explicitly asks for an exit code of 127 if we report
2293 * errors from the child process - so, unfortunately, there
2294 * is no way to report a more exact error code.
2295 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2296 * flag bit in the attrp argument to posix_spawn(2), see above.
2297 */
2298 exit1(l, 127, 0);
2299 }
2300
2301 void
2302 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2303 {
2304
2305 for (size_t i = 0; i < len; i++) {
2306 struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2307 if (fae->fae_action != FAE_OPEN)
2308 continue;
2309 kmem_strfree(fae->fae_path);
2310 }
2311 if (fa->len > 0)
2312 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2313 kmem_free(fa, sizeof(*fa));
2314 }
2315
2316 static int
2317 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2318 const struct posix_spawn_file_actions *ufa, rlim_t lim)
2319 {
2320 struct posix_spawn_file_actions *fa;
2321 struct posix_spawn_file_actions_entry *fae;
2322 char *pbuf = NULL;
2323 int error;
2324 size_t i = 0;
2325
2326 fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2327 error = copyin(ufa, fa, sizeof(*fa));
2328 if (error || fa->len == 0) {
2329 kmem_free(fa, sizeof(*fa));
2330 return error; /* 0 if not an error, and len == 0 */
2331 }
2332
2333 if (fa->len > lim) {
2334 kmem_free(fa, sizeof(*fa));
2335 return EINVAL;
2336 }
2337
2338 fa->size = fa->len;
2339 size_t fal = fa->len * sizeof(*fae);
2340 fae = fa->fae;
2341 fa->fae = kmem_alloc(fal, KM_SLEEP);
2342 error = copyin(fae, fa->fae, fal);
2343 if (error)
2344 goto out;
2345
2346 pbuf = PNBUF_GET();
2347 for (; i < fa->len; i++) {
2348 fae = &fa->fae[i];
2349 if (fae->fae_action != FAE_OPEN)
2350 continue;
2351 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2352 if (error)
2353 goto out;
2354 fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2355 memcpy(fae->fae_path, pbuf, fal);
2356 }
2357 PNBUF_PUT(pbuf);
2358
2359 *fap = fa;
2360 return 0;
2361 out:
2362 if (pbuf)
2363 PNBUF_PUT(pbuf);
2364 posix_spawn_fa_free(fa, i);
2365 return error;
2366 }
2367
2368 int
2369 check_posix_spawn(struct lwp *l1)
2370 {
2371 int error, tnprocs, count;
2372 uid_t uid;
2373 struct proc *p1;
2374
2375 p1 = l1->l_proc;
2376 uid = kauth_cred_getuid(l1->l_cred);
2377 tnprocs = atomic_inc_uint_nv(&nprocs);
2378
2379 /*
2380 * Although process entries are dynamically created, we still keep
2381 * a global limit on the maximum number we will create.
2382 */
2383 if (__predict_false(tnprocs >= maxproc))
2384 error = -1;
2385 else
2386 error = kauth_authorize_process(l1->l_cred,
2387 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2388
2389 if (error) {
2390 atomic_dec_uint(&nprocs);
2391 return EAGAIN;
2392 }
2393
2394 /*
2395 * Enforce limits.
2396 */
2397 count = chgproccnt(uid, 1);
2398 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2399 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2400 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2401 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2402 (void)chgproccnt(uid, -1);
2403 atomic_dec_uint(&nprocs);
2404 return EAGAIN;
2405 }
2406
2407 return 0;
2408 }
2409
2410 int
2411 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2412 struct posix_spawn_file_actions *fa,
2413 struct posix_spawnattr *sa,
2414 char *const *argv, char *const *envp,
2415 execve_fetch_element_t fetch)
2416 {
2417
2418 struct proc *p1, *p2;
2419 struct lwp *l2;
2420 int error;
2421 struct spawn_exec_data *spawn_data;
2422 vaddr_t uaddr;
2423 pid_t pid;
2424 bool have_exec_lock = false;
2425
2426 p1 = l1->l_proc;
2427
2428 /* Allocate and init spawn_data */
2429 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2430 spawn_data->sed_refcnt = 1; /* only parent so far */
2431 cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2432 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2433 mutex_enter(&spawn_data->sed_mtx_child);
2434
2435 /*
2436 * Do the first part of the exec now, collect state
2437 * in spawn_data.
2438 */
2439 error = execve_loadvm(l1, path, -1, argv,
2440 envp, fetch, &spawn_data->sed_exec);
2441 if (error == EJUSTRETURN)
2442 error = 0;
2443 else if (error)
2444 goto error_exit;
2445
2446 have_exec_lock = true;
2447
2448 /*
2449 * Allocate virtual address space for the U-area now, while it
2450 * is still easy to abort the fork operation if we're out of
2451 * kernel virtual address space.
2452 */
2453 uaddr = uvm_uarea_alloc();
2454 if (__predict_false(uaddr == 0)) {
2455 error = ENOMEM;
2456 goto error_exit;
2457 }
2458
2459 /*
2460 * Allocate new proc. Borrow proc0 vmspace for it, we will
2461 * replace it with its own before returning to userland
2462 * in the child.
2463 * This is a point of no return, we will have to go through
2464 * the child proc to properly clean it up past this point.
2465 */
2466 p2 = proc_alloc();
2467 pid = p2->p_pid;
2468
2469 /*
2470 * Make a proc table entry for the new process.
2471 * Start by zeroing the section of proc that is zero-initialized,
2472 * then copy the section that is copied directly from the parent.
2473 */
2474 memset(&p2->p_startzero, 0,
2475 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2476 memcpy(&p2->p_startcopy, &p1->p_startcopy,
2477 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2478 p2->p_vmspace = proc0.p_vmspace;
2479
2480 TAILQ_INIT(&p2->p_sigpend.sp_info);
2481
2482 LIST_INIT(&p2->p_lwps);
2483 LIST_INIT(&p2->p_sigwaiters);
2484
2485 /*
2486 * Duplicate sub-structures as needed.
2487 * Increase reference counts on shared objects.
2488 * Inherit flags we want to keep. The flags related to SIGCHLD
2489 * handling are important in order to keep a consistent behaviour
2490 * for the child after the fork. If we are a 32-bit process, the
2491 * child will be too.
2492 */
2493 p2->p_flag =
2494 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2495 p2->p_emul = p1->p_emul;
2496 p2->p_execsw = p1->p_execsw;
2497
2498 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2499 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2500 rw_init(&p2->p_reflock);
2501 cv_init(&p2->p_waitcv, "wait");
2502 cv_init(&p2->p_lwpcv, "lwpwait");
2503
2504 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2505
2506 kauth_proc_fork(p1, p2);
2507
2508 p2->p_raslist = NULL;
2509 p2->p_fd = fd_copy();
2510
2511 /* XXX racy */
2512 p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2513
2514 p2->p_cwdi = cwdinit();
2515
2516 /*
2517 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2518 * we just need increase pl_refcnt.
2519 */
2520 if (!p1->p_limit->pl_writeable) {
2521 lim_addref(p1->p_limit);
2522 p2->p_limit = p1->p_limit;
2523 } else {
2524 p2->p_limit = lim_copy(p1->p_limit);
2525 }
2526
2527 p2->p_lflag = 0;
2528 l1->l_vforkwaiting = false;
2529 p2->p_sflag = 0;
2530 p2->p_slflag = 0;
2531 p2->p_pptr = p1;
2532 p2->p_ppid = p1->p_pid;
2533 LIST_INIT(&p2->p_children);
2534
2535 p2->p_aio = NULL;
2536
2537 #ifdef KTRACE
2538 /*
2539 * Copy traceflag and tracefile if enabled.
2540 * If not inherited, these were zeroed above.
2541 */
2542 if (p1->p_traceflag & KTRFAC_INHERIT) {
2543 mutex_enter(&ktrace_lock);
2544 p2->p_traceflag = p1->p_traceflag;
2545 if ((p2->p_tracep = p1->p_tracep) != NULL)
2546 ktradref(p2);
2547 mutex_exit(&ktrace_lock);
2548 }
2549 #endif
2550
2551 /*
2552 * Create signal actions for the child process.
2553 */
2554 p2->p_sigacts = sigactsinit(p1, 0);
2555 mutex_enter(p1->p_lock);
2556 p2->p_sflag |=
2557 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2558 sched_proc_fork(p1, p2);
2559 mutex_exit(p1->p_lock);
2560
2561 p2->p_stflag = p1->p_stflag;
2562
2563 /*
2564 * p_stats.
2565 * Copy parts of p_stats, and zero out the rest.
2566 */
2567 p2->p_stats = pstatscopy(p1->p_stats);
2568
2569 /* copy over machdep flags to the new proc */
2570 cpu_proc_fork(p1, p2);
2571
2572 /*
2573 * Prepare remaining parts of spawn data
2574 */
2575 spawn_data->sed_actions = fa;
2576 spawn_data->sed_attrs = sa;
2577
2578 spawn_data->sed_parent = p1;
2579
2580 /* create LWP */
2581 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2582 &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
2583 l2->l_ctxlink = NULL; /* reset ucontext link */
2584
2585 /*
2586 * Copy the credential so other references don't see our changes.
2587 * Test to see if this is necessary first, since in the common case
2588 * we won't need a private reference.
2589 */
2590 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2591 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2592 l2->l_cred = kauth_cred_copy(l2->l_cred);
2593 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2594 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2595 }
2596
2597 /* Update the master credentials. */
2598 if (l2->l_cred != p2->p_cred) {
2599 kauth_cred_t ocred;
2600
2601 kauth_cred_hold(l2->l_cred);
2602 mutex_enter(p2->p_lock);
2603 ocred = p2->p_cred;
2604 p2->p_cred = l2->l_cred;
2605 mutex_exit(p2->p_lock);
2606 kauth_cred_free(ocred);
2607 }
2608
2609 *child_ok = true;
2610 spawn_data->sed_refcnt = 2; /* child gets it as well */
2611 #if 0
2612 l2->l_nopreempt = 1; /* start it non-preemptable */
2613 #endif
2614
2615 /*
2616 * It's now safe for the scheduler and other processes to see the
2617 * child process.
2618 */
2619 mutex_enter(proc_lock);
2620
2621 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2622 p2->p_lflag |= PL_CONTROLT;
2623
2624 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2625 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
2626
2627 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) ==
2628 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2629 proc_changeparent(p2, p1->p_pptr);
2630 p1->p_pspid = p2->p_pid;
2631 p2->p_pspid = p1->p_pid;
2632 }
2633
2634 LIST_INSERT_AFTER(p1, p2, p_pglist);
2635 LIST_INSERT_HEAD(&allproc, p2, p_list);
2636
2637 p2->p_trace_enabled = trace_is_enabled(p2);
2638 #ifdef __HAVE_SYSCALL_INTERN
2639 (*p2->p_emul->e_syscall_intern)(p2);
2640 #endif
2641
2642 /*
2643 * Make child runnable, set start time, and add to run queue except
2644 * if the parent requested the child to start in SSTOP state.
2645 */
2646 mutex_enter(p2->p_lock);
2647
2648 getmicrotime(&p2->p_stats->p_start);
2649
2650 lwp_lock(l2);
2651 KASSERT(p2->p_nrlwps == 1);
2652 p2->p_nrlwps = 1;
2653 p2->p_stat = SACTIVE;
2654 l2->l_stat = LSRUN;
2655 sched_enqueue(l2, false);
2656 lwp_unlock(l2);
2657
2658 mutex_exit(p2->p_lock);
2659 mutex_exit(proc_lock);
2660
2661 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2662 error = spawn_data->sed_error;
2663 mutex_exit(&spawn_data->sed_mtx_child);
2664 spawn_exec_data_release(spawn_data);
2665
2666 rw_exit(&p1->p_reflock);
2667 rw_exit(&exec_lock);
2668 have_exec_lock = false;
2669
2670 *pid_res = pid;
2671
2672 if (error)
2673 return error;
2674
2675 if (p1->p_slflag & PSL_TRACED) {
2676 /* Paranoid check */
2677 mutex_enter(proc_lock);
2678 if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) !=
2679 (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) {
2680 mutex_exit(proc_lock);
2681 return 0;
2682 }
2683
2684 mutex_enter(p1->p_lock);
2685 eventswitch(TRAP_CHLD);
2686 }
2687 return 0;
2688
2689 error_exit:
2690 if (have_exec_lock) {
2691 execve_free_data(&spawn_data->sed_exec);
2692 rw_exit(&p1->p_reflock);
2693 rw_exit(&exec_lock);
2694 }
2695 mutex_exit(&spawn_data->sed_mtx_child);
2696 spawn_exec_data_release(spawn_data);
2697
2698 return error;
2699 }
2700
2701 int
2702 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2703 register_t *retval)
2704 {
2705 /* {
2706 syscallarg(pid_t *) pid;
2707 syscallarg(const char *) path;
2708 syscallarg(const struct posix_spawn_file_actions *) file_actions;
2709 syscallarg(const struct posix_spawnattr *) attrp;
2710 syscallarg(char *const *) argv;
2711 syscallarg(char *const *) envp;
2712 } */
2713
2714 int error;
2715 struct posix_spawn_file_actions *fa = NULL;
2716 struct posix_spawnattr *sa = NULL;
2717 pid_t pid;
2718 bool child_ok = false;
2719 rlim_t max_fileactions;
2720 proc_t *p = l1->l_proc;
2721
2722 error = check_posix_spawn(l1);
2723 if (error) {
2724 *retval = error;
2725 return 0;
2726 }
2727
2728 /* copy in file_actions struct */
2729 if (SCARG(uap, file_actions) != NULL) {
2730 max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2731 maxfiles);
2732 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2733 max_fileactions);
2734 if (error)
2735 goto error_exit;
2736 }
2737
2738 /* copyin posix_spawnattr struct */
2739 if (SCARG(uap, attrp) != NULL) {
2740 sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2741 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2742 if (error)
2743 goto error_exit;
2744 }
2745
2746 /*
2747 * Do the spawn
2748 */
2749 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2750 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2751 if (error)
2752 goto error_exit;
2753
2754 if (error == 0 && SCARG(uap, pid) != NULL)
2755 error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2756
2757 *retval = error;
2758 return 0;
2759
2760 error_exit:
2761 if (!child_ok) {
2762 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2763 atomic_dec_uint(&nprocs);
2764
2765 if (sa)
2766 kmem_free(sa, sizeof(*sa));
2767 if (fa)
2768 posix_spawn_fa_free(fa, fa->len);
2769 }
2770
2771 *retval = error;
2772 return 0;
2773 }
2774
2775 void
2776 exec_free_emul_arg(struct exec_package *epp)
2777 {
2778 if (epp->ep_emul_arg_free != NULL) {
2779 KASSERT(epp->ep_emul_arg != NULL);
2780 (*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2781 epp->ep_emul_arg_free = NULL;
2782 epp->ep_emul_arg = NULL;
2783 } else {
2784 KASSERT(epp->ep_emul_arg == NULL);
2785 }
2786 }
2787
2788 #ifdef DEBUG_EXEC
2789 static void
2790 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2791 {
2792 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2793 size_t j;
2794
2795 if (error == 0)
2796 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2797 else
2798 DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2799 epp->ep_vmcmds.evs_used, error));
2800
2801 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2802 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2803 PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2804 PRIxVSIZE" prot=0%o flags=%d\n", j,
2805 vp[j].ev_proc == vmcmd_map_pagedvn ?
2806 "pagedvn" :
2807 vp[j].ev_proc == vmcmd_map_readvn ?
2808 "readvn" :
2809 vp[j].ev_proc == vmcmd_map_zero ?
2810 "zero" : "*unknown*",
2811 vp[j].ev_addr, vp[j].ev_len,
2812 vp[j].ev_offset, vp[j].ev_prot,
2813 vp[j].ev_flags));
2814 if (error != 0 && j == x)
2815 DPRINTF((" ^--- failed\n"));
2816 }
2817 }
2818 #endif
2819